
1

Open, Transparent, and Reproducible Data 
Science in Clinical Metabolomics using 
Jupyter Notebooks and Cloud Computing. 

Metabonews Vol 9 Issue 10 Dec 2019 feature article contributed by David Broadhurst, Centre 

for Integrative Metabolomics & Computational Biology, Edith Cowan University, Perth, Western 

Australia.  

Most of us are familiar with the generic lifecycle of a clinical metabolomics study. We first 

propose a hypothesis, then design a study, obtain samples, choose an assay, design an analytical 

experiment, acquire raw data, deconvolve into a data matrix, annotate metabolite peaks, 

perform quality control (data cleaning), extract predictive/statistical insights from data, interpret 

biochemically, disseminate findings, and finally generate further hypotheses or translate 

knowledge into practice. As figure 1 suggests, we often loop through subsets of these stages 

multiple times. 

   

Figure 1. Lifecylce of a clincal metabolomics study 

In terms of data management, each stage in the lifecycle is a discrete process (or workflow) to 

which data integrity checks can be applied to ensure validity and accuracy. After which data can 

be locked down (archived) before proceeding to the next stage. Parts of the lifecycle can be 

(semi)automated using off-the-shelf standard operating procedures. Typically a metabolomics lab 
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will have a small number of generic (biofluid specific) analytical assays each with a matching set 

of standard deconvolution/annotation algorithms with fixed parameter settings. Conversely, other 

parts of the lifecycle are bespoke to the individual study. Specifically, the design of experiments, 

data modelling, biochemical interpretation and dissemination.  

What has this got to do with data science? Well, it is important to consider that the stages of a 

metabolomics lifecycle that require complex computational algorithms can be split into two 

distinct categories each with opposing intellectual and computational characteristics. Using 

vernacular taken from the artificial intelligence community, peak deconvolution, annotation and 

associated computational architecture can accurately be termed data engineering as the aim is 

to make the raw instrument data amenable to predictive modelling (e.g. disease classification) 

and/or biological interpretation - but no further than that. Whereas, the process of taking a 

curated data matrix and applying statistical, epidemiological, machine learning, visualisation 

techniques, together with mechanisms to translate results into biological and clinical insights 

can be termed data science (Figure 2). 

   

Figure 2. Data Engineer vs. Data Scientist 
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With this in mind, it would be reasonable to propose that any efforts to develop generalised 

computational frameworks for the metabolomics lifecycle should be approached independently 

with requirement specifications dependent on the specific needs of each job, and thus 

potentially completely separate computational platforms. Peak deconvolution and  peak 

annotation are computationally intensive, often taking 10s of hours to process data, but require 

very little interaction or creativity. They often require access to (or development of) external web 

services/databases and understanding of associated computational architecture. Workflows are 

linear and rarely change once optimised for a given lab+instrument+assay+biofluid combination 

(e.g., CIMCB, LC-MS, HILIC+, Urine). As such, the underlying computational workflows take the 

form ”design once, document once, and run many”. Data modelling and visualisation, on the 

other hand, is computationally cheap at execution, and can be executed in an isolated (virtual) 

environment. Workflows require a large amount of forethought and flexibility, with potentially 

multiple cascading modelling workflows, each requiring cross-validated parameter optimisation, 

domain expertise, exploratory investigation of data structures, post-hoc assessment of model 

assumptions, possibly adjusting for confounding variables or fusion with data sourced from other 

‘omic platforms. Each step also requires comprehensive documentation to guide reproducibility. 

As such, the underlying computational workflows are of the form ”design many, document 

many, and run once”.  

It is also important to note that an increasing number of metabolomics researchers, particularly 

in the clinical domain, outsource the complete data engineering stage of the metabolomics 

lifecycle to a service laboratory. Companies such as Metabolon, Nightingale Health, and 

Biocrates have business models that depend on providing high-quality fully annotated data sets 

in a format amenable for data science. Most large academic laboratories also provide some sort 

of similar service. As such, for more and more students, academics, and industry professionals, 

the clinical metabolomics lifecycle is driven by data science, not by analytical chemistry, 

cheminformatics, or data engineering. Such approaches have most recently been reported in the 

American Journal of Epidemiology by You et al. (2019) “Consortium of Metabolomics Studies 

(COMETS) Metabolomics in 47 Prospective Cohort Studies” .  

You may or may not agree with this perspective, but one thing that most in the metabolomics 

community will agree upon is the urgent need for transparent and consistent reporting of all 

aspects of the metabolomics study lifecycle. The metabolomics community has made substantial 

efforts to align with FAIR (Findable, Accessible, Interoperable, and Reusable) data principles by 

developing open data formats (e.g. mzXML), data repositories (e.g. MetaboLights and 

Metabolomics Workbench), online spectral reference (e.g. METLIN, mzCloud, MassBank, 

GNPS), and online databases for metabolite identification and biochemical association (e.g. 

https://academic.oup.com/aje/article/188/6/991/5341178
https://academic.oup.com/aje/article/188/6/991/5341178
https://www.nature.com/articles/sdata201618
https://www.ebi.ac.uk%20%E2%80%BA%20metabolights
https://www.metabolomicsworkbench.org
https://metlin.scripps.edu
https://www.mzcloud.org/
https://massbank.eu/MassBank/
https://gnps.ucsd.edu
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HMDB). These data engineering resources and others like them are essential to ensure the future 

integrity of metabolomics as a science.  

Numerous groups within the metabolomics community also actively work to standardise 

computational workflows and provide open source and online tools for both data engineering 

and data science. An excellent and comprehensive review of R packages developed for the 

metabolomics community has recently been published by Stanstrup el al (2019). That said, most 

attempts at a unified computational framework (e.g. Galaxy or KNIME) have primarily focussed 

on the requirements for data engineering, with data science forced to fit into a very prescriptive 

linear workflow. In our recent review for Metabolomics “Toward collaborative open data science 

in metabolomics using Jupyter Notebooks and cloud computing” Mendez et al. (2019), we 

provide a brief overview of current data science programming frameworks relevant to the 

metabolomics community, corresponding barriers to achieving open science, and finally an 

introduction to one practical solution specific to data science in the form of Jupyter Notebooks. 

Jupyter Notebooks are an open-source, web tool for creating seamless integration of text, code 

(typically Python or R), and outputs (tables, figures) into a single living interactive document. This 

framework is particularly amenable for the needs of data science. When used alongside data 

repositories, such as GitHub, and open cloud-based deployment services, such as Binder, these 

computational notebooks can greatly enhance transparent dissemination of data science 

methods and results during the publication process. We provide a set of experiential learning 

tutorials, hosted on the Github repository, introducing the Jupyter Notebook framework, 

specifically tailored to the needs of a metabolomics researcher with limited programming 

experience.  

Several researchers in the metabolomics community are already using the Jupyter/Binder 

framework as a means for transparent dissemination for publications (e.g.Nett et al. 2018; 

Github), or as tutorials for new data science methodologies (e.g. AlAkwaa et al. 2018; GitHub 

Binder), data engineering algorithms (e.g. van der Hooft et al. 2016; Github), or both (e.g.Sands 

et et al. 2019; Github Binder ). Also, it would be remiss not to link to the excellent Jupyter 

Notebook based METASPACE Python-client.  

http://www.hmdb.ca
https://www.mdpi.com/2218-1989/9/10/200/htm
https://link.springer.com/article/10.1007/s11306-019-1588-0
https://link.springer.com/article/10.1007/s11306-019-1588-0
https://jupyter.org
https://cimcb.github.io/MetabWorkflowTutorial/
https://aiche.onlinelibrary.wiley.com/doi/full/10.1002/aic.16413
https://github.com/Stanford-ChEMH-MCAC/d2o_metabolomics
https://academic.oup.com/gigascience/article/7/12/giy136/5237705
https://github.com/lanagarmire/lilikoi
https://mybinder.org/v2/gh/FADHLyemen/lilikoi_Fadhl/master
https://www.pnas.org/content/113/48/13738
https://github.com/sdrogers/MS2LDA
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btz566/5539689
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btz566/5539689
https://github.com/phenomecentre/nPYc-toolbox-tutorials
https://mybinder.org/v2/gh/phenomecentre/nPYc-toolbox-tutorials/master
https://metaspace2020.eu/
https://github.com/metaspace2020/metaspace/tree/master/metaspace/python-client
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Figure 3. Taken from Mendez et al. Metabolomics (2019) 

Jupyter Notebooks may not be suitable for all metabolomics applications (particularly if the 

primary objective is identification of novel metabolites) and for computationally intensive data 

engineering it is probably not as efficient as other frameworks such as local installations of 

Galaxy or KNIME, or dedicated commercial software such as Compound Discover, Progenesis 

QI, or AnalyzerPro, or dedicated open tools such as MS-Dial and XCMS-online. However, there 

is a desperate need for accessible and transparent reporting of data science methods and results. 

Jupyter Notebooks coupled with serverless cloud-computing, provides a surprisingly intuitive 

and rapid means of enabling transparent dissemination, open collaboration, and experiential 

learning.  

https://galaxyproject.org
https://www.knime.com
https://tinyurl.com/y2s78gfp
http://www.nonlinear.com/progenesis/qi/
http://www.nonlinear.com/progenesis/qi/
https://www.spectralworks.com/products/analyzerpro/
https://tinyurl.com/y5hwgo7w
https://xcmsonline.scripps.edu

