WHY RESPONSIBLE INNOVATION? THE DEFICITS OF THE R&I SYSTEM Need for governance mechanisms for outcomes of Science, Technology and Innovation Address market failures in order to deliver on societally desirable innovations

 Align science, technology and innovation policy with broadly shared public values

 Shift focus from technological potentials to societally desirable objectives

 Shift to open scholarship in order to make science better by improved reproducibility, efficiency and more responsiveness to societal challenges

Implement anticipatory governance mechanisms in the policy making process by using a combination of foresight, technology assessment and normative (participatory)-value sensitive design.

Dr.Dr.phil. René von Schomberg

European Commission, DG RTD Guest–Professor, Technical University Darmstadt, Germany (and sometimes elsewhere) Speaks in private capacity

Presentation is based on 'Why Responsible Innovation' in: International Handbook on Responsible Innovation (Von Schomberg/Hankins eds). Cheltenham: Edward Elgar Publishing

1.FIRST DEFICIT: NO GOVERNANCE OF SOCIETALLY DESIRABLE R & I OUTCOMES

Three Market hurdles and *technology neutral* approach, with focus on safety and risk

No specific entry for public opinion in policy making

Contrasts with Technology specific funding with a view on Economic benefits

Benefits = relative success on the Market

Professional bodies for Risk Governance but not for 'Benefit Governance

DEFINING RRI (VON SCHOMBERG, 2012)

Responsible Research and Innovation is a transparent,

interactive process by which societal actors and innovators

become mutually responsive to each other with a view to the

(ethical) acceptability, sustainability and societal desirability

of the innovation process and its (marketable) outcomes and impacts

2. MARKET FAILURE: NO DELIVERY ON SOCIETALLY DESIRABLE OUTCOMES

- 10% of the world's health research funding goes to 90% of the world's disease burden
 - Reliance on philanthropy to compensate market failure: for example Malaria (Gates Foundation
 - Negative relationship between strong patents and innovation (Stiglitz et al)
- Practice of weak patents and over patenting frustrates innovation (Stiglitz et al)
- Shrinking of knowledge commons
 - Markets deliver only well on technologies with increased efficiency, not for transformative changes needed, notably with Sustainable Development as goal

Responsible Innovation, needs public investments to compensate for market failure

3. NO ALIGNMENT WITH PUBLIC VALUES/EXPECTATIONS

Scientific and Technological advance: goal in itself Innovation seen as inherently steerless and 'good' Macro-economic justification of Research and Innovation

No justification for neither direction of R & I nor its purpose

Responsible Innovation directs innovation towards societally desirable outcomes: innovation = manageable and (re-) directable.

Innovation to be aligned with public values which also drive other policies: Quality of live, High level of protection of the environment, social market economy, sustainable development etc.

Grand Societal Challenges-SDG's- can serve as a focus

Figure 1. Normative anchor points derived from the Treaty on the European Union (Von Schomberg, 2012)

4 FOCUS ON SOCIETAL OBJECTIVE RATHER THAN TECHNOLOGICAL POTENTIALS

Responsible Technology Focus	Responsible Innovation focus
Identification of ethical, legal, social issues exploration of technological potential	Anticipatory governance: foresight on transformative change of sectors: energy, mobility, agriculture etc.
Stakeholder participation	Deliberative governance and commitment on societal objective
Identification of knowledge gaps and regulatory needs	Collective co-responsibility: codes of conduct, allocation and enabling of responsibility of actors
Ethics of constraint (prohibition, what we should <i>not</i> do)	Normative Design (what we do want and should do)

5. FROM (TOO) COMPETITIVE SCIENCE TO OPEN RESEARCH AND SCHOLARSHIP

Reproducibility Crisis in Science : Survey of Nature (2016): 70 percent could not reproduce data of colleagues)– 'Science goes Wrong'(lead article Economist): 90 percent of snd stage clinical trials 'fail'.

Productivity Crisis in Science:

• The number of drugs approved by the US Food and Drug Administration (FDA) per US dollars(inflation-adjusted) spent on R&D has halved roughly every 9 years since 1950 (Bountra et al, 2017).

How Graig Venter Tried to Capture the Code of Life and Save the World

James Shreeve

TOWARDS OPEN SCHOLARSHIP, CONTINUED

Multiple causes for both crises in Science:
No Openness = no good verification
No Openness = no societal robustness
Productivity in 'Excellence' means – no productivity of societal relevant outputs – publishing in high impact journals takes precedence over societal relevance

Competitiveness narrows range of societal relevance (big pharma studies only 50 out of 500 relevant kinases for diseases-Edwards(2016)

OPEN RESEARCH AND SCHOLARSHIP

STEP UP PROCESS: RESPONSIBLE RESEARCH: 'GOOD SCIENCE ANYWHERE IS GOOD FOR SCIENCE EVERYWHERE'

Credible reseach:

Standards of scientific integrity, codes for good research conduct *Responsive research*:

open, collaborative and networked science *Responsible research*:

anticipatory on outcomes and impacts

STEP UP PROCESS: RESPONSIBLE INNOVATION

'GOOD INNOVATION ANYWHERE, MIGHT BE BENEFICIAL FOR MANY, SOMEWHERE'

Responsive innovation:

Credible innovation:

international standards, codes of conduct, ethical guidelines open innovation with broadly composed knowledge coalitions Responsible innovation

mutual responsiveness among stakeholders with a normative commitment to address (a) societal desirable objective(s) OPEN RESEARCH AND SCHOLARSHIP Open research and scholarship as a remedy for: Efficiency of Science Reproducibility of Science Productivity and Societal Responsiveness of Science

Definition: 'sharing knowledge and data as early as possible in the research process in open collaboration with all relevant knowledge actors'. (von Schomberg- Handbook on RI, 2019)

6 LACK OF FORESIGHT AND NORMATIVE DESIGN

Alternative shaping of technology by Foresight

3 :515

-

SURVEY DRONES

Actial drones survey the fields, mapping woods, yickl and soft variation. This enables precise application of inputs, mapping scread of permicious weed blockgrass could increasing Wheat yields by 2-5%.

FLEET OF AGRIBOTS

A herd of specialised agribbts tend to crops, weeding, fertilising and harvesting. Robots capable of microdot application of fertiliser reduce tertiliser cost by 93.9%.

FARMING DATA

The farm generates vast quantities of rich and varied data. This is stored in the cloud, bats can be used as digital evidence reducing time spent completing grant applications or carrying out farm inspections saving on average £5,500 per farm per year.

M

TEXTING COWS

Sensors attached to livestock allowing monitoring of animal health and wellbeing. They can send texts to alert farmers when a cow goes into labour or develops infection increasing herd survival and increasing milk yields by 10%.

SMART TRACTORS

GPS controlled steering and optimised route planning reduces soil erosion, saving fuel costs by 10%

ALTERNATIVE SHAPING OF PRECISION AGRICULTURE

Factors for 'shaping' the technology	'Responsible Innovation'	Global-market driven innovation
Stakeholder involvement	Involving all producers/users	Technology push by big agribusiness
Societal objective	Determined by common stakeholder commitments	Technology and market-efficiency driven
Overall-technology design	Normative design with determining factors such as data ownership, scale of use, privacy by design approaches etc.	Fragmentary, sequential technology introduction whenever they become available
Access to resources	Public authorities enabling access to resources including to small farmers	Resource access inequalities remain unaddressed
Data- access and ownership	Data ownership with farmers	Data ownership primarily with big agribusinesses
Economic policy	Aligned to socio-economic needs, business models based on sharing of data	Business models based on centralised data systems in big agri-businesses, early technological fixes
Governance	Codes of Conduct, Public-Private Partnerships	Global markets driven

	'Responsible' State	'Responsible' Market	Responsible Innovation
Scope of Responsibility of Government	Outcomes and Risks	Risks	Outcomes and Risks
Regulatory oversight	State	Market-hurdles	Public-Private
Socio-economic assessment for Governance	Benefits for the State	Macro-economic/competitive advantage	Social desirability
Governance priorities	Control/Security/Access to resources	Speed of innovation uptake	Responsive to public values
Research/Inno- vation Policy	Technological superiority over competitors	Key–Tech oriented	Societal challenge oriented
Threats for 'irresponsible innovation'	'Policy Pull' Lack of Foresight	Technology Push, Ignorance of Ethical values	Collective Co– Responsibility!
Ethical constraints	Moral constraint of the 'governor'	Ethical constraints of the market	Ethics as driving force!

X MARINE

. .

24

Process dimen- sion	Pro duc t dim ensi on	Technology Assessment and Foresight	Application of the Precautionary Principle	Normative/eth ical principles to design technology	Innovation governance and stakeholder involvement	Public engagement
Technolog Assessmer Foresight	gy nt and	X	Development of Procedures to cope with risks	Which design objectives to choose?	Stakeholder involvement in Foresight and TA	How to engage the public?
Application the Precaution Principle	on of nary	Identification of nature of risks	Χ	Choice and development of standards	Defining proportionality: how much precaution?	How safe is safe enough?
Normative cal princip to design technolog	e/ethi ples y	"privacy" and "safety" by design	Setting of risk/ uncertainty thresholds	X	Which principles to choose?	Which technologies for which social desirable goals?
Innovation governand models an stakeholdd involveme	n ce od er ent	Defining scope and methodology for TA/Foresight by stakeholders	Defining the precautionary approaches by stakeholders	Translating normative principles in technological design	X	How can innovation be geared towards social desirable objective
Public Engagema and Publi Debate	ent C	Defining/choic e of methodology for public engagement	Setting of acceptability standards	Setting of social desirability of RRI outcome	Stakeholders roles in achieving social desirable outcomes	X

RESPONSIBLE INNOVATION: THIS WOULD BE IT!

Redefining Public-Private Relationship to address Market-failure, notably on public goods

- Commitment of stakeholders on societal desirable goals(not achievable through Market-innovation only)
- Implementing Foresight (e.g. Anticipatory governance within policy making for alternative shaping of socio-technological systems, e.g. Agriculture, Mobility, Energy
- Co-designing and Co-development of open research agenda's and open collaboration
- Normative- value sensitive-design of technology: Ethics as driving force!
- Organising collective-co responsibility: Codes of Conduct, Standards, Certifications, Third-party verifications
- (Long-term) Sustainability-Compliance (so not internal system efficiency innovations through the market)

Edward Elgar PUBLISHING

International Handbook on Responsible Innovation *A Global Resource* (*Currently on Google Play, e-book for 30 Euro*)

Edited by René von Schomberg, Directorate General for Research and Innovation, European Commission, Belgium and Guest Professor ,Technical University Darmstadt, Germany and Jonathan Hankins, The Bassetti Foundation, Italy

The Handbook constitutes a global resource for the fast growing interdisciplinary research and policy communities addressing the challenge of driving innovation towards socially desirable outcomes. This book brings together well-known authors from the US, Europe and Asia who develop conceptual and regional perspectives on responsible innovation as well as exploring the prospects for further implementation of responsible innovation in emerging technological practices ranging from agriculture and medicine, to nanotechnology and robotics. The emphasis is on the socio-economic and normative dimensions of innovation including issues of social risk and sustainability.

The International Handbook of Responsible Innovation is thus a guidebook for a shift in stance toward collective accountability for the products and consequences of our own ingenuity.'

- Daniel Sarewitz, Arizona State University, US

RENEVONSCHOMBERG.WORDPRESS.COM

