Solving Matrix Equations via Empirical Gramians

Christian Himpe (iD 0000-0003-2194-6754) ${ }^{1}$
${ }^{1}$ Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg, Computational Methods in Systems and Control Theory

About

In system theory, the so-called system Gramian matrices are operators encoding certain properties of an underlying input-output system. Usually, these system Gramians are computed as solutions to matrix equations, such as the Lyapunov equation and Sylvester equation. This means, the solution to certain matrix equations coincides with these system Gramians. Now, if the system Gramians are computable by other means than matrix equations, they still represent solutions to matrix equations. Empirical Gramians are means an alternative for system Gramian computation, which are based on their system-theoretic operator such an alternative for system Gramian computation, which are based on their system-theoretic operator
definition, and practically obtained via quadrature. This contribution explores the connection between matrix definition, and practically obtained via quadrature. This contribution explores the connection between matrix equations, system G

Continuous-Time
Linear Time-Invariant System
$\dot{x}(t)=A x(t)+B u(t)$
$y(t)=C x(t)$

Discrete-Time
Linear Time-Invariant System

Lyapunov Equation

Lyapunov Equation
$A W+W A^{\top}=-Y$

Factor RHS $\xrightarrow{\text { rssvD }}$

Controllability Gramian

Empirical Controllability Gramian
Low Rank Empirical Gramian $\stackrel{j}{\approx} \sim \Delta t{ }^{M} \quad \stackrel{\text { tSVD }}{\approx}$
$x_{k+1}=A x_{k}+B u_{k}$

Sylvester Equation

Sylvester Equation $\xrightarrow{\text { rSVD }}$

Factor RHS
$A W+W F=-Y$ $A W+W F=-B H$

Empirical Cross Gramian
$\widetilde{W}=\frac{\Delta t}{M} \sum_{m=1}^{M} X_{m}(A, B) X_{m}(F, H)^{\top}$

Low Rank Empirical Gramian $\stackrel{\text { ISVD }}{\approx}$
$\widetilde{W}=\frac{\Delta t}{M} \sum_{m=1}^{M} \widetilde{X}_{m}(A, B) \widetilde{X}_{m}(F, H)^{\top}$

(Symmetric) Stein Equation

Stein Equation
Factor RHS
$A W A^{\top}-W=-Y \quad \rightarrow \quad A W A^{\top}-W=-B B$
$\xrightarrow{\text { rrSVD }}$
$A W A^{\top}-W=-Y \quad \rightarrow \quad A W A^{\top}-W=-B B^{\top}$
Controllability Gramian
Empirical Controllability Gramian
Low Rank Empirical Gramian
$W=\sum_{k=0}^{\infty} A^{k} B B^{\top}\left(A^{\top}\right)^{k}$
$\widetilde{W}=\frac{1}{M} \sum_{m=1}^{M} X_{m}(A, B) X_{m}(A, B)^{\top}$
$\stackrel{\text { tSVD }}{\approx} \widetilde{W}=\frac{1}{M} \sum_{m=1}^{M} \widetilde{X}_{m}(A, B) \widetilde{X}_{m}(A, B)^{\top}$

Riccatil Equation

Riccati Equation $\xrightarrow{\text { rrSVD }}$
$A W+W A^{\top}=-Y-W Z W$

Factor RHS
$A W+W A^{\top}=-B B^{\top}-W C^{\top} C W$

Newton Iteration via Lyapunov Equations
$\left(A-C^{\top} C W_{k}\right) W_{k+1}+W_{k+1}\left(A-C^{\top} C W_{k}\right)^{\top}=-\left(B B^{\top}+W_{k} C^{\top} C W_{k}\right), W_{0}=0$

More Matrix Equations

- Generalized Lyapunov Equation: $A W E^{\top}+E W A^{\top}=B B^{\top}$
- Generalized Sylvester Equation: $A W E+E W A=B C$
- Generalized Stein Equation: $A^{\top} W A+E W E^{\top}=B B^{\top}$
- Cross-Riccati Equation: $A W+W A=-B C-W B C W$

Generalized Continuous-Time Linear Time-Invariant System

$$
\begin{aligned}
E \dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}
$$

Generalized Discrete-Time Linear Time-Invariant System

$$
\begin{aligned}
E x_{k+1} & =A x_{k}+B u_{k} \\
y_{k} & =C x_{k}
\end{aligned}
$$

Notes

- Choice of time-stepping solver is crucial.
- Right-hand-sides need to be low-rank.
- Time varying systems relate to matrix differential equation:
$\dot{x}(t)=A(t) x(t)+B(t) u(t) \leftrightarrow \dot{X}(t)=A(t) X(t)+X(t) A(t)^{\top}+B(t) B(t)^{\top}$

README

- S. Lall, J.E. Marsden and S. Glavaski. Empirical Model Reduction of Controlled Nonlinear Systems. Proceedings of the IFAC World Congress, F: 473-478, 1999. doi:10.1016/S1474-6670(17)56442-3

