Supporting Information

Interactions between repetitive DNA elements

Repetitive sequences have been estimated to make up approximately two-thirds of the human genome [1]. An overview of the most common human repetitive sequences is provided in S1 Table. The majority of the repetitive sequence in the human genome is the result of transposable element insertion events.  While insertion events into genes have been shown to result in multiple disease states, researchers have noted that subsequent interactions between these highly homologous sequences may pose a more pronounced threat to human health than their insertions [2, 3]. 

Inverted DNA sequences have long been recognized as unstable motifs.  However, beyond the formation of cruciform/hairpin structures, we are aware of only two mechanisms that have been described for how more widely spaced inverted DNA sequences might interact.  These widely-spaced interactions (>100 bp), are hypothesized to occur by the formation an ectopic DNA structure know as a Doomsday Junction.  Doomsday Junctions could potentially result from the invasion and annealing of inverted single-stranded sequences between replication forks and/or DNA breathing bubbles.  This latter conformation is described in Fig 1 as a Doomsday Junction. 

The hypothesized formation and subsequent resolution of Doomsday junctions provide the only explanation of which we are aware for the exclusion of over one-million inverted Alu pairs (as compared to direct-oriented Alu pairs) in the human genome [4, 5].  The depression in inverted Alu pairs as compared to direct-oriented Alu pairs is approximately 10-15% for Alu pairs separated by  5,000 base pairs and between 5-10% for separations of 5,000 - 40,000 base pairs [5].  This study extends the Doomsday Junction model for interactions between inverted Alu elements to the interaction of more rare inverted DNA sequences such as the EGFR canonical exon 19 deletion sequence and its high homology reverse complement described in Fig 6.

[bookmark: _Hlk536429750]Repetitive sequence homologies inversely correlate with I:D ratio
Alu elements typically share approximately 85% homology while MIR elements share approximately 70% homology [6, 7].  This deviation in I:D versus homology is in general agreement with direct measurements of recombination rates between inverted Alu elements in genetically engineered yeast experiments.  These experiments found that inverted Alu recombination rates drop by approximately an order of magnitude for each ten percent drop in homology [8].  S3 Fig is adapted from this original work. This drop in recombination rate, with decreasing inverted Alu homology, is consistent with the observed lower I:D deviation from unity in inverted human MIR elements discussed above. Using these two observations, the instability model used in this study does not consider inverted sequence homologies of less than 60% as lower homology interactions should make an insignificant contribution to genome instability (S3 Fig).  Therefore, inverse complements to the 15 base pair EGFR exon 19 canonical deletion were limited to a maximum of 6 mismatches (60% homology). 
[bookmark: _Hlk536429986]


Motifs and Frequencies of EGFR Exon 19 Driver Mutations
Most, if not all, tumors containing EGFR exon 19 damage are in-frame deletions [9].  The paucity of out-of-frame repairs at this locus suggests that the EGFR driver protein requires in-frame DNA repair. Furthermore, many cells with the canonical deletion may not obtain the necessary complement of necessary mutations to acquire the cancer phenotype [10, 11].  Additionally, other occurrences of the canonical deletion may have acquired the phenotype, but not have clonally expanded to the point where a tumor is detected before death occurs by other causes. 
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