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Why are philosophers of biology
interested in �tness?

What, in the philosophy of biology,
is �tness for?

Charles H. Pence Preliminaries 5 / 47



Charles H. Pence Preliminaries 6 / 47



Two Notions of

Fitness
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Matthen and Ariew (2002)

[F]or many this notion of an organism’s overall competitive
advantage traceable to heritable traits is at the heart of the
theory of natural selection. Recognizing this, we shall call
this measure of an organism’s selective advantage its
vernacular �tness. According to one standard way of
understanding natural selection, vernacular �tness – or
rather the variation thereof – is a cause of evolutionary
change. (p. 56)
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Matthen and Ariew (2002)

Fitness occurs also in equations of population genetics
which predict, with some level of probability, the
frequency with which a gene occurs in a population in
generation n + 1 given its frequency in generation n. In
population genetics, predictive �tness (as we shall call it) is
a statistical measure of evolutionary change, the expected
rate of increase (normalized relative to others) of a gene . . .
in future generations. . . . (p. 56)
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Causal (vernacular) �tness: general
(causal) notion in natural selection

Predictive (mathematical) �tness:
predict future representation from
central tendency/expected value
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Matthen and Ariew (2002)

[N]atural selection is not a process driven by
various evolutionary factors taken as forces;
rather, it is a statistical “trend” with these factors
(vernacular �tness excluded) as predictors.
�ese theses demand a radical revision of
received conceptions of causal relations in
evolution. (p. 57)
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The Claim
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ContraMatthen and Ariew, predictive
�tness is not a fruitful way to understand
�tness in the philosophy of biology.

By extension, neither is the dichotomy
between causal and predictive �tness.
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While o�en unappreciated, a number of
recent publications on �tness also cast

doubt on the utility of the
causal-predictive dichotomy.
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Predictive Fitness
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Standard view: predictive �tness tracks
something like a central tendency
extracted from the distribution of

outcomes of interest
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Matthen and Ariew (2002)

�e basic principle of statistical thermodynamics is that
less probable thermodynamic states give way in time to
more probable ones, simply by the underlying entities
participating in fundamental processes. [. . . ]�e same is
true of evolution. (p. 80)

Charles H. Pence Predictive Fitness 17 / 47



Lewontin (1974)

When we say that we have an evolutionary perspective on
a system or that we are interested in the evolutionary
dynamics of some phenomenon, we mean that we are
interested in the change of state of some universe in time.
[. . . ]�e su�cient set of state variables for describing an
evolutionary process within a population must include some
information about the statistical distribution of genotypic
frequencies. (pp. 6, 16; orig. emph.)
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Among other reasons, this is to be useful
for grounding medium- to long-term
predictions about evolutionary change

in �tness comparisons.
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From Causal to

Predictive
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�e basic idea: De�ne the propensity
interpretation in terms of facts about the
possible lives an organism (with a given
genotype, in a given environment) could

have lived.
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F(G , E) = exp( lim
t→∞

1
t ∫ω∈Ω Pr(ω) ⋅ ln(ϕ(ω, t)) dω)

Having our cake and eating it, too:

• Gives you a mathematical model. . .
• . . . that’s grounded in a speci�c dispositional
property
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Can we draw any conclusions about the
quality of predictions from the Pence &

Ramsey model?
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F(G , E) = exp( lim
t→∞

1
t ∫ω∈Ω Pr(ω) ⋅ ln(ϕ(ω, t)) dω)

A long-run limit: perfect for prediction! But it
relies on an assumption: non-chaotic population
dynamics
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Question: How common is non-chaotic
dynamics in evolving systems?

My assumption: Won’t be able to answer
this – model is far too general.
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Approach of Doebeli & Ispolatov (2014):
Investigate by simulating populations

with two features:

1. Density-dependent selection
pressures

2. High-dimensional phenotype space
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Doebeli & Ispolatov (2014)

Our main result is that the probability of chaos increases
with the dimensionality d of the evolving system,
approaching 1 for d ∼ 75. Moreover, our simulations
indicate that already for d ≳ 15, the majority of chaotic
trajectories essentially �ll out the available phenotype
space over evolutionary time. . . . (p. 1368)
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What’s the real-world timescale here?

How does it relate to the rate of
environmental change?
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A surprising result at this level of
generality. In cases where it holds, what
kinds of �tness-based predictions would

remain viable?
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Ways Out
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Grant (1997)

�e invasion is exponential, but nonlinear dynamics of the
resident type produce �uctuations around this trend.
[Fitness] can therefore be most accurately estimated by the
slope of the least squares regression of [daughter
population size] on t. (p. 305)
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Two major problems:
• Loses sight of the dynamics
• O�ers poor predictions
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Move the goalposts:
• Abandon all but short-term predictions
• Abandon predictive content; predict simply
‘chaos’

• Abandon prediction, focus on statistical
retrodiction
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• Resuscitate central tendencies: poor
predictions that ignore (interesting)
dynamics

• Move the goalposts: loses the
medium-to-long-term predictions cited
above
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Connections

Charles H. Pence Connections 37 / 47



Abrams (2012)
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One way to get these predictions:

Evolution as a process that maximizes
�tness over time
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Birch (2016)

Neither [of the approaches surveyed] establishes a
maximization principle with biological meaning, and I
conclude that it may be a mistake to look for universal
maximization principles justi�ed by theory alone. (p. 714)
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Millstein (2016)

Fitness is an organism’s propensity to survive and
reproduce (based on its heritable physical traits) in a
particular environment and a particular population over a
speci�ed number of generations.�at is what �tness is.
[. . . ] Expected reproductive success is not the propensity
interpretation of �tness and it never was. . . As for the best
way to compare probability distributions, I leave that to
mathematicians and mathematical biologists. (pp. 615–6)
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The Moral
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Many uses of �tness:

• Mathematical parameter in models
• Causal property
• Proxies for strength of selection in
populations

• Statistical estimator for any of the above
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Fitness concepts are far more complex
than a dichotomy between two simple

roles for �tness.
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So what is mathematical �tness for?

Of course, analyzing biological models
is a great project, and worthwhile in its

own right.
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Derivingmathematicalmodels from our
causal structures can give us con�dence
that the structure we are describing

really is a model of �tness.

I think this is the way to interpret the results in
Pence and Ramsey (2013), as well as a number of

other propensity-interpretation papers.
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Questions?

charles@charlespence.net
http://charlespence.net

@pencechp



F(G , E) = exp( lim
t→∞

1
t ∫ω∈Ω Pr(ω) ⋅ ln(ϕ(ω, t)) dω)

• Multi-generational life histories
• Changing genotypes and environments over
time

• Disposition (propensity) de�ned over modal
facts about other possible lives of organisms
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State space of possible lives: Ω ∶ { f ∶ R→ Rn}

Cardinality, though, is too big! N(Ω) = 22ℵ0

Can still de�ne a σ-algebra F and a probability measure
Pr if we restrict our attention to:

• continuous functions ω,
• functions ω with only point discontinuities, or
• functions ω with only jump discontinuities

(Nelson 1959)
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With that state space de�ned, we need three simplifying
assumptions:

1. Non-chaotic population dynamics
2. Probabilities generated by a stationary random
process

3. Logarithmic moment of vital rates is bounded
�e last two are trivial in our context.
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�en the following limit exists:

a = lim
t→∞

1
t
Ew ln(ϕ(t)),

with Ew an expectation value (Tuljapurkar 1989). Fitness is
the exponential of this quantity a, and is equivalent (under
further simplifying assumptions) to net reproductive rate
and related to the Malthusian parameter.
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