# Single Electron Transfer from Dimsyl Anion in the Alkylation of Phenols 

Samantha Rohe, ${ }^{\text {a }}$ Guillaume Révol, ${ }^{\text {b }}$ Thomas Marmin, ${ }^{\text {b }}$ Daniel Barriault, ${ }^{\text {a }}$ Louis Barriault ${ }^{\mathrm{a} *}$<br>${ }^{\text {a }}$ Centre for Catalysis, Research and Innovation Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada ${ }^{\text {b }}$ OmegaChem, 480 Rue Perreault, Saint-Romuald, Québec G6W 7V6, Canada<br>Corresponding Author<br>*Email: louis.barriault@uottawa.ca

## Table of Content

1. Full Optimization S2
2. 2,2', 6, 6'-tetrachloro-1,1'-biphenyl byproduct S4
3. Solvent Screen for Sulphoxide Scope S4
4. Unsuccessful Substartes S5
5. Isomerization of 2-propenylphenol Under Standard Conditions S5
6. Kinetic Isotope Effect (KIE) Competitive Experiments S8
7. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S10

## 1. Full Optimization

Table S1. Optimization of the reaction conditions

|  |  <br> 1a <br> 1 equiv |  <br> 2 $x$ equiv. |  | $\begin{aligned} & \text { x equiv. } \\ & \hline \text { (conc) } \\ & \text { erature } \end{aligned}$ |  |  <br> 3a |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Entry | Iodoarene (equiv) | $\begin{gathered} \text { DMSO } \\ \text { conc. (M) } \end{gathered}$ | $\begin{aligned} & \text { Base } \\ & \text { (equiv) } \end{aligned}$ | Temp $\left({ }^{\circ} \mathrm{C}\right)$ | t (h) | conversion of sm | $\begin{gathered} \hline \% \\ \text { yield } \end{gathered}$ |
| 1 | 2 (1.1) | 0.1 | $\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ (2.2) \end{gathered}$ | 135 | 16 | 92 | $\begin{gathered} 67 \\ \left(58^{i}\right) \end{gathered}$ |
| 2 | 2 (1.1) | 0.1 | $\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ (2.2) \end{gathered}$ | 160 | 16 | 100 | 54 |
| 3 | 2 (1.1) | 0.1 | $\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ (2.2) \end{gathered}$ | 110 | 16 | 100 | 37 |
| 4 | 2 (1.1) | 0.1 | $\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ (2.2) \end{gathered}$ | 70 | 16 | 38 | <5 |
| 5 | 2 (1.1) | 0.1 | $\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ (2.2) \end{gathered}$ | 135 | 66 | 100 | 57 |
| 6 | 2 (1.1) | 0.1 | $\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ (2.2) \end{gathered}$ | r.t. | 32 | 100 | 0 |
| 7 | 2 (1.1) | 0.1 | none | 135 | 16 | degradation | 0 |
| 8 | 2 (1.1) | 0.1 | $\begin{gathered} \mathrm{Na}_{2} \mathrm{CO}_{3} \\ (2.2) \end{gathered}$ | 135 | 16 | 100 | trace |
| 9 | 2 (1.1) | 0.1 | $\begin{gathered} \mathrm{Cs}_{2} \mathrm{CO}_{3} \\ (2.2) \\ \hline \end{gathered}$ | 135 | 16 | 100 | 54 |
| 10 | 2 (1.1) | 0.1 | $\underset{(2.2)}{\mathrm{Cs}_{2} \mathrm{CO}_{3}}$ | 70 | 16 | 70 | 32 |
| 11 | 2 (1.1) | 0.1 | $\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ (1.1) \\ \hline \end{gathered}$ | 135 | 16 | 100 | 79 |
| 12 | 2 (1.1) | 0.1 | $\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ (3.3) \end{gathered}$ | 135 | 16 | >95\% | 31 |
| 13 | 2 (1.1) | 0.1 | $\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ (0.5) \\ \hline \end{gathered}$ | 135 | 16 | Recovered 80\% phenol | 0 |
| 14 | 2 (1.5) | 0.1 | $\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ (2.2) \end{gathered}$ | 135 | 16 | 100 | $\begin{gathered} 96 \\ \left(70^{i}\right) \end{gathered}$ |
| 15 | 2 (0.5) | 0.1 | $\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ (2.2) \end{gathered}$ | 135 | 16 | >95 | 32 |
| 16 | none | 0.1 | $\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ (2.2) \end{gathered}$ | 135 | 16 | 94 | 0 |
| 17 | 1-chloro-2iodobenzene (1.5) | 0.1 | $\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ (2.2) \end{gathered}$ | 135 | 16 | Degradation of phenol, recovered arene | 0 |


| 18 | Iodobenzene (1.5) | 0.1 | $\begin{gathered} \hline \mathrm{K}_{2} \mathrm{CO}_{3} \\ (2.2) \end{gathered}$ | 135 | 16 | Degradation of phenol, recovered haloarene | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 19 | Trichlorobenzene (1.5) | 0.1 | $\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ (2.2) \end{gathered}$ | 135 | 16 | Degradation of phenol, recovered haloarene | 0 |
| 20 | 2 (1.5) | 0.5 | $\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ (2.2) \end{gathered}$ | 135 | 16 | 100 | 26 |
| 21 | 2 (1.5) | 0.2 | $\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ (2.2) \end{gathered}$ | 135 | 16 | 100 | 0 |
| 22 | 2 (1.5) | 0.05 | $\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ (2.2) \end{gathered}$ | 135 | 16 | 100 | 84 |
| 23 | 2 (1.5) | 0.025 | $\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ (2.2) \end{gathered}$ | 135 | 16 | 100 | 62 |
| 24 | 2 (1.1) | 0.1 | $\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ (2.2) \\ \hline \end{gathered}$ | 135 | 6 | 84 | 30 |
| 25 | 2 (1.5) | 0.1 | KOtBu <br> (3) | 135 | 16 | decomposition | 6 |
| 26 | 2 (1.5) | 0.1 | $\begin{gathered} \mathrm{KOtBu} \\ (0.75) \end{gathered}$ | 135 | 16 | 100 | 35 |
| $27^{\text {a }}$ | 2 (1.5) | 0.1 | $\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ (2.2) \\ \hline \end{gathered}$ | 135 | 16 | degradation | 0 |
| $28^{\text {b }}$ | 2 (1.5) | 0.1 | $\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ (2.2) \\ \hline \end{gathered}$ | 135 | 16 | 100 | 64 |
| $29^{\text {c }}$ | 2 (1.5) | 0.1 | $\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ (2.2) \end{gathered}$ | 135 | 16 | 100 | 44 |
| $30^{\text {d }}$ | 2 (1.5) | 0.1 | $\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ (2.2) \end{gathered}$ | 135 | 16 | 100 | 79 |
| $31^{\text {e }}$ | 2 (1.5) | 0.1 | $\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ (2.2) \end{gathered}$ | 135 | 16 | 100 | 60 |
| $32^{\text {f }}$ | 2 (1.5) | 0.1 | $\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ (2.2) \end{gathered}$ | r.t. | 16 | Recovered 22\% phenol, 88\% haloarene | 0 |
| $33^{8}$ | 2 (1.5) | 0.1 | $\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ (2.2) \end{gathered}$ | r.t. | 16 | Recovered 25\% phenol | 0 |
| $34^{\text {h }}$ | 2 (1.5) | 0.1 | $\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ (1.1) \end{gathered}$ | 135 | 16 | Recovered 11\% BHT | trace |

All yields are by comparison to an NMR standard (phenyltrimethylsilane) unless otherwise noted.
${ }^{i}=$ isolated yield. ${ }^{a}$ reaction run with 2 equivalents of TEMPO. ${ }^{b}$ solvent 50:50 toluene:DMSO. ${ }^{c}$ reaction degassed and run under Ar atmosphere. ${ }^{d}$ reaction run on 0.5 g of phenol. ${ }^{\mathrm{e}}$ reaction run on 1 g of phenol. ${ }^{\mathrm{f}}$ reaction run at r.t. irradiated under blue LED for 16 h WITHOUT degassing solvent. ${ }^{g}$ reaction run at r.t. irradiated under blue LED for 16 h with DEGASSED solvent under Ar. ${ }^{\text {h }}$ reaction run with 2 equivalents of BHT.

## 2. 2,2',6,6'-tetrachloro-1,1'-biphenyl Byproduct



Figure S1. A) Fragmentation pattern for byproduct observed in most of the scope reactions. B) NIST Mass Spectral Database Webbook EI mass spectrum for 2, ${ }^{\prime}, 6,6^{\prime}$-tetrachloro-1, ''-biphenyl. Online record can be found at https://webbook.nist.gov/cgi/inchi/InChI\%3D1S/C12H6C14/c13-7-3-1-4-8(14)11(7)12-9(15)5-2-6-10(12)16/h1-6H.

## 3. Solvent Screen for Sulfoxide Scope

## Table S2.

| Cosolvent (vol, mL) | Sulfoxide (vol, mL) | Yield (\%) $^{\mathbf{a}}$ |
| :--- | :--- | :--- |
| None | Phenyl methyl sulfoxide (3) | $<15^{\mathrm{b}}$ |
| Benzene (1.5) | Dimethyl sulfoxide (1.5) | 65 |
| Benzene (1.5) | Phenyl methyl sulfoxide (1.5) | $<15$ |
| Toluene (1.5) | Phenyl methyl sulfoxide (1.5) | Trace |
| o-xylene (1.5) | Phenyl methyl sulfoxide (1.5) | Trace |
| Mesitylene (1.5) | Phenyl methyl sulfoxide (1.5) | Trace |
| None | Diethyl sulfoxide (3) | Complex |
|  |  | mixture |
| Benzene (1.5) | Diethyl sulfoxide (1.5) | Trace |

${ }^{2}$ NMR Yield with phenyltrimethylsilane.
${ }^{\mathrm{b}}$ Product inseparable from phenyl methyl sulfoxide starting material

## 4. Unsuccessful Substrates

## Other Nucleophiles:



Phenols:


Figure S2. Substrates attempted under standard reaction conditions that resulted in $<15 \%$ of product or recovery/degradation of starting material.


Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of starting material 1q.
The insert regions within the above spectrum detail the peaks used to calculate ratio of $E: Z$ olefins in the parent phenol substrate. These peaks represent the same proton in the $E$ and $Z$ configurations (left and right respectively). Raw integration of each region was expressed as a percentage of the total giving a ratio of 72:28 E:Z.


Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum of product $\mathbf{3 q}$.
The insert regions within the above spectrum detail the peaks used to calculate ratio of $E: Z$ olefins in the alkylated phenol product $\mathbf{3 q}$. These peaks represent the same proton in the $E$ and $Z$ configurations (left and right respectively). Raw integration of each region was expressed as a percentage of the total giving a ratio of $78: 22 \mathrm{E}: \mathrm{Z}$.

## 6. Kinetic Isotope Effect (KIE) Competition Experiments

Deuterium-labeling experiments were performed as per GP1 with either pure DMSO-d6 or a 1:1 mixture of DMSO:DMSO-d6 as solvent. KIE data was obtained by analyzing the ratio between deuterated and proteated products following isolation of product (see ${ }^{1} \mathrm{H}$ NMR spectrum below). Most notably, it was observed that the deuterium incorporation in the reaction with 1:1 DMSO:DMSO-d6 was asymmetrical with respect to the $\alpha$-sulfoxide positions ( $10 \%$ and $24 \%$ deuterium incorporation at the etheric position, and $32 \%$ deuterium incorporation at the terminal position). This data suggests that any KIE's obtained with this method will be unreliable due to facile deuterium-protium exchange at the $\alpha$-sulfoxide positions.


Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of product d-3a
The insert region within the above spectrum details two peaks used to calculate ratio of etheric $\alpha$-sulfoxide deuterium incorporation in product d-3a. The singlet at 2.66 was also used to calculate terminal $\alpha$-sulfoxide deuterium incorporation. Solvent used for this experiment was $100 \%$ DMSO-d6.


Figure S6. ${ }^{1}$ H NMR spectrum of mixed deuterated product 3a and d-3a
The insert region within the above spectrum details two peaks used to calculate ratio of etheric $\alpha$-sulfoxide deuterium incorporation in product d-3a. The large singlet at 2.66 was also used to calculate terminal $\alpha$ sulfoxide deuterium incorporation. Solvent used for this experiment was 1:1 DMSO:DMSO-d6.
7. NMR Spectra








3d ( ${ }^{1} \mathrm{H} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )








|  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  | 1 |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |





3h( $\left.{ }^{1} \mathrm{H} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


| $\top$ | 1 |  | , |  |  | 1 | 1 |  | 1 |  |  | 1 | 1 | 1 | 1 |  | 1 |  | 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | $\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$ | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |



$3 i\left({ }^{1} \mathrm{H} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



| 1 | 1 | 1 | 1 | 1 | 1 |  | 1 | 1 | 1 | 1 , | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |






| T | , | 1 | 1 | 1 | I | 1 | 1 | , | 1 | - 1 | 1 | 1 | , | 1 | , | 1 | , | , | 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |



3j $\left({ }^{19} \mathrm{~F} 377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



| T |  |  |  |  | 1 |  | 1 | 1 | 1 |  |  | 1 | 1 | , |  |  | 1 | 1 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | $\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$ | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |


$31\left({ }^{13} \mathrm{C} 101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

|  | 1 | 1 | 1 |  |  |  |  |  | 1 | 1 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |





3n ( ${ }^{13} \mathrm{C} 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




$3 p\left({ }^{1} \mathrm{H} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


$3 q\left({ }^{13} \mathrm{C} 101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
78:22 E:Z



$3 \mathrm{r}\left({ }^{1} \mathrm{H} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



3r ( ${ }^{13} \mathrm{C} 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



3s ( ${ }^{13} \mathrm{C} 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

|  |  | 1 | 17 |  | 1 | 1 | 1 | 1 | 110 | 11 | 1 |  | 1 | 1 | 1 | 1 | 1 | 1 | 10 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | $\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$ | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |





3u ( ${ }^{1} \mathrm{H} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



$3 u\left({ }^{13} \mathrm{C} 101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


|  |  | 1 | 1 |  | 1 |  | 1 | 1 |  | 1 - | 1 | 1 | 1 |  | 1 |  | 1 | 1 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

