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This document provides supplementary information to “Experimental certification of an infor-
mationally complete quantum measurement in a device-independent protocol,” https://doi.org/10.1364/
OPTICA.377959. In particular, the following will be presented: details on the experimental 
realization of non-projective measurements, proof of information completeness, results of 
tomographic reconstruction of Alice’s eight local states and details on error estimation.

1. EXPERIMENTAL REALIZATION OF ALICE’S POVM

We will derive in this section the Kraus operators correspond-
ing to the four outcomes of Alice’s non-projective measurement
(Eq. (4) in main paper). In order to get to them, we shall work
with a four dimensional Hilbert space on Alice’s side, which
includes the usual polarization space (with basis vectors |H〉
and |V〉) and the additional path degree of freedom added by
the Sagnac interferometer. Referring to Fig. 2 in the main pa-
per, we denote by |a〉 the mode transmitted by the polarizing
beam splitter (PBS) at the entrance of the interferometer, passing
through lambda-half wave plate (HWP) H1, and transmitted
again by the PBS. Counter-propagating to it, and going through
HWP H2, is instead mode |b〉.

We can then describe any four-dimensional state |Ψ〉A as a
vector with basis {|H〉 |a〉 , |H〉 |b〉 , |V〉 |a〉 , |V〉 |b〉}, where each
element refers to one polarization-path combined mode. In this

context, a PBS can be described as:

UPBS =


1 0 0 0

0 0 0 i

0 0 1 0

0 i 0 0

 , (S1)

while HWP, lambda-quarter wave plates (QWP) and phase
plates (PP) as:

UH(θ) =

cos 2θ sin 2θ

sin 2θ − cos 2θ

 ,

UQ(θ) =

 cos2 θ + i sin2 θ (1− i) sin θ cos θ

(1− i) sin θ cos θ i cos2 θ + sin2 θ

 ,

UPP(θ) =

1 0

0 eiθ

 .

(S2)
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The HWPs inside the interferometer act as:

UH1H2 = UH(θH1)⊕UH(θH2) =
cos 2θH1 sin 2θH1 0 0

sin 2θH1 − cos 2θH1 0 0

0 0 cos 2θH2 sin 2θH2

0 0 sin 2θH2 − cos 2θH2


(S3)

and the whole interferometer is thus given by Uint(θH1, θH2) =
UPBSUH1H2UPBS.

After the Sagnac interferometer, each of the two output paths
includes a combination of PP, HWP and QWP, PBS and two
single photon detectors. Referring to Fig. 2 in the main paper,
we can then express the transformations in polarization space
for outcomes j = {1, 2, 3, 4} in terms of Kraus operators as:

A1 = 〈a|UPBSUQ(θQa)UH(θHa)UPP(θPa) |a〉 〈a|Uint |a〉 ,

A2 = 〈a|UPBSUQ(θQb)UH(θHb)UPP(θPb) |a〉 〈b|Uint |a〉 ,

A3 = 〈b|UPBSUQ(θQb)UH(θHb)UPP(θPb) |a〉 〈b|Uint |a〉 ,

A4 = 〈b|UPBSUQ(θQa)UH(θHa)UPP(θPa) |a〉 〈a|Uint |a〉 ,

(S4)

so that Alice’s qubit undergoes the operation |ψ〉A → Aj |ψ〉A,
and each of her non-projective measurement operators (in Eq. (4)
in the main paper) is described by A4,j = A†

j Aj. As a side note,
while a combination of HWP and QWP at each interferometer
output would in principle be sufficient, adding the PPs allows
for “standard” σx and σy measurement settings to be used, to-
gether with a fixed phase given by the PPs. Moreover, since the
relative phase between the interferometer’s arms is fixed but
unknown, the additional PP simplifies the experimental task of
compensating for this additional phase.

Because of the effectively redundant PPs, there are several
combinations of settings that lead to optimal violation of Eq. (5).
In our experimental realization, we used the following: θH1 =
31.32°, θH2 = 13.68°, θPa = 45°, θHa = 0°, θQa = 45°, θPb = 135°,
θHb = 22.5°, θQb = 0°.

2. INFORMATION COMPLETENESS OF 4-OUTCOME
POVMS IN DIMENSION 2

We will now show that if a 4-outcome POVM is implemented in
dimension 2, then the information retrieved from the quantum
system is complete.

Note that a system of dimension 2 contains 3 independent
parameters. Thus, in order to show that a 4-outcome POVM
obtains these parameters we need to show that it consists of 3
linearly independent operators.

Let us assume that a POVM contains only 2 linearly indepen-
dent operators. Without loss of generality we can write it in one
of the forms:

(A, B, αA + βB,1− (1 + α)A− (1 + β)B) , (S5)

or
(A, B, αA− βB,1− (1 + α)A− (1− β)B) , (S6)

with α, β ≥ 0. We now show that POVMs in Eq. (S5) and Eq. (S6)
can be expressed as a convex combination of POVMs with at
most 3 outcomes.

Indeed, for Eq. (S5) we have:

(A, B, αA + βB,1− (1 + α)A− (1 + β)B)

=
1

(1 + α)(1 + β)
((1 + α)A, (1 + β)B, 0, R)

+
α

(1 + α)(1 + β)
(0, (1 + α)A, (1 + β)B, R)

+
β

(1 + α)(1 + β)
((1 + α)A, 0, (1 + β)B, R)

+
αβ

(1 + α)(1 + β)
(0, 0, (1 + α)A + (1 + β)B, R) ,

(S7)

where R = 1− (1 + α)A− (1 + β)B.
Similarly, for Eq. (S6) we have:

(A, B, αA− βB,1− (1 + α)A− (1− β)B)

=
α2

(α + β)(1 + α)

(
0,
(

1 +
β

α

)
B,(

1 +
1
α

)
(αA− βB), R′

)
+

α

(α + β)(1 + α)

((
1 +

1
α

)
(αA− βB),(

1 +
β

α

)
B, 0, R′

)
+

αβ

(α + β)(1 + α)

((
1 +

β

α

)
B, 0,(

1 +
1
α

)
(αA− βB), R′

)
+

β

(α + β)(1 + α)

(
(1 + α)A + (1− β)B, 0, 0, R′

)
,

(S8)

where R′ = 1− (1 + α)A− (1− β)B.

3. DETECTION EFFICIENCY

In order to calculate critical detection efficiency of the modi-
fied elegant Bell expression (Eq. (7) in the main paper), we first
calculated its local hidden variables bound. To this end we enu-
merated all possible deterministic strategies. This revealed that
the strategy assigning outcomes + for Alice’s measurements
1 and 3, − for Alice’s measurement 2, 2 for the POVM mea-
surement, + for Bob’s measurements 1, 2 and 4 and − for his
measurement 3 yields the value 6.1652.

For detection efficiency calculations we assumed that, in post-
processing of the experimental data whenever no-click events
occur, an outcome from the optimal LHV strategy above is as-
signed. The critical detection efficiency calculated using the
method in Ref. [1] is equal to 0.9439.

4. TOMOGRAPHIC RECONSTRUCTION OF ALICE’S
EIGHT LOCAL STATES

In Table S1 we report the eight qubit states, in Bloch vector
notation, reconstructed using both standard projective tomogra-
phy (σx, σy, σz), and with single-setting MIC-POVM tomography.
These states are the local states of Alice’s qubit, conditioned on
Bob’s measurement settings and outcomes. The pairwise fidelity
is also reported.

5. ERROR ESTIMATION

Here we provide a more comprehensive description of the errors
considered in the experiment.
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Projective tomography SIC-POVM tomography Fidelity(
0.561 0.601 0.570

) (
0.544 0.508 0.668

)
0.995+0.004

−0.004(
0.570 −0.589 −0.574

) (
0.506 −0.681 −0.530

)
0.996+0.003

−0.004(
−0.572 0.525 −0.630

) (
−0.572 0.525 −0.630

)
0.997+0.002

−0.003(
−0.551 −0.590 0.591

) (
−0.526 −0.695 0.490

)
0.995+0.002

−0.005(
−0.548 −0.581 −0.601

) (
−0.518 −0.574 −0.634

)
0.999+0.001

−0.001(
−0.577 0.611 0.541

) (
−0.658 0.586 0.474

)
0.997+0.002

−0.002(
0.588 −0.532 0.610

) (
0.560 −0.603 0.569

)
0.998+0.001

−0.001(
0.540 0.573 −0.616

) (
0.480 0.570 −0.667

)
0.998+0.001

−0.002

Table S1. Tomographic reconstruction of the states depicted in Fig. 4 in the main text, using both projective and MIC-POVM tomog-
raphy, and their pairwise fidelities. Uncertainties represent 15.9% and 84.1% quantiles of the respective results’ distributions.

A. Counting statistics
Whenever (coincident) events with a constant rate are counted
for some amount of time, the distribution of the final amount is
in very good approximation Poissonian. We therefore consid-
ered all our empirical counts to have an uncertainty equal to
their square root, and propagated it in the results. This is, by far,
the predominant contribution to the final uncertainties in our
experiment, giving errors of the order of 2 · 10−3 and 10−4 on
each Eab and P(a = i, b = +1|x = 4, y = i) term, respectively.

B. Motor precision
All measurement wave plates were rotated by motorized mounts
controlled by a computer. The step motors have a precision
equivalent to 0.02°. This results in errors of the same order
of the Poissonian ones. In order to reduce their contribution,
each setting was repeated 23 times, therefore decreasing the
uncertainties by almost a factor of 5.

C. Detector dark counts
Each of the single photon detectors used in the measurements
have dark count rates of about 500 detections per second. The
chances of a coincident event stemming from a true detection
and a dark count, with the rates used, was as low as 10−11, thus
negligible.

D. Higher order down-conversion events
The rate of accidental coincidences acm,ij coming from multiple
down-conversion events in a single pulse, for measurement
setting m and detectors (i, j), can be estimated with the formula

acm,ij =
Sm,iSm,j∆t

T
, (S9)

where Sm,k are the total (single) events on detector k during
measurement time T, when coincidence windows of length ∆t
are used. While the resulting rates are fairly minimal (of the
order of 10−3 events per second), they can still worsen, although
slightly, the results obtained. Since the DI certification protocol
can, in principle, work even if the state and measurements are
not characterized, we chose not to correct our evaluations for
this type of error. In the case of the full state tomography, the
derived fidelity of 99.6% (and corresponding uncertainty), did
not change whether we took accidental counts into consideration
or not, due to their very low rate.
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