Design and conversion to simulation format oxXDNA/RNA simulation Trajectory Analysis
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Number of crossover bonds

cadnano Understanding energy barriers between
states can inform design choices
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- The TacoxDNA webserver! provides tools to convert from nanotechnology
design tools to the oxDNA format Studying unstable paranemic crossovers in RNA tiles Tt 4 g
- These files will not have physical geometry and must be relaxed prior to simulation  Simulation identified the parts of the structure which RMSD (nm)
- Also supports conversion to and from PDB for use in other simulation software were not forming as designed. .
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° Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA identify metastable
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Unsupervised clustering Visualization Interactions between
OxDNA Viewer is a Three.|s browser app that particles, particularly base
reads, edits, and writes oxDNA simulation files. pairing, is used to identify
Modify single configurations, create videos from weak or strained regions
trajectories, and overlay data from other analyses Bond Occupancy

Download at:
https://github.com/sulcgroup/oxdna-viewer
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Using DBSCAN?, an unsupervised machine learning algorithm, to identify structurally Show the strongest components of overall motion
distinct subpopulations in a trajectory and exploring differences in bonding and angles . .. . . ;oo mo o = e = e = o = .« . over the trajectory. Identifies the most dynamic
regions, as well as collective motions.

The oxDNA/RNA3*%> model Scale and sampling Editing in the visualizer
- Coarse-grained models built - More complete sampling is possible with - One strength of DNA/RNA nanotechnology
for nanotechnolgy smaller systems or longer computation time Is the modularity of components.

- oxDNA viewer has basic editing functions
- Translation, rotation, nicking, ligation,
deletion

- Accurately reproduces
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» v, Structure, thermodynamics,
_—. ,_and mechanics of single- and ~ ol
‘ex=1 . ““double-stranded DNA/RNA [oranemic ie

- Monte-Carlo and
Molecular Dynamics methods
- Efficiently sample systems

up to 2 million nucleotides
Download: dna.physics.ox.ac.uk
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before being joined by the teather in oxDNA Viewer

8694 nucleotides 13763 nucleotides 33694 nucleotides
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