MAX PLANCK INSTITUTE :
FOR DYNAMICS OF COMPLEX :
TECHNICAL SYSTEMS :
MAGDEBURG

M ath % Fsrd Eg?)lnlz)/lrig iistgifairs
and Energy
Energy

COMPUTATIONAL METHODS IN :
SYSTEMS AND CONTROL THEORY :

Solving Matrix Equations via Empirical Gramians

Christian Himpe (® 0000-0003-2194-6754)"

"Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg, Computational Methods in Systems and Control Theory

About

In system theory, the so-called system Gramian matrices are operators encoding certain properties of an

underlyinghinputr-]oult_put system. Usually, ﬂ;egelsystem Gramians _?r:e computedhas scilutions to matrix equa- Continuous-Time Discrete-Time

tions, such as the Lyapunov equation and Sylvester equation. IS means, the solution to certain matrix : : _ : : : ) :

equations coincides with these system Gramians. Now, if the system Gramians are computable by other Linear Time-Invariant SyStem Linear Time-Invariant SyStem
means than matrix equations, they still represent solutions to matrix equations. Empirical Gramians are

such an alternative for system Gramian computation, which are based on their system-theoretic operator x(1) = Ax(t) + Bu(t X — Ax. + Bu
definition, and practically obtained via quadrature. This contribution explores the connection between matrix ( ) ( ) ( ) a 8 K
equations, system Gramians and empirical Gramians, and proposes empirical Gramians as potential solver ,V(t) = CX(t) Yk = CXk

for matrix equations.
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(Symmetric) Stein Equation
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Riccati Equation
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More Matrix Equations

» Generalized Lyapunov Equation: AWET + EWAT = BBT Generalized Continuous-Time Generalized Discrete-Time

» Generalized Sylvester Equation: AWE + EWA = BC Linear Time-Invariant System Linear Time-Invariant System
. . T B

» Generalized Stein Equation: A' WA+ EWET = BBT Ex(t) = Ax(?) + Bu(t) Exe.s = Ax, + Bus

» Cross-Riccati Equation: AW + WA = —BC — WBCW y(t) = Cx(1) Yk = Cxk

» Choice of time-stepping solver is crucial. » Time varying systems relate to matrix ditterential equation:
» Right-hand-sides need to be low-rank. x(t) = A(t)x(t) + B(t)u(t) < X(t) = A(H)X(t) + X(HA(H)T + B(t)B(t)T
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