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 Artificial Neural Networks (ANNs) are making a resurgence in systems biology and metabolomics. This is
due to increased compute power, availability of code libraries, larger datasets, and societal acceptance.’
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 We recently showed that ANNs have similar predictive ability to other contemporary machine learning
algorithms (including PLS, Random Forest, and Support Vector Machines) for clinical metabolomics data

with a binary outcome.? Y=XB, +F
B, .=WC

* Interpretability of ANNs remains a key challenge for their wide spread use; however, single hidden layer
ANNs have structural equivalence to PLS, in the form of projection to latent structures (Figure 1).

Figure 1. Structural Equivalence of ANNs to PLS. (A) Matrix

 AIM: To migrate standardised optimisation, visualisation, evaluation, and statistical inference techniques | _
representation of PLS. (B) Network representation of ANN. Adapted from [1].

from PLS-DA to a fully connected non-linear (logistic), single hidden layer, ANN. This will provide a
foundation for the implementation of more complex interpretable ANNSs.

1. SELECT DATASET AND CREATE NOTEBOOK

« Dataset retrieved from Metabolomics Workbench (ST0001047).
* Modelling performed using Python programming language in the Jupyter Notebook framework.

5. VARIABLE CONTRIBUTION

PLS Coefficients vs. ANN CWA PLS VIP vs. ANN Garson’s Algorithm
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Several variable contribution metrics have been proposed for ANNs. The most
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CONCLUSIONS & FUTURE DIRECTIONS REFERENCES
Mlgzratlozn of V|5121allsat|on strategies was successful. 1. Mendez et al. (2019) Metabolomics. 15(11): 142
* | Q_ R vs Q plot aids m’FerpretablIlty for chc_)osmg ANN hyp_erparamete_rs: | 2. Mendez et al. (2019) Metabolomics. 15(12): 150.
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* VIP and Garson cut-offs not statistically justified — recommend reporting B, s and CWA with 95%
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