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Abstract

We consider the problem of calibrating the Farmer-Joshi agent based model of financial markets using
a genetic algorithm and a Nelder-Mead with threshold accepting algorithm in order to replicate prior
work. The Farmer-Joshi model [8] is an interesting model for understanding daily trading decisions
made from closing auction to closing auction in equity markets, as it attempts to model financial market
behaviour without the inclusion of agent adaptation. However, our attempt at calibrating the model
has limited success in replicating important stylized facts observed in financial markets, similar to what
has been found in other calibration experiments of the model. This leads us to extend the Farmer-
Joshi model to include agent adaptation using a Brock-Hommes [3] approach to strategy fitness based on
trading strategy profitability. The adaptive Farmer-Joshi model allows trading agents to switch between
strategies, favouring strategies that have been more profitable over some period of time determined by a
free-parameter determining the profit monitoring time-horizon. The novelty of the Farmer-Joshi model is
that the dynamics are driven by trade entry and exit thresholds alone. In the adaptive model we are able
to calibrate and recover important stylized facts much more completely by combining the interactions
of trade entry levels with trade strategy switching based on profitability. We use this to argue that for
low-frequency trading across days, as calibrated to daily sampled data, feed-backs can be accounted for
by strategy die-out based on intermediate term profitability; we find that the average trade monitoring
horizon is approximately two to three months (or 40 to 60 days) of trading.
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1

1 Introduction and Literature Review

In what follows, we provide a background and context to the relevant literature that relates to the
investigation of the Farmer-Joshi model and its extensions. Thereafter, we formulate the model(s) in a
mathematical framework and shed light on two different calibration/optimisation techniques along with
our methodology and implementation. Lastly, we gather insights and draw conclusions by presenting the
results of two different model calibrations.

Financial market time series have been found to exhibit complex structures which cannot be easily
explained by standard aggregate economic models or modelled by simple time series models. It is argued
that financial markets exhibit many emergent phenomena, and such phenomena are usually attributed
to the interactions and relationships between the agents that make up the system [16], which causes
models that do not take into account these interactions to fail to accurately replicate the aggregate
behaviour observed in the market. Agent-based models (ABMs), meanwhile, demonstrate the ability to
produce realistic simulated system dynamics, comparable to those observed in empirical investigations [30].
Successfully calibrating ABMs to financial time series can allow for inference about the factors determining
the price behaviour observed in the real world, provided that parameter estimates are sufficiently robust.
ABMs can also help determine the effects of different agent strategies on the resulting financial time series.

ABMs provide a bottom-up approach to modelling the actions and interactions of autonomous agents
with the aim of assessing their effect on a complex system. ABMs benefit from not assuming agents are
able to solve complex problems in order to determine their rational response, but instead assume that
different agents follow simple rules in order to cope with their overly complex environments [14]. These
agents are often individual people, but can also be larger groups of people such as a household or a firm.
Each agent has their own defined rules that govern how they react to different situations. These rule sets
may be simple, only taking one or two pieces of information into account at any one time, but they can
also be very complex, with agents taking into account past actions, the actions of others in the market,
and their past success. The ABM simulates how these different agents interact with each other over time
and shows how these interactions influence the market as a whole [14].

More specifically, the Farmer-Joshi model is an inter-day ABM that uses a market maker based method
of price formation to study the price dynamics induced by two commonly used financial trading strategies,
namely trend following and value investing together with state dependent threshold strategies [8]. As an
extension to the Farmer-Joshi model, we consider the case where agents are allowed to switch strategies
probabilistically using a Brock-Hommes [3] approach whereby strategies are favoured according to their
profitability over a specified time horizon. Given these two models, this paper aims to show how allowing
for switching agents results in improved replication of important empirically observed financial market
features known as stylized facts.

1.1 Advantages, Disadvantages and Motivation for the Use of ABMs

Financial markets comprise of many interacting components and whose internal dynamics are highly
complex. Assuming that markets process the beliefs and demand of traders, this gives some motivation
for using a model which considers price movements as a function of the components in the market. In
this regard, ABMs successfully link the micro-level rules of investors behaviour with the macro-behaviour
of asset prices in real markets. Another compelling reason for the consideration of ABMs in financial
markets is that they do not require assumptions about the market and the distribution of returns. This
characteristic is ideal since returns are not normally distributed but instead exhibit excess kurtosis (fat
tails) as well as other features that lack good explanations by existing models [21]. Due to the expansive
amount of data that is collected on financial markets, there is a particularly great amount of potential
for using agent-based models to model financial markets [20]. Overall, ABMs clearly have a number of
benefits as a simulation tool to show emergent behaviours, evolution dynamics, and consistent fit with
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real-market data. In particular, the Farmer-Joshi model is built from a foundation of realistic trading
strategies that is argued to be able to reproduce most of these empirical features [8].

ABMs are, however, usually computationally expensive and so have only in recent years become more
popular for modelling as the computational tools available have improved. An additional criticism levelled
at agent-based financial markets is that there are too many parameters. Researchers are able not just
to move freely through large parameter spaces, but can also change entire internal mechanisms at their
discretion in the attempt to fit sets of stylized facts [21]. Furthermore, unlike analytic models, there
are still relatively few general principles that one can confidently apply to the construction of different
agent-based market models, and most financial market ABMs assume only a small number of assets [21].
ABMs also assume that agents operate inductively (use/learn rules and forecasts that have worked well
in the past and improve on them). In other words, ABMs do not consider the case where agents operate
deductively - that is, not only looking at past patterns but future patterns as well (e.g. present value
analysis, Black-Scholes option pricing formula, etc.) [21]. Lastly, there is the issue of validation. It is
difficult to compare the “goodness” of one ABM to another. Such comparisons are usually based on
the model’s ability to replicate empirical observations - which involves subjective comparisons given the
qualitative nature of most stylized facts. It is also usually the case that a unique set of parameters for
the calibration of a specific model to a time series does not exist. Without a unique set of parameters
allowing us to reproduce the properties of financial time series drawn from a particular market, we cannot
argue that introducing and observing changes in the model truly reflects the same changes in the market.
Aside from the above points and considering the Farmer-Joshi model specifically, an element missing from
its price formation mechanism studied is the risk aversion of the market maker (who is assumed to be
risk neutral) which can have profound effects on price formation. Furthermore, the Farmer-Joshi model
is shown to suffer from parameter degeneracy - suggesting that stylized fact centric validation may be
insufficient.

1.2 Market Microstructure

Market microstructure refers to the details of how exchange occurs within markets and its research
concerns the study of the process and outcomes of exchanging assets under explicit trading rules [25]. A
major underlying tenet of the agent-based modelling philosophy is that studying every single element is
sufficient to understand the system as a whole [32]. While this attempt is able to derive analytical solutions
for subsequent analysis, it frequently fails to account successfully for stylized facts, especially in financial
markets [32]. This is largely because various models in this framework rely heavily on many unrealistic
assumptions, such as market clearing, market convergence to equilibrium prices, perfect information, and
rationality, whilst ignoring the emergent characteristics of agents interactions and their diverse strategies
[32].

In this implementation of the Farmer-Joshi model, we only consider traders partaking in daily closing
auctions. Thus, the model does not face the problem of attempting to model intra-day trader behaviour
in a continuous market. While share prices are constantly changing throughout each day, attempting
to calibrate ABMs on intra-day prices can cause multiple problems. Models considering intra-day price
movements can often suffer from parameter degeneracy even if they are able to recreate the stylized facts
of the market, suggesting that the parameters no longer carry the meaning they were intended to carry by
the model [30]. This leaves limited ability to make regulatory and structural inferences from the obtained
results [30]. Closing auctions differ from normal intra-day trading in that no order matching is done, with
their purpose being to provide a transparent closing price for each share at the end of each day [1]. All of
the trades that take place at the end of the closing auction execute at the same price [1]. Going into each
closing auction, agents in the model only make use of previous closing prices to determine their behaviour.
As is described in more detail in section 2, the Farmer-Joshi model only allows agents to submit market
orders, with no allowance for other types of order such as limit orders, stop orders, and stop limit orders
[8]. With market orders, agents do not attach a price to their order, but instead accept whatever closing
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price is determined. This means that at the end of the day all orders are always executed in the model.
The Farmer-Joshi model therefore does not attempt to include all elements of the market microstructure
found in real financial markets, instead focusing on a specific aspect of exchange in financial markets.

1.3 Existing Approaches to Agent Based Modelling

Many different agent-based models exist in the “econophysics” literature, each with its own set of implicit
assumptions and interesting properties, with many of the different models equally being able to replicate
well-known stylized facts [3, 27]. An example of one of the earliest heterogeneous agent based models
can be found in Zeeman (1974) [36]; other examples include Haltiwanger and Waldmann (1985), Frankel
and Froot (1988), DeLong et al. (1990), Dacorogna et al. (1995), Gode and Sunder (1993) [12], Lettau
(1997) [22], Brock and Hommes (1998) [3], Kirman (2002) [18], Preis et al. (2006) [31] and Jacob Leal et
al. (2015) [19].

Similar to the Farmer-Joshi model, the model by Zeeman (1974) [36] considers heterogeneous agents
who adopt either a trend following strategy or a value investing strategy to measure the instability of
the market in a stock exchange. Variables C, F and J are used to denote the proportion of the market
held by chartists, the proportion of the market held by fundamentalists and the rate of change of an
index I respectively. The variable J can be regarded as a dependent variable, depending upon the rate
of buying and selling of investors. At the same time there is a feedback because the knowledge of J in
turn influences the investors. The question is then proposed: how are the variables C, F and J related?
Zeeman then expresses this dynamic relation by an ordinary differential equation using a number of
different assumptions and hypotheses regarding agents and the stock exchange.

Gode and Sunder (1993) [12] is a distinctive paper as it uses an agent-based model that assumes that
agents do not learn and behave almost completely randomly. The agents make random bids and offers,
with only a budget constraint - preventing sellers from offering below cost, and buyers from bidding below
the share’s redemption value. Gode and Sunder found that with this one constraint, the “zero intelligence”
traders allocated the resources at over 97 percent efficiency which is very close to that of humans. These
results suggest that the behaviour of rational agents with different rule-sets may be indistinguishable from
zero-intelligence traders when using a certain market structure [20]. Thus, it is important that researchers
try to distinguish between features that come from learning and adaptation, and features that are a direct
result of the market structure itself.

In the paper by Lettau (1997) [22] agents have a choice between buying a risky asset that pays some
unknown dividend in the next period (the value of which is randomly drawn from a Gaussian distribution),
and a risk-free bond paying zero interest. The paper assumes that the price of the risky asset is set
exogenously, and that agents have constant risk aversion preferences. With these assumptions, Lettau [22]
is able to observe how the expected optimal behaviour of the agents compares to the behaviour determined
by the genetic algorithm used to optimize agents behaviour. Interestingly, the genetic algorithm was found
to have a bias in favour of more risky strategies when a finite number of experiments were run. This was
due to certain agents getting lucky by taking on risky strategies when the dividends happened to be high.
However, as the number of experiments increased, this bias was reduced towards zero, as the chance of
getting consistently lucky using a high risk strategy was reduced [22].

More recently, the Preis et al. (2006) [31] and Jacob Leal et al. (2015) [19] models consider different
approaches to the agent based simulation of financial markets. In the Jacob Leal et al. model, low fre-
quency agents adopt trading rules based on chronological time and can switch between fundamentalist and
chartist strategies. High frequency traders activation is event-driven and depends on price fluctuations.
These traders use directional strategies to exploit market information produced by low-frequency traders.
In the Preis et al. [31] model, simulations are based on an order book which stores the offers and demands
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of the various traders and enables continuous trading. Here agents are called liquidity takers/providers
and are differentiated on the basis of their order types (market orders or limit orders respectively). Liq-
uidity providers earn the spread by submitting limit orders around the midpoint between the best bid
and the best ask whereas liquidity takers submit market orders.

1.4 Calibration of ABMs

In this paper we use an objective function based frequentist approach to model calibration. More recently,
however, ABMs have faced criticism regarding the rigour of commonly used calibration practices. Platt
(2019) [28] explores how certain calibration techniques perform compared to each other for their ability
to calibrate agent-based models in financial markets. The paper compares the commonly used frequentist
inference approaches (such as simulated minimum distance methods) to Bayesian inference approaches,
and finds that Bayesian estimation techniques tend to perform best, especially as the number of dimensions
in the models is increased [28].

The under-performance of frequentist approaches is argued to be the result of the fact that the objective
functions used often lack smoothness and possess many local optimums, making discovery of the global
optimum using many traditional methods very difficult [11]. Also, any solution for the optimum is only
ever an approximate solution due to the stochastic nature of ABMs [7]. For this reason, the use of
heuristic methods can be preferable for ABMs, as a heuristic method can be better at obtaining an
approximation of the global optimum. Threshold accepting is a heuristic search method which can be
used in conjunction with the Nelder-Mead simplex algorithm to calibrate ABMs. Gilli and Winker [11]
present a global optimisation heuristic using this Nelder-Mead with threshold accepting technique. One
downside of a heuristic approach, however, is the long computation times required to effectively calibrate
the model. To offset this, it is often necessary to resort to very coarse approximations of the objective
function, which hinders the quality of the results.

The Farmer-Joshi model has been calibrated in past using both a Genetic algorithm (first introduced
by Holland in 1975 [17]) and a Nelder-Mead (first introduced by Nelder and Mead in 1965 [24]) with
threshold accepting method [7]. The calibrations by Fabretti make use of daily closing auctions of the
S&P 500 Composite index from 2005 to 2007 and the results of the two techniques were compared to one
another [7]. It was found that the genetic algorithm was able to find slightly better parameters based off of
the objective function used compared to the calibration using the Nelder-Mead with threshold accepting
method [7]. In this project, we also make use of both of these calibration methods to calibrate the model.

1.5 Stylized Facts of Financial Markets

The view point of many market analysts has been and remains an event-based approach in which one
attempts to “explain” or rationalize a given market movement by relating it to an economic or political
event or announcement [6]. From this point of view, one could easily imagine that, since different assets
are not necessarily influenced by the same events or information sets, price series obtained from different
assets and from different markets will exhibit different properties [6]. Nevertheless, the result of many
decades of empirical studies on financial time series indicates that it is the case that if one examines their
properties from a statistical point of view, then the seemingly random variations of asset prices do share
some quite non-trivial statistical properties [6]. Such properties are known as stylized empirical facts and
are frequently used as performance measures for ABMs [6].

Stylized facts are thus obtained by taking a common denominator among the properties observed in
studies of different markets and instruments. By doing so one gains in generality but tends to lose
in precision of the statements one can make about asset returns [6]. Indeed, stylized facts are usually
formulated in terms of qualitative properties of asset returns and may not be precise enough to distinguish
among different parametric models. Nevertheless, these stylized facts are so constraining that it is not
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easy to exhibit even an ad hoc stochastic process which possesses the same set of properties and one has
to go to great lengths to reproduce them with a model [6]. We focus on the following stylized facts that
are common to a wide variety of financial assets when determining the success of our calibrations:

1. Absence of autocorrelations of returns. The presence of autocorrelations of returns in financial
markets would imply the existence of very simple strategies for making money using only knowledge
of past share prices. Given the great incentives people have to make money, it follows that such
opportunities would quickly be snatched upon by traders up until the point where the opportunity
no longer exists through the cancelling out of autocorrelations by the behaviour of the traders. Thus,
the existence of this stylized fact when considering returns over a sufficient period of time makes
intuitive sense.

2. Heavy/fat tails for the distribution of returns compared to a normal distribution, resulting in the
distribution of returns being leptokurtic.

3. Volatility clustering (first noted by Mandelbrot [23]) as shown by autocorrelations in absolute returns
(long memory). Large changes in financial markets returns tend to be grouped together.

4. Gain/loss asymmetry. Large drops in price tend to be observed more frequently than large price
increases.

It should also be noted that to properly validate an agent-based model for financial markets, the model
should both be able to replicate the stylized facts of financial markets and have parameters that behave
in clear ways and do not have insignificant effects on the resulting behaviour of the simulation. It has,
however, been argued that the qualitative comparison of stylized facts is an inadequate form of validation
and that they demonstrate an inability to detect parameter degeneracies [29].

1.6 Agent Adaptation, Herding and Minority Game

The concept of changes in the number of chartists and fundamentalists is driven by the Friedman hy-
pothesis: “irrational agents will lose money and will be driven out the market by rational agents” in
a predator-prey type fashion [9]. An important question in heterogeneous agents modelling is whether
“irrational” traders can survive in the market, or whether they would lose money and be driven out of
the market by rational investors, who would trade against them and drive prices back to fundamentals, as
argued by Friedman [9]. Brock and Hommes’ paper [3] presents a tractable form of evolutionary dynam-
ics which they call, Adaptive Belief Systems, in a simple present discounted value (PDV) asset pricing
model. According to Brock and Hommes, agents revise their “beliefs” in each period in a boundedly
rational way, according to a “fitness measure” such as past realized profits [3]. Their paper shows how an
increase in the “intensity of choice” to switch predictors can lead to market instability and the emergence
of complicated dynamics for asset prices and returns (which is shown in this paper as well). In both the
paper by Brock and Hommes and this one, it is shown that when the intensity of switching is high, asset
price fluctuations are indeed characterized by an irregular switching between phases where prices are close
to the EMH fundamental price, phases of optimism (“castles in the air”) where traders become excited
and extrapolate upward trends, and phases of pessimism, where traders become nervous causing a sharp
decline in asset prices [3]. A key feature of both our and Brock and Hommes’ adaptive belief systems is
that this irregular switching is triggered by a rational choice between simple prediction strategies.

While we use a Brock-Hommes approach to agent adaptation, there are other methods also commonly
used. Herding is known to be a key source of endogenous fluctuations in asset prices. For the past several
decades, finance academics have considered herding behaviour in ABMs, trying to fit ABMs to stylized
statistical features salient in empirical data. Herd behaviour was first observed in ant colonies by entomol-
ogists. Kirman (2007) [18] develops an ABM to analyse and adapt ants’ “recruiting” behaviour to explain
agents herding behaviour in financial markets. The similarity between ant societies and financial markets,
in terms of herding, allowed Kirman to apply a multi-agent concept to the dynamics in financial markets.
This concept defines the probabilities that one agent will follow another agent’s opinion (“herding”) and
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that agents will change their decisions on their own (“self-conversion”). More specifically, Kirman’s model
considers chartists and fundamentalists who interact and communicate their beliefs on the next period
forecast through an epidemiological process. There is a fixed number of agents N where θt is the number
of agents with a fundamentalist forecast at time t. It is assumed that pairs of agents meet at random and
that the probability that the first agent is converted to the opinion of the second one is equal to (1− δ).
Furthermore, each agent can independently change his opinion with probability ξ. Given that the state
of the process is summarised by the value of θt, the transition probability matrix is given by

Pr[θ, θ + 1] =

(
1− θ

N

)(
ξ + (1− δ) θ

N − 1

)
Pr[θ, θ − 1] =

θ

N

(
ξ + (1− δ)N − θ

N − 1

)
Pr[θ, θ] = 1− Pr[θ, θ + 1]− Pr[θ, θ − 1]

After the meetings, the proportion of fundamentalists is equal to θt/N (determined by the transition prob-
ability matrix). However, agents observe this proportion with error. Agent i observes ki,t = θt/N + εi,t
where εi,t ∼ N(0, σ2

θ). If agent i observes that ki,t ≥ 0.5 then he will make a fundamentalist fore-
cast, otherwise he will make a chartist forecast (the proportion of fundamentalist forecasts at time t is

N−1
∑N
i=1 I(ki,t≥0)). This model is argued to replicate the empirically observed characteristics of daily

exchange rate series [18].

Another alternative means for agent adaptation to be considered is the minority game approach (first
formulated by Challet and Zhang in 1997 [5]) which is an intuitive model for the behaviour of a group of
agents subject to the economic law of supply and demand. In the standard minority game, agents learn
and take their decisions to be in minority. Based on supply and demand relation, the winners will make
a profit from buying low and selling high, so we can say these agents are value traders and have minority
game character. On the other hand, another type of agent will have a majority game character. If the
price continues to go up, driven by the majority, this kind of agent will make a profit, so we can say it
is a trend trader. This gives the game its “minority” nature; an excess of buyers will force the price of
the asset up, consequently the minority of agents who have placed sell orders receive a good price at the
penalty of the majority who end up buying at an over-inflated price. In an attempt to learn from their
past mistakes the agents constantly update the “profit” or “success” of their strategies and use only the
most successful one to make their prediction. The agents of the MG keep a tally of the virtual score Ui’s
of each of their strategies, +1 for a correct prediction and −1 for an incorrect prediction. Asserting that
agents are rational and risk averse implies that an agent never plays a strategy that has lost more times
than won. In this model, each agent has two strategies: a value strategy and a trend strategy. Both
strategies for each agent are used to predict at each time step and scores are given to those strategies.
Agents keep a tally of their virtual score Ui,c and Ui,t for each of their strategies (i.e. score made from
value investing (f) and score made from trend following (c)) through time as follows [35]:

Ui,f (t+ 1) = Ui,f (t)− aIi (t) · sign(A(t+ 1))− Ui,f (t−H)

Ui,c(t+ 1) = Ui,c(t) + aIi (t) · sign(A(t+ 1))− Ui,c(t−H)

where aIi (t) is the action chosen by the ith value investor at time t (1 = buy, -1 = sell) based on the value

strategy, A(t + 1) =
∑N
i=1 ai(t) provides the collective sum of actions from all agents at time t and H

represents the horizon for which the strategy records its score. That is to say that only virtual points in
the last H steps can be added to Ui(t). Different from value strategies, trend strategies have a positive
payoff if ai(t) and A(t + 1) have the same sign. So if a trend follower’s action is in the majority in the
next time step they gain. However, if a value investor is in the majority at the next time step they lose
a point (i.e. if ai(t) and A(t + 1) have the same sign). The best strategy adopted by the ith agent at
time t is thus given by si(t) = argmax

s
[Ui,s(t)] [35]. In this way agents always choose the best strategy
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(deterministic), however, one may specify that agents employ their strategy s in a probabilistic fashion
as introduced by Cavagna et al. (1999) [4]. Cavagna et al. define the Thermal Minority Game model
where agents are allowed a certain degree of stochasticity in their choice of strategy to use at any time
step [4] by introducing a “thermal” description which progressively allows stochastic deviations from the
“best strategy” rule. An agent will adopt strategy s with probability

φs,it =
eUi,s(t)/Γ∑
s′ e

Ui,s′ (t)/Γ

Cavagna et al. terms Γ as “temperature”. This decision-making process by agents is specified in more
detail in section 2.5.

On the other hand, a strong argument can be made for refraining from allowing for agent adaptation
in ABMs. For example, it would be desirable if the original Farmer-Joshi model were able to replicate
the stylized facts, as the authors argue that traders do not constantly consider different strategies and
change between them as is often the case in adaptive agent models [8]. Ideally Farmer and Joshi wish to
be able to replicate observed price behaviour from the internal mechanisms of agents’ strategies and the
different ways in which the two strategies are activated [8]. By including adaptive agents in the model, we
are adding an explicit model definition in order to better replicate the stylized facts but at the expense of
possibly reducing the realism of the agent behaviour, even if such behaviour could be argued to be more
rational than simply sticking to a predefined strategy.

1.7 Ergodicity

A short note on the property of ergodicity of financial market time series is made here and is supplementary
to the explanation of the implementation of the Farmer-Joshi model. First consider two types of averaging:
ensemble averaging and time averaging. Here we will consider discrete processes. The finite-ensemble
average of the quantity z at a given time t is

〈Y (t∗)〉N =
1

N

N∑
i=1

Yi(t
∗)

where Yi(t) represents a particular realization of Y (t) and N is the number of realizations. The subscript
indicates that it is a function of N . If Y only changes at T = ∆t

δt discrete times (t+ δt, t+ 2δt, . . .), then
the finite-time average of the quantity Y (t) is given by

Y i(t) =
1

Tδt

T∑
r=1

Yi(t+ rδt)

where T is the length of the time series and t is the start date. An observable process Y is called ergodic
(mean ergodic) if its expectation value is constant in time and its time average converges to this value
with probability one [26].

lim
∆t→∞

1

∆t

T∑
r=1

Yi

(
t+ r

∆t

T

)
= lim
N→∞

1

N

N∑
i=1

Yi(t
∗)

Y i = 〈Y (t∗)〉

The left-hand side is a function of the realization universe i whilst the right-hand side is a function of
time t. Figure 1 demonstrates the property of ergodicity by showing that averaging a stochastic process
over time or over the ensemble are completely different operations which can rarely be interchanged.
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Figure 1: Ergodic property visualization

It should be noted that exchange rate time series are not ergodic. However, it was noted by Daniel
Bernoulli (1954) [2] that applying a specific transformation to a price time series (say, Y ) can make it
ergodic. This transformation is given by

∆ log(Yt) = log(Yt)− log(Yt−1)

= log

(
Yt
Yt−1

)
= log(Rt)

Therefore log returns are ergodic and 〈∆ log(Y )〉 (ensemble) specifies what happens to Y over time.

2 Model Formulation

In what follows we describe the Farmer-Joshi agent based model that is to be calibrated, based off the
original paper [8]. The Farmer-Joshi model is important to consider as it presents a simplified framework
through which to develop an understanding of the basic structure of financial ABMs. The model considers
three different agents, namely: chartists (trend followers), fundamentalists (value investors), and a risk
neutral market maker in order to aggregate demand. Demand of individual agents is expressed in terms of
orders. The two most common types of orders are market orders and limit orders. The model studies only
market orders. Agents observe the market process and information about securities and initiate trades
based on these observations. More specifically, during each of T discrete simulation days, the following
occurs:

1. The trader agents observe the most recent prices (Pt, Pt−1, . . . , Pt−d) and the information It and
demands to buy or sell certain quantities of an asset to a risk-neutral market maker by submitting
an order ωit at the end of the day.

2. The market maker then fills the requested orders at a newly determined market price (Pt+1) based
on a closed-form equation aggregating trader agent demands.

The actions of each trader agent are determined by the strategies which they adopt. Each strategy induces
price dynamics that characterize its signal processing properties. Each simulation consists of N trader
agents enumerated by index i. Letting pt = logPt, at a single time step t the ith trader agent sets their
desired demand for the asset, defined as the quantity they intend to buy or sell, according to

ωit = xit − xit−1 (1)
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where xit = xit(pt, pt−1, . . . , It) is the position at time t of the ith trader which is set according to the
agent’s associated strategy represented by the function xit.

2.1 Market Maker

The market maker bases the price formation only on the net order:

ωt =

N∑
i=1

ωit (2)

The market maker determines the price for the net order using the market impact function which relates
the net of all orders at any given time to prices. In this way, buying drives the price up, and selling drives
it down. The fact that orders, positions and strategies are anonymous gives motivation for basing price
formation only on the net order. The market impact function is

Pt+1 = Pt exp
ωt
λ

(3)

where λ is called the liquidity parameter. Letting pt = logPt and adding a noise term ζt+1, equation (3)
becomes

pt+1 = pt +
ωt
λ

+ ζt+1 (4)

where ζt+1 is drawn from N(0, σζ). The addition of the random term ζt+1 can be interpreted in one of
two ways. It can be thought of as corresponding to “noise traders”, or “liquidity traders”, who submit
orders at random [8]. Alternatively, it can be thought of as corresponding to random changes in the price,
for example, random information that affects the market makers price setting decisions [8].

2.2 Trend Followers

Trend followers invest based on the belief that price changes have inertia (so their positions are positively
correlated with recent price changes). A trend strategy takes a positive (long) position if prices have
recently been going up, and a negative (short) position if they have recently been going down. Hence, we
set the ith trend follower’s position at time t according to

xit+1 = ci · sign(pt − pt−di) (5)

where ci is a positive constant and di is the time lag of the ith agent. In this case, the model assume
chartists care only about the direction of the change from the lagged price to the current price and not
about the magnitude of this change. In this way, the magnitude of the ith agent’s position at any point in
time will remain constant at ci with the direction of the position being determined by sign(pt − pt−di) at
any point in time t. Trend strategies overall amplify the noise in prices. They reinforce and magnify the
ups and downs of price movements, introducing extra volatility and irrational valuations of the security
which make information aggregation and dissemination more difficult.

2.3 Value Investors

Value investors, on the other hand, make a subjective assessment of the value of a stock in relation to
its price. They believe that their perceived value may not be fully reflected in the current price, and
that future prices will move towards their perceived value. Hence, their decisions are based on price
deviations from a perceived fundamental asset value. They attempt to make profits by taking positive
(long) positions when they think the market is undervalued and negative (short) positions when they
think the market is overvalued. Hence, we set the ith value investor’s position at time t according to

xit+1 = ci · sign(vit − pt) (6)
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where ci > 0 is a constant proportional to the trading capital and vit is the logarithm of an investor’s
fundamental value perception at time t. Similar to trend followers, this assumes fundamentalists care
only about the direction of the change from the current price to the perceived value and not about the
magnitude of this change. In this way, the magnitude of the ith agent’s position at any point in time will
remain constant at ci with the direction of the position being determined by sign(vit − pt) at any point in
time t. The model assumes the logarithm of the fundamental value follows a random walk given by

vit+1 = vit + ηt+1 (7)

where ηt+1 is a normal, IID noise process with mean µη and standard deviation ση. For the purposes
of this paper it does not matter how individual agents form their opinions about value. We take the
estimated value as an exogenous input, and focus on the response of prices to changes in it [8].

2.4 State-Dependent Threshold Strategies

A concern with simple position-based value/trend strategies is excessive transaction costs. Trades are
made whenever the mispricing changes. If positions were changed at every simulation step, this would
equate to excessive transaction costs in a real-world setting, making the model incredibly unrealistic. To
ameliorate this problem and reduce trading frequency strategies, a threshold can be used for entering a
position and another threshold for exiting. In this way not all fundamentalist/chartist trader agents are
active in all simulation steps, but rather activate (enter or exit positions) only when a certain threshold of
mispricing (mi

t = pt−vit for fundamentalists or mi
t = pt−di −pt for chartists) is realized. By only entering

a position when the mispricing is large, and only exiting when it is small, the goal is to trade only when
the expected price movement is large enough to beat transaction costs.

The model thus assumes that each trader agent has an associated position entry threshold, T i, drawn
from U(Tmin, Tmax), and an associated position exit threshold, τ i, drawn from U(τmin, τmax). A short
position −ωi is entered when the mispricing exceeds a threshold T i (mi

t > T i) and exited when it goes
below a threshold τ i (mi

t < τ i). Similarly, a long position ωi is entered when the mispricing drops below a
threshold −T i (mi

t < −T i) and exited when it exceeds −τ i (mi
t > −τ i). A trader who is very conservative

about transaction costs, and wants to be sure that the full return has been extracted before the position
is exited, will take τ i < 0. However, others might decide to exit their positions earlier, because they
believe that once the price is near the value there is little expected return remaining. We can simulate
a mixture of the two approaches by making τmin < 0 and τmax > 0. However, to be a sensible value
strategy, a trader would not exit a position at a mispricing that is further from zero than the entry point.
Therefore τmin should not be too negative, so we should have −T i < τ i < T i (so that the exit threshold is
between the entry threshold for a long and short position) and τmin ≤ Tmin. Thus, this strategy depends
on its own position as well as the mispricing, as shown in figures 2 and 3. Finally, ci is chosen so that
ci = a(T i − τ i) where a is a positive constant called the scale parameter for capital assignment.
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Figure 2: State dependent threshold strategy flowchart
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Figure 3: State dependent threshold strategy visualisation

The strategies mentioned are only a few of the strategies actually used in real markets. But they are
known to be widely used, and understanding their influence on prices provides a starting point for more
realistic behavioural models. To implement the standard Farmer-Joshi model, the above formulation is all
that is required, however, we consider a digression from this model by considering an additional strategy
adopted by all agents along with the above strategies. This added strategy is detailed in the section below
and will be encapsulated in the model which we shall call the adaptive Farmer-Joshi model.

2.5 Agent Adaptation

So far we have dealt with “zero intelligence” [12] traders. The number of traders in the system and the
strategy they use remains constant throughout the simulation. The Farmer-Joshi model is novel in this
respect as it attempts to recreate the fluctuating volatility found in real markets using solely the different
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activation rules defined by the thresholds for each type of trader. The authors of the Farmer-Joshi model
take issue with the speed at which agents change strategies in models that involve agent adaptation [8].
This simplicity has allowed us to analyse more easily the interactions between agents and the effects of
entry and exit thresholds on price behaviour, but this is at the expense of not being able to reproduce
the stylized facts as we find in section 5.1. Therefore, in this adaptive model, we allow for the inclusion
of agent adaptation. Despite the argument that it is unrealistic to assume traders making daily decisions
on which strategy to take, we argue for this adaptive model for two reasons:

1. Firstly, the act of agents switching from one strategy to another in the model does not have to be
seen as agents changing their strategy. While our description of the adaptive model and its internal
dynamics imply this, the model can also be seen as a simplification of the situation where an old
agent “dies out”, and a new agent enters the market at the same time with a different strategy.
In real financial markets we know it to be the case that the set of traders in a market is not held
constant, but is in fact regularly changing.

2. Secondly, while allowing for traders to switch strategies with such regularity may be unrealistic, it
is also unrealistic to expect traders to continue trading throughout the period measured no matter
what their profits or losses are. Models necessarily have to make simplifications about the real world,
with their goal being to simplify the least relevant aspects of the real world while more completely
capturing the aspects that are most relevant to the behaviour we observe.

It should also be noted that trend trading is one of the most important factors leading to excess volatility,
even to bubble activation and breaking. So, in order to replicate clustered volatility, we need to include a
strategy which allows for the inclusion of more trend followers during periods of the simulation to amplify
noise. By the nature of their strategies, trend followers induce positive short-term autocorrelations and
value investors induce negative short-term autocorrelations.

In a real securities market, investors do not have perfect information, nor do they have perfect ability
to profit themselves by handling the information. So investors have no incentive to persist in a certain
trading type. They must make decisions based on inductive thinking; do their best to adapt to the evolving
market. So, every agent should be able to act as a trend follower or value investor in different situations
based on her own decisions. This agent, who can choose their trading type, is a kind of more intelligent
agent. Therefore, we include an adaptation method whereby each agent is equipped with both a value
and a trend strategy, and they act in order to try maximise their financial performance by considering
the relative profitability of each strategy.

In the standard model, value investors observe fundamental information and do not try to extract
information from price trends; on the other hand, trend followers attempt to identify price trends to
profit by trend chasing and do not care about the fundamentals. Interaction of the two groups of traders
results in the so-called over-reaction and under-reaction. This is the heterogeneous agent paradigm, in
which each agent is endowed with unperfected intelligence and so the trading type (value trading or trend
trading) of traders is fixed and determined by exogenous factors. In our new model, each agent is endowed
with both value and trend strategies, and agents can adapt themselves to the evolving system by changing
trading type between value trading and trend trading. We demonstrate in section 5.2 that when agents
frequently change their trading style to adapt themselves to the evolving system, the aggregate outcome
of the system is more similar to a real market in terms of the stylized facts produced. In an attempt to
learn from their past mistakes the agents constantly update the “profit” of their strategies and favour
using the more profitable strategy over the less profitable strategy.

The number of traders in the system at any point in time is fixed, N , with the number of available
strategies being 2N . We denote the ith agent’s fundamentalist and chartist strategy position at time t
by xf,it and xc,it respectively. Throughout the implementation we keep track of which strategy each agent
is adopting. Furthermore, we keep track of the theoretical profit made from each agent’s trend following
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and value investing strategy (even if they are not currently implementing the given strategy). Profit each
day is calculated from the difference between the today’s closing log price and yesterday’s closing log
price, and the (theoretical) position that would have been taken over the past day for the given strategy.
Traders accumulate profits over the H most recent days. More formally:

πs,it =

t∑
k=t−H+1

(xs,ik−1(pk − pk−1)) (8)

where

s = the strategy adopted by the ith agent

πs,it = the profit earned from strategy s adopted by the ith agent at time t

H = the positive real lag parameter for which investors keep track of their profits (exogenous)

We thus include the extra parameter H, whose value is chosen in the optimisation routine. After every
day each agent’s profit is updated based on the price and the positions they took. By keeping track
of accumulated profits, agents are able to switch strategies according to which one would have earned
them more profit in the recent past. The mechanism through which this done is through a probability
of switching as introduced by Cavagna et al [4]. In order to analyse the long time dynamics of agent
adaptation, it is useful to get rid of the discrete characteristics of the game, such as the “always play the
best strategy” rule. Instead, one can introduce a probabilistic strategy selection rule that favours well
performing strategies. Our method is to impose that agent i adopts their strategy s with a probability
that is based on accumulated profit:

φc,it =
eπ

c,i
t /Γ

eπ
c,i
t /Γ + eπ

f,i
t /Γ

(9)

φf,it = 1− φc,it (10)

where

Γ = positive real parameter for intensity of switching

φs,it = ith agent’s probability of adopting strategy s ∈ {fundamentalist, chartist} at time t

The intensity of switching parameter (Γ) may be interpreted as how sensitive the mass of traders is to
differences in profitability across trading strategies.

3 Model Calibration

3.1 Objective Function

For the problem of calibrating the chosen models, the objective function is required to take into account
the stylized facts of financial data. A good objective function can be constructed by making use of a set of
k moments that best describe the statistical features of financial data [34]. In this regard, searching for the
best set of parameters (calibration) is a matter of matching empirical moments with the moments from
simulated data. The approach used for estimating parameters will therefore be the method of simulated
moments. So, the objective function is chosen to be a combination of estimation errors on moments and
statistics. The problem to be solved is thus a minimization problem:

min
θ∈Θ

f(θ) (11)

where θ is the vector of parameters, Θ is the space of feasible parameters, and f is the objective function.
Since some properties may be more useful/important in replicating stylized facts, an important issue
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in the construction of the objective function relates to how each of these moments and statistics are
weighted in the objective function. Secondly, it cannot be assumed that these moments are distributed
independently from each other which gives motivation for the use of a weight matrix taking into account
the joint distribution of moments [34].

Denoting by me = [me
1, . . . ,m

e
k]′ and [ms | θ] = [ms

1, . . . ,m
s
k]′ the vector of empirical moments and

statistics of real and simulated data, respectively, the method of moments requires that

E[[ms | θ]] = m =⇒ E[[ms | θ]−m] = 0 (12)

Using the empirical moments, me, as an estimate for the true moments, m, and calculating the expecta-
tion using the arithmetic average we have that the estimation error is defined as the average deviation of
simulated moments from empirical moments [15]:

G(θ) =
1

I

I∑
i=1

(me
i − [ms

i | θ]) (13)

where I is the number of replications/simulations used in estimating the average moments and statistics
that the given parameters produce. A high value of I is preferable because it reduces the objective function
variance and reduces the chance of abnormally high fitness values from sub-optimal parameters, however
this is at the cost of computational time. Denoting by W the k × k matrix of weights of moments and
statistics, the objective function is defined as the quadratic function

f(θ) = G(θ)′WG(θ) (14)

Parameters are estimated through minimization of the sum of squares of the deviations of simulated
moments from empirical moments. According to Heij et al. [15], the matrix W is given by the inverse of
the covariance matrix of the distribution of moments (V ar−1[me]) [15]. This selected weight matrix takes
the uncertainty of estimation associated with me into account and assigns larger weights to moments
associated with lower uncertainty and vice-verse. The obtained variance can be used to weight each
statistic in such a way that their contribution is equally balanced in the determination of the function
value.

The weight matrix W is estimated by applying a moving block bootstrap to the time series with a
window of size b (explained in more detail in section 4). We create 10 000 bootstrapped samples from
which we calculate each of their sets of moments and statistics to be used in the calculation of the
covariance matrix of me. In other words, for each block/window we re-sample with replacement until
we obtain 10 000 samples, each of length equal to the length of the original data set. The moments and
statistics are then calculated on each of these samples such that we can obtain the covariance between
them. The motivation for the use of a moving block bootstrap is that we cannot assume the selected
moments are independently distributed. As stated in section 1.5, financial market time series do exhibit
significant auto-correlations for absolute log returns. To keep this property in the bootstrap samples, we
must sample blocks of data at a time instead of individual daily returns.

Even by sampling in blocks, however, we are likely to lose some of the long term auto-correlations
observed in the real data due to the random way in which blocks are ordered in the bootstrap sample.
The smaller the block size, the greater this effect is. A block size of 1, for example, would result in
bootstrap samples where any auto-correlations observed are in no way the result of auto-correlations
observed in the original time series. On the other hand, choosing a block size that is too big can lead to
bad estimates of the variances of the moments that are being calculated. Clearly, a block size equal to the
length of the data would result in a variance of 0 for all the moments, as the exact same block would be
sampled for each bootstrap sample. Thus, it is important to choose a block size that balances the wish to
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preserve the auto-correlations observed in the real world while also allowing for a reasonable estimation
of how much each of the moments and statistics measured varies in the real world. We choose a block
size of 100, which we believe allows for the bootstrap samples to retain sufficient autocorrelations while
allowing for large enough differences between samples. Such a block size has also been used by previous
papers that made use of block bootstrapping for financial time series calibration [7, 29].

Finally, a key requirement for the construction of the objective function is the choice of statistics
and moments. Our choice of moments and statistics should be robust enough to reflect the properties
of financial data and flexible enough to discriminate between different models [34]. A few well-known
stylized facts of financial data include fat tails, volatility clustering and persistence in price. Therefore,
the following moments and statistics are used in the objective function for being the most representative
measures of the stylized facts of financial data. We use a combination of the moments and statistics
suggested for use in [34] and the moments used in [7]:

1. Mean of log returns.

2. Standard deviation of log returns.

3. Excess kurtosis relative to the kurtosis of the normal distribution for log returns.

4. Kolmogorov-Smirnov statistic for log returns. This compares the empirical distribution of the actual
returns to that of the simulated or bootstrapped returns obtained from the model. The actual returns
obtain a K-S statistic of 0 as they are identically distributed to themselves.

5. Simplified Hurst exponent, which represents the scaling properties of the log returns. There are
multiple different ways to calculate the Hurst exponent; we choose the simplified Hurst exponent
due to its low variance between bootstrap samples of the data.

6. The Geweke and Porter-Hudak (GPH) estimator, which provides a measure of the long-range de-
pendence of the absolute log returns.

7. Augmented Dickey-Fuller (ADF) statistic, which is a measure of the extent of the random walk
property of log returns.

8. The sum of the two GARCH(1, 1) parameters. This is used as a measure of short-range dependence.
The reason for taking the sum is that this value is much more robust than using either one of the
two parameters in the GARCH model alone.

9. The average of the Hill estimator on the right tail of the distribution of returns from the 90th to the
95th percentile. This is a measure of the fat tails on the right-hand side of the return distribution.
This statistic is added due to kurtosis having a very high variance, which results in it obtaining a
very small weight in the objective function. The Hill estimator, meanwhile, is much more robust -
meaning it has a low variance and thus is able to take on a much greater weight in the objective
function.

The mean, the standard deviation, the kurtosis, Hill estimator and the K-S statistics are chosen to
represent the overall shape of the data distribution [7]. We include the Hill estimator as an additional
measure of the tailedness of the distribution over and above kurtosis due to the very low weight kurtosis
takes on in the objective function. The Hurst exponent has been largely investigated in the literature
because of its appealing feature to synthesize the scaling characteristic as a unique index [7]. Overall,
this results in a combination of k = 9 moments and statistics being used to characterize the statistical
properties of the closing share price data.

Given the above objective function, the parameters of the Farmer-Joshi and adaptive Farmer-Joshi
ABM to be estimated are presented in table 1. For the standard Farmer-Joshi model, all but the last
two parameters are used, with the number of chartists (Nc) set to equal the number of fundamentalists
(Nf ). In the adaptive model, the number of traders is given by N = Nc = Nf as each trader has both a
fundamentalist and a chartist strategy available.
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θ Description

Nf , Nc Number of traders of each type
λ Liquidity parameter
a Scale parameter for capital assignment
dmin, dmax Minimum and maximum time delay for trend followers
µη, ση Mean and standard deviation of noise process in vt
σζ Noise variance in market maker’s price setting decisions
Tmin, Tmax Minimum and maximum threshold for entering positions
τmin, τmax Minimum and maximum thresholds for exiting positions
vmin, vmax Minimum and maximum offset for log of perceived value
Γ Intensity of switching (adaptive model only)
H Time Horizon for profit tracking (adaptive model only)

Table 1: Parameters to be estimated in the objective function.

For each chartist, their individual time lag is randomly sampled as an integer between dmin and dmax,
while each fundamentalist’s value offset is sampled from a uniform distribution distribution with minimum
vmin and maximum vmax. All traders’ entering thresholds are sampled from a uniform distribution
between Tmin and Tmax, and all traders’ exiting thresholds are sampled from a uniform distribution
between τmin and τmax.

3.1.1 Stability of the Objective Function

The Farmer-Joshi model contains many stochastic elements, and thus it is possible for different simu-
lations using the same parameter to produce significantly different results. This can lead to the same
parameters producing substantially different objective function values when making use of a different
set of simulations. One way to reduce this variance is to use a trimmed (truncated) mean of moments
instead of a standard mean as suggested in [34]. This allows us to ignore the extreme values obtained
from some replications for each of the moments and statistics. To determine the best percentage to trim
off of the results from our replications, we estimate the variance of the objective function for different
trim percentages as shown in figure 4. These variance estimates are obtained by using a reasonable set
of parameters on the standard Farmer-Joshi model to obtain 10 different objective function values each
for percentages trimmed equal to 0, 10, 20, . . . , 90, and then calculating the sample variance for each per-
centage trimmed. We observe that setting the percentage trimmed to 70% results in the least variance
of the objective function, so we use a 70% trimmed mean to run our final calibration experiments for
the standard Farmer-Joshi model. This implies that we ignore the lowest and highest 35% of values
obtained for each moment from the replications. The trimmed mean of moments is, however, not used in
the adaptive Farmer-Joshi model since the number of replications (I) in this model is kept relatively low
compared to the standard model in order to prevent very long computation times1.

1Unlike for the standard Farmer-Joshi model, the speed of the adaptive model was unable to be improved through conducting
many simulations at once due to its more complex implementation. Section 4.1 shows the discrepancy in computation times
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Figure 4: Estimated variance of the objective function for the standard Farmer-Joshi model

3.2 Calibration Methods

Standard local optimisation methods are prone to failure because such an objective function does not
always behave well to guarantee a global optimum solution. As we observe in section 5.2.1, the objective
function built, when taking into account the statistical properties of data, is not smooth or globally
convex. There tend to be many local optima, so it is important to use an optimisation routine that is
able to escape these local optima. Furthermore, due to the complexity of the problem and the nature
of agent based models, finding a global optimum is very computationally intensive, so any optimisation
routine used should be able to efficiently explore the parameter space. Using the methodology proposed in
the paper by Gilli and Winker [11], we describe two methods for the global optimisation of the objective
function, namely a Nelder-Mead with threshold accepting algorithm and a genetic algorithm.

3.2.1 Nelder-Mead Simplex Algorithm with Threshold Accepting Heuristic

The Nelder-Mead simplex method provides an efficient way of identifying the search direction while
threshold accepting helps to avoid local minima. Gilli and Winker provide a number of different ways
to combine the two algorithms [11], and variations of this optimisation method have been used for many
different ABM calibrations in the literature [7, 27, 30]. This section provides a description of each method
separately and then describes how we combine them to solve the problem at hand.

In the Nelder-Mead (NM) simplex algorithm each current solution consists of the vertices of a simplex
in the parameter space Θ [11]. The simplex exists in the parameter space and always has n+ 1 vertices
where n is the number of freely moving parameters (the number of dimensions of the parameter space).
Each vertex represents a set of values for the freely moving parameters of the model. At each iteration,
the algorithm shifts the simplex according to the following process:

1. Reflection - The vertex with the worst fitness (labelled xn+1) according to the chosen objective
function is reflected through the centroid (x0) of the remaining vertices so that it represents a new
set of values for the parameters. This new vertex is accepted if its fitness is better than the new
worst vertex of the new simplex.

xr = x0 + α(x0 − xn+1) for some α > 0 (15)

2. Expansion - If the reflection step resulted in the shifted vertex obtaining the best fitness value of
all the current vertices, that same vertex is shifted further in the same direction as in the previous
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step. The new vertex is then accepted if it obtains an even better fitness than vertex obtained from
the reflection.

xe = x0 + γ(xr − x0) for some γ > 1 (16)

3. Contraction - Should the reflection not have been accepted, the algorithm again takes the worst
vertex, but now only shifts it towards the centroid of the remaining vertices. If this results in an
improvement in fitness for the vertex, the shift is accepted.

xc = x0 + ρ(xn+1 − x0) for some 0 < γ ≤ 0.5 (17)

4. Shrinkage - If none of the above three shifts were accepted, each vertex of the simplex is shifted
towards the vertex that has the best fitness (x1). This step is always accepted, and it results in the
simplex shrinking in size.

xi = x0 + σ(xi − x1) for some 0 < σ < 1 (18)

The above steps are repeated for whatever number of iterations are specified, or until some other criterion
is met. This method appears to be efficient for smooth globally convex functions [11], but in our problem
the simplex shrinks rapidly and gets stuck in a region close to the starting point due to the non-convexity
of our objective function. To escape this problem, the threshold accepting algorithm is used in conjunction
with the Nelder-Mead simplex method.

The standard threshold accepting (TA) algorithm considers only a single point in the parameter space.
A single iteration of the threshold accepting algorithm uses a predetermined number of rounds nR and
explores the local structure of the objective function with a fixed number of steps nS during each round. A
single step consists of shifting the value of a randomly chosen parameter to a neighbouring value (however
that may be defined). If the new point obtained represents an improvement in fitness it is accepted as the
new current solution. However, even if the new point is slightly worse, it will still be accepted as the new
current solution provided the drop in fitness does not exceed a predefined threshold. This improves the
ability of the algorithm to escape local minima in the objective function. In early rounds, only a coarse
approximation of the fitness is obtained in order to reduce computation time. In our calibration, this is
achieved by using a low number of replications in the objective function. The high variance of f̃ due to
the low number of replications is compensated by these larger values of the threshold parameter τr, which
is chosen proportionally to the estimated Monte Carlo variance of f̃ . As the algorithm proceeds from one
round to the next, τr is reduced and I is increased allowing for a more accurate estimation of the fitness
[11].

Considering now a combination of the two algorithms, at each iteration either the Nelder-Mead search
or Threshold Accepting random shift occurs at random - with the Nelder-Mead search having a higher
probability of being chosen. Furthermore, instead of working on a single current solution, the TA algorithm
is applied to the entire simplex. At each step of the TA algorithm the same randomly chosen parameter
is shifted for each vertex of the simplex, with the magnitude of the random shift being dependent on the
mean value of the parameter being shifted. Each vertex is shifted by the same magnitude, except if this
results in the vertex taking on an impossible value (e.g. a negative number of agents). In such a case the
individual vertex is prevented from moving past the relevant bound. At each step the shift of the simplex
is accepted if the best vertex from the new simplex is not worse than the best vertex of the old simplex
by more than the relevant threshold [11]. When chosen, an iteration of the Nelder-Mead search behaves
exactly as described above. The combined algorithm completes once the stopping criterion is met (in our
case after a set number of iterations), with the best performing vertex being returned as the calibrated
set of parameter values.
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While one iteration of the Nelder-Mead search only requires the calculation of fitnesses for a few vertices,
the threshold accepting algorithm is much more computationally expensive, requiring nS×nR fitnesses to
be calculated for each iteration. Setting nR and nS to be too high significantly slows down the algorithm.
We set nS to 3, with τR = 3−1.5(R−1). As we have many freely moving parameters (14 in the standard
model and 16 in the adaptive model), we set the number of steps in each round to be relatively high, with
nS = 7.

3.2.2 Genetic Algorithm

The genetic algorithm can model learning behaviour in many agent-based financial markets [21]. Genetic
algorithms are a family of computational models inspired by evolution [33] - that is, the individuals
(parameter values) best suited to the environment (objective function) survive and breed while individuals
who are inferior become extinct [7]. More broadly, a genetic algorithm is any population-based model that
uses selection and recombination operators to generate new sample points in a search space [33]. The use
of the genetic algorithm for our problem is appropriate for a couple reasons. Firstly, it is concerned with
non-linear optimisation problems where parameters are not independent and where interactions have an
effect on the output of the objective function. Secondly, the algorithm is intuitive, robust and well suited
to objective functions with many local minima.

An implementation of a genetic algorithm begins with a population of competing chromosomes (mem-
bers) [33]. One then evaluates these individual members and allocates reproductive opportunities (the
likelihood the member has of being used to form the next population) in such a way that those chromo-
somes which represent a better solution to the target problem are given more chances to reproduce than
those chromosomes which are poorer solutions [33].

The simple genetic algorithm that we use consists of the following steps [13]:

1. Generate an initial population of a specified size.

2. Evaluate each member of the population and assign them a fitness value.

3. Apply selection to the current population based on fitness value to create an intermediate population.
Members of the previous population with better fitnesses have greater probability of being sampled,
and the sampling is done with replacement.

4. With some large probability, apply Local Arithmetic Crossover2 to each pair of members of the
intermediate population.

5. For each member of the updated intermediate population, perform mutation3 with some small
probability.

6. Resulting from the crossover and mutation, we obtain the new population. We repeat the process
from step 2 using this new population unless the stopping criterion (required tolerance) has been
met. This required tolerance might for example be a maximum number of iterations of the algorithm,
or a target fitness level.

The process of moving from the current population to the next population constitutes one generation in
the execution of the algorithm [33]. One problem associated with the genetic algorithm is that it is highly
computationally intensive. Selecting reasonable bounds for the parameters is important to restrict the
genetic algorithm to exploring the parameter values that could plausible lead to good fitness values.

2LAC involves taking two members of the population and shifting each parameter for each member towards the equivalent
parameter of the other member by some random amount.

3Mutation involves shifting the value a single randomly chosen parameter of a member of the population to a random new
value within the predefined bounds of the parameter space.
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Figure 5: Genetic algorithm flowchart

Since we construct both of the calibration methods to try and maximise the fitness of a given function,
we invert the sign of equation (14) so that we turn the minimisation problem into a maximisation problem.
It remains that we want our objective function to be as close as possible to zero.

4 Methodology and Implementation

The programming language used to implement this model is R4. We also make use of multiple packages
in R for the calculation of each of the moments and statistics, and for the implementation of the genetic
algorithm, as shown in the provided R code. In terms of hardware requirements, due to the computationally
intensive nature of the problem, we make use of RStudio server in conjunction with the Google Cloud
Compute Engine for parallel computing5.

The data used to calibrate the Farmer-Joshi model is Anglo American daily sampled closed price data
from 01/01/2005 to 29/04/2016 obtained from the Mendeley website [10]. This results in our simulations
being conducted over a period of 2 628 days. The long time-frame used is useful for testing the stability
of the model over time. We calibrate the model on an individual stock rather than an index as we argue
that in the real world, investors trade individual stocks rather than indices. Simulations only start on
the 203rd day (10/20/2005), with the first 202 days of real data being required to initialise the model
and provide time-lag data for chartists within the simulation. The data set contains missing values which
correspond to weekends and public holidays where the JSE is closed and no trades are made. These days
are simply ignored and thus Monday, for example, is considered to be the day after Friday (assuming
neither day is a public holiday). When analysing the data, we observed a clear outlier on 12 April 2006,
when the share price dropped substantially before immediately jumping back up the following day (as
shown in figure 6). We determined the best course of action was to remove this single data point from
our data set, rather than using some method to reduce it (such as winsorisation) as the price change was
completely abnormal compared to any other price movements.

4When running any code involving randomness, we always set the seed for the random number generator to allow for full
replication of the results. However, note that we used version 3.6 of R, and that versions prior to 3.6 make use of a different
random number generator and thus will lead to different results.

5Details on how to link RStudio server to Google Cloud’s compute engine can be found at
https://grantmcdermott.com/2017/05/30/rstudio-server-compute-engine/

https://data.mendeley.com/datasets/3nbgc4cygk/1
https://grantmcdermott.com/2017/05/30/rstudio-server-compute-engine/
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Figure 6: Anglo-American log returns based on daily closing prices

We began by converting the time series to log prices. The simulated data is produced by equation (3).
Prior to calibration, we calculated the weight matrix for the objective function using the moving block
bootstrap method. The covariance matrix of the empirical moments W−1 was obtained using a moving
block bootstrap with blocks sizes b = 100 and 10000 bootstrap samples. The method we used was as
follows:

1. Split the data for the simulation period into n− 100 + 1 overlapping blocks of length b = 100, with
the first block starting at day 1, the second at day 2, etc.

2. Randomly sample blocks with replacement and place them one after each-other until we have a
new time series of length 2 628 days - the same length as the simulation period. The last block is
truncated to be just 28 days long.

3. Calculate the relevant moments and statistics of this time series.

4. Repeat the previous two steps 10000 times

5. Find the inverse of the covariance matrix of the moments to obtain the weight matrix W .

The following genetic algorithm parameters were used to calibrate the models:

• Population size = 60 for standard model; 50 for the adaptive model

• Crossover probability = 0.8

• Mutation probability = 0.1, which reduces linearly to 0.01 starting halfway through the predeter-
mined maximum number of iterations.

For the NMTA algorithm, we made use of the following values for the Nelder-Mead simplex method:

• α = 1 (Reflection coefficient)

• γ = 2 (Expansion coefficient)

• ρ = 0.5 (Contraction coefficient)

• σ = 0.5 (Shrink coefficient)
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Table 2 shows the bounds supplied to the genetic algorithm for the parameters that were optimised.
The initial parameter values for each of the members/vertices of both the GA and NMTA algorithm
calibrations were chosen by random uniform sampling between each of the bounds specified for continuous
parameters. Integer parameters were sampled randomly from the integers between the bounds with equal
probability. While the members of the GA are always restricted to being within these bounds, the
vertices of the NMTA algorithm can shift outside the bounds provided any parameter value obtained is
not impossible (such as having a negative time horizon H).

θ Lower bound Upper bound

Nf , Nc 40 240
λ 0 15
a 0 1
dmin 1 100
dmax dmin dmin + 100
µη -0.01 0.01
ση 0 0.05
σζ 0 0.05
Tmin 0 1
Tmax Tmin Tmin + 1
τmin -1 0
τmax τmin τmin + 1
vmin -0.5 0
vmax vmin vmin + 1
H 1 100
Γ 0 1

Table 2: Parameter bounds set for the GA search and NMTA initialisation.

As shown in table 2, we allowed close to all of the parameters of the model to move freely due to
our uncertainty about what the optimal values of any of the parameters may be. One restriction is that
we set the number of fundamentalists to be equal to the number of chartists for the standard model.
From experiments of allowing different constant ratios of chartists to fundamentalists, we did not find any
improvement in the results of the model.

With regards to the initial positions of the agents at the start of each simulation, it is important that
one does not assume that none of them have a position going into day one. Otherwise, we might observe
an unrealistic amount of trading on day one of the simulation as agents enter positions they should have
already been in, which would strongly affect the simulated closing price. For example, if there is a strong
positive trend in the share price leading into the start of the simulation period, one would expect many
of the chartists to already be in a position, and it is important that our model accounts for this. For this
reason, we set the initial agent positions one day prior to the start of the simulation (which we call time
t = 0), based on the closing prices observed from the data in the prior days (t ≤ −1). When we start
the simulation, we still use the observed closing price from the data at time t = 0. This way, initialising
agent positions to positions they should already be in does not affect the price within the simulation.

We set the initial value v−1 to be the observed closing price two days prior to the start of the simulation.
Each fundamentalist then determines their own initial value vi−1 by offsetting v−1 by their individual value
offset, and uses this to take their initial positions the day before the start of the simulation (t = 0). The



4.1 Computational Efficiency 23

fundamentalists’ perceived values are then updated at t = 0 according to equation (7), and this is the
perceived value they hold going into day one of the simulation period.

It should be noted that simulations are path dependent and that there is randomness in the search
routine of the genetic algorithm. For this reason, to obtain confidence intervals for parameters, we
considered two methods. One method is to consider the distributions of calibrated parameters across
different realizations of a price path. Since we only ever have one price path realization, we apply the
moving block bootstrap method to the log returns to obtain bootstrapped price path samples6. We would
thus calibrate the model on each of these bootstrapped samples to obtain many sets of parameters upon
which confidence intervals can be calculated. This method, however, produced parameters which varied
greatly from another and showed no convergence to a set of globally optimal parameters. This may be
indicative of parameter degeneracies that exist in the model, but may also be due to the nature of the
block bootstrapped price paths differing too substantially in behaviour between each-other.

We therefore resort to using an alternative method. We run the GA and NMTA algorithm multiple
times on a single price path (the actual data). This gives an indication of the variability in the optimal
parameters that is due to the instability in the objective function as well as the randomness between each
independent run of the search routine. The bounds for the confidence intervals of the ith parameter are

calculated as θi ± tα σ(θi)√
n

where θi is the sample mean for parameter i, σ(θi) is the standard deviation

over the sample, n is the sample size, and tα is the α = 2.5% critical value for the t-distribution.

To obtain confidence intervals for moments and statistics we simply ran 1000 simulations using the
parameters that resulted in the lowest objective function value for each of the two calibration methods
and took the 2.5 percentile and the 97.5 percentile as the lower and upper bounds respectively. In this
case the variation in the moments is solely dependent on the random price paths that are simulated.

4.1 Computational Efficiency

Simulation and calibration of the Farmer-Joshi model requires a substantial amount of computation,
so it is useful to test which parts of our implementation take the most time to be computed. Using
the microbenchmark package in R, we compare the computation time for each of the functions used
in our objective function when considering a 2628 day simulation. Even though the absolute times
measured depend mostly on the computer being used, the relative times are mainly what we are interested.
These tests were conducted at the same time with as few background processes as possible running on
the computer in order to standardise the conditions. Some functions can handle multiple Farmer-Joshi
simulations at once, so we calculate their computation time on our chosen number of 50 replications, and
then divide this by 50 to get their effective time for a single replication so that they can be compared to
the remaining functions that scale proportionally to the number of replications.

6Since price is not ergodic, we apply the moving block bootstrap on log returns and then convert back to price by applying
a cumulative sum with a random initial price
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Function Computation time for 1 replication

Simulation (standard model) 125.709 (Effective time when I = 50)
Simulation (adaptive model) 3535.000
Mean 0.003 (Effective time when I = 50)
Standard Deviation 0.097 (Effective time when I = 50)
Kurtosis 0.181
KS-test 2.441
Hurst Exponent 35.882
GPH 53.400
ADF 2.335
GARCH 4.834
Hill 355.546

Table 3: Computation times (in milliseconds) for the components of the objective function

From table 3 we can easily compare the difference in simulation time for the standard Farmer-Joshi
model versus the adaptive Farmer-Joshi model. For the standard Farmer-Joshi model, our code is able to
run multiple simulations at once (provided each simulation uses the same set of parameters) by making
use of matrices to speed up computation. Here a matrix of price paths is returned where each column
refers to the price path of a different simulation. This allows us to simulate all of the replications required
for the objective function at once - significantly reducing the effect that adding more replications has
on run-time. The implementation of the adaptive Farmer-Joshi model, however, is unable to conduct
multiple simulations at once due to the model’s added complexity. This means that - unlike for the
standard model - run-time scales proportionally to the number of replications. This is why we find there
to be a significantly longer computation time required to calculate the objective function value for the
adaptive model compared to the standard model. To mitigate the effect of extra computation time, we
lower the number of of replications from 50 to 30 for the adaptive model.

Table 3 also shows that the calculation of the Hill estimate takes a significantly long time. Finding
another robust but faster way to test for fat tails would help to drastically improve computation time
when calibrating the standard Farmer-Joshi model, as the calculation of the Hill estimator currently takes
up a clear majority of the computation time.

4.2 Adaptive Agents Switching Mechanics

With the addition of allowing agents to switch strategies in the adaptive Farmer-Joshi model comes
an added complexity with regards to the details of how exactly agents transition from one strategy to
another. One method would be to force agents to always liquidate their position they held under the
previous strategy, and then from there to decide whether or not to take a position under the new strategy
(by checking whether or not the mispricing under the new strategy meets one of their entry thresholds).
This is effectively equivalent to agents dying out and new agents entering. This method, however, slightly
contradicts the purpose of the entry and exit thresholds, which is to reduce transaction costs. Therefore,
we instead implement a system where an agent who is currently holding a position and is switching
strategies will still hold their current position if the relevant exit thresholds under the new strategy is not
met. The details of this behaviour for the ith agent are illustrated by the made-up example in table 4.
The values in the last three columns (the positions) are determined by the values observed in the prior
columns, as described below the table.
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mf,i
t mc,i

t Position (xs,it )

Day T i τ i pt − vit pt−di − pt Strategy (s) Fundamentalist Chartist Actual

1 1 -0.5 0.1 -0.2 Chartist 0 0 0
2 1 -0.5 0.4 -1.2 Chartist 0 ci ci

3 1 -0.5 0.8 -0.2 Fundamentalist 0 ci 0
4 1 -0.5 1.1 -0.1 Fundamentalist −ci ci −ci
5 1 -0.5 -0.6 -0.3 Chartist 0 ci −ci
6 1 -0.5 -0.1 -0.6 Chartist 0 ci 0

Table 4: Agent switching behaviour visualisation

1. Initially, the agent chooses a chartist strategy. On day 1, the entry thresholds of T i = 1 for taking
a short position and −T i = −1 for taking a long position are both not met for each strategy. So,
no position is taken by the agent.

2. On day 2, there is a strong enough trend for the agent to take a long position of ci under the chartist
strategy (mc,i

2 < −T i).
3. On day 3, the agent decides to switch strategies to a fundamentalist strategy. Because p3−vi3 > −τ i,

the agent exits the position they took under the chartist strategy.

4. On day 4, the agent - still using their fundamentalist strategy - enters a short position as p4−vi4 > T i.

5. The agent switches back to a chartist strategy on day 5, but because p5−di − p5 ≮ τ i, the agent still
holds onto their previous position of −ci. This is despite the theoretical positions for each strategy
had the agent not adapted between strategies both being different to the actual position taken.

6. Lastly, on day 6, the agent’s exit threshold is met under the chartist strategy, as p6−di − p6 < τ i, so
they exit their position. However, the theoretical position of the agent had they always remained a
chartist stays as ci as p6−di − p6 ≯ −τ i, so the exit threshold is not met.

Figure 7 shows an overview of our implementation of the adaptive Farmer-Joshi model and the method
used for calibrating the model.
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Figure 7: Flowchart visualisation of the adaptive Farmer-Joshi model
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4.3 Testing and Replication of Prior Literature

We test if our implementation is harmonious with what has been done in the past by replicating as closely
as possible a prior calibration attempt of the Farmer-Joshi model by Fabretti [7]. The paper calibrates
the model using S&P 500 closing price data over a two year period from 2005 to 20077 [7]. By comparing
our results to the results obtained in this prior calibration, we can get a good indication of if there are any
differences in between our implementation of the Farmer-Joshi model and the implementation by Fabretti.
One challenge that was encountered along the way, however, was that the exact implementation of the
Farmer-Joshi model is not easily identifiable. In other words, our implementation of the Farmer-Joshi
model may differ from that of the original paper and the version implemented by Fabretti. For this reason,
this section is devoted to a comparison of simulation results in an attempt to identify differences in model
implementations.

For this experiment, we only compare the moments and statistics shown in the paper, which are the
following [7]:

1. Mean of logarithmic price

2. Standard deviation of logarithmic price

3. Kurtosis of logarithmic price

4. Kolmogorov-Smirnov statistic on logarithmic price

5. Hurst exponent on logarithmic returns

There are multiple different methods used to calculate the Hurst exponent that can result in slightly differ-
ent values being obtained. Fabretti makes use the generalised Hurst exponent [7]. In our implementation,
we instead use the simplified Hurst exponent as described in section 3.1.

For this test we make use of slightly different position equations to those described in sections 2.2 and
2.3. These different equations are based off of the equations used by Fabretti [7]. The position equation
for the ith chartist is given as follows:

xit+1 = ci(pt − pt−di) (19)

with the position equation for the ith fundamentalist given as:

xit+1 = ci(vit − pt) (20)

This means that traders no longer only have three possible positions that they can be in at any time,
as their position also depends on the exact mispricing at the time that the agent’s entry threshold is
met. This change does not affect the regularity with which trading takes place. Agents still only enter
a position when an entry threshold is met, and they do not change that position until the relevant exit
threshold is met, at which point they completely liquidate their position. We do not use these position
equations in our calibration attempts later on, as we believe the position equations described in sections
2.2 and 2.3 more closely follow the description of the method for using entering and exiting thresholds as
described in the original paper by Farmer and Joshi.

Fabretti does not describe how initialisation of the model is conducted with regards to determining the
initial price trend. We use price data prior to the start of the simulation in order to initialise the trend
for different traders.

7We obtain this data from Yahoo Finance
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We conduct 1000 simulations using the best parameter values obtained by Fabretti (which were obtained
from the genetic algorithm optimisation) and then calculate the moments and statistics for each simulation
and construct 95% Monte-Carlo confidence intervals. If our implementation is the same as Fabretti’s, we
should expect to see these confidence intervals align very closely with those obtained by Fabretti. This
comparison is shown in table 5.

Moments and statistics CI95% CI95%
Fabretti

Mean [6.9333; 7.20719] [6.97420; 7.31320]
Standard deviation [0.01975; 0.09023] [0.02030; 0.09010]
Kurtosis [-1.51839; 0.90736] [1.4970; 3.8355]
Kolmogorov-Smirnov statistic [0.22659; 1] [0.2034; 0.9920]
Hurst exponent [0.45512; 0.59557] [0.4129; 0.5583]

Table 5: Moments and statistics on simulated data using parameters obtained by Fabretti[7]

Noticeably, the upper bound for mean of logarithmic price that our implementation obtains is signif-
icantly lower than the upper bound obtained by Fabretti. However, the values for remaining moments
very closely resemble each other, giving little indication of significant differences between the models. The
difference in the mean of log price could easily be due to a difference in how we initialise the trend and
initial value perceptions for the traders, and does not necessarily indicate any differences between the
models themselves.

Choosing one simulation on the parameters at random, we plot figures 8 through 12. In figure 8,
we observe that our simulated price path stays well within the confidence intervals for simulated price
paths obtained by Fabretti [7]. We also observe an absence of fat tails in figure 10 and an absence of
volatility clustering in figure 12, as was observed by Fabretti [7]. Again, these results do not show any
clear differences between the two models.
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Figure 8: Observed and simulated closing log price paths (for S&P 500 index)
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Figure 9: Log returns paths
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Figure 10: Normal probability plots
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Figure 11: Autocorrelation of log returns
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Figure 12: Autocorrelation of absolute log returns

5 Results and Analysis

In what follows, we present the results of our calibration experiments. We do this by demonstrating
whether or not our implementations of both models are capable of reproducing a number of well-known
stylized facts of log return time series which are currently used to validate agent based models of financial
markets. One of the most well-known stylized facts is the empirically observed fact that the distribution
of log returns are leptokurtic and fat tailed with a greater probability of extreme negative events than
extreme positive events (contrary to traditional branches of financial mathematics). Furthermore absolute
log returns exhibit significant short-term autocorrelations which slowly decay as the time lag increases.
Although these are the most well-known stylized facts, they are by no means exhaustive. We also further
validate the models by considering the range of parameters that result in similar behaviour. A large range
indicates that changing the parameter has an unclear effect on the resulting behaviour of the model,
suggesting that changing it may just be adding noise to the model.

We calculate the weight matrix by taking the inverse of the covariance matrix for the bootstrapped
moments. As a measure of accuracy, we obtain the condition number by finding ||A||2 · ||A−1||2 where A
is the covariance matrix for the bootstrapped moments and the subscript 2 refers to the Euclidean norm.
The weight matrix W (rounded to 3 decimal places) is estimated to be

5416161.546 363543.535 61.278 50983.853 21613.255 −1616.466 −953.207 8257.729 18342.253
363543.535 373821.757 214.752 −2540.696 462.448 −1095.82 −156.572 −9152.185 −15887.062

61.278 214.752 2.578 40.399 5.411 −5.213 0.269 10.647 −39.162
50983.853 −2540.696 40.399 13909.613 379.126 10.006 10.082 386.06 −64.635
21613.255 462.448 5.411 379.126 1404.067 −9.936 −3.353 −15.575 68.938
−1616.466 −1095.82 −5.213 10.006 −9.936 105.597 0.401 −152.06 −8.612
−953.207 −156.572 0.269 10.082 −3.353 0.401 1.778 −2 −18.912
8257.729 −9152.185 10.647 386.06 −15.575 −152.06 −2 6646.569 −44.464
18342.253 −15887.062 −39.162 −64.635 68.938 −8.612 −18.912 −44.464 2144.721


Condition number = 7196302039
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The order of the moments is as stated in section 3.1. This means, for example, that the value in the
first row and second column refers to the covariance between mean of log returns and standard deviation
of log returns. With this matrix, we can get a very broad indication of which moments and statistics
are most important for the objective function by looking at the diagonal elements (the variance of each
moment/statistic). A brief inspection of the weight matrix indicates that the mean and standard deviation
of returns both seem to be weighted very highly, while the kurtosis and the ADF statistic are of much
less importance to the objective function due to their high estimated variance. This implies that these
statistics could deviate substantially between the simulations and the actual data and they would still
not have a large effect on the fitness value obtained from the objective function. The condition number
checks how sensitive the weights are to small changes in the input. This gives an indication of how well
conditioned our matrix is and how accurately we are able to invert the covariance matrix to get the weight
matrix. The condition number we obtain is on the order of 109, which implies we lose about 9 digits of
accuracy when inverting the matrix. Given that the software we use stores numbers to 16 decimal places,
we consider the matrix to be sufficiently well conditioned for our purposes. As a further test of accuracy,
we multiply the weight matrix by the covariance matrix and find that the resulting matrix is equivalent
to the identity matrix to 11 decimal places.

5.1 Standard Farmer-Joshi Model

We used both the genetic algorithm (GA) and the Nelder-Mead with Threshold Accepting (NMTA)
algorithm to calibrate the standard model. For each calibration using the GA, 10 runs of the genetic
algorithm (using different initialisations) were conducted with a minimum of 55 iterations each, with
further iterations if necessary up until each calibration achieved an objective function value above -40.
The choice of -40 as the cutoff was chosen to be slightly below the best (convergent) results that we had
observed for this model when running the calibration for a much larger number of iterations. The cutoff
ensures that each calibration results in very similar objective function values - allowing each calibration
to be classified as being fairly similarly successful, thereby allowing us to construct confidence intervals
for the parameters. For the NMTA algorithm, we conducted 15 separate calibrations where the number
of iterations was set to 65, but discarded the 5 calibrations that resulted in the worst fitness values.

For the GA calibrations, this resulted in objective function values ranging from -31 to -39. Some
calibrations reached convergence very quickly, while others took over 150 iterations. This implies that the
initial parameters selected by the genetic algorithm play a very important role in how successful it is at
finding a good solution and not getting stuck in poor local optima. This is despite our method involving
periodically resetting the genetic algorithm’s population while retaining only the best parameter set. We
obtained a slightly greater range of fitnesses from our calibrations using the NMTA algorithm. While the
algorithm sometimes resulted in much faster convergence to very good fitness values compared to the GA,
certain calibrations got stuck at quite poor fitness values, even when run for many more than 65 iterations.
This suggests that the random shift (threshold accepting) portion of the algorithm is occasionally unable
to lead the algorithm to escaping sub-par local optima. This being said, by far the greatest improvements
in the fitness for each calibration were made when the algorithm chose to use the random shift with
threshold accepting method as opposed to the Nelder-Mead method.

As was stated in section 4, our calculation of the parameter confidence intervals is done differently to
some other papers in the literature. Many other papers use a method whereby different block bootstrap
samples of the share price data are used for each of the calibration runs [27, 28, 29, 30]. This method
can be seen as obtaining confidence intervals for the parameters for more general share behaviour by
bootstrapping the single observed price path to create new price paths that each have slightly different
behaviour to one another. We instead conduct all of our calibrations based off of the same price path - the
actual price path observed for Anglo-American stock. As was noted by Fabretti, different calibrations can
reach different points differing in values, but with indistinguishable differences in the simulated data [7].
By using the same price path in our method, we instead obtain confidence intervals for which parameter
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values best explain the price behaviour observed over the specific period that was measured. Given that
we use heuristic optimisation to estimate the parameters due to the stochastic nature of the model, one
cannot definitively state that one set of parameters is better than another when their fitnesses are very
similar to one another. By obtaining many different parameter values that obtain similar fitnesses, we
are able to better define the region of parameter values that can explain the observed data similarly well
- an area of study that has in the past been suggested for future research [7].

Table 6 shows the results of our calibration experiments using both optimisation algorithms. The point
estimates are the estimates of the parameters obtained by the calibration that resulted in the best fitness
for each optimisation algorithm.

θ θGA θ95%
GA θNMTA θ95%

NMTA

Nf , Nc 84 [80;120] 61 [48;203]
λ 12.59549 [9.06162;11.44419] 10.26531 [7.42702;13.40640]
a 0.45737 [0.25131;0.37690] 0.55884 [0.16518;0.68659]
dmax 49 [57;80] 64 [44;92]
dmin 21 [26;46] 18 [11;39]
µη 0.00853 [-0.00501;0.00361] 0.00561 [-0.00496;0.00319]
ση 0.04200 [0.02619;0.03708] 0.02176 [0.02705;0.05711]
σζ 0.02032 [0.01896;0.02009] 0.01930 [0.01738;0.02031]
Tmax 0.96590 [1.00311;1.19918] 1.47698 [1.27609;1.78699]
Tmin 0.40217 [0.50307;0.67188] 0.50747 [0.46721;0.64138]
τmin -0.16188 [-0.3251;-0.19622] -0.13981 [-0.51354;-0.15336]
τmax 0.63070 [0.3515;0.55426] 0.60403 [0.15530;0.76696]
vmax 0.25206 [-0.01738;0.31747] 0.13012 [-0.02491;0.52813]
vmin -0.27687 [-0.32853;-0.24581] -0.21514 [-0.32808;-0.08448]
Fitness -30.54963 [-37.56189;-33.08459] -22.64955 [-42.19412;-26.26681]

Table 6: Estimates of parameters using GA and NMTA algorithms.

These confidence intervals indicate that many of the parameters can vary substantially from one
calibration to another, even with the objective function values obtained being very similar. This indicates
the existence of many local optima, each with a similar ability to replicate the moments and statistics
found in the actual data. These large confidence intervals unfortunately limit the explanatory power of
the model. We do find certain parameters such as µη, ση and σζ to have narrow confidence intervals,
allowing for more precise inference about their values regarding their relevance in the real world. However,
inferences about real world behaviour from these parameter estimates should be made with caution, as
our implementation of the model is unable to capture some of the most prevalent features of financial
markets, as will be shown in section 5.1.1.

In table 7, we observe that our optimal parameters from both calibration methods struggle in particular
to replicate the GPH estimator, as the GPH estimator based on the empirical data (in column me) falls
outside of the confidence intervals obtained from the simulations. For many of the moments, we also
observe very wide confidence intervals, indicating a lack of consistency across different simulations. The
point values for each of the moments are the moments of a single randomly chosen simulation from each
set of parameters for which further analysis is done in the section that follows.



5.1 Standard Farmer-Joshi Model 32

Moments and statistics ms|θGA CI95%
GA ms|θNMTA CI95%

NMTA me

Mean 0.00025 [-0.00040;0.00150] 0.00112 [-0.00021;0.00133] -0.00005
Standard deviation 0.02052 [0.0.02096;0.14332] 0.02054 [0.01947;0.13265] 0.02767
Excess Kurtosis 0.26094 [0.08238;14.06729] 1.07280 [0.00489;5.33540] 4.03912
Kolmogorov-Smirnov statistic 0.03997 [0.02589;0.18995] 0.04263 [0.03388;0.16749] 0
Hurst exponent 0.58085 [0.42944;0.59136] 0.58833 [0.44770;0.60538] 0.54487
GPH estimator 0.25637 [0.07374;0.72297] 0.19139 [-0.03422;0.62494] 0.73580
ADF statistic -0.53381 [-53.73332;-13.33092] -52.55660 [-53.53643;-16.19956] -49.42858
GARCH parameters 0.98393 [0.02273;1.31436] 0.33447 [0.00555;1.26677] 0.99339
Hill estimator 0.26949 [0.24877;0.77339] 0.29442 [0.24374;0.53700] 0.42845

Table 7: Moments and statistics on actual data and simulated data using the GA and NMTA optimisation methods.

5.1.1 Comparison of Key Features of Observed and Simulated Data

Figures 13 to 17 are created from the observed log price data, and simulations using both the best
performing parameter values from the GA calibrations and best performing parameter values from the
NMTA algorithm calibrations. In figure 13 we show the log price paths of a single simulation from
each set of parameters, with the shaded areas representing the 95% confidence intervals for each of the
simulations8. We see that the simulation paths do not closely follow the actual price path, as is to be
expected given that the goal of the model is to replicating the overall behaviour of log returns rather
than fitting a specific price path. Both sets of confidence intervals almost entirely contain the actual price
path. The confidence interval for the parameters obtained from the NMTA algorithm is particularly wide,
indicating large discrepancies between simulations, while the confidence interval for the parameters from
the GA widens very quickly early in the simulation before stabilising.

Figure 14 shows the comparison between actual logarithmic returns and the simulated logarithmic
returns from the individual simulations shown in figure 13. The variance of returns for the simulations
are much more consistent through time compared to the observed data, with no clear evidence of volatility
clustering in both simulations. In figure 15 we compare the distribution of returns for the actual data
and the simulations. We find minimal fat tails in the simulations unlike in the actual data where there
are clear fat tails on both ends of the distribution. The simulation using the optimal parameters obtained
from the NMTA algorithm does show a small amount of fat tails on the right side of the distribution,
yet lacks any fat tails on the left-hand side. This goes against the stylized fact of gain/loss asymmetry
(which states that large price drops are more frequent than large price increases), which the actual data
does exhibit to a small extent. While the simulations manage to replicate the lack of autocorrelations of
log returns that is found in the data (figure 16), they fail to produce anywhere near the same level of
autocorrelations of absolute log returns as the actual data as shown in figure 17.

8The confidence intervals for the price paths were obtained from Monte-Carlo methods by creating 1000 simulations for
each set of parameter values and determining the bounds at each point in time that contain the middle 95% of simulations
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Figure 13: Observed and simulated closing log price paths (for Anglo-American shares)
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Figure 14: Log return paths
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Figure 15: Normal Probability Plots
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Figure 16: Autocorrelation of log returns
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Figure 17: Autocorrelation of absolute log returns

Overall, similar to the results of a previous calibration attempt [7], we are unable to replicate some
important stylized facts to a reasonable extent when using the standard Farmer-Joshi model. In the next
section, we test the performance of the adaptive Farmer-Joshi model using the same data set.
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5.2 Adaptive Farmer-Joshi Model

Table 8 below presents the optimal values and confidence intervals for the parameters as a result of the
application of the NMTA and GA algorithms respectively. Confidence intervals are obtained from n = 11
optimal sets of parameters for both optimisation algorithms. Similar to the standard model, there appears
to be significant differences in the optimal parameters between the two calibrations, indicating that a large
range of parameter values are able to result in similar performance. These optimal points are not unique,
rather they represent a region of maxima where slight changes in the parameters do not correspond to large
differences in the performance of the simulated data (based on the objective function). It is important to
note that the value for Γ in the GA calibration is larger than that of the NMTA calibration. Together
with this and the fact that the NMTA calibration was less able to replicate the stylized facts (section
5.2.2) gives reason to believe that a larger value for Γ results in a greater degree of switching and therefore
a greater allowance for periods where chartist activity dominates. This point was also noted by Brock
and Hommes [3] and is made clearer in section 5.2.3.

θ θGA θ95%
GA θNMTA θ95%

NMTA

N 90 [80;121] 81 [101;182]
λ 10.27527 [10.56002;12.62532] 3.26799 [5.47222;12.08974]
a 0.08186 [0.07760;0.11010] 0.01525 [0.01849;0.08230]
dmax 87 [88;113] 105 [86;129]
dmin 34 [37;53] 90 [30;67]
µη -0.00255 [-0.00211;0.00299] -0.00596 [-0.00402;0.00282]
ση 0.02767 [0.01712;0.03046] 0.04145 [0.01212;0.03439]
σζ 0.01721 [0.01769;0.02103] 0.01897 [0.01399;0.01775]
Tmax 0.67289 [0.60669;0.98115] 1.414 [0.82567;1.49038]
Tmin 0.35379 [0.19958;0.47418] 0.60891 [0.28719;0.74903]
τmin -0.39869 [-0.52035;-0.39311] -0.52416 [-0.4843;-0.29535]
τmax 0.15383 [0.0979;0.32634] -0.13256 [-0.00543;0.12641]
vmax 0.43789 [0.06897;0.34144] -0.07734 [0.09896;0.43791]
vmin -0.094 [-0.31161;-0.16015] -0.38161 [-0.25692;-0.06936]
Γ 0.57012 [0.38411;0.59631] 0.12921 [0.18155;0.53080]
H 45 [43;57] 54 [26;72]
Fitness -20.64028 [-65.01577;-19.19762] -16.06043 [-25.41958;-16.87596]

Table 8: Estimates of parameters using GA and NMTA algorithms.

Table 9 below provides confidence intervals for the moments and statistics of simulated data for the GA
and NMTA algorithm respectively. Additionally, the estimated moments and statistics from the actual
data are included as well (me). The moments of simulated log returns from both the GA and NMTA
calibrations closely match each other as well as that of the actual returns (with the GA calibration having
a slightly closer resemblance) with the exception of excess kurtosis. The GA calibration results in greater
excess kurtosis than the NMTA calibration. Hence, for this calibration, one should expect to find that
log returns would be more leptokurtic and fat tailed than the NMTA calibration. Lastly, the confidence
intervals seem to encapsulate most of the empirical moment values.
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Moments and statistics ms|θGA CI95%
GA ms|θNMTA CI95%

NMTA me

Mean -0.00003 [-0.00082;0.00055] -0.00011 [-0.00096;0.00054] -0.00005
Standard deviation 0.02594 [0.02102;0.02741] 0.02389 [0.02035;0.02589] 0.02767
Excess Kurtosis 6.79172 [0.46553;5.62495] 2.67784 [0.45883;2.88263] 4.03912
Kolmogorov-Smirnov statistic 0.01675 [0.01637;0.04111] 0.02322 [0.01637;0.04492] 0
Hurst exponent 0.54975 [0.47187;0.56053] 0.55758 [0.48541;0.57422] 0.54487
GPH estimator 0.35897 [0.14932;0.60416] 0.43850 [0.10793;0.60692] 0.73580
ADF statistic -55.72727 [-55.40820;-48.46334] -51.56574 [-55.05093;-47.79636] -49.42858
GARCH parameters 0.95984 [0.94076;0.97653] 0.95906 [0.92315;0.97948] 0.99339
Hill estimator 0.39393 [0.26899;0.38734] 0.34828 [0.26658;0.37113] 0.42845

Table 9: Moments and statistics on actual data and simulated data using the GA and NMTA optimisation methods.

5.2.1 Objective Surfaces

It was then tested how the fitness of the simulation varied (according to the objective function) when
allowing certain parameters to change. In each of the graphs that follow, 14 of the model parameters are
set to their optimal values while the remaining two parameters vary within certain bounds. Thereafter, the
objective function for each combination of parameter values are calculated and plotted. The graphs give
an indication of how sensitive the fitness of the model is to changes in each parameter. While in some cases
the fitness values can be rather haphazard, in each of the graphs a broad trend can be seen, indicating
which areas in the parameter space tend to produce the highest fitness values. Some of the objective
surfaces appear quite rough with the maximum not being clearly distinguishable (dmin, dmax − dmin in
figure 19), whereas others appear fairly smooth and a unique maximum is clearly distinguishable (N in
figure 18). There also appears to be certain parameters for which a wide range of values result in optimal
performance, but deviation from this range results in a sudden drop in fitness (H and Γ in figure 20).

As mentioned in section 1.1, these results are indicative of some parameter degeneracies where some
parameters are calibrated successfully whilst others have no clear unique optimal value for multiple in-
dependent calibration experiments. For example, in figure 18 the unique optimal value for N is clear
whereas there appears to be no unique optimal value for a. Interestingly, the minimum threshold for
exiting a position seem to have minimal effect on the objective function value, while the selection of the
maximum entering threshold signicantly influences the fitness value returned by the objective function.
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Figure 18: Objective surface (a,N)
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Figure 19: Objective surface (dmin, dmax − dmin)
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Figure 20: Objective surface (H,Γ)
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Figure 21: Objective surface (ση, µη)
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Figure 22: Objective surface (σζ , λ)
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Figure 23: Objective surface (Tmin, Tmax − Tmin)
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Figure 24: Objective surface (τmin, τmax − τmin)
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Figure 25: Objective surface (vmin, vmax − vmin)
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5.2.2 Comparison of Key Features of Observed and Simulated Data

Using the obtained best parameter values from each calibration method, a simulation of the Farmer-Joshi
model was run. The resulting simulated log prices, along with the confidence intervals for the simulated
prices and the actual closing log prices, are shown in figure 26. We observe that the actual price is rarely
within the confidence intervals during the first few years. The confidence intervals are much narrower
than for the standard model, indicating greater consistency between simulations when using the adaptive
model. There is also a more consistent increase in the confidence intervals over time as opposed to the
more sudden increases observed from the standard model.

In figure 27, with regard to the adaptive model, it can be seen that the daily log returns exhibit relatively
similar variation to the actual log returns, however, areas of clustered volatility are not as prominent as
that of the actual data and there are less cases of particularly high and low returns in the simulation
compared to the observed returns.

Figure 28 shows the normal probability plots for the daily real and simulated returns. Both calibrations
appear to have generated fat tails compared to the normal distribution with that of the NMTA calibration
being less prominent. In figure 29 both calibrations exhibit almost no significant autocorrelations of log
returns. Lastly, the GA calibration produced highly significant autocorrelations of absolute log returns
which decayed at a faster rate than the observations whilst the autocorrelations for the NMTA calibration
were less significant but decayed at a slower rate. Based on these results and comparing it to the standard
model, it can be concluded that allowing agents to adapt and change over time results in volatility
clustering.
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Figure 26: Observed and simulated closing log price paths (for Anglo-American shares)
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Figure 28: Normal Probability Plots
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Figure 29: Autocorrelation of log returns
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Figure 30: Autocorrelation of absolute log returns

5.2.3 Analysis of Strategy Profitability and Trader Switching Behaviour

Plotting the number of active chartists and fundamentalists at each time step reveals that switching is
relatively volatile. To better visualise these movements in the number of agents, we apply a simple moving
average to obtain the white line through each plot in figure 31. Note that the large jump in the log returns
of the GA calibration just after 2010 (middle of figure 27) corresponds the large peak in the number of
chartists that appears at the same time in the plot of the number of chartists (top left of figure 31). A
similar observation can be made by looking at the areas of the number of chartists that corresponds to
areas of volatility clustering in the plot of log returns for the NMTA calibration (bottom of figures 27
and 31). For this reason, we conclude that a large fraction of fundamentalists tends to stabilise prices,
whereas a large fraction of chartists tends to destabilise prices. Furthermore, asset price fluctuations are
caused by the interaction between these stabilizing and destabilizing forces.

Lastly, plotting the sum of all intermediate term profits realized by the fundamentalist and chartist
strategies that were adopted by agents at each time step provides an explanation for why the chartist effect
was more prominent in the GA algorithm compared to the NMTA algorithm. Looking at the left-hand
side of figure 32, profit changes for chartists appear to be volatile and much more significant than that of
fundamentalists (which is relatively stable). In contrast, the NMTA calibration produces less significant
profits. This may explain why volatility clustering is less significant in this calibration as there is less
chartist/fundamentalist activity/interaction.
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Figure 31: Number of chartists/fundamentalists
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6 Conclusion

A key feature of the Farmer-Joshi model is that the two types of agents are activated through the
thresholds adopted by each agent. Farmer and Joshi argued that it was this feature that made it possible
for the model to replicate the stylized facts. However, with regards to the standard Farmer-Joshi model,
we have not been able to show that the model can replicate common empirical facts observed in financial
markets - in particular leptokurtosis and volatility clustering. The less leptokurtic nature of simulated
data is likely not due to the optimisation procedures but to the model characteristics or to the number
of chartists and fundamentalists being fixed throughout each simulation.

A key feature of the adaptive model is that the fluctuations in the number of chartists and fundamental-
ists are triggered by a rational choice, based upon maximising profits over a time horizon of approximately
two to three months. Allowing for greater trend following activity during periods of the simulation by
introducing adaptive agents produced the desired volatility clustering, leptokurtosis and absence of auto-
correlation of log returns. The adaptive Farmer-Joshi model leads to periods where chartist activity fluc-
tuates between high and low, with an irregular switching between phases of: close to the “Efficient Market
Hypothesis fundamental price” fluctuations, optimism with upward trends, and phases of pessimism with
downward trends. The adaptive Farmer-Joshi model therefore does much better at replicating the stylized
facts than the standard Farmer-Joshi model. Furthermore, it was found (by looking at the changes in
the number and profit of chartists and fundamentalists over time) that a large fraction of fundamentalists
tends to stabilise prices whilst a large fraction of chartists tends to destabilise prices. Together with this,
a large value for Γ results in a greater degree switching compared to when Γ is small (a similar conclusion
is made by Brock and Hommes [3]).

Comparing the two calibration methods, despite getting a better fitness, the optimal parameter values
from the Nelder-Mead simplex with threshold accepting optimisation were less able to replicate the stylized
facts than those from the genetic algorithm optimisation when we compared two simulations. This may
be due to the random choice of simulations used not being representative of the average behaviour. It
may also have been due to the the lower number of replications used in the threshold accepting algorithm
resulting in slightly worse estimates of the fitness of the parameter sets.

When it comes to the behaviour of the parameters, we observe relatively large confidence intervals, as
well as haphazard or flat objective function surfaces, for many of the parameters. This indicates that
many parameters of the model do not have a very clear or significant effect on price behaviour. This
makes it difficult to make insights about the effect of these parameters on share price behaviour, limiting
the explanatory ability of the model. With this in mind, both models exhibit parameter degeneracies -
that is, independent calibrations on the same data do not yield similar optimal parameters, while still
resulting in a similar ability (or lack thereof) to replicate the stylized facts.
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Glossary

calibration A reverse process to regression, where a known observation of the dependent variable (price)
is used to determine the corresponding explanatory variables (parameters). 2

centroid The arithmetic mean position of all the points in a multidimensional figure. 17

chromosome A string which defines a set of parameter values. Each chromosome is a possible solution
to the optimization problem. 19

contrarian An investment style in which investors purposefully go against prevailing market trends by
selling when others are buying, and buying when most investors are selling. 9

double-auction market Allows buyers and sellers to submit prices they deem acceptable to a list.
When a match between a buyers price and a sellers asking price is found, the trade proceeds at that
price. Trades without matches will not be executed. 9

ergodicity A random process is ergodic if its time average is the same as its average over the probability
space (known as its ensemble average). 7

fat tails The unconditional returns of nancial series are not normally distributed. They usually display
a distribution with too many observations near the mean, too few in the mid range, and too many
in the extreme left and right tails. 1

herding A situation in which market participants react to information about the behaviour of other
market agents or participants rather than the behaviour of the market, and the fundamental trans-
actions. Investors follow what they perceive other investors are doing, rather than their own analysis.
5

leptokurtic The condition of a probability density curve to have fatter tails and a higher peak at the
mean than the normal distribution. In other words, a distribution with positive excess kurtosis. 29

limit order A type of order to purchase or sell a security at a specified price or better. For buy limit
orders, the order will be executed only at the limit price or a lower one, while for sell limit orders,
the order will be executed only at the limit price or a higher one. 4

limit order book A record of unexecuted limit orders maintained by the security specialist who works
at the exchange. 9

liquidity provider An individual/institution which acts as a market maker in a given asset class. The
liquidity provider will act as the both the buyer and seller of a particular asset, thus making a
market. They place limit orders on the order books. 4

liquidity taker An individual/institution that places market orders to immediately buy/sell orders sit-
ting on the books. 4

market microstructure A branch of finance concerned with the details of how exchange occurs in
markets. While much of economics abstracts from the mechanics of trading, microstructure literature
analyzes how specific trading mechanisms affect the price formation process. 2

market order A type of order to buy or sell a security at the best available price in the current market.
4

minority game It is inspired by the El Farol bar problem, which is a simple model that shows how
(selfish) players cooperate with each other in the absence of communication. In the minority game,
an odd number of players have to choose one of two choices independently at each turn. The players
who end up on the minority side win. 6

mispricing The difference between a stock’s price and its intrinsic/perceived value. 10
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mutation The act of changing a parameter value of a member of the population to some randomly
chosen other value. 19

noise trader A term used to describe investors who make decisions regarding buy and sell trades without
the support of professional advice or advanced fundamental analysis (whose decisions to buy, sell,
or hold are irrational and erratic). 9

parameter degeneracy In this case refers to the phenomenon where different calibration experiments
do not result in similar optimal parameter values. 2

parent A set of parameter values in the current or intermediate population before recombination occurs.
The best individuals in a generation are more likely to be selected as parents. 19

population A set of strings each representing a different combination of parameter values within the
possible parameter space. 19

predator-prey Describes the dynamics of biological systems in which two species interact, one as a
predator and the other as prey. Species compete, evolve and disperse for the purpose of obtaining
resources (in this case profit). 5

recombination The process of creating offspring from a pair of parent strings by applying crossover to
bits. 19

reproduce The process of selection, recombination and mutation which results in a new population. 19

simplex A generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. i.e. an
n-dimensional object with flat sides that has only n+ 1 vertices. 4, 17

spread The gap between the bid and the ask prices of a security/asset. 4

state dependent threshold strategy A strategy adopted by chartists and fundamentalists to reduce
transaction costs. Agents enter their positions when their mispricing meets their entry threshold,
and exit their positions when their mispricing meets their exit threshold. iii, 11

stylized fact Statistical properties that appear to be present in many empirical asset returns (across
time and markets). In general, these are observations repeated in so many contexts that they
are commonly accepted as empirical truths and set boundaries to which all new hypotheses must
conform. 4

volatility clustering The observation, first noted by Mandelbrot [23], that “large changes tend to be
followed by large changes, of either sign, and small changes tend to be followed by small changes”.
While stock returns themselves are relatively uncorrelated, the squares or absolute values of returns
are autocorrelated, reflecting a tendency for markets to move from periods of relative quiet to more
turbulent periods. Signicant positive autocorrelations for absolute stock returns continue out a year
or more, and decay at a rate which is slower than exponential [21]. 15
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Appendix

Psuedocode

In this section we use pseudocode to provide an overview of the objective function used in our calibrations
of the adaptive Farmer-Joshi model, and a more detailed description of the function used to create
simulations of the adaptive model.

Algorithm 1 Objective function

Require: N,λ, a, dmin, dmax, µη, ση, σζ , Tmin, Tmax, τmin, τmax, vmin, vmax,Γ, H
1: Initialize number of Monte-Carlo replications I and matrix of I deviation vectors
2: for i = 1, 2, . . . , 30 do
3: Generate a simulated price path from parameters and calculate returns
4: Get moments of simulated price path ms

i |θ
5: end for
6: G = 1

I

∑I
i=1[(ms

i |θ)−me]
7: return −G′WG

Algorithm 2 Simulate function (adaptive Farmer-Joshi model)

Require: N,λ, a, dmin, dmaxµη, ση, σζ , Tmin, Tmax, τmin, τmax, vmin, vmax,Γ, H
1: Initialization ∀ i = 1, . . . , N :
2: Ti = sample U(Tmin, Tmax) (constant entry threshold)
3: τi = sample U(τmin, τmax) (constant exit threshold)
4: di = sample dmin : dmax (constant time lag)
5: ci = a(Ti − τi) (constant capital)
6: Set pt to actual observed log prices for all integers t where −200 ≤ t ≤ 0.
7: xci,0 = ci×sign(p−1 − p−1−di) (initial chartist position assuming entry threshold is met)
8: vi,−1 = sample U(vmin + p−1, vmax + p−1)

9: xfi,0 = ci×sign(vi,−1 − p−1) (initial fundamentalist position assuming entry threshold is met)

10: mf
i,−1 = p−1 − vi,−1

11: mc
i,−1 = p−1−di − p−1

12: if −Ti < mc
i,−1 < Ti then

13: xci,0 = 0 (No position)
14: end if
15: if −Ti < mf

i,−1 < Ti then

16: xfi,0 = 0 (No position)
17: end if
18: φci,0 = 0.5 (initial probability of being a chartist)
19: Assign each of N agents a strategy randomly according to Binom(1, φi,0)
20: Actual positions based on strategy ∀ i = 1, . . . , N
21: if Agent is currently using the chartist strategy then
22: xai,0 = xci,0
23: else
24: xai,0 = xfi,0
25: end if
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26: for t = 0, 1, . . . do
27: Chartists ∀ i = 1, . . . , N (including those not currently using chartist strategy)
28: xci,t+1 = ci×sign(pt − pt−di) (assuming relevant thresholds are met, which are checked below)
29: mc

i,t = pt−di − pt
30: if xci,t > 0 & mc

i,t < −τi (was in a long position; will hold if below -tau) then
31: xci,t+1 = xci,t (No trade)
32: end if
33: if xci,t > 0 & − τi < mc

i,t < Ti then
34: xci,t+1 = 0 (Exit long; don’t enter short)
35: end if
36: if xci,t < 0 & mc

i,t > τi (was in a short position; will hold if above tau) then
37: xci,t+1 = xci,t (No trade)
38: end if
39: if xci,t < 0 & − Ti < mc

i,t < τi then
40: xci,t+1 = 0 (Exit short; don’t enter long)
41: end if
42: if xci,t = 0 & − Ti < mc

i,t < Ti then
43: xci,t+1 = 0 (No trade)
44: end if
45: Fundamentalists ∀ i = 1, . . . , N (including those not currently using fundamentalist strategy)
46: vi,t = vi,t−1+sample N(µη, ση) (shift each agent’s perceived value, where the same shift is applied to each agent)

47: xfi,t+1 = ci×sign(vt − pt) (assuming relevant thresholds are met, which are checked below)

48: mf
i,t = pt − vi,t

49: if xfi,t+1 > 0 & mf
i,t < −τi then

50: xfi,t+1 = xfi,t (No trade)
51: end if
52: if xfi,t+1 > 0 & − τi < mf

i,t < Ti then

53: xfi,t+1 = 0 (Exit long; don’t enter short)
54: end if
55: if xfi,t+1 < 0 & mf

i,t > τi then

56: xfi,t+1 = xfi,t (No trade)
57: end if
58: if xfi,t+1 < 0 & − Ti < mf

i,t < τi then

59: xfi,t+1 = 0 (Exit short; don’t enter long)
60: end if
61: if xfi,t+1 = 0 & − Ti < mf

i,t < Ti then

62: xfi,t+1 = 0 (No trade)
63: end if
64: Actual positions based on strategy ∀ i = 1, . . . , N
65: if Agent is currently using the chartist strategy then
66: xai,t+1 = xci,t+1 (assuming relevant thresholds are met, which are checked below)
67: ma

i,t = mc
i,t

68: else
69: xai,t+1 = xfi,t+1 (assuming relevant thresholds are met, which are checked below)

70: ma
i,t = mf

i,t

71: end if
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72: if xai,t > 0 & ma
i,t < −τi then

73: xai,t+1 = xai,t (No trade)
74: end if
75: if xai,t > 0 & − τi < ma

i,t < Ti then
76: xai,t+1 = 0 (Exit long; don’t enter short)
77: end if
78: if xai,t < 0 & ma

i,t > τi then
79: xai,t+1 = xai,t (No trade)
80: end if
81: if xai,t < 0 & − Ti < ma

i,t < τi then
82: xai,t+1 = 0 (Exit short; don’t enter long)
83: end if
84: if xai,t = 0 & − Ti < ma

i,t < Ti then
85: xai,t+1 = 0 (No trade)
86: end if
87: Market Impact (only considers positions that agents actually took)

88: ωt+1 =
∑N

i=1 {xai,t+1 − xai,t}
89: pt+1 = pt + 1

λωt+1 +N(0, σζ)
90: Update ∀ i = 1, . . . , N

91: πci,t+1 =
∑t

k=t−H+1{xci,k(pk+1 − pk)}
92: πfi,t+1 =

∑t
k=t−H+1{x

f
i,k(pk+1 − pk)}

93: φci,t+1 = e
πci,t+1/Γ

e
πc
i,t+1

/Γ
+e

π
f
i,t+1/Γ

94: Assign each of N agents a new strategy randomly according to Binom(1, φi,t)
95: end for
96: return pt ∀ t (simulated price path)
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R Code

In this section we provide the R code for the main functions used in our calibrations. This includes the code
for calculating the weight matrix, the functions used to simulate each of the models (“Simulate” functions),
the objective functions, and the function for implementing the NMTA algorithm on the standard model
(the NMTA algorithm for the adaptive model is similar except for the addition of two further vertices for
the two added parameters - H and Γ).

Listing 1 Moving block bootstrap for estimating W

1 b = 100 # Size of window

2 k = 9 # Number of moments

3 bootstrap_moments = matrix(NA, nrow = 10000, ncol = k)

4 cl = makeCluster(detectCores ())

5 registerDoParallel(cl)

6 bootstrap_moments = foreach(i = 1:10000 , .combine = "rbind", .packages = c("

pracma", "timeDate", "tseries", "fracdiff", "extremefit")) %dopar% {

7 set.seed(i)

8 index = sample(x = 1:( length(returns) - b + 1), size = ceiling(length(returns)/

b), replace = TRUE) # Get block indices for bootstrap sample

9 boot = c()

10 for(j in 1: length(index)) { # Join the blocks together until we create a time

series of at least length(returns)

11 boot = c(boot , returns [( index[j]):( index[j] + b - 1)])

12 }

13 boot = boot [1: length(returns)] # Truncate last block if necessary

14 c(mean(boot), sd(boot), kurtosis(boot), ks.test(boot , returns)$statistic ,
hurstexp(boot , display = FALSE)$Hs, fdGPH(abs(boot))$d, adf.test(boot , k =

0)$statistic , sum(garch(boot , trace = F)$coef [2:3]) , mean(hill(boot)$hill
[(0.05 * length(boot)):(0.1 * length(boot))]))

15 }

16 stopCluster(cl)

17 W = solve(cov(bootstrap_moments)) # Inverse of covariance matrix from

distribution of bootstrapped moments

Listing 2 Simulate function (standard Farmer-Joshi model)

1 MarketImpact = function(omega , lambda , p_t , zeta) {

2 return(p_t + (1/lambda)*omega + zeta)

3 }

4 Simulate = function(N, lambda , a, d_max , d_min , mu_eta , sigma_eta , sigma_zeta ,

T_max , tau_min , v_max , v_min , T_min = 0, tau_max = 0) {

5 I = 1000 # Number of replications

6 ## Initialization

7 tau = matrix(NA , nrow = 2*N, ncol = I) # Each column represents a single Monte -

Carlo replication and each row is an agent

8 p_sim = matrix(NA, nrow = length(price), ncol = I) # Matrix of I vectors of

simulated prices

9 d = sapply(X = rep(x = N, times = I), FUN = sample , x = d_min:d_max , replace =

TRUE) # Matrix of I vectors of lags for chartists
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10 Thresh = sapply(X = rep(x = 2*N, times = I), FUN = runif , min = T_min , max =

T_max) # Matrix of I vectors of entry thresholds (T) for agents

11 for (i in 1:I) {

12 tau_constraint = cbind(Thresh[, i], -tau_min) # Used to ensure -tau < Thresh

13 tau[, i] = runif(2*N, -colMins(t(tau_constraint)), tau_max) # Exit thresholds

(tau) for each agent for ith replication

14 }

15 c_value = a*(Thresh [1:N, ] - tau [1:N, ]) # Matrix of I vectors of c's for

fundamentalists

16 c_trend = a*(Thresh [(N + 1):(2*N), ] - tau[(N + 1):(2*N), ]) # Matrix of I

vectors of c's for chartists

17 p_sim [1:(200 + 2), ] = price [1:(200 + 2)] # The simulated and actual prices are

the same for this interval so that the lagged price does not fall behind

our window of data

18 v_previous = sapply(X = rep(x = N, times = I), FUN = runif , min = v_min + p_sim

[201] , max = v_max + p_sim [201]) # The initial value for each value investor

is exogenous

19 # Initial mispricings

20 m = matrix(price [201] , nrow = N, ncol = I, byrow = F) - v_previous # Mispricing

that each fundamentalist believes there to be

21 mc = matrix(price [201 - d], nrow = N, ncol = I, byrow = F) - matrix(price [201],

nrow = N, ncol = I, byrow = F)

22 # Initial positions assuming an entry threshold is met

23 x_previous_trend = c_trend*sign(matrix(price [201] , nrow = N, ncol = I, byrow =

TRUE) - matrix(price [201 - d], nrow = N, ncol = I, byrow = FALSE)) # The

initial positions of chartists

24 x_previous_value = c_value*sign(v_previous - matrix(price [201] , nrow = N, ncol

= I, byrow = TRUE)) # The initial positions of fundamentalists

25 # Initial positions are only taken if outside of entry thresholds

26 x_previous_value[which(m < Thresh [1:N, ] & m > -Thresh [1:N, ], arr.ind = TRUE)]

= 0 # Initial position is 0

27 x_previous_trend[which(mc < Thresh [1:N, ] & mc > -Thresh [1:N, ], arr.ind = TRUE

)] = 0 # Initial position is 0

28 for (t in (200 + 3):( length(price))) {

29 ## Chartists

30 x_new_trend = c_trend*sign(matrix(p_sim[t - 1, ], nrow = N, ncol = I, byrow =

TRUE) - matrix(p_sim[as.vector(t - 1 - d + length(price) * matrix (0:(I -

1), nrow = N, ncol = I, byrow = T))], nrow = N, ncol = I, byrow = FALSE))

# The positions chartists want to now move to

31 ## Fundamentalists

32 v_new = v_previous + sapply(X = rep(N, times = I), FUN = rnorm , mean = mu_eta

, sd = sigma_eta) # The fundamentalists ' new value judgements

33 m = matrix(p_sim[t - 1, ], nrow = N, ncol = I, byrow = F) - v_new #

Mispricing that each fundamentalist believes there to be

34 mc = matrix(p_sim[as.vector(t - 1 - d + length(price) * matrix (0:(I - 1),

nrow = N, ncol = I, byrow = T))], nrow = N, ncol = I, byrow = F) - matrix(

p_sim[t - 1, ], nrow = N, ncol = I, byrow = T)

35 x_new_value = c_value*sign(v_new - matrix(p_sim[t - 1, ], nrow = N, ncol = I,

byrow = TRUE)) # The position they wish to now take (assuming thresholds

are met for fundamentalists)
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36 # State dependent value strategy

37 # Fundamentalist was in a long position; will only trade if below tau

38 x_new_value[which(x_previous_value > 0 & m < -tau [1:N, ], arr.ind = TRUE)] =

x_previous_value[which(x_previous_value > 0 & m < -tau[1:N, ], arr.ind =

TRUE)] # No trade takes place

39 x_new_value[which(x_previous_value > 0 & m < Thresh [1:N, ] & m > -tau [1:N, ],

arr.ind = TRUE)] = 0 # Exits long but does not enter short position as m

doesn 't meet entry threshold

40 # Fundamentalist was in a short position; will only trade if above -tau

41 x_new_value[which(x_previous_value < 0 & m > tau [1:N, ], arr.ind = TRUE)] =

x_previous_value[which(x_previous_value < 0 & m > tau[1:N, ], arr.ind =

TRUE)] # No trade takes place

42 x_new_value[which(x_previous_value < 0 & (m > -Thresh [1:N, ]) & (m < tau [1:N,

]), arr.ind = TRUE)] = 0 # Exits short but does not enter long position

as m doesn 't meet entry threshold

43 # Fundamentalist was taking no position; will only trade if above Thresh or

below -Thresh

44 x_new_value[which(x_previous_value == 0 & m < Thresh [1:N, ] & m > -Thresh [1:N

, ], arr.ind = TRUE)] = 0 # No trade takes place

45 # Chartist was in a long position; will only trade if below tau

46 x_new_trend[which(x_previous_trend > 0 & mc < -tau[(N+1) :(2*N), ], arr.ind =

TRUE)] = x_previous_trend[which(x_previous_trend > 0 & mc < -tau[(N+1) :(2*

N), ], arr.ind = TRUE)] # No trade takes place

47 x_new_trend[which(x_previous_trend > 0 & mc < Thresh [(N+1) :(2*N), ] & mc > -

tau[(N+1):(2*N), ], arr.ind = TRUE)] = 0 # Exits long but does not enter

short position as m doesn 't meet entry threshold

48 # Fundamentalist was in a short position; will only trade if above -tau

49 x_new_trend[which(x_previous_trend < 0 & mc > tau[(N+1) :(2*N), ], arr.ind =

TRUE)] = x_previous_trend[which(x_previous_trend < 0 & mc > tau[(N+1) :(2*N

), ], arr.ind = TRUE)] # No trade takes place

50 x_new_trend[which(x_previous_trend < 0 & (mc > -Thresh [(N+1) :(2*N), ]) & (mc

< tau[(N+1) :(2*N), ]), arr.ind = TRUE)] = 0 # Exits short but does not

enter long position as m doesn 't meet entry threshold

51 # Fundamentalist was taking no position; will only trade if above Thresh or

below -Thresh

52 x_new_trend[which(x_previous_trend == 0 & mc < Thresh [(N+1) :(2*N), ] & mc > -

Thresh [(N+1) :(2*N), ], arr.ind = TRUE)] = 0 # No trade takes place

53 ## Fundamentalists and chartists

54 omega = colSums(x_new_trend - x_previous_trend) + colSums(x_new_value -

x_previous_value) # The net order of all I sets of agents for the day

55 v_previous = v_new # Prepare for the next loop by updating v_previous

56 x_previous_value = x_new_value # Prepare for the next loop

57 x_previous_trend = x_new_trend # Prepare for the next loop

58 p_sim[t, ] = MarketImpact(lambda = lambda , p_t = p_sim[t - 1, ], omega =

omega , zeta = rnorm(I, 0, sigma_zeta)) # MarketImpact evaluated at a

vector of parameters

59 }

60 return(p_sim) # I simulated price paths; First 202 days are real data

61 }
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Listing 3 Objective function (standard Farmer-Joshi model)

1 ObjectiveFunction = function(parameters) {

2 I = 50 # Number of replications

3 p_sim = Simulate(N = ceiling(parameters [1]), lambda = parameters [2], a =

parameters [3], d_max = ceiling(parameters [5]) + floor(parameters [4]), d_min

= ceiling(parameters [5]), mu_eta = parameters [6], sigma_eta = parameters [7],

sigma_zeta = parameters [8], T_max = parameters [9] + parameters [13], tau_min

= parameters [10], v_max = parameters [11] + parameters [12], v_min =

parameters [12], T_min = parameters [13], tau_max = parameters [14] +

parameters [10]) # Ceiling and floor functions act as integer constraints

4 sim_returns = diff(p_sim[-c(1:201) , ])

5 mean_sim = colMeans(sim_returns)

6 stdev_sim = colSds(sim_returns)

7 kurtosis_sim = apply(X = sim_returns , MARGIN = 2, FUN = kurtosis)

8 hurst_sim = numeric(I)

9 ks_sim = numeric(I)

10 garch_sim = numeric(I)

11 gph_sim = numeric(I)

12 adf_sim = numeric(I)

13 hill_sim = numeric(I)

14 for (i in 1:I) {

15 if(max(abs(na.omit(sim_returns[, i]))) > 10 | sum(is.na(sim_returns[, i])) >

0) {

16 return(NaN)

17 } else {

18 hurst_sim[i] = hurstexp(sim_returns[, i], display = FALSE)$Hs
19 ks_sim[i] = ks.test(x = sim_returns[, i], y = returns)$statistic
20 gph_sim[i] = fdGPH(abs(sim_returns[, i]))$d
21 adf_sim[i] = adf.test(sim_returns[, i], k = 0)$statistic
22 garch_sim[i] = sum(garch(sim_returns[, i], trace = F)$coef [2:3])
23 hill_sim[i] = mean(hill(sim_returns[, i])$hill [(0.05 * length(sim_returns[,

i])):(0.1 * length(sim_returns[, i]))])

24 }

25 }

26 G = rbind(mean_sim , stdev_sim , kurtosis_sim , ks_sim , hurst_sim , gph_sim ,

adf_sim , garch_sim , hill_sim) - matrix(actual_moments , ncol = I, nrow = k,

byrow = FALSE)

27 G = apply(G, 1, trimmean , percent = 70)

28 return(-t(G)%*%W%*%G) # Returns a negative value as GA maximises

29 }

Listing 4 Simulate function (adaptive Farmer-Joshi model)

1 MarketImpact = function(omega , lambda , p_t , zeta) {

2 return(p_t + (1/lambda)*omega + zeta)

3 }
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4 Profit = function(p_cur , p_prev , x_prev) {

5 x_prev*(p_cur - p_prev) # Difference between trade value today and the value of

the order placed yesterday which comes into effect today

6 }

7 Simulate = function(price = price , N, lambda , a, d_max , d_min , mu_eta , sigma_eta ,

sigma_zeta , T_max , tau_min , v_max , v_min , Gamma = 10^( -9), H = 2, T_min = 0,

tau_max = 0) {

8 ## Initialization

9 p_sim = numeric(length(price)) # Vector of simulated prices

10 p_sim [1:(200 + 2)] = price [1:(200 + 2)] # The simulated and actual prices are

the same for this interval so that the lagged price does not fall behind our

window of data

11 # Tracking

12 N_c = numeric(length(price)) # Keep track of number of active chartists at each

time point

13 N_f = numeric(length(price)) # Keep track of number of active fundamentalists

at each time point

14 pi_c = numeric(length(price)) # Keep track of profit for chartists at each time

point

15 pi_f = numeric(length(price)) # Keep track of profit for fundamentalists at

each time point

16 # Data frame keeping track of all agents ' strategies

17 agents = data.frame(d = sample(size = N, x = d_min:d_max , replace = TRUE), #

Vector of lags for chartists

18 Thresh = runif(N, T_min , T_max), # Vector of entry

thresholds

19 tau = NA , c_value = NA , c_trend = NA ,

20 v_previous = runif(N, min = v_min + p_sim [201] , max = v_max

+ p_sim [201]) , # The initial value for each investor is

exogenous

21 v_new = NA, x_previous_value = NA, x_previous_trend = NA,

x_previous_actual = numeric(N),

22 x_new_value = NA, x_new_trend = NA, x_new_actual = numeric

(N),

23 m_value = NA , m_trend = NA , m_actual = numeric(N),

24 profit_value = rep(0, times = N), profit_trend = rep(0,

times = N), # No profit initially

25 full_profit_value = rep(0, times = N), full_profit_trend =

rep(0, times = N),

26 phi = rep(0.5, times = N), # phi = probability of being a

chartist

27 chartist = as.logical(rbinom(N, size = 1, prob = 0.5)), #

Randomly initialize strategies for each agent based on

binomial distribution with probability 0.5

28 prev_day_chartist = NA,

29 fundamentalist = NA , prev_day_fundamentalist = NA)

30 agents$tau = runif(N, -colMins(t(cbind(agents$Thresh , -tau_min))), tau_max) #

Used to ensure -tau < Thresh. Vector of exit thresholds

31 agents$c_value = a*(agents$Thresh - agents$tau) # Vector of c's for all agents '
value investing strategies
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32 agents$c_trend = agents$c_value # The ith agent has the same c for both his

strategies (remains constant throughout)

33 # Get mispricing for both fundamentalists and chartists

34 agents$m_value = p_sim [201] - agents$v_previous # Mispricing that each

fundamentalist believes there to be

35 agents$m_trend = p_sim [201 - agents$d] - p_sim [201] # Mispricing that each

chartist believes there to be

36 # Set their initial positions as if the thresholds have been met

37 agents$x_previous_trend = agents$c_trend*sign(p_sim [201] - p_sim [201 - agents$d
]) # The initial positions for all agents ' trend following strategies

38 agents$x_previous_value = agents$c_value*sign(agents$v_previous - p_sim [201]) #

The initial positions for all agents ' value investing strategies

39 # Check that thresholds have been met. Agents only take the positions above if

they are outside one of the entry thresholds

40 agents$x_previous_value[which(agents$m_value < agents$Thresh & agents$m_value >

-agents$Thresh)] = 0 # No trade takes place

41 agents$x_previous_trend[which(agents$m_trend < agents$Thresh & agents$m_trend >

-agents$Thresh)] = 0 # No trade takes place

42 agents$fundamentalist = !agents$chartist # If they 're not currently a chartist

then they 're a fundamentalist

43 agents$prev_day_chartist = agents$chartist
44 agents$prev_day_fundamentalist = agents$fundamentalist
45 past_profits_trend <- matrix(0, nrow = N, ncol = H)

46 past_profits_value <- matrix(0, nrow = N, ncol = H)

47 agents$x_previous_actual[which(agents$chartist)] = agents$x_previous_trend[
which(agents$chartist)]

48 agents$x_previous_actual[which(agents$fundamentalist)] = agents$
x_previous_value[which(agents$fundamentalist)]

49 # In what follows , both strategies for each agent is updated as normal but only

their specific strategy for that time is used to calculate omega

50 for (t in (200 + 3):( length(price))) {

51 ## Chartists

52 agents$x_new_trend = agents$c_trend*sign(p_sim[t - 1] - p_sim[t - 1 - agents$
d]) # The positions chartists want to now move to. Update all agents '
trend following strategies

53 agents$m_trend = p_sim[t - 1 - agents$d] - p_sim[t - 1]

54 ## Fundamentalists

55 agents$v_new = agents$v_previous + rnorm(1, mean = mu_eta , sd = sigma_eta) #

The fundamentalists ' new value judgements. Update all agents ' value

investing strategies

56 agents$m_value = p_sim[t - 1] - agents$v_new # Mispricing that each

fundamentalist believes there to be

57 agents$x_new_value = agents$c_value*sign(agents$v_new - p_sim[t - 1]) # The

position they wish to now take (assuming thresholds are met for

fundamentalists)

58 ## State dependent value strategy

59 # Fundamentalist was in a long position; will only trade if below tau

60 agents$x_new_value[which(agents$x_previous_value > 0 & agents$m_value < -

agents$tau)] = agents$x_previous_value[which(agents$x_previous_value > 0 &

agents$m_value < -agents$tau)] # No trade takes place
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61 agents$x_new_value[which(agents$x_previous_value > 0 & agents$m_value <

agents$Thresh & agents$m_value > -agents$tau)] = 0 # Exits long but does

not enter short position as m doesn 't meet entry threshold

62 # Fundamentalist was in a short position; will only trade if above -tau

63 agents$x_new_value[which(agents$x_previous_value < 0 & agents$m_value >

agents$tau)] = agents$x_previous_value[which(agents$x_previous_value < 0 &

agents$m_value > agents$tau)] # No trade takes place

64 agents$x_new_value[which(agents$x_previous_value < 0 & agents$m_value > -

agents$Thresh & agents$m_value < agents$tau)] = 0 # Exits short but does

not enter long position as m doesn 't meet entry threshold

65 # Fundamentalist was taking no position; will only trade if above Thresh or

below -Thresh

66 agents$x_new_value[which(agents$x_previous_value == 0 & agents$m_value <

agents$Thresh & agents$m_value > -agents$Thresh)] = 0 # No trade takes

place

67 ## State dependent trend strategy

68 # Chartist was in a long position; will only trade if below tau

69 agents$x_new_trend[which(agents$x_previous_trend > 0 & agents$m_trend < -

agents$tau)] = agents$x_previous_trend[which(agents$x_previous_trend > 0 &

agents$m_trend < -agents$tau)] # No trade takes place

70 agents$x_new_trend[which(agents$x_previous_trend > 0 & agents$m_trend <

agents$Thresh & agents$m_trend > -agents$tau)] = 0 # Exits long but does

not enter short position as m doesn 't meet entry threshold

71 # Chartist was in a short position; will only trade if above -tau

72 agents$x_new_trend[which(agents$x_previous_trend < 0 & agents$m_trend >

agents$tau)] = agents$x_previous_trend[which(agents$x_previous_trend < 0 &

agents$m_trend > agents$tau)] # No trade takes place

73 agents$x_new_trend[which(agents$x_previous_trend < 0 & agents$m_trend > -

agents$Thresh & agents$m_trend < agents$tau)] = 0 # Exits short but does

not enter long position as m doesn 't meet entry threshold

74 # Chartist was taking no position; will only trade if above Thresh or below -

Thresh

75 agents$x_new_trend[which(agents$x_previous_trend == 0 & agents$m_trend <

agents$Thresh & agents$m_trend > -agents$Thresh)] = 0 # No trade takes

place

76 ## Actual strategy

77 agents$x_new_actual[which(agents$chartist)] = agents$x_new_trend[which(agents
$chartist)]

78 agents$m_actual[which(agents$chartist)] = agents$m_trend[which(agents$
chartist)]

79 agents$x_new_actual[which(agents$fundamentalist)] = agents$x_new_value[which(
agents$fundamentalist)]

80 agents$m_actual[which(agents$fundamentalist)] = agents$m_value[which(agents$
fundamentalist)]

81 # Agent was in a long position; will only trade if below tau

82 agents$x_new_actual[which(agents$x_previous_actual > 0 & agents$m_actual < -

agents$tau)] = agents$x_previous_actual[which(agents$x_previous_actual > 0

& agents$m_actual < -agents$tau)] # No trade takes place

83 agents$x_new_actual[which(agents$x_previous_actual > 0 & agents$m_actual <

agents$Thresh & agents$m_actual > -agents$tau)] = 0 # Exits long but does

not enter short position as m doesn 't meet entry threshold
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84 # Fundamentalist was in a short position; will only trade if above -tau

85 agents$x_new_actual[which(agents$x_previous_actual < 0 & agents$m_actual >

agents$tau)] = agents$x_previous_actual[which(agents$x_previous_actual < 0

& agents$m_actual > agents$tau)] # No trade takes place

86 agents$x_new_actual[which(agents$x_previous_actual < 0 & agents$m_actual > -

agents$Thresh & agents$m_actual < agents$tau)] = 0 # Exits short but does

not enter long position as m doesn 't meet entry threshold

87 # Fundamentalist was taking no position; will only trade if above Thresh or

below -Thresh

88 agents$x_new_actual[which(agents$x_previous_actual == 0 & agents$m_actual <

agents$Thresh & agents$m_actual > -agents$Thresh)] = 0 # No trade takes

place

89 ## Fundamentalists and chartists

90 omega = sum(agents$x_new_actual - agents$x_previous_actual) # The net order

of all agents for the day. Select only those agents ' specific strategies

91 ## Market maker

92 p_sim[t] = MarketImpact(lambda = lambda , p_t = p_sim[t - 1], omega = omega ,

zeta = rnorm(1, 0, sigma_zeta))

93 ## Update adaptive probability , profit of each agent 's strategy and which

strategy each agent is adopting

94 agents$profit_value = Profit(p_cur = p_sim[t], p_prev = p_sim[t - 1], x_prev

= agents$x_previous_value)
95 agents$profit_trend = Profit(p_cur = p_sim[t], p_prev = p_sim[t - 1], x_prev

= agents$x_previous_trend)
96 past_profits_trend = cbind(agents$profit_trend , past_profits_trend[, 1:(H-1)

])

97 past_profits_value = cbind(agents$profit_value , past_profits_value[, 1:(H-1)

])

98 agents$full_profit_trend = rowSums(past_profits_trend)

99 agents$full_profit_value = rowSums(past_profits_value)

100 agents$prev_day_chartist = agents$chartist
101 agents$prev_day_fundamentalist = agents$fundamentalist
102 ## Tracking

103 N_c[t-1] = sum(agents$chartist)
104 N_f[t-1] = sum(agents$fundamentalist)
105 pi_c[t] = sum(agents$full_profit_trend)
106 pi_f[t] = sum(agents$full_profit_value)
107 agents$phi = (exp(agents$full_profit_trend/Gamma))/(exp(agents$

full_profit_trend/Gamma) + exp(agents$full_profit_value/Gamma)) # Gamma is

the intensity of switching parameter

108 agents$chartist = as.logical(sapply(X = agents$phi , FUN = rbinom , n = 1, size

= 1)) # Choose strategies based on each agent 's probability of switching

109 agents$fundamentalist = !agents$chartist
110 ## Update positions

111 agents$v_previous = agents$v_new # Prepare for the next loop by updating

v_previous for all agents

112 agents$x_previous_value = agents$x_new_value # Prepare for the next loop by

updating x_previous_value for all agents

113 agents$x_previous_trend = agents$x_new_trend # Prepare for the next loop by

updating x_previous_trend for all agents
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114 agents$x_previous_actual = agents$x_new_actual # Prepare for the next loop by

updating x_previous_actual for all agents

115 }

116 return(data.frame(p_sim = p_sim , N_c = N_c , N_f = N_f , pi_c = pi_c , pi_f = pi_f

)) # Single simulated price path

117 }

Listing 5 Objective function (adaptive Farmer-Joshi model)

1 ObjectiveFunction = function(parameters) {

2 I = 30 # Number of replications

3 G = matrix(NA , nrow = k, ncol = I) # Initialise G

4 for (i in 1:I) {

5 set.seed(i) # Ensure there is a different seed for each replication

6 p_sim = Simulate(price = price , N = ceiling(parameters [1]), lambda =

parameters [2], a = parameters [3], d_max = ceiling(parameters [5]) + floor(

parameters [4]), d_min = ceiling(parameters [5]), mu_eta = parameters [6],

sigma_eta = parameters [7], sigma_zeta = parameters [8], T_max = parameters

[9] + parameters [15], tau_min = parameters [10], v_max = parameters [11] +

parameters [12], v_min = parameters [12], Gamma = parameters [13], H =

ceiling(parameters [14]), T_min = parameters [15], tau_max = parameters [10]

+ parameters [16])$p_sim # Ceiling and floor functions act as integer

constraints

7 returns_sim = diff(p_sim[-c(1:201) ])

8 # Controlling errors from poor initialisations

9 if(max(abs(na.omit(returns_sim))) > 10 | sum(is.na(returns_sim)) > 0) {

10 return(NaN)

11 } else {

12 moments = Moments(returns_sim , returns)

13 mean_sim = moments [1]

14 stdev_sim = moments [2]

15 kurtosis_sim = moments [3]

16 ks_sim = moments [4]

17 hurst_sim = moments [5]

18 gph_sim = moments [6]

19 adf_sim = moments [7]

20 garch_sim = moments [8]

21 hill_sim = moments [9]

22 }

23 G[, i] = c(mean_sim , stdev_sim , kurtosis_sim , ks_sim , hurst_sim , gph_sim ,

adf_sim , garch_sim , hill_sim) - Moments(returns , returns)

24 }

25 G = matrix(apply(G, 1, mean), nrow = k, ncol = 1)

26 return(-t(G)%*%W%*%G) # Fitness

27 }
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Listing 6 NMTA function (standard Farmer-Joshi model)

1 threshold_accepting = function(vertices , fitnesses) {

2 # This function implements the random shift step of the NMTA algorithm

3 tau = c(3, 1.5, 0) # Thresholds for each round

4 n = length(fitnesses) - 1 # Number of parameters

5 for(i in 1:3) { # Each round we reduce tau and increase the number of

replications

6 for(j in 1:7) { # Within each round we shift up to 7 parameters

7 direction = sample(size = 1, x = 1:n) # Determine which parameter to shift

8 magnitude = runif(n = 1, min = -0.5, max = 0.5) * mean(vertices[direction ,

]) # Determine how much to shift it by

9 # Get new candidate solutions

10 temp_vertices = vertices

11 temp_vertices[direction , ] = temp_vertices[direction , ] + magnitude

12 # Restrict shifts to possible values only

13 temp_vertices [1, ] = pmax(1, temp_vertices [1, ])

14 temp_vertices [2, ] = pmax (0.001 , temp_vertices [2, ])

15 temp_vertices [3, ] = pmax(0, temp_vertices [3, ])

16 temp_vertices [4, ] = pmax(0, temp_vertices [4, ])

17 temp_vertices [4, ] = pmin (100, temp_vertices [4, ])

18 temp_vertices [5, ] = pmax(1, temp_vertices [5, ])

19 temp_vertices [5, ] = pmin(90, temp_vertices [5, ])

20 temp_vertices [7, ] = pmax(0, temp_vertices [7, ])

21 temp_vertices [8, ] = pmax (0.00000001 , temp_vertices [8, ])

22 temp_vertices [9, ] = pmax(0, temp_vertices [9, ])

23 temp_vertices [10, ] = pmin(0, temp_vertices [10, ])

24 temp_vertices [11, ] = pmax(0, temp_vertices [11, ])

25 temp_vertices [14, ] = pmax(0, temp_vertices [14, ])

26 # Get their fitnesses

27 temp_fitnesses = foreach(k = 1:(n+1), .combine = "c", .export = ls(

globalenv ()), .packages = list.of.packages) %dorng% {

28 ObjectiveFunction(c(temp_vertices[, k], 15 + 5 * i))

29 }

30 # Replace the old solutions with the new ones if the best solution from the

new set is good enough

31 if(max(temp_fitnesses) > max(fitnesses) - tau[i]) {

32 vertices = temp_vertices

33 fitnesses = temp_fitnesses

34 }

35 }

36 }

37 return(rbind(vertices , fitnesses))

38 }

39

40 Calibrate_NMTA = function(maxiter , I) { # 'I' is the number of replications

41 # Get starting vertices and fitnesses

42 initials = foreach(k = 1:15, .combine = "cbind", .export = ls(globalenv ()), .

packages = list.of.packages) %dorng% {
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43 # Randomly create parameter values

44 vertex = c(runif(1, 40, 240), # N_f , N_c

45 runif(1, 0, 15), # liquidity

46 runif(1, 0, 1.5), # capital assignment

47 runif(1, 0, 100), # d_max - d_min

48 runif(1, 0.01, 90), # d_min

49 runif(1, -0.01, 0.01) , # mu_eta

50 runif(1, 0, 0.05) , # var_eta

51 runif(1, 0, 0.05) , # var_zeta

52 runif(1, 0, 1), # T_max - T_min

53 runif(1, -1, 0), # tau_min

54 runif(1, 0, 1), # v_max - v_min

55 runif(1, -0.5, 0), # v_min

56 runif(1, 0, 1), # tau_max - tau_min

57 runif(1, 0, 1)) # T_min

58 fitness = ObjectiveFunction(c(vertex , I))

59 while(fitness == -100000) { # Ensure that simulation does not result in crazy

behaviour

60 vertex = c(runif(1, 40, 240), runif(1, 0, 15), runif(1, 0, 1.5), runif(1,

0, 100), runif(1, 0.01, 90), runif(1, -0.01, 0.01) , runif(1, 0, 0.05) ,

runif(1, 0, 0.05) , runif(1, 0, 1), runif(1, -1, 0), runif(1, 0, 1),

runif(1, -0.5, 0), runif(1, 0, 1), runif(1, 0, 1))

61 fitness = ObjectiveFunction(c(vertex , I))

62 }

63 c(fitness , vertex)

64 }

65 vertices = initials[-1, ]

66 fitnesses = initials[1, ]

67 # Sort from best to worst

68 vertices = vertices[, order(fitnesses , decreasing = T)]

69 fitnesses = sort(fitnesses , decreasing = T)

70 # Keep track of best ever result

71 best_ever_iteration = 0

72 best_ever_fitness = fitnesses [1]

73 best_ever_vertex = vertices[, 1]

74 # Print progress

75 progress = c(0, fitnesses [1], vertices[, 1])

76 print(progress)

77 # Set the calibration parameters

78 alpha = 0.15 # Probability of choosing threshold accepting section

79 sigmaNM = 0.5 # Shrinkage parameter

80 rhoNM = 0.5 # Contraction parameter

81 alphaNM = 1 # Reflection parameter

82 gammaNM = 2 # Expansion parameter

83 for (r in 1: maxiter) {

84 if (runif(1, 0, 1) < alpha) { # Threshold accepting

85 new_parameters = threshold_accepting(vertices , fitnesses)

86 vertices = new_parameters [1:(14) , ]

87 fitnesses = new_parameters [15, ]

88 }
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89 else {

90 # Reflect the worst point to the other side of the average of each of the

other parameters

91 centroid = rowMeans(vertices[, -15])

92 reflected_point = centroid + alphaNM * (centroid - vertices[, 15])

93 # Restrict shifts to possible values only

94 reflected_point [1] = max(1, reflected_point [1])

95 reflected_point [2] = max (0.001 , reflected_point [2])

96 reflected_point [3] = max(0, reflected_point [3])

97 reflected_point [4] = max(0, reflected_point [4])

98 reflected_point [4] = min(100, reflected_point [4])

99 reflected_point [5] = max(1, reflected_point [5])

100 reflected_point [5] = min(90, reflected_point [5])

101 reflected_point [7] = max(0, reflected_point [7])

102 reflected_point [8] = max (0.00000001 , reflected_point [8])

103 reflected_point [9] = max(0, reflected_point [9])

104 reflected_point [10] = min(0, reflected_point [10])

105 reflected_point [11] = max(0, reflected_point [11])

106 reflected_point [14] = max(0, reflected_point [14])

107 ref_fitness = ObjectiveFunction(c(reflected_point , I))

108 # Check if new solution is in between best and worst fitnesses

109 if(ref_fitness < fitnesses [1] & ref_fitness > fitnesses [14]) {

110 vertices[, 15] = reflected_point

111 fitnesses [15] = ref_fitness

112 }

113 # Check if new parameters are new best solution; if so try improve further

by moving more in that direction

114 else if(ref_fitness > fitnesses [1]) {

115 # Expand

116 expanded_point = centroid + gammaNM * (reflected_point - centroid)

117 # Restrict shifts to possible values only

118 expanded_point [1] = max(1, expanded_point [1])

119 expanded_point [2] = max (0.001 , expanded_point [2])

120 expanded_point [3] = max(0, expanded_point [3])

121 expanded_point [4] = max(0, expanded_point [4])

122 expanded_point [4] = min(100, expanded_point [4])

123 expanded_point [5] = max(1, expanded_point [5])

124 expanded_point [5] = min(90, expanded_point [5])

125 expanded_point [7] = max(0, expanded_point [7])

126 expanded_point [8] = max (0.00000001 , expanded_point [8])

127 expanded_point [9] = max(0, expanded_point [9])

128 expanded_point [10] = min(0, expanded_point [10])

129 expanded_point [11] = max(0, expanded_point [11])

130 expanded_point [14] = max(0, expanded_point [14])

131 exp_fitness = ObjectiveFunction(c(expanded_point , I))

132 # Check if the solution is even better now

133 if(exp_fitness > ref_fitness) {

134 vertices[, 15] = expanded_point

135 fitnesses [15] = exp_fitness
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136 } else { # If not then just use the original improvement

137 vertices[, 15] = reflected_point

138 fitnesses [15] = ref_fitness

139 }

140 }

141 # Check if new parameters are still the worst. If so, try contracting

142 else if(ref_fitness < fitnesses [14]) {

143 contracted_point = centroid + rhoNM * (vertices[, 15] - centroid)

144 con_fitness = ObjectiveFunction(c(contracted_point , I))

145 # Check if contracting managed to actually get a better result than the

original worst parameter

146 if(con_fitness > fitnesses [15]) {

147 vertices[, 15] = contracted_point

148 fitnesses [15] = con_fitness

149 } else {

150 # If none of the above helped , shrink everything towards best solution

151 vertices = vertices[, 1] + sigmaNM * (vertices - vertices[, 1])

152 fitnesses = c(fitnesses [1], foreach(k = 2:15, .combine = "c", .export =

ls(globalenv ()), .packages = list.of.packages) %dorng% {

153 ObjectiveFunction(c(vertices[, k], I))

154 })

155 }

156 }

157 }

158 # Sort from best to worst and try again

159 vertices = vertices[, order(fitnesses , decreasing = T)]

160 fitnesses = sort(fitnesses , decreasing = T)

161 if(fitnesses [1] > best_ever_fitness) { # Keep track of best ever result

162 best_ever_iteration = r

163 best_ever_fitness = fitnesses [1]

164 best_ever_vertex = vertices[, 1]

165 }

166 progress = c(r, fitnesses [1], vertices[, 1])

167 names(progress) = c("Iteration", "fitness", "N", "lambda", "a", "damx - dmin"

, "dmin", "mu_eta", "sigma_eta", "sigma_zeta", "T_max - T_min", "tau_min",

"v_max - vmin", "v_min", "T_min", "tau_max - tau_min")

168 print(progress)

169 }

170 return(c(best_ever_iteration , best_ever_fitness , best_ever_vertex))

171 }
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