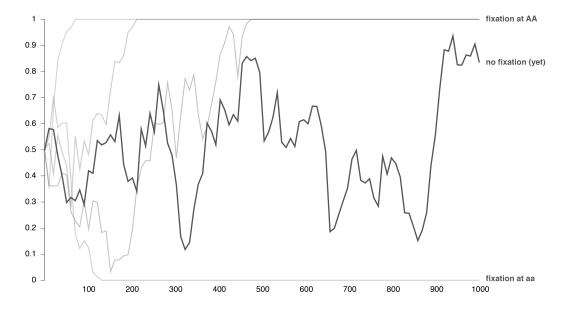
## It's Okay to Call Genetic Drift a "Force"

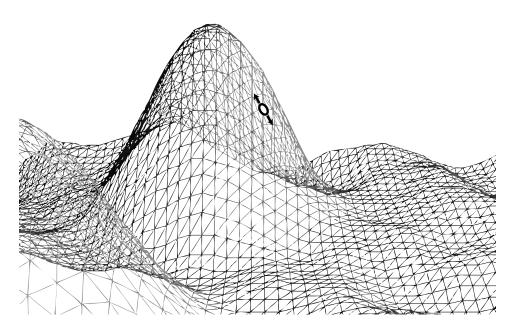
Charles H. Pence APA Eastern Division, Atlanta, GA December 27, 2012

## • The outline

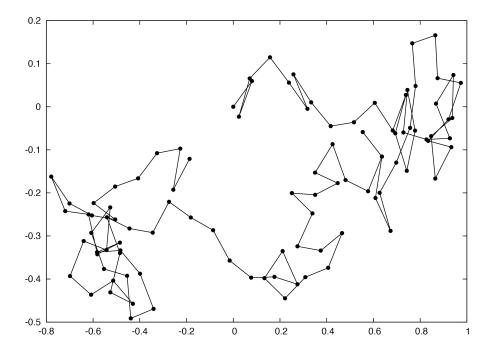
- What is genetic drift?
- What is the force interpretation?
- *First problem:* The direction of drift
- Second problem: Inertial states and deviations
- **The goal:** Both these problems are solvable neither defeats the force interpretation of genetic drift.
- What is genetic drift?
  - Beatty (1992): Some form of random sampling or sampling error
  - Mendelian segregation, neutral variation, indiscriminate causes, the founder effect (possibly)
  - Figure 1: an example of a population undergoing random segregation (no mutation or selection)


## • The force interpretation

- Sober (1984): "Evolutionary biology has also developed a theory of *forces.* This describes the *possible causes* of evolution."
- Figure 2: A population situated on an adaptive landscape, undergoing two cancelling evolutionary forces


## • The first problem: Drift has no direction

- Matthen and Ariew (2002), Brandon (2006): Drift has no direction specifiable and predictable in advance
- *Response:* Stephens (2004): Drift does have a direction, namely, toward homozygosity
  - Is homozygosity-space sufficiently well defined to support forces? (Filler, 2009)
  - Is this direction really what genetic drift *is about*?
- *Response:* Filler (2009): Forces must have a mathematically *specific* magnitude and can *unify* a wide array of phenomena
  - But are these too ad hoc to suffice?
- Response: Brownian motion
  - We already recognize an example of a stochastic force namely, Brownian motion


- o Possible objection: Reject both Brownian motion and genetic drift
  - Why? We're not giving up complete predictability, nor are we giving up the ability to model these systems
  - Both Brandon and Matthen and Ariew already countenance stochastic forces
- Unclear what the motivation for rejecting both of these would be
- The second problem: Inertial states and deviations
  - Brandon (2006), McShea and Brandon (2010): Drift will be found in *any* evolutionary system. Therefore, drift should be considered part of the inertial state (the "first law"), not a force (the "second law")
  - *Response:* Is drift more "constitutive" than Newtonian gravitation?
    - We can build test cases where we eliminate gravity, just as we can build test cases in which we eliminate genetic drift.
- Conclusions
  - *First problem:* Drift cannot be a force, because forces must have direction specifiable in advance
    - *Response:* We already countenance stochastic forces, such as Brownian motion
  - *Second problem:* Drift is a "first-law" inertial condition, not a "second-law" special force
    - *Response:* Drift is no more "constitutive" of evolutionary systems than gravitation is of Newtonian systems
  - The force metaphor lives to fight another day



*Figure 1:* Five simulations of a heterozygous population (*N* = 100) undergoing only genetic drift (no selection or mutation)



*Figure 2:* The force metaphor



*Figure 3:* Simulation of a particle released at (0,0), undergoing Brownian motion