

Libra: The Modular Software for Nonadiabatic and Quantum Dynamics

PI: Alexey Akimov

Institutions: University at Buffalo, SUNY

Award #: NSF-OAC-1931366

Motivation

- Modeling of nonadiabatic (NA) and quantum dynamics (QD) in complex systems relies on approximations. "which method to choose?"
- Various codes exist:
- "black-box" style, not suitable for methodology development,
 - "library of methodology prototyping building blocks"

Objectives

- To develop Libra library: TSH, FGR, decoherence, coupled trajectories
- To develop new tools: Libra/DFTB+ codes to enable modeling of nonadiabatic dynamics in nanoscale systems.
- To systematically benchmark NA/QD schemes: build the "Jacob's ladder" of nonadiabatic dynamics methods

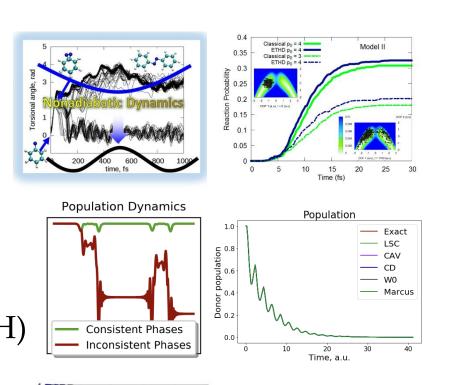
Story Temen

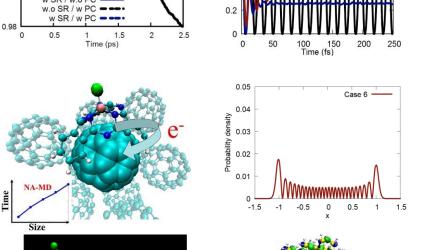
To date

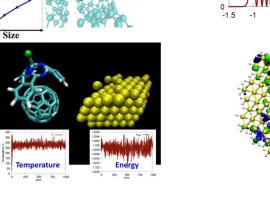
difficult to use, redundant, inconsistent

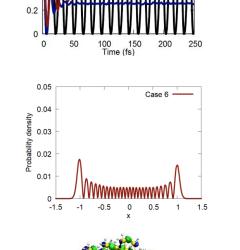
https://github.com/Quantum-

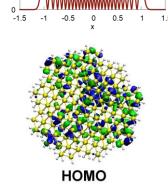
Dynamics-Hub/libra-code Nonadiabatic dynamics:


- Exact, DVR (Colbert-Miller), SOFT
- Ehrenfest
- FGR, HEOM
- TSH (FSSH, GFSH, MSSH, BCE)
- Decoherence (mSDM, EDC, ID-A, DISH)
- State tracking, phase corrections, etc.


Models Database: Tully, Holstein, Eckart barriers, SSY, Henon-Heiles, etc.


Interfaces: ErgoSCF, Quantum Espresso, DFTB+, GAMESS, Psi4


Auxiliary simulation tools:


- Semiempirical MO calculations
- Arbitrary sitribution sampling
- Classical MD (force fields)
- Analysis and data management tools

In Progress

- Systematic packaging/validation (HEOM, FGR, DVR)
- Unified data handling and processing (HDF5)
- Validating the models database
- New decoherence schemes
- Stochastic Schrödinger equation solvers
- Coupled trajectories methods
- Testing and validation of new interfaces (with ErgoSCF, DFTB+, Psi4, eQE)
- Comprehensive comparative analysis of the methods (TSH with and without back-reaction, bath models, performance in systems with multiple DOFs)

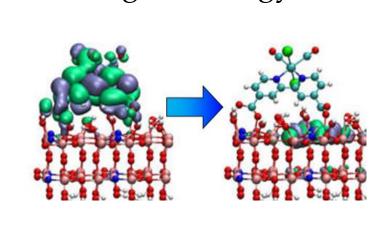
Methodology Development "Jacob's Ladder" **Materials Research Models Database** Interface with DFTB+ With NBRA, large systems **New Methods** Single Trajectories Surface Hopping: Boltzmann-corrected Ehrenfest Decoherence: ID-A, MSDM, DISH, MF-SD, ODC, MFSH, CSS, etc. Coupled Trajectories Surface Hopping: FCQSH, CSH, SHC, etc.

Intellectual Merit

- "Which method to choose?" Systematic assessment of approximations
- Modular software to study and develop new methods
- Enable modeling of nonadiabatic processes in nanosystems

Broader Impact

- Stimulate the adoption and re-use of advanced methods and codes
- New tools for excited states dynamics
- Provide advanced training via workshops and online open-source educational materials


Award #: NSF-OAC-1924256

CyberTraining: Pilot: Modeling Excited State Dynamics in Solar Energy Materials PI: Alexey Akimov, Co-Pis: Jeanette Sperhac

Institutions: University at Buffalo, SUNY

Motivation

- Solar energy materials research
- Charge & energy transfer

- Advanced theories and methods of nonadiabatic (NA) and quantum dynamics (QD) are required.
- A plethora of tools exists
- Mastery in this cyberinfrastructure (CI) is needed

Objectives

- To develop VIDIA science gateway with tools for NA/QD.
- To provide training for graduate students on modeling excited states in materials via advanced CI NA/QD calculations

Brendan Smith

Methodology

Materials Research Development CyberTraining & General Education VIDIA Front-end-RDKit Jupyter py3Dmol NA/QD and Quantum Chemistry CI PyQuante Newton-X PySCf

Intellectual Merit

- Promote open-source CI for modeling excited states dynamics
- Enable new science via adoption of new/advanced methods and tools

Broader Impacts

- Directly train 50 students from US institutions
- Provide a broader training via opensource educational materials
- Enable broader access to advanced NA/QM tools via VIDIA gateway
- Enable new classroom teaching approaches

UB Virtual Infrastructure for Data-Intensive Analysis (VIDIA) https://vidia.ccr.buffalo.edu/

Software	Description
Tool	
RapidMiner	Workflow-based environment for data and text mining and machine learning.
RStudio	Interactive development environment (IDE) for the R language offers statistical analysis libraries.
PSPP	GNU version of IBM's SPSS software enables analysis of sampled data.
Jupyter	Notebook-based numerical computing and visualization for Python, Octave, and R.
Workspace	Linux desktop with compilers, scripting languages, and access to the user's home

directory on VIDIA.

Tools to Cover

Dynamics Packages:

Libra, Pyxaid (Akimov)

Solar Energy

- SHARC (Gonzalez)
- Newton-X (Barbatti)
- QMflows-NAMD (Infante)
- NEXMD (Tretiak) more to come ...

Related Electronic Structure Packages:

- Quantum Espresso, eQE
- CP2K, GAMESS
- Psi4, PySCF, ErgoSCF **COLUBUS**
- DFTB+

Workshops

- Python, terminal, Jupyter, Git/GitHub, best practices, visualization & auxiliary
- General algorithms and methods:
 - MD, integrators, TD-SE
 - Exact dynamics on the grid, DVR, HEOM, FGR
- Surface hopping
 - Models Hamiltonians
 - Interfaces with electronic structure packages
 - Niche-specific materials modeling tools
 - Large systems, condensed matter, nanoscales (Libra, Pyxaid, QMflows-NAMD)
 - Large organic systems (NEXMD, Newton-X/DFTB+)
 - Clusters & Molecules (SHARC, Newton
- Analysis & post-processing