Supplemenary Material: Proofs

Denote by $F(. \mid \mathbf{W}, \mathbf{X})$ the conditional cumulative distribution function of the error term e given the covariates. The true conditional quantile $\mathbf{g}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \mathbf{X}_{i}$ is also written as m_{i} for simplicity of notation. Below C denotes a generic positive constant.

Lemma 1. Let $r_{n}=\sqrt{K / n}+K^{-d}$.

$$
\begin{aligned}
& \quad \sup _{\left\|\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right\|+\left\|\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right\| \leq C r_{n}} \sum_{i=1}^{n} \rho_{\tau}\left(Y_{i}-\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}\right)-\sum_{i=1}^{n} \rho_{\tau}\left(Y_{i}-\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j}\right) \\
& +\sum_{i=1}^{n} \sum_{j=1}^{p}\left(X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}-X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j}\right)\left(\tau-I\left\{e_{i} \leq 0\right\}\right) \\
& -E \sum_{i=1}^{n} \rho_{\tau}\left(Y_{i}-\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}\right)+E \sum_{i=1}^{n} \rho_{\tau}\left(Y_{i}-\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j}\right)=o_{p}\left(n r_{n}^{2}\right) .
\end{aligned}
$$

Proof. As argued in He and Shi (1994), without loss of generality we only need to consider median regression with $\tau=1 / 2, \rho_{\tau}(u)=|u| / 2$. Below we use covering arguments to achieve uniformility of bounds. Let $\mathcal{N}=\left\{\left(\boldsymbol{\beta}^{(1)}, \boldsymbol{\theta}^{(1)}\right), \ldots,\left(\boldsymbol{\beta}^{(N)}, \boldsymbol{\theta}^{(N)}\right)\right\}$ be a δ_{n} covering of $\left\{(\boldsymbol{\beta}, \boldsymbol{\theta}):\left\|\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right\|+\left\|\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right\| \leq C r_{n}\right\}$, with size bounded by $N \leq\left(C r_{n} / \delta_{n}\right)^{C K}$ and thus $\log N \leq C K \log n$ if we choose $\delta_{n} \sim n^{-a}$ for some $a>0$ (we will choose a to be large enough).

Let $M_{n i}(\boldsymbol{\beta}, \boldsymbol{\theta})=\frac{1}{2}\left|Y_{i}-\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}\right|-\frac{1}{2}\left|Y_{i}-\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j}\right|+$ $\sum_{j=1}^{p}\left(X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}-X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j}\right)\left(1 / 2-I\left\{e_{i} \leq 0\right\}\right)$, and $M_{n}(\boldsymbol{\beta}, \boldsymbol{\theta})=\sum_{i=1}^{n} M_{n i}(\boldsymbol{\beta}, \boldsymbol{\theta})$. Since the absolute value function $|u|$ is Lipschitz, for any $(\boldsymbol{\beta}, \boldsymbol{\theta})$ there is a $\left(\boldsymbol{\beta}^{(l)}, \boldsymbol{\theta}^{(l)}\right)$ that satisfies $\left\|\boldsymbol{\beta}-\boldsymbol{\beta}^{(l)}\right\|^{2}+\left\|\boldsymbol{\theta}-\boldsymbol{\theta}^{(l)}\right\|^{2} \leq \delta_{n}^{2}$, we have

$$
\begin{aligned}
& M_{n}(\boldsymbol{\beta}, \boldsymbol{\theta})-E M_{n}(\boldsymbol{\beta}, \boldsymbol{\theta})-M_{n}\left(\boldsymbol{\beta}^{(l)}, \boldsymbol{\theta}^{(l)}\right)+E M_{n}\left(\boldsymbol{\beta}^{(l)}, \boldsymbol{\theta}^{(l)}\right) \\
\leq & C \sum_{i=1}^{n} \sum_{j=1}^{p}\left|\mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}-\mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}^{(l)}\right) \boldsymbol{\theta}_{j}^{(l)}\right|+C \sum_{i=1}^{n} \sum_{j=1}^{p} E\left|\mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}-\mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}^{(l)}\right) \boldsymbol{\theta}_{j}^{(l)}\right|,
\end{aligned}
$$

which can obviously be made $o_{p}\left(n r_{n}^{2}\right)$ by the uniform continuity of the spline functions, if one sets $\delta_{n} \sim n^{-a}$ for a sufficiently big.

Then, we easily have

$$
\begin{aligned}
\left|M_{n i}(\boldsymbol{\beta}, \boldsymbol{\theta})\right|= & \left.\left|\frac{1}{2}\right| Y_{i}-\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}\left|-\frac{1}{2}\right| Y_{i}-\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j} \right\rvert\, \\
& +\sum_{j=1}^{p}\left(X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}-X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j}\right)\left(1 / 2-I\left\{e_{i} \leq 0\right\}\right) \mid \\
= & \left.\left|\frac{1}{2}\right| e_{i}+m_{i}-\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}\left|-\frac{1}{2}\right| e_{i}+m_{i}-\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{Z}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j} \right\rvert\, \\
& +\sum_{j=1}^{p}\left(X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}-X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j}\right)\left(1 / 2-I\left\{e_{i} \leq 0\right\}\right) \mid \\
\leq & \left|\sum_{j=1}^{p}\left(X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}-X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j}\right)\right| \cdot \\
& I\left\{\left|e_{i}\right| \leq\left|\sum_{j=1}^{p}\left(X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}-X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j}\right)\right|\right. \\
& \left.+\left|m_{i}-\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j}\right|\right\} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left|M_{n i}(\boldsymbol{\beta}, \boldsymbol{\theta})\right| \leq & \left|\sum_{j=1}^{p}\left(X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}-X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j}\right)\right| \\
\leq & C \sum_{j}\left(\left|\mathbf{B}^{(1) \mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}^{*}\right) \boldsymbol{\theta}_{j} \mathbf{W}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)\right|+\left|\mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\left(\boldsymbol{\theta}_{j}-\boldsymbol{\theta}_{0 j}\right)\right|\right) \\
\leq & C \sum_{j}\left(\left|\mathbf{B}^{(1) \mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}^{*}\right) \boldsymbol{\theta}_{0 j} \mathbf{W}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)\right|+\left|\mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\left(\boldsymbol{\theta}_{j}-\boldsymbol{\theta}_{0 j}\right)\right|\right. \\
& \left.+\left|\mathbf{B}^{(1) \mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}^{*}\right)\left(\boldsymbol{\theta}_{j}-\boldsymbol{\theta}_{0 j}\right) \mathbf{W}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)\right|\right) \\
\leq & C\left(r_{n}+\sqrt{K} r_{n}+K^{3 / 2} r_{n}^{2}\right) \\
\leq & C \sqrt{K} r_{n} \\
= & A,
\end{aligned}
$$

where we used that $\|\mathbf{B}(x)\| \leq C \sqrt{K}$ and $\left\|\mathbf{B}^{(1)}(x)\right\| \leq C K^{3 / 2}$ for any $x \in[a, b]$.
Furthermore, using

$$
E\left|M_{n i}(\boldsymbol{\beta}, \boldsymbol{\theta})\right|^{2} \leq C\left(\sqrt{K} r_{n}\right) \sum_{j} E\left|\mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}-\mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j}\right|^{2}
$$

$$
\begin{equation*}
\leq C\left(\sqrt{K} r_{n}\right)\left(r_{n}^{2}\right)=: D^{2}, \tag{10}
\end{equation*}
$$

application of Bernstein's inequality together with the union bound yields

$$
P\left(\sup _{(\boldsymbol{\beta}, \boldsymbol{\theta}) \in \mathcal{N}}\left|M_{n}(\boldsymbol{\beta}, \boldsymbol{\theta})-E M_{n}(\boldsymbol{\beta}, \boldsymbol{\theta})\right|>a\right) \leq C \exp \left\{-\frac{a^{2}}{a A+n D^{2}}+C K \log n\right\}
$$

It is clear that the right hand side above will converge to zero when $a=O\left(\max \left\{K^{3 / 2} r_{n} \log n, \sqrt{n K^{3 / 2} r_{n}^{3} \log n}\right\}\right.$ $o\left(n r_{n}^{2}\right)$.

Lemma 2. For sufficiently large $L>0$,

$$
\begin{aligned}
& \quad \inf _{\left\|\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right\|+\left\|\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right\|=L r_{n}} \sum_{i} E \rho_{\tau}\left(e_{i}+m_{i}-\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}\right) \\
& \quad-\sum_{i} E \rho_{\tau}\left(e_{i}+m_{i}-\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j}\right) \\
& \geq L^{2} C n r_{n}^{2} .
\end{aligned}
$$

Proof. We make use of the Knight's identity that $\rho_{\tau}(x-y)-\rho_{\tau}(x)=-y(\tau-I\{x \leq$ $0\})+\int_{0}^{y}(I\{x \leq t\}-I\{x \leq 0\}) d t$, which implies that

$$
\begin{aligned}
& E \sum_{i=1}^{n} \rho_{\tau}\left(e_{i}+m_{i}-\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}\right)-E \sum_{i=1}^{n} \rho_{\tau}\left(e_{i}+m_{i}-\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j}\right) \\
& =E\left\{\sum_{i} \int_{\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j}^{p-m_{i}}}^{\left.\sum_{j=1}^{X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}-m_{i}} F\left(t \mid \mathbf{W}_{i}, \mathbf{X}_{i}\right)-F\left(0 \mid \mathbf{W}_{i}, \mathbf{X}_{i}\right) d t\right\}}\right. \\
& \geq C E\left\{\sum _ { i } f (0 | \mathbf { W } _ { i } , \mathbf { X } _ { i }) \left[\left(\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}-\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j}\right)^{2}\right.\right. \\
& \left.\left.\quad+2\left(\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}-\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j}\right)\left(\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j}-m_{i}\right)\right]\right\}
\end{aligned}
$$

We have, by Taylor's expansion,

$$
\begin{aligned}
& \sum_{i}\left(\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}-\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j}\right)^{2} \\
\geq & C \sum_{i}\left(\sum_{j=1}^{p} X_{i j} \mathbf{B}^{(1) \mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j} \mathbf{W}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)+\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0 j}\right)\right)^{2}+o_{p}\left(n r_{n}^{2}\right)
\end{aligned}
$$

$$
\geq C L^{2} n r_{n}^{2}
$$

Note that we have used the eigenvalue property as in Lemma 3 stated below. Furthermore, as in we can derive a corresponding upper bound

$$
\sum_{i}\left(\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}-\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j}\right)^{2} \leq C L^{2} n r_{n}^{2}
$$

and using the property of polynomial splines,

$$
\begin{equation*}
\sum_{i}\left(\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j}-m_{i}\right)^{2} \leq C n K^{-2 d} \tag{11}
\end{equation*}
$$

Combining several bounds stated above, we have

$$
\begin{aligned}
& E \sum_{i=1}^{n} \rho_{\tau}\left(e_{i}+m_{i}-\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}\right)-E \rho_{\tau}\left(e_{i}+m_{i}-\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j}\right) \\
& \quad \geq C L^{2} n r_{n}^{2}
\end{aligned}
$$

when L is sufficiently large.
Lemma 3. With probability approaching one, the eigenvalues of
$\frac{1}{n} \sum_{i=1}^{n}\binom{\left(\mathbf{X}_{i} \otimes \mathbf{B}^{(1)}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right)^{\mathrm{T}} \boldsymbol{\theta}_{0} \mathbf{W}_{i}}{\mathbf{X}_{i} \otimes \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)}\left(\left(\mathbf{X}_{i} \otimes \mathbf{B}^{(1)}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right)^{\mathrm{T}} \boldsymbol{\theta}_{0} \mathbf{W}_{i}^{\mathrm{T}}, \mathbf{X}_{i}^{\mathrm{T}} \otimes \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right)$ are bounded away from zero and infinity.

Proof. Using Markov's inequality, we only need to show the population version that the eigenvalues of

$$
\begin{equation*}
E\left[\binom{\left(\mathbf{X} \otimes \mathbf{B}^{(1)}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right)^{\mathrm{T}} \boldsymbol{\theta}_{0} \mathbf{W}}{\mathbf{X} \otimes \mathbf{B}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)}\left(\left(\mathbf{X} \otimes \mathbf{B}^{(1)}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right)^{\mathrm{T}} \boldsymbol{\theta}_{0} \mathbf{W}^{\mathrm{T}}, \mathbf{X}^{\mathrm{T}} \otimes \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right)\right] \tag{12}
\end{equation*}
$$

are bounded away from zero and infinity.
Since $\left|\left(\mathbf{X} \otimes \mathbf{B}^{(1)}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right)^{\mathrm{T}} \boldsymbol{\theta}_{0}-\mathbf{g}^{(1) \mathrm{T}}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \mathbf{X}\right| \leq C K^{-d+1}$, we only need to show that the eigenvalues of

$$
\begin{equation*}
E\left[\binom{\mathbf{g}^{(1) \mathrm{T}}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \mathbf{X} \mathbf{W}}{\mathbf{X} \otimes \mathbf{B}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)}\left(\mathbf{g}^{(1) \mathrm{T}}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \mathbf{X} \mathbf{W}^{\mathrm{T}}, \mathbf{X}^{\mathrm{T}} \otimes \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right)\right] \tag{13}
\end{equation*}
$$

are bounded away from zero and infinity.
By (A4), we can find a $p K \times q$ matrix γ_{0} satisfying $\| E_{\mathcal{M}}\left[\mathbf{g}^{(1) \mathrm{T}}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \mathbf{X W}\right]-$ $\gamma_{0}^{\mathrm{T}}\left(\mathbf{X} \otimes \mathbf{B}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right) \| \leq C K^{-d^{\prime}}$.

Pre-multiplying (13) by

$$
\left(\begin{array}{cc}
\mathbf{I} & -\boldsymbol{\gamma}_{0}^{\mathrm{T}} \tag{14}\\
\mathbf{0} & \mathbf{I}
\end{array}\right)
$$

and post-multiplying (13) by its transposition, we obtain the new matrix

$$
\begin{equation*}
E\left[\binom{\mathbf{g}^{(1) \mathrm{T}}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \mathbf{X} \mathbf{W}-\boldsymbol{\gamma}_{0}^{\mathrm{T}}\left(\mathbf{X} \otimes \mathbf{B}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right)}{\mathbf{X} \otimes \mathbf{B}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)}^{\otimes 2}\right] \tag{15}
\end{equation*}
$$

Since it can be directly verified that singular values of (14) are bounded away from zero and infinity, we only need to show that the eigenvalues of (15) are bounded away from zero and infinity. Since $\left\|E_{\mathcal{M}}\left[\mathbf{g}^{(1) \mathrm{T}}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \mathbf{X W}\right]-\boldsymbol{\gamma}_{0}^{\mathrm{T}}\left(\mathbf{X} \otimes \mathbf{B}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right)\right\| \leq C K^{-d^{\prime}}$, we can replace $\boldsymbol{\gamma}_{0}^{\mathrm{T}}\left(\mathbf{X} \otimes \mathbf{B}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right)$ with $E_{\mathcal{M}}\left[\mathbf{g}^{(1) \mathrm{T}}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \mathbf{X W}\right]$ in the displayed expression above. By the assumed boundedness of $f(0 \mid \mathbf{W}, \mathbf{X})$ in (A2), we only need to consider the matrix

$$
\begin{equation*}
E\left[f(0 \mid \mathbf{W}, \mathbf{X})\binom{\mathbf{g}^{(1) \mathrm{T}}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \mathbf{X} \mathbf{W}-E_{\mathcal{M}}\left[\mathbf{g}^{(1) \mathrm{T}}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \mathbf{X} \mathbf{W}\right]}{\mathbf{X} \otimes \mathbf{B}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)}^{\otimes 2}\right] \tag{16}
\end{equation*}
$$

By our specific definition of the projection in the main text, $E\left[f(0 \mid \mathbf{W}, \mathbf{X})\left(\mathbf{g}^{(1) \mathrm{T}}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \mathbf{X} \mathbf{W}-\right.\right.$ $\left.\left.E_{\mathcal{M}}\left[\mathbf{g}^{(1) \mathrm{T}}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \mathbf{X} \mathbf{W}\right]\right)\left(\mathbf{X}^{\mathrm{T}} \otimes \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right)\right]=\mathbf{0}$ and 16 is block-diagonal and it is easy to see by (A5) that the matrix has eigenvalues bounded away from zero and infinity.

Lemma 4.

$$
\begin{aligned}
& \sup _{\left\|\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right\|+\left\|\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right\|=L r_{n}} \sum_{i}\left(\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}-\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j}\right) \\
& \left(\tau-I\left\{e_{i} \leq 0\right\}\right)=L \cdot O_{p}\left(n r_{n}^{2}\right) .
\end{aligned}
$$

Proof. For simplicity of presentation below, we denote $\epsilon_{i}=\tau-I\left\{e_{i} \leq 0\right\}$. We have

$$
\begin{align*}
& \sum_{i}\left(\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}-\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j}\right) \epsilon_{i} \\
= & \sum_{i} \sum_{j} X_{i j} \mathbf{B}^{(1) \mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j} \mathbf{W}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right) \epsilon_{i} \tag{17}\\
& +\sum_{i} \sum_{j} X_{i j} \mathbf{B}^{(1) \mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\left(\boldsymbol{\theta}_{j}-\boldsymbol{\theta}_{0 j}\right) \mathbf{W}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right) \epsilon_{i} \tag{18}\\
& +\sum_{i} \sum_{j} X_{i j}\left(\mathbf{B}^{(1) \mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}^{*}\right)-\mathbf{B}^{(1) \mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right) \boldsymbol{\theta}_{0 j} \mathbf{W}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right) \epsilon_{i} \tag{19}\\
& +\sum_{i} \sum_{j} X_{i j}\left(\mathbf{B}^{(1) \mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}^{*}\right)-\mathbf{B}^{(1) \mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right)\left(\boldsymbol{\theta}_{j}-\boldsymbol{\theta}_{0 j}\right) \mathbf{W}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right) \epsilon_{i}(20) \\
& +\sum_{i} \sum_{j} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\left(\boldsymbol{\theta}_{j}-\boldsymbol{\theta}_{0 j}\right) \epsilon_{i} . \tag{21}
\end{align*}
$$

The term (17) obviously has order $L \cdot O_{p}\left(\sqrt{n} r_{n}\right)$. For 21), we have that $\left\|\mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \epsilon_{i}\right\|^{2}=$ $O_{p}\left(\sum_{i}\left\|\mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right\|^{2}\right)=O_{p}(n K)$ and thus 21$)$ is $O_{p}\left(\sqrt{n K}\left\|\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right\|\right)=L \cdot O_{p}\left(\sqrt{n K} r_{n}\right)$.

For the term 18), since $\left\|\sum_{i} \mathbf{B}^{(1)}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \epsilon_{i}\right\|^{2}=O_{p}\left(\sum_{i}\left\|\mathbf{B}^{(1)}\left(\mathbf{W}_{i}^{T} \boldsymbol{\beta}_{0}\right)\right\|^{2}\right)=O_{p}\left(n K^{3}\right)$ we have

$$
\sum_{i} \sum_{j} X_{i j} \mathbf{B}^{(1) \mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\left(\boldsymbol{\theta}_{j}-\boldsymbol{\theta}_{0 j}\right) \mathbf{W}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right) \epsilon_{i}=O_{p}\left(\sqrt{n} K^{3 / 2} r_{n}^{2}\right)=o_{p}\left(n r_{n}^{2}\right)
$$

With further Taylor expansion $\mathbf{B}^{(1)}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}^{*}\right)-\mathbf{B}^{(1)}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)=\mathbf{B}^{(2)}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}^{* *}\right) \mathbf{W}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}^{*}-\right.$ $\left.\boldsymbol{\beta}_{0}\right),(19)$ and 20 are also of order $o_{p}\left(n r_{n}^{2}\right)$ and the proof is complete.

Proof of Theorem 1. Combining Lemmas stated above, we get that $P\left(\inf _{\left\|\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right\|+\left\|\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right\|=L r_{n}} \sum_{i=1}^{n} \rho_{\tau}\left(Y_{i}-\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}\right)>\sum_{i=1}^{n} \rho_{\tau}\left(Y_{i}-\sum_{j=1}^{p} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j}\right)\right) \rightarrow 1$, and thus there is a local minimizer of $(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\theta}})$ with $\left\|\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right\|+\left\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}_{0}\right\|=O_{p}\left(r_{n}\right)$.

Next we try to establish asymptotic normality of $\widehat{\boldsymbol{\beta}}$. Orthogonality step plays an important role in this part. Due to the more complicated model structure here, this procedure is more complicated than partially linear models considered in some previous works (Wang et al., 2009, 2011).

Let $\boldsymbol{\Pi}_{i}=\mathbf{X}_{i} \otimes \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)$ and let $\boldsymbol{\Pi}$ be the $n \times(p K)$ matrix with rows $\boldsymbol{\Pi}_{i}^{\mathrm{T}}$. The empirical counterpart of the previously defined projection is

$$
\min _{\boldsymbol{\theta}} \sum_{i} f\left(0 \mid \mathbf{W}_{i}, \mathbf{X}_{i}\right)\left(V_{i}-\boldsymbol{\Pi}_{i}^{\mathrm{T}} \boldsymbol{\theta}\right)^{2},
$$

with the minimizer $\left(\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \boldsymbol{\Pi}\right)^{-1} \boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \mathbf{V}$ where $\boldsymbol{\Gamma}$ is the diagonal matrix containing $f\left(0 \mid \mathbf{W}_{i}, \mathbf{X}_{i}\right)$ as its diagonal entries, and $\mathbf{V}=\left(V_{1}, \ldots, V_{n}\right)^{\mathrm{T}}$. Define $\mathbf{P}=\boldsymbol{\Pi}\left(\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \boldsymbol{\Pi}\right)^{-1} \boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma}$.

We write

$$
\begin{aligned}
& \rho_{\tau}\left(e_{i}+m_{i}-\sum_{j} X_{i j} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}\right) \\
= & \rho_{\tau}\left(e_{i}-\sum_{j} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\left(\boldsymbol{\theta}_{j}-\boldsymbol{\theta}_{0 j}\right)-\sum_{j} X_{i j} \mathbf{B}^{(1) \mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j} \mathbf{W}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)-R_{i}(\boldsymbol{\beta}, \boldsymbol{\theta})\right) \\
= & \rho_{\tau}\left(e_{i}-\mathbf{\Pi}_{i}^{\mathrm{T}}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)-\mathbf{U}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)-R_{i}(\boldsymbol{\beta}, \boldsymbol{\theta})\right),
\end{aligned}
$$

where we defined $\mathbf{U}_{i}=\sum_{j} X_{i j} \mathbf{B}^{(1) \mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j} \mathbf{W}_{i}$ and

$$
\begin{aligned}
& R_{i}(\boldsymbol{\beta}, \boldsymbol{\theta}) \\
= & \sum_{j} X_{i j}\left(\mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right)-\mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right)^{\mathrm{T}} \boldsymbol{\theta}_{j}-\sum_{j} X_{i j} \mathbf{B}^{(1) \mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j} \mathbf{W}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right) \\
& +\left(\sum_{j} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j}-m_{i}\right) \\
=: & R_{i 1}(\boldsymbol{\beta}, \boldsymbol{\theta})+R_{i 2}(\boldsymbol{\beta}, \boldsymbol{\theta}) .
\end{aligned}
$$

Let $\mathbf{V}=\mathbf{U}-\mathbf{P} \mathbf{U}$ with the i-th row of \mathbf{V} denoted by $\mathbf{V}_{i}^{\mathrm{T}}=\mathbf{U}_{i}^{\mathrm{T}}-\mathbf{P}_{i}^{\mathrm{T}} \mathbf{U}$. We further write

$$
\begin{aligned}
& \rho_{\tau}\left(e_{i}-\boldsymbol{\Pi}_{i}^{\mathrm{T}}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)-\mathbf{U}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)-R_{i}(\boldsymbol{\beta}, \boldsymbol{\theta})\right) \\
= & \rho_{\tau}\left(e_{i}-\boldsymbol{\Pi}_{i}^{\mathrm{T}}\left(\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)+\left(\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \boldsymbol{\Pi}\right)^{-1} \boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \mathbf{U}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)\right)-\mathbf{V}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)-R_{i}(\boldsymbol{\beta}, \boldsymbol{\theta})\right) \\
= & \rho_{\tau}\left(e_{i}-\boldsymbol{\Pi}_{i}^{\mathrm{T}} \boldsymbol{\eta}-\mathbf{V}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)-R_{i}(\boldsymbol{\beta}, \boldsymbol{\theta})\right),
\end{aligned}
$$

with $\boldsymbol{\eta}=\boldsymbol{\theta}-\boldsymbol{\theta}_{0}+\left(\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \boldsymbol{\Pi}\right)^{-1} \boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \mathbf{U}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)$. We require the following lemma which is a refinement of Lemma 1 .

Lemma 5.

$$
\sup _{\left\|\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right\| \leq C / \sqrt{n},\|\boldsymbol{\eta}\| \leq C r_{n}} \mid \sum_{i} \rho_{\tau}\left(e_{i}-\boldsymbol{\Pi}_{i}^{\mathrm{T}} \boldsymbol{\eta}-\mathbf{V}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)-R_{i}(\boldsymbol{\beta}, \boldsymbol{\theta})\right)
$$

$$
\begin{gathered}
-\sum_{i} \rho_{\tau}\left(e_{i}-\boldsymbol{\Pi}_{i}^{\mathrm{T}} \boldsymbol{\eta}-R_{i}\left(\boldsymbol{\beta}_{0}, \boldsymbol{\theta}\right)\right)+\sum_{i} \mathbf{V}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right) \epsilon_{i} \\
-E \sum_{i} \rho_{\tau}\left(e_{i}-\boldsymbol{\Pi}_{i}^{\mathrm{T}} \boldsymbol{\eta}-\mathbf{V}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)-R_{i}(\boldsymbol{\beta}, \boldsymbol{\theta})\right)+E \sum_{i} \rho_{\tau}\left(e_{i}-\boldsymbol{\Pi}_{i}^{\mathrm{T}} \boldsymbol{\eta}-R_{i}\left(\boldsymbol{\beta}_{0}, \boldsymbol{\theta}\right)\right) \mid=o_{p}(1) .
\end{gathered}
$$

Proof. Same as for Lemma 1, we assume $\tau=1 / 2$ here for simplicity. We have

$$
\begin{aligned}
R_{i 1}(\boldsymbol{\beta}, \boldsymbol{\theta})= & \sum_{j} X_{i j}\left(\mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right)-\mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right)^{\mathrm{T}}\left(\boldsymbol{\theta}_{j}-\boldsymbol{\theta}_{0 j}\right) \\
& -\sum_{j} X_{i j}\left(\mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{0 j}-\mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j}-\mathbf{B}^{(1) \mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j} \mathbf{W}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)\right) \\
= & \sum_{j} X_{i j} \mathbf{B}^{(1) \mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}^{*}\right)\left(\boldsymbol{\theta}_{j}-\boldsymbol{\theta}_{0 j}\right)\left(\mathbf{W}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)\right) \\
& -\sum_{j} X_{i j} \mathbf{B}^{(2) \mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}^{*}\right) \boldsymbol{\theta}_{0 j}\left(\mathbf{W}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)\right)^{2}
\end{aligned}
$$

It is easy to see that $\left|R_{i 1}\right| \leq C \sqrt{K^{3} / n} r_{n}$ and $\sum_{i} R_{i 1}^{2}=O_{p}\left(r_{n}^{2} K^{3}+1 / n\right)=O_{p}\left(r_{n}^{2} K^{3}\right)$.
For fixed $\boldsymbol{\eta}, \boldsymbol{\beta}$, let $\left.M_{n i}(\boldsymbol{\beta}, \boldsymbol{\eta})=\frac{1}{2}\left|e_{i}-\boldsymbol{\Pi}_{i}^{\mathrm{T}} \boldsymbol{\eta}-\mathbf{V}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)-R_{i}(\boldsymbol{\beta}, \boldsymbol{\theta})\right|-\frac{1}{2} \right\rvert\, e_{i}-\boldsymbol{\Pi}_{i}^{\mathrm{T}} \boldsymbol{\eta}-$ $R_{i}\left(\boldsymbol{\beta}_{0}, \boldsymbol{\theta}\right) \mid+\left(\mathbf{V}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)+R_{i 1}(\boldsymbol{\beta}, \boldsymbol{\theta})\right)\left(1 / 2-I\left\{e_{i} \leq 0\right\}\right)$, we have

$$
\begin{aligned}
& \left|M_{n i}(\boldsymbol{\beta}, \boldsymbol{\eta})\right| \\
\leq & \left|\mathbf{V}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)+R_{i 1}(\boldsymbol{\beta}, \boldsymbol{\theta})\right| I\left\{\left|e_{i}\right| \leq\left|\mathbf{V}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)+R_{i 1}(\boldsymbol{\beta}, \boldsymbol{\theta})\right|+\left|\boldsymbol{\Pi}_{i}^{\mathrm{T}} \boldsymbol{\eta}+R_{i}\left(\boldsymbol{\beta}_{0}, \boldsymbol{\theta}\right)\right|\right\} \\
\leq & C\left(1 / \sqrt{n}+\sqrt{K^{3} / n} r_{n}\right),
\end{aligned}
$$

and

$$
E\left|M_{n i}(\boldsymbol{\beta}, \boldsymbol{\eta})\right|^{2} \leq\left(1 / n+K^{3} r_{n}^{2} / n\right)\left(\sqrt{K} r_{n}\right)
$$

The rest of the proof is similar to the proof of Lemma 1. In particular, using a covering argument with Bernstein's inequality, we have that

$$
\begin{aligned}
& \sup _{\left\|\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right\| \leq C / \sqrt{n},\|\boldsymbol{\eta}\| \leq C r_{n}} \mid \sum_{i} \rho_{\tau}\left(e_{i}-\boldsymbol{\Pi}_{i}^{\mathrm{T}} \boldsymbol{\eta}-\mathbf{V}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)-R_{i}(\boldsymbol{\beta}, \boldsymbol{\theta})\right) \\
& \quad-\sum_{i} \rho_{\tau}\left(e_{i}-\boldsymbol{\Pi}_{i}^{\mathrm{T}} \boldsymbol{\eta}-R_{i}\left(\boldsymbol{\beta}_{0}, \boldsymbol{\theta}\right)\right)+\sum_{i}\left(\mathbf{V}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)+R_{i 1}(\boldsymbol{\beta}, \boldsymbol{\theta})\right) \epsilon_{i} \\
&-E \sum_{i} \rho_{\tau}\left(e_{i}-\boldsymbol{\Pi}_{i}^{\mathrm{T}} \boldsymbol{\eta}-\mathbf{V}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)-R_{i}(\boldsymbol{\beta}, \boldsymbol{\theta})\right)+E \sum_{i} \rho_{\tau}\left(e_{i}-\boldsymbol{\Pi}_{i}^{\mathrm{T}} \boldsymbol{\eta}-R_{i}\left(\boldsymbol{\beta}_{0}, \boldsymbol{\theta}\right)\right)
\end{aligned}
$$

is of order $O_{p}\left(\max \left\{K \log n\left(1 / \sqrt{n}+\sqrt{K^{3} / n} r_{n}\right), \sqrt{\left(1+K^{3} r_{n}^{2}\right)\left(\sqrt{K} r_{n} K \log n\right)}=o_{p}(1)\right.\right.$.
Finally, using the above bounds for $R_{i 1}$ and similar arguments, we have $\sum_{i} R_{i 1}(\boldsymbol{\beta}, \boldsymbol{\theta})(1 / 2-$ $\left.I\left\{e_{i} \leq 0\right\}\right)=o_{p}(1)$ which completes the proof.

Lemma 6.

$$
\begin{aligned}
& \sup _{\|\boldsymbol{\eta}\| \leq C r_{n},\left\|\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right\| \leq C / \sqrt{n}} \mid \sum_{i} E \rho_{\tau}\left(e_{i}-\boldsymbol{\Pi}_{i} \boldsymbol{\eta}-\mathbf{V}_{i}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)-R_{i}(\boldsymbol{\beta}, \boldsymbol{\theta})\right) \\
& \left.\quad-\sum_{i} E \rho_{\tau}\left(e_{i}-\mathbf{\Pi}_{i} \boldsymbol{\eta}-R_{i}\left(\boldsymbol{\beta}_{0}, \boldsymbol{\theta}\right)\right)-\sum_{i} \frac{f\left(0 \mid \mathbf{W}_{i}, \mathbf{X}_{i}\right)}{2}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right) \mathbf{V}_{i} \mathbf{V}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right) \right\rvert\,=o_{p}(1) .
\end{aligned}
$$

Proof. By Knight's identity,

$$
\begin{aligned}
& \sum_{i} E \rho_{\tau}\left(e_{i}-\boldsymbol{\Pi}_{i} \boldsymbol{\eta}-\mathbf{V}_{i}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)-R_{i}(\boldsymbol{\beta}, \boldsymbol{\theta})\right)-\sum_{i} E \rho_{\tau}\left(e_{i}-\boldsymbol{\Pi}_{i} \boldsymbol{\eta}-R_{i}\left(\boldsymbol{\beta}_{0}, \boldsymbol{\theta}\right)\right) \\
= & \int_{\boldsymbol{\Pi}_{i} \boldsymbol{\eta}+R_{i}\left(\boldsymbol{\beta}_{0}, \boldsymbol{\theta}\right)}^{\boldsymbol{\Pi}_{i} \boldsymbol{\eta}+R_{i}(\boldsymbol{\beta}, \boldsymbol{\theta})+\mathbf{V}_{i}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)} F\left(t \mid \mathbf{X}_{i}, \mathbf{Z}_{i}\right)-F\left(0 \mid \mathbf{X}_{i}, \mathbf{Z}_{i}\right) d t \\
= & \sum_{i} \frac{f\left(0 \mid \mathbf{W}_{i}, \mathbf{X}_{i}\right)}{2}\left\{\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right) \mathbf{V}_{i} \mathbf{V}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)+R_{i 1}^{2}+2 R_{i 1} \mathbf{V}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)+2 R_{i 1}\left(\boldsymbol{\Pi}_{i} \boldsymbol{\eta}+R_{i}\left(\boldsymbol{\beta}_{0}, \boldsymbol{\theta}\right)\right)\right. \\
& \left.+2\left(\boldsymbol{\Pi}_{i} \boldsymbol{\eta}+R_{i}\left(\boldsymbol{\beta}_{0}, \boldsymbol{\theta}\right)\right) \mathbf{V}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)\right\}\left(1+o_{p}(1)\right) .
\end{aligned}
$$

We have $\sum_{i} R_{i 1}^{2}=O\left(r_{n}^{2} K^{3}\right)=o_{p}(1),\left(\sum_{i} R_{i 1} \mathbf{V}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)\right)^{2}=O_{p}\left(r_{n}^{2} K^{3}\right)=o_{p}(1)$, and $\left(\sum_{i} R_{i 1}\left(\boldsymbol{\Pi}_{i} \boldsymbol{\eta}+R_{i}\left(\boldsymbol{\beta}_{0}, \boldsymbol{\theta}\right)\right)\right)^{2}=\left(r_{n}^{2} K^{3}\right)\left(n r_{n}^{2}\right)=o_{p}(1)$. By the defined orthogonalization step, $\sum_{i} f\left(0 \mid \mathbf{X}_{i}, \mathbf{Z}_{i}\right) \boldsymbol{\Pi}_{i} \mathbf{V}_{i}^{\mathrm{T}}=\sum_{i} f\left(0 \mid \mathbf{X}_{i}, \mathbf{Z}_{i}\right) \boldsymbol{\Pi}_{i}\left(\mathbf{U}_{i}-\boldsymbol{\Pi}_{i}^{\mathrm{T}}\left(\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \boldsymbol{\Pi}\right)^{-1} \boldsymbol{\Pi}^{\mathrm{T}} \mathbf{U}\right)=\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \mathbf{U}$ $\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \mathbf{U}=\mathbf{0}$. Thus we only need to show

$$
\sum_{i} f\left(0 \mid \mathbf{W}_{i}, \mathbf{X}_{i}\right) R_{i}\left(\boldsymbol{\beta}_{0}, \boldsymbol{\theta}\right) \mathbf{V}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)=o_{p}(1)
$$

with $R_{i}\left(\boldsymbol{\beta}_{0}, \boldsymbol{\theta}\right)=\sum_{j} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j}-m_{i}$.
Note that directly using $\left|R_{i}\left(\boldsymbol{\beta}_{0}, \boldsymbol{\theta}\right)\right| \leq C K^{-d}$ shows that the above displayed equation is of order $O_{p}\left(\sqrt{n} K^{-d}\right) \neq o_{p}(1)$ in general. So we need to use a different strategy based on finer analysis.

Write $\mathbf{V}_{i}^{\mathrm{T}}=\left(\mathbf{U}_{i}^{\mathrm{T}}-\mathbf{g}^{(1) \mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \mathbf{X} \mathbf{W}_{i}^{\mathrm{T}}\right)+\left(\mathbf{g}^{(1) \mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \mathbf{X} \mathbf{W}_{i}^{\mathrm{T}}-E_{\mathcal{M}}\left[\mathbf{g}^{(1) \mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \mathbf{X} \mathbf{W}_{i}^{\mathrm{T}}\right]\right)+$ $\left.\left(E_{\mathcal{M}}\left[\mathbf{g}^{(1) \mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \mathbf{X} \mathbf{W}_{i}^{\mathrm{T}}\right]-\mathbf{P}_{i}^{\mathrm{T}} \mathbf{U}\right)\right)$, and we deal with each one of the three terms below.

By the approximation property of splines,
$\sum_{i} f\left(0 \mid \mathbf{W}_{i}, \mathbf{X}_{i}\right) R_{i}\left(\boldsymbol{\beta}_{0}, \boldsymbol{\theta}\right)\left(\mathbf{U}_{i}^{\mathrm{T}}-\mathbf{g}^{(1)}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \mathbf{X} \mathbf{W}_{i}^{\mathrm{T}}\right)\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)=O_{p}\left(\sqrt{n} K^{-2 d+1}\right)=o_{p}(1)$.
Then, using the definition of projection, we have $E\left[f\left(0 \mid \mathbf{W}_{i}, \mathbf{X}_{i}\right) R_{i}\left(\boldsymbol{\beta}_{0}, \boldsymbol{\theta}\right)\left(\mathbf{g}^{(1) \mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \mathbf{X} \mathbf{W}_{i}^{\mathrm{T}}-\right.\right.$ $\left.\left.E_{\mathcal{M}}\left[\mathbf{g}^{(1) \mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \mathbf{X} \mathbf{W}_{i}^{\mathrm{T}}\right]\right)\right]=0$. Thus by a simple variance calculation, we get
$\sum_{i} f\left(0 \mid \mathbf{W}_{i}, \mathbf{X}_{i}\right) R_{i}\left(\boldsymbol{\beta}_{0}, \boldsymbol{\theta}\right)\left(\mathbf{g}^{(1) \mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \mathbf{X} \mathbf{W}_{i}^{\mathrm{T}}-E_{\mathcal{M}}\left[\mathbf{g}^{(1) \mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \mathbf{X} \mathbf{W}_{i}^{\mathrm{T}}\right]\right)\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)=O_{p}\left(K^{-d}\right)=o_{p}(1)$.
Finally, using (A4), we have $\left\|E_{\mathcal{M}}\left[\mathbf{g}^{(1) \mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \mathbf{X} \mathbf{W}_{i}^{\mathrm{T}}\right]-\mathbf{P}_{i}^{\mathrm{T}} \mathbf{U}\right\|=O_{p}\left(K^{-d^{\prime}}+K^{-d+1}\right)$ and thus

$$
\begin{aligned}
& \sum_{i} f\left(0 \mid \mathbf{W}_{i}, \mathbf{X}_{i}\right) R_{i}\left(\boldsymbol{\beta}_{0}, \boldsymbol{\theta}\right)\left(E_{\mathcal{M}}\left[\mathbf{g}^{(1) \mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \mathbf{X} \mathbf{W}_{i}^{\mathrm{T}}\right]-\mathbf{P}_{i}^{\mathrm{T}} \mathbf{U}\right) \mathbf{V}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right) \\
= & O_{p}\left(\sqrt{n} K^{-d-d^{\prime}}+\sqrt{n} K^{-2 d+1}\right)=o_{p}(1)
\end{aligned}
$$

Thus $\sum_{i} f\left(0 \mid \mathbf{W}_{i}, \mathbf{X}_{i}\right) R_{i}\left(\boldsymbol{\beta}_{0}, \boldsymbol{\theta}\right) \mathbf{V}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)=o_{p}(1)$ and the proof is complete.

Lemma 7.

$$
\begin{aligned}
& \frac{1}{n} \sum_{i} f\left(0 \mid \mathbf{W}_{i}, \mathbf{X}_{i}\right) \mathbf{V}_{i} \mathbf{V}_{i}^{\mathrm{T}} \rightarrow E\left[f(0 \mid \mathbf{W}, \mathbf{X})\left(\mathbf{g}^{(1) \mathrm{T}}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \mathbf{X} \mathbf{W}-E_{\mathcal{M}}\left[\mathbf{g}^{(1) \mathrm{T}}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \mathbf{X} \mathbf{W}\right]\right)^{\otimes 2}\right] \text { in probability, } \\
& \frac{1}{n} \sum_{i} \mathbf{V}_{i} \mathbf{V}_{i}^{\mathrm{T}} \rightarrow E\left[\left(\mathbf{g}^{(1) \mathrm{T}}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \mathbf{X W}-E_{\mathcal{M}}\left[\mathbf{g}^{(1) \mathrm{T}}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \mathbf{X W}\right]\right)^{\otimes 2}\right] \text { in probability. }
\end{aligned}
$$

Proof. The left hand side is $\mathbf{V}^{\mathrm{T}} \boldsymbol{\Gamma} \mathbf{V} / n=\mathbf{U}^{\mathrm{T}}\left(\mathbf{I}-\mathbf{P}^{\mathrm{T}}\right) \boldsymbol{\Gamma}(\mathbf{I}-\mathbf{P}) \mathbf{U} / n$ where the rows of \mathbf{U} are $\mathbf{U}_{i}^{\mathrm{T}}=\sum_{j} Z_{i j} \mathbf{B}^{(1) \mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j} \mathbf{W}_{i}^{\mathrm{T}}$. Let \mathbf{U}^{*} be defined similarly as \mathbf{U} with $\mathbf{B}^{(1) \mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \boldsymbol{\theta}_{0 j}$ replaced by $g_{j}^{(1)}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)$. By the approximation property of splines $\left\|(1 / n) \mathbf{U}^{* T}\left(\mathbf{I}-\mathbf{P}^{\mathrm{T}}\right) \boldsymbol{\Gamma}(\mathbf{I}-\mathbf{P}) \mathbf{U}^{*}-(1 / n) \mathbf{U}^{\mathrm{T}}\left(\mathbf{I}-\mathbf{P}^{\mathrm{T}}\right) \boldsymbol{\Gamma}(\mathbf{I}-\mathbf{P}) \mathbf{U}\right\|_{F}=o_{p}(1)$ and then using the same arguments as in Lemma 1 of Wang et al. (2009). The second expression is proved in the same way.

Proof of Theorem 2. Let $\hat{\boldsymbol{\eta}}=\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}_{0}+\left(\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \boldsymbol{\Pi}\right)^{-1} \boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \mathbf{U}\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)$. By Lemmas 5. 6, and 7 .

$$
\sup _{\left\|\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right\| \leq C / \sqrt{n}} \mid \sum_{i} \rho_{\tau}\left(e_{i}-\boldsymbol{\Pi}_{i}^{\mathrm{T}} \hat{\boldsymbol{\eta}}-\mathbf{V}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)-R_{i}(\boldsymbol{\beta}, \hat{\boldsymbol{\theta}})\right)
$$

$$
\begin{align*}
& -\sum_{i} \rho_{\tau}\left(e_{i}-\boldsymbol{\Pi}_{i}^{\mathrm{T}} \hat{\boldsymbol{\eta}}-R_{i}\left(\boldsymbol{\beta}_{0}, \hat{\boldsymbol{\theta}}\right)\right)+\sum_{i} \mathbf{V}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right) \epsilon_{i} \\
& \left.-\frac{n}{2}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)^{\mathrm{T}} \boldsymbol{\Phi}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right) \right\rvert\,=o_{p}(1) . \tag{22}
\end{align*}
$$

Let $Q(\boldsymbol{\beta})=\frac{n}{2}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)^{\mathrm{T}} \mathbf{\Phi}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)-\sum_{i} \mathbf{V}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right) \epsilon_{i}$ and define $\tilde{\boldsymbol{\beta}}=\boldsymbol{\beta}_{0}+(1 / n) \boldsymbol{\Phi}^{-1} \sum_{i} \mathbf{V}_{i}^{\mathrm{T}} \epsilon_{i}$. We have by central limit theorem

$$
\sqrt{n}\left(\tilde{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right) \xrightarrow{d} N\left(0, \boldsymbol{\Phi}^{-1} \boldsymbol{\Sigma} \boldsymbol{\Phi}^{-1}\right) .
$$

Note $\tilde{\boldsymbol{\beta}}$ is the minimizer of $Q(\boldsymbol{\beta})$, which has a quadratic form $(\boldsymbol{\beta}-\tilde{\boldsymbol{\beta}})^{\mathrm{T}} \boldsymbol{\Phi}(\boldsymbol{\beta}-\tilde{\boldsymbol{\beta}})$ plus a term that is independent of $\boldsymbol{\beta}$. Define

$$
\tilde{\tilde{\boldsymbol{\beta}}}:=\underset{\|\boldsymbol{\beta}\|=1, \beta_{1}>0}{\arg \min }(\boldsymbol{\beta}-\tilde{\boldsymbol{\beta}})^{\mathrm{T}} \boldsymbol{\Phi}(\boldsymbol{\beta}-\tilde{\boldsymbol{\beta}}) .
$$

By Proposition 4.1 of Shapiro (1986) which works for overparametrized models (considering $\boldsymbol{\beta}$ as a function of $\boldsymbol{\beta}^{(-1)}$ and the parametrization using $\boldsymbol{\beta}$ is an overparametrization), we get that

$$
\left.\sqrt{n}\left(\tilde{\tilde{\boldsymbol{\beta}}}-\boldsymbol{\beta}_{0}\right) \xrightarrow{d} N\left(0, \mathbf{J}\left(\mathbf{J}^{\mathrm{T}} \boldsymbol{\Phi} \mathbf{J}\right)^{-1} \mathbf{J}^{\mathrm{T}} \boldsymbol{\Sigma} \mathbf{J}\left(\mathbf{J}^{\mathrm{T}} \boldsymbol{\Phi} \mathbf{J}\right)^{-1}\right) \mathbf{J}^{\mathrm{T}}\right) .
$$

Given any $\boldsymbol{\beta}$ with $\|\boldsymbol{\beta}\|=1$ and $\|\boldsymbol{\beta}-\tilde{\tilde{\boldsymbol{\beta}}}\|=\delta / \sqrt{n}$ for a sufficiently small $\delta>0$, due to that Q being quadratic, we obtain

$$
Q(\boldsymbol{\beta})-Q(\tilde{\tilde{\boldsymbol{\beta}}}) \geq C \delta^{2}
$$

and thus by (22),
$P\left(\sum_{i} \rho_{\tau}\left(e_{i}-\boldsymbol{\Pi}_{i}^{\mathrm{T}} \hat{\boldsymbol{\eta}}-\mathbf{V}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)-R_{i}(\boldsymbol{\beta}, \hat{\boldsymbol{\theta}})\right)>\sum_{i} \rho_{\tau}\left(e_{i}-\boldsymbol{\Pi}_{i}^{\mathrm{T}} \hat{\boldsymbol{\eta}}-\mathbf{V}_{i}^{\mathrm{T}}\left(\tilde{\tilde{\boldsymbol{\beta}}}-\boldsymbol{\beta}_{0}\right)-R_{i}(\tilde{\tilde{\boldsymbol{\beta}}}, \hat{\boldsymbol{\theta}})\right) \rightarrow 1\right.$.
By the arbitrariness of δ, we get $\|\hat{\boldsymbol{\beta}}-\tilde{\tilde{\boldsymbol{\beta}}}\|=o_{p}(1 / \sqrt{n})$ which finishes the proof.
Lemma 8. Let $r_{n}=\sqrt{K / n}+K^{-d}$ and $r_{n}^{\prime}=r_{n} / \sqrt{K}$. When $K^{3} \log ^{2} n / n \rightarrow 0$ and $K^{d+3 / 2} \operatorname{logn} / n \rightarrow 0$, we have

$$
\sup _{\left\|\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right\| \leq C r_{n}^{\prime},\left\|\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right\| \leq C / \sqrt{n}} \mid \sum_{i=1}^{n} \rho_{\tau}\left(e_{i}-\Pi_{i}^{\mathrm{T}}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)-\mathbf{U}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)-R_{i}(\boldsymbol{\beta}, \boldsymbol{\theta})\right)
$$

$$
\begin{aligned}
& \quad-\sum_{i=1}^{n} \rho_{\tau}\left(e_{i}-\mathbf{U}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)-R_{i}\left(\boldsymbol{\beta}, \boldsymbol{\theta}_{0}\right)\right) \\
& \quad+\sum_{i=1}^{n} \boldsymbol{\Pi}_{i}^{\mathrm{T}}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)\left(\tau-I\left\{e_{i} \leq 0\right\}\right) \\
& \quad-E \sum_{i=1}^{n} \rho_{\tau}\left(e_{i}-\boldsymbol{\Pi}_{i}^{\mathrm{T}}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)-\mathbf{U}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)-R_{i}(\boldsymbol{\beta}, \boldsymbol{\theta})\right) \\
& \quad \\
& \quad+E \sum_{i=1}^{n} \rho_{\tau}\left(e_{i}-\mathbf{U}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)-R_{i}\left(\boldsymbol{\beta}, \boldsymbol{\theta}_{0}\right)\right) \\
& = \\
& o_{p}\left(K^{-1} n r_{n}^{2}\right) .
\end{aligned}
$$

Proof of Lemma 1. The proof is similar to that of Lemma 1 and Lemma 5. With abuse of notation, let $M_{n i}(\boldsymbol{\beta}, \boldsymbol{\theta})=\frac{1}{2}\left|e_{i}-\boldsymbol{\Pi}_{i}^{\mathrm{T}}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)-\mathbf{U}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)-R_{i}(\boldsymbol{\beta}, \boldsymbol{\theta})\right|-$ $\frac{1}{2}\left|e_{i}-\mathbf{U}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)-R_{i}\left(\boldsymbol{\beta}, \boldsymbol{\theta}_{0}\right)\right|+\left(\boldsymbol{\Pi}_{i}^{\mathrm{T}}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)+\breve{R}_{i}(\boldsymbol{\beta}, \boldsymbol{\theta})\right)\left(1 / 2-I\left\{e_{i} \leq 0\right\}\right)$, and $M_{n}(\boldsymbol{\theta})=\sum_{i=1}^{n} M_{n i}(\boldsymbol{\beta}, \boldsymbol{\theta})$, where $\breve{R}_{i}(\boldsymbol{\beta}, \boldsymbol{\theta})=R_{i}(\boldsymbol{\beta}, \boldsymbol{\theta})-R_{i}\left(\boldsymbol{\beta}, \boldsymbol{\theta}_{0}\right)$. We have by easy calculations $\left|\breve{R}_{i}(\boldsymbol{\beta}, \boldsymbol{\theta})\right| \leq C \sqrt{K^{3} / n} r_{n}^{\prime}$ and $\sum_{i=1}^{n} \breve{R}_{i}^{2}(\boldsymbol{\beta}, \boldsymbol{\theta}) \leq C K^{3}\left(r_{n}^{\prime}\right)^{2}$, which leads to

$$
\begin{aligned}
& \left|M_{n i}(\boldsymbol{\beta}, \boldsymbol{\theta})\right| \\
\leq & \left|\boldsymbol{\Pi}_{i}^{\mathrm{T}}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)+\breve{R}_{i}(\boldsymbol{\beta}, \boldsymbol{\theta})\right| \cdot I\left\{\left|e_{i}\right| \leq\left|\boldsymbol{\Pi}_{i}^{\mathrm{T}}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)+\breve{R}_{i}(\boldsymbol{\beta}, \boldsymbol{\theta})\right|+\left|\mathbf{U}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)+R_{i}\left(\boldsymbol{\beta}, \boldsymbol{\theta}_{0}\right)\right|\right\} \\
\leq & C \sqrt{K} r_{n}^{\prime}, \\
& E\left|M_{n i}(\boldsymbol{\beta}, \boldsymbol{\theta})\right|^{2} \leq C\left(\sqrt{K} r_{n}^{\prime}\right)\left(\left(r_{n}^{\prime}\right)^{2}\right),
\end{aligned}
$$

and

$$
\sum_{i} \breve{R}_{i}(\boldsymbol{\beta}, \boldsymbol{\theta})\left(1 / 2-I\left\{e_{i} \leq 0\right\}\right)=o_{p}\left((n / K) r_{n}^{2}\right) .
$$

Using a fine covering as in Lemma 1 and Lemma 5, with Bernstein's inequality, the left hand side in the statement of the current lemma can be shown to be of order $O_{p}\left(\max \left\{K^{3 / 2} r_{n}^{\prime} \log n, \sqrt{n K^{3 / 2}\left(r_{n}^{\prime}\right)^{3} \log n}\right\}\right)=o_{p}\left((n / K) r_{n}^{2}\right)$ by the more stringent conditions on K.

Lemma 9.

$$
\begin{aligned}
& \sup _{\left\|\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right\| \leq C r_{n}^{\prime},\left\|\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right\| \leq C / \sqrt{n}} \mid \sum_{i} E \rho_{\tau}\left(e_{i}-\boldsymbol{\Pi}_{i}^{\mathrm{T}}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)-\mathbf{U}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)-R_{i}(\boldsymbol{\beta}, \boldsymbol{\theta})\right) \\
- & \sum_{i} E \rho_{\tau}\left(e_{i}-\mathbf{U}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)-R_{i}\left(\boldsymbol{\beta}, \boldsymbol{\theta}_{0}\right)\right)-\sum_{i} \frac{f\left(0 \mid \mathbf{W}_{i}, \mathbf{X}_{i}\right)}{2}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right) \boldsymbol{\Pi}_{i} \boldsymbol{\Pi}_{i}^{\mathrm{T}}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right) \\
- & \sum_{i} f\left(0 \mid \mathbf{W}_{i}, \mathbf{X}_{i}\right) \boldsymbol{\Pi}_{i}^{\mathrm{T}}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)\left(\mathbf{U}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)+R_{i}\left(\boldsymbol{\beta}, \boldsymbol{\theta}_{0}\right)\right) \mid=o_{p}\left((n / K) r_{n}^{2}\right) .
\end{aligned}
$$

Proof. The proof is similar to that of Lemma 6, with the difference being that since we do not use orthogonalization here some terms are no longer ignorable as appeared in the statement of the current lemma. Similar to the calculations in Lemma 6, we have

$$
\begin{aligned}
& \sum_{i} E \rho_{\tau}\left(e_{i}-\boldsymbol{\Pi}_{i}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)-\mathbf{U}_{i}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)-R_{i}(\boldsymbol{\beta}, \boldsymbol{\theta})\right)-\sum_{i} E \rho_{\tau}\left(e_{i}-\boldsymbol{\Pi}_{i}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)-R_{i}\left(\boldsymbol{\beta}, \boldsymbol{\theta}_{0}\right)\right) \\
= & \int_{\boldsymbol{\Pi}_{i}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)+R_{i}\left(\boldsymbol{\beta}, \boldsymbol{\theta}_{0}\right)}^{\boldsymbol{\Pi}_{i}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)+\mathbf{U}_{i}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)+R_{i}(\boldsymbol{\beta}, \boldsymbol{\theta})} F\left(t \mid \mathbf{W}_{i}, \mathbf{X}_{i}\right)-F\left(0 \mid \mathbf{W}_{i}, \mathbf{X}_{i}\right) d t \\
= & \sum_{i} \frac{f\left(0 \mid \mathbf{W}_{i}, \mathbf{X}_{i}\right)}{2}\left\{\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right) \boldsymbol{\Pi}_{i} \boldsymbol{\Pi}_{i}^{\mathrm{T}}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)+\breve{R}_{i}^{2}(\boldsymbol{\beta}, \boldsymbol{\theta})+2 \breve{R}_{i}(\boldsymbol{\beta}, \boldsymbol{\theta}) \boldsymbol{\Pi}_{i}^{\mathrm{T}}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)\right. \\
& \left.\quad+2\left(\boldsymbol{\Pi}_{i}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)+\breve{R}_{i}(\boldsymbol{\beta}, \boldsymbol{\theta})\right)\left(\mathbf{U}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)+R_{i}\left(\boldsymbol{\beta}, \boldsymbol{\theta}_{0}\right)\right)\right\}\left(1+o_{p}(1)\right) .
\end{aligned}
$$

Using $\left|\breve{R}_{i}(\boldsymbol{\beta}, \boldsymbol{\theta})\right| \leq C \sqrt{K^{3} / n} r_{n}^{\prime}$ and $\sum_{i=1}^{n} \breve{R}_{i}^{2}(\boldsymbol{\beta}, \boldsymbol{\theta}) \leq C K^{3}\left(r_{n}^{\prime}\right)^{2}$, all terms above involving $\breve{R}_{i}(\boldsymbol{\beta}, \boldsymbol{\theta})$ are $o_{p}\left((n / K) r_{n}^{2}\right)$, which proves the Lemma.

Proof of Theorem 3. Now define

$$
\begin{aligned}
\boldsymbol{\theta}^{*}:= & \left.\underset{\operatorname{rank}\left(\boldsymbol{\Theta}_{)} \leq r\right.}{\arg \min } \sum_{i} \frac{f\left(0 \mid \mathbf{W}_{i}, \mathbf{X}_{i}\right)}{2}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right) \boldsymbol{\Pi}_{i} \boldsymbol{\Pi}_{i}^{\mathrm{T}} \boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right) \\
\quad & +\sum_{i} f\left(0 \mid \mathbf{W}_{i}, \mathbf{X}_{i}\right) \boldsymbol{\Pi}_{i}^{\mathrm{T}}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)\left(\mathbf{U}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)+R_{i}\left(\boldsymbol{\beta}, \boldsymbol{\theta}_{0}\right)\right) \\
& \quad-\sum_{i} \boldsymbol{\Pi}_{i}^{\mathrm{T}}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)\left(\tau-I\left\{e_{i} \leq 0\right\}\right)
\end{aligned}
$$

and

$$
\boldsymbol{\theta}^{* *}:=\underset{\boldsymbol{\theta}}{\arg \min } \sum_{i} \frac{f\left(0 \mid \mathbf{W}_{i}, \mathbf{X}_{i}\right)}{2}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right) \boldsymbol{\Pi}_{i} \boldsymbol{\Pi}_{i}^{\mathrm{T}}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)
$$

$$
\begin{aligned}
& +\sum_{i} f\left(0 \mid \mathbf{W}_{i}, \mathbf{X}_{i}\right) \boldsymbol{\Pi}_{i}^{\mathrm{T}}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)\left(\mathbf{U}_{i}^{\mathrm{T}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)+R_{i}\left(\boldsymbol{\beta}, \boldsymbol{\theta}_{0}\right)\right) \\
& -\sum_{i} \boldsymbol{\Pi}_{i}^{\mathrm{T}}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)\left(\tau-I\left\{e_{i} \leq 0\right\}\right)
\end{aligned}
$$

(the latter does not have rank constraint). We have obviously

$$
\begin{equation*}
\boldsymbol{\theta}^{* *}-\boldsymbol{\theta}_{0}=\left(\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \boldsymbol{\Pi}\right)^{-1}\left(\boldsymbol{\Pi} \boldsymbol{\epsilon}-\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \mathbf{U}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)-\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \mathbf{R}\right), \tag{23}
\end{equation*}
$$

where $\boldsymbol{\Gamma}=\operatorname{diag}\left\{f\left(0 \mid \mathbf{W}_{1}, \mathbf{X}_{1}\right), \ldots, f\left(0 \mid \mathbf{W}_{n}, \mathbf{X}_{n}\right)\right\}, \mathbf{R}=\left(R_{1}\left(\boldsymbol{\beta}, \boldsymbol{\theta}_{0}\right), \ldots, R_{n}\left(\boldsymbol{\beta}, \boldsymbol{\theta}_{0}\right)\right)^{\mathrm{T}}$ and $\boldsymbol{\epsilon}=\left(\tau-I\left\{e_{1} \leq 0\right\}, \ldots, \tau-I\left\{e_{n} \leq 0\right\}\right)^{\mathrm{T}}$.

We note that the expression on the right hand side in the definition of $\boldsymbol{\theta}^{*}$ and $\boldsymbol{\theta}^{* *}$ can actually be written as

$$
\frac{1}{2}\left(\boldsymbol{\theta}-\boldsymbol{\theta}^{* *}\right)^{\mathrm{T}}\left(\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \boldsymbol{\Pi}\right)\left(\boldsymbol{\theta}-\boldsymbol{\theta}^{* *}\right)+\text { terms not involving } \boldsymbol{\theta} .
$$

For a general \mathbf{x}, let

$$
\boldsymbol{\theta}^{*}(\mathbf{x})=\underset{\operatorname{rank}(\boldsymbol{\Theta}) \leq r}{\arg \min } \frac{1}{2}(\boldsymbol{\theta}-\mathbf{x})^{\mathrm{T}}\left(\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \boldsymbol{\Pi}\right)(\boldsymbol{\theta}-\mathbf{x}) .
$$

Then by our definition of $\boldsymbol{\theta}^{*}, \boldsymbol{\theta}^{*}$ can thus be regarded as a function of $\boldsymbol{\theta}^{* *}$, denoted by $\boldsymbol{\theta}^{*}\left(\boldsymbol{\theta}^{* *}\right)$. Since $\boldsymbol{\Theta}_{0}$ has rank bounded by r, we can write $\boldsymbol{\Theta}_{0}=\mathbf{D}_{0} \mathbf{E}_{0}^{T}$ for a $p \times r$ matrix \mathbf{D}_{0} and a $K \times r$ matrix \mathbf{E}_{0}. The Jacobian of this parametrization of $\boldsymbol{\theta}_{0}$ is defined to be

$$
\boldsymbol{\Delta}=\left.\frac{\partial \boldsymbol{\theta}}{\partial\left(\operatorname{vec}^{\mathrm{T}}(\mathbf{D}), \operatorname{vec}^{\mathrm{T}}(\mathbf{E})\right)}\right|_{\mathbf{D}=\mathbf{D}_{0}, \mathbf{E}=\mathbf{E}_{0}}
$$

By Proposition 3.1 in Shapiro (1986), the Jacobian matrix for the function $\boldsymbol{\theta}^{*}($.$) is$

$$
\mathbf{J}_{\boldsymbol{\theta}}=\left.\frac{\partial \boldsymbol{\theta}^{*}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\boldsymbol{\theta}^{* *}}=\boldsymbol{\Delta}\left(\boldsymbol{\Delta}^{\mathrm{T}} \boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \boldsymbol{\Pi} \boldsymbol{\Delta}\right)^{-} \boldsymbol{\Delta}^{\mathrm{T}} \boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \boldsymbol{\Pi},
$$

where (. $)^{-}$denotes the Moore-Penrose inverse.
Next we show the asymptotic normality of $\mathbf{B}(x)^{\mathrm{T}} \boldsymbol{\theta}_{j}^{* *}=\left(\mathbf{e}_{j} \otimes \mathbf{B}(x)\right)^{\mathrm{T}} \boldsymbol{\theta}^{* *}$, where \mathbf{e}_{j} is the unit vector with j-th entry 1 and others 0 . For the term $\left(\mathbf{e}_{j} \otimes \mathbf{B}(x)\right)^{\mathrm{T}}\left(\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \boldsymbol{\Pi}\right)^{-1} \boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\epsilon}$, its obviously its conditional variance is $\tau(1-\tau)\left(\mathbf{e}_{j} \otimes \mathbf{B}(x)\right)^{\mathrm{T}}\left(\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \boldsymbol{\Pi}\right)^{-1}\left(\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Pi}\right)\left(\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \boldsymbol{\Pi}\right)^{-1}\left(\mathbf{e}_{j} \otimes\right.$
$\mathbf{B}(x)) \asymp K / n$. One can verify that the Lindeberg-Feller condition holds and thus we get

$$
\frac{\left(\mathbf{e}_{j} \otimes \mathbf{B}(x)\right)^{\mathrm{T}}\left(\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \boldsymbol{\Pi}\right)^{-1} \boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\epsilon}}{\left(\tau(1-\tau)\left(\mathbf{e}_{j} \otimes \mathbf{B}(x)\right)^{\mathrm{T}}\left(\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \boldsymbol{\Pi}\right)^{-1}\left(\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Pi}\right)\left(\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \boldsymbol{\Pi}\right)^{-1}\left(\mathbf{e}_{j} \otimes \mathbf{B}(x)\right)\right)^{1 / 2}} \xrightarrow{d} N(0,1),
$$

using arguments similar to that used in Theorem 3.1 of Zhou et al. (1998). When $\left\|\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right\|=O(1 / \sqrt{n})$, we have

$$
\begin{aligned}
& \left(\mathbf{e}_{j} \otimes \mathbf{B}(x)\right)^{\mathrm{T}}\left(\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \boldsymbol{\Pi}\right)^{-1} \boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \mathbf{U}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right) \\
= & O_{p}\left(\left\|\left(\mathbf{e}_{j} \otimes \mathbf{B}(x)\right)^{\mathrm{T}}\left(\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \boldsymbol{\Pi}\right)^{-1} \boldsymbol{\Pi}^{\mathrm{T}}\right\|\|\mathbf{U}\|\left\|\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right\|\right) \\
= & O_{p}\left(\frac{1}{\sqrt{n}} \cdot \sqrt{n} \cdot \frac{1}{\sqrt{n}}\right)=O_{p}\left(\frac{1}{\sqrt{n}}\right) .
\end{aligned}
$$

Furthermore, write $\mathbf{R}=\mathbf{R}_{1}+\mathbf{R}_{2}$ where $\mathbf{R}_{1}=\left(R_{11}\left(\boldsymbol{\beta}, \boldsymbol{\theta}_{0}\right), \ldots, R_{n 1}\left(\boldsymbol{\beta}, \boldsymbol{\theta}_{0}\right)\right)^{\mathrm{T}}$ and $\mathbf{R}_{2}=\left(R_{12}\left(\boldsymbol{\beta}, \boldsymbol{\theta}_{0}\right), \ldots, R_{n 2}\left(\boldsymbol{\beta}, \boldsymbol{\theta}_{0}\right)\right)^{\mathrm{T}} .\left\|\mathbf{R}_{1}\right\|^{2}=O_{p}(1 / n)$ is sufficiently small such that it directly leads to

$$
\begin{aligned}
& \left(\mathbf{e}_{j} \otimes \mathbf{B}(x)\right)^{\mathrm{T}}\left(\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \boldsymbol{\Pi}\right)^{-1} \boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \mathbf{R}_{1} \\
= & O_{p}\left(n^{-3 / 2}\right)=o_{p}\left(\sqrt{\frac{K}{n}}\right) .
\end{aligned}
$$

On the other hand, by our definition of $\boldsymbol{\Theta}_{0}, \boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \mathbf{R}_{2}$ has mean zero, and thus

$$
\begin{aligned}
& E\left[\left|\left(\mathbf{e}_{j} \otimes \mathbf{B}(x)\right)^{\mathrm{T}}\left(\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \boldsymbol{\Pi}\right)^{-1} \boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \mathbf{R}_{2}\right|^{2}\right] \\
= & O_{p}\left(\frac{1}{n K^{2 d}}\right)=o_{p}\left(\frac{K}{n}\right) .
\end{aligned}
$$

Thus the dominating term in $\left(\mathbf{e}_{j} \otimes \mathbf{B}(x)\right)^{\mathrm{T}}\left(\boldsymbol{\theta}^{* *}-\boldsymbol{\theta}_{0}\right)$ is $\left(\mathbf{e}_{j} \otimes \mathbf{B}(x)\right)^{\mathrm{T}}\left(\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \boldsymbol{\Pi}\right)^{-1} \boldsymbol{\Pi} \boldsymbol{\epsilon}$ and

$$
\frac{\left(\mathbf{e}_{j} \otimes \mathbf{B}(x)\right)^{\mathrm{T}}\left(\boldsymbol{\theta}^{* *}-\boldsymbol{\theta}_{0}\right)}{\left(\tau(1-\tau)\left(\mathbf{e}_{j} \otimes \mathbf{B}(x)\right)^{\mathrm{T}}\left(\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \boldsymbol{\Pi}\right)^{-1}\left(\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Pi}\right)\left(\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \boldsymbol{\Pi}\right)^{-1}\left(\mathbf{e}_{j} \otimes \mathbf{B}(x)\right)\right)^{1 / 2}} \rightarrow N(0,1)
$$

Thinking $\boldsymbol{\theta}^{*}$ as a function of $\boldsymbol{\theta}^{* *}$, delta method implies that we also have asymptotic normality for $\boldsymbol{\theta}^{*}$:
$\frac{\left(\mathbf{e}_{j} \otimes \mathbf{B}(x)\right)^{\mathrm{T}}\left(\boldsymbol{\theta}^{*}-\boldsymbol{\theta}_{0}\right)}{\left(\tau(1-\tau)\left(\mathbf{e}_{j} \otimes \mathbf{B}(x)\right)^{\mathrm{T}} \mathbf{J}_{\boldsymbol{\theta}}\left(\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \boldsymbol{\Pi}\right)^{-1}\left(\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Pi}\right)\left(\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \boldsymbol{\Pi}\right)^{-1} \mathbf{J}_{\boldsymbol{\theta}}^{\mathrm{T}}\left(\mathbf{e}_{j} \otimes \mathbf{B}(x)\right)\right)^{1 / 2}} \rightarrow N(0,1)$.

When $K n^{-1 /(2 d+1)} \rightarrow \infty$, the bias in estimating g_{j} is dominated by its standard deviation, and thus
$\frac{\left(\mathbf{e}_{j} \otimes \mathbf{B}(x)\right)^{\mathrm{T}} \boldsymbol{\theta}^{*}-\beta_{j}(x)}{\left(\tau(1-\tau)\left(\mathbf{e}_{j} \otimes \mathbf{B}(x)\right)^{\mathrm{T}} \mathbf{J}_{\boldsymbol{\theta}}\left(\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \boldsymbol{\Pi}\right)^{-1}\left(\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Pi}\right)\left(\boldsymbol{\Pi}^{\mathrm{T}} \boldsymbol{\Gamma} \boldsymbol{\Pi}\right)^{-1} \mathbf{J}_{\boldsymbol{\theta}}^{\mathrm{T}}\left(\mathbf{e}_{j} \otimes \mathbf{B}(x)\right)\right)^{1 / 2}} \rightarrow N(0,1)$.
Denote

$$
\begin{aligned}
Q(\boldsymbol{\beta}, \boldsymbol{\theta})= & -\sum_{i=1}^{n} \boldsymbol{\Pi}_{i}^{\mathrm{T}}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)\left(\tau-I\left\{e_{i} \leq 0\right\}\right) \\
& +E \sum_{i=1}^{n} \rho_{\tau}\left(Y_{i}-\sum_{j} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}\right) \\
& -E \sum_{i=1}^{n} \rho_{\tau}\left(Y_{i}-\sum_{j} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}^{*}\right) .
\end{aligned}
$$

For a small $\delta>0$, using Lemma 8, we get

$$
\begin{aligned}
& \sup _{\left\|\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right\| \leq \delta\left(n^{-1 / 2}+K^{-d-1 / 2}\right),\left\|\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right\| \leq C / \sqrt{n}} \mid \sum_{i=1}^{n} \rho_{\tau}\left(Y_{i}-\sum_{j} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}\right) \\
& -\sum_{i=1}^{n} \rho_{\tau}\left(Y_{i}-\sum_{j} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}^{*}\right)-\left[Q(\boldsymbol{\beta}, \boldsymbol{\theta})-Q\left(\boldsymbol{\beta}, \boldsymbol{\theta}^{*}\right)\right] \mid=o_{p}\left((n / K) r_{n}^{2}\right) .
\end{aligned}
$$

Since $Q(\boldsymbol{\beta}, \boldsymbol{\theta})$ is approximately quadratic, we have that when $\left\|\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right\|=\delta\left(n^{-1 / 2}+\right.$ $\left.K^{-d-1 / 2}\right)$,

$$
\left|Q(\boldsymbol{\beta}, \boldsymbol{\theta})-Q\left(\boldsymbol{\beta}, \boldsymbol{\theta}^{*}\right)\right| \geq C n\left\|\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right\|^{2}-o_{p}\left((n / K) r_{n}^{2}\right)>0 .
$$

This yields

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} P\left\{\inf _{\left\|\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right\|=\delta\left(n^{-1 / 2}+K^{-d-1 / 2}\right),\left\|\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right\| \leq C / \sqrt{n}} \sum_{i=1}^{n} \rho_{\tau}\left(Y_{i}-\sum_{j} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}\right)\right. \\
& \left.\quad>\sum_{i=1}^{n} \rho_{\tau}\left(Y_{i}-\sum_{j} X_{i j} \mathbf{B}^{\mathrm{T}}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right) \boldsymbol{\theta}_{j}^{*}\right)\right\}=1 .
\end{aligned}
$$

Thus

$$
P\left\{\left\|\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\| \geq \delta\left(n^{-1 / 2}+K^{-d-1 / 2}\right)\right\},
$$

converges to zero and we deduce that $\left\|\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\|=o_{p}\left(n^{-1 / 2}+K^{-d-1 / 2}\right)$, which implies $\left(\mathbf{e}_{j} \otimes \mathbf{B}(x)\right)^{\mathrm{T}} \widehat{\boldsymbol{\theta}}$ has the same asymptotic distribution as $\left(\mathbf{e}_{j} \otimes \mathbf{B}(x)\right)^{\mathrm{T}} \boldsymbol{\theta}^{*}$.
Proof of Theorem 4. In the proof, the true rank of the matrix $\boldsymbol{\Theta}_{0}$ is denoted by r_{0}, while we use r to denote a generic value for rank that can vary.

For any given r, let $\boldsymbol{\Theta}_{r}$ be the minimizer of

$$
\min _{\operatorname{rank}(\boldsymbol{\Theta}) \leq r} E\left[\rho_{\tau}\left(Y-\mathbf{X}^{\mathrm{T}} \boldsymbol{\Theta} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right] .\right.
$$

Denote the estimator of $\boldsymbol{\Theta}_{r}$ as $\widehat{\boldsymbol{\Theta}}_{r}$, which minimizes $\sum_{i} \rho_{\tau}\left(Y_{i}-\mathbf{X}_{i}^{\mathrm{T}} \boldsymbol{\Theta B}\left(\mathbf{W}_{i}^{\mathrm{T}} \widehat{\boldsymbol{\beta}}_{f}\right)\right)$ also with the rank constraint. In the following, we consider two cases to finish the proof.

Case 1. ($r<r_{0}$, underfitted model) We first prove

$$
\begin{equation*}
\mathrm{E}\left[\rho_{\tau}\left(Y-\mathbf{X}^{\mathrm{T}} \boldsymbol{\Theta}_{r} \mathbf{B}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right)\right]-\mathrm{E}\left[\rho_{\tau}\left(Y-\mathbf{X}^{\mathrm{T}} \boldsymbol{\Theta}_{0} \mathbf{B}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right)\right] \tag{24}
\end{equation*}
$$

is bounded away from zero. By Knight's identity, we have

$$
\begin{align*}
& \rho_{\tau}\left(Y-\mathbf{X}^{\mathrm{T}} \boldsymbol{\Theta}_{r} \mathbf{B}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right)-\rho_{\tau}\left(Y-\mathbf{X}^{\mathrm{T}} \boldsymbol{\Theta}_{0} \mathbf{B}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right) \\
= & \mathbf{X}^{\mathrm{T}}\left(\boldsymbol{\Theta}_{r}-\boldsymbol{\Theta}_{0}\right) \mathbf{B}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)[I\{e \leq \delta\}-\tau]+\int_{0}^{\mathbf{X}^{\mathrm{T}}}\left(\boldsymbol{\Theta}_{r}-\boldsymbol{\Theta}_{0}\right) \mathbf{B}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \\
= & \mathbf{X}^{\mathrm{T}}\left(\mathbf{\Theta}_{r}-\boldsymbol{\Theta}_{0}\right) \mathbf{B}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)[I\{e \leq 0 \leq \delta+t\}-I\{e \leq \delta\}] d t, \\
& +\int_{0}^{\mathbf{X}^{\mathrm{T}}\left(\boldsymbol{\Theta}_{r}-\boldsymbol{\Theta}_{0}\right) \mathbf{B}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)}[I\{e \leq \delta+t\}-I\{e \leq \delta\}] d t, \tag{25}
\end{align*}
$$

where $\delta=\mathbf{X}^{\mathrm{T}} \boldsymbol{\Theta}_{0} \mathbf{B}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)-m$ and $m=\mathbf{g}^{\mathrm{T}}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right) \mathbf{X}$ is the τ-th conditional quantile of Y given \mathbf{W} and \mathbf{X}.

The first term in (25) obviously has mean zero. By taking an iterated expectation conditioning on \mathbf{W}, \mathbf{X} first, the second term in (25) satisfies

$$
E\left\{\mathbf{X}^{\mathrm{T}}\left(\boldsymbol{\Theta}_{r}-\boldsymbol{\Theta}_{0}\right) \mathbf{B}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)[I\{e \leq \delta\}-I\{e \leq 0\}]\right\}=O\left(\left\|\boldsymbol{\Theta}_{r}-\boldsymbol{\Theta}_{0}\right\| K^{-d}\right) .
$$

For the third term in (25), note that conditionally on \mathbf{X} and \mathbf{W}, by (A2), we can find a neighborhood around zero on which the conditional density value of e is positive.

Thus we have

$$
\mathrm{E} \int_{0}^{\mathbf{X}^{\mathrm{T}}\left(\boldsymbol{\Theta}_{r}-\boldsymbol{\Theta}_{0}\right) \mathbf{B}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)}[I\{e \leq \delta+t\}-I\{e \leq \delta\}] d t
$$

$$
\begin{aligned}
& =\mathrm{E} \int_{0}^{\mathbf{X}^{\mathrm{T}}\left(\boldsymbol{\Theta}_{r}-\boldsymbol{\Theta}_{0}\right) \mathbf{B}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)}[F(\delta+t \mid \mathbf{W}, \mathbf{X})-F(\delta \mid \mathbf{W}, \mathbf{X})] d t \\
& \geq C E\left[\left\{\mathbf{X}^{\mathrm{T}}\left(\boldsymbol{\Theta}_{r}-\mathbf{\Theta}_{0}\right) \mathbf{B}\left(\mathbf{W}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right\}^{2}\right] \geq C\left\|\boldsymbol{\Theta}_{r}-\boldsymbol{\Theta}_{0}\right\|^{2} .
\end{aligned}
$$

By assumption (B), when $r<r_{0},\left\|\boldsymbol{\Theta}_{r}-\boldsymbol{\Theta}_{0}\right\|$ is bounded away from zero, and thus expectation of the third term in (25) dominates those of other terms and as a result we have (24).

By following the proof of Theorem 1, even with underfitted models, we still have $\left\|\widehat{\boldsymbol{\Theta}}_{r}-\boldsymbol{\Theta}_{r}\right\|=O_{p}\left(r_{n}\right)$, where $r_{n}=\sqrt{K / n}+K^{-d}$. We can also get, following the proof of Lemmas 1 and 2 .

$$
\begin{equation*}
\sum_{i=1}^{n} \rho_{\tau}\left(Y_{i}-\mathbf{X}_{i}^{\mathrm{T}} \widehat{\boldsymbol{\Theta}}_{r} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \widehat{\boldsymbol{\beta}}_{f}\right)\right)-\sum_{i=1}^{n} \rho_{\tau}\left(Y_{i}-\mathbf{X}_{i}^{\mathrm{T}} \mathbf{\Theta}_{r} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right)=O_{p}\left(n r_{n}^{2}\right) . \tag{26}
\end{equation*}
$$

For the SIC, using (26), we can write

$$
\begin{aligned}
& \operatorname{SIC}(r)-\operatorname{SIC}\left(r_{0}\right) \\
= & \log \left(1+\frac{\sum_{i} \rho_{\tau}\left(Y_{i}-\mathbf{X}_{i}^{\mathrm{T}} \widehat{\boldsymbol{\Theta}}_{r} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \widehat{\boldsymbol{\beta}}_{f}\right)\right) / n-\sum_{i} \rho_{\tau}\left(Y_{i}-\mathbf{X}_{i}^{\mathrm{T}} \widehat{\boldsymbol{\Theta}}_{r_{0}} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \widehat{\boldsymbol{\beta}}_{f}\right)\right) / n}{\sum_{i} \rho_{\tau}\left(Y_{i}-\mathbf{X}_{i}^{\mathrm{T}} \widehat{\boldsymbol{\Theta}}_{r_{0}} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \widehat{\boldsymbol{\beta}}_{f}\right)\right) / n}\right)+O\left(\frac{K \log n}{n}\right) \\
= & \log \left(1+\frac{\sum_{i} \rho_{\tau}\left(Y_{i}-\mathbf{X}_{i}^{\mathrm{T}} \boldsymbol{\Theta}_{r} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right) / n-\sum_{i} \rho_{\tau}\left(Y_{i}-\mathbf{X}_{i}^{\mathrm{T}} \boldsymbol{\Theta}_{r_{0}} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right) / n+O_{p}\left(r_{n}^{2}\right)}{\sum_{i} \rho_{\tau}\left(Y_{i}-\mathbf{X}_{i}^{\mathrm{T}} \mathbf{\Theta}_{r_{0}} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right) / n+O_{p}\left(r_{n}^{2}\right)}\right) \\
& +O\left(\frac{K \log n}{n}\right) .
\end{aligned}
$$

Applying the law of large number, we have that

$$
\sum_{i} \rho_{\tau}\left(Y_{i}-\mathbf{X}_{i}^{\mathrm{T}} \boldsymbol{\Theta}_{r} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right) / n-\sum_{i} \rho_{\tau}\left(Y_{i}-\mathbf{X}_{i}^{\mathrm{T}} \boldsymbol{\Theta}_{r_{0}} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right) / n
$$

and

$$
\sum_{i} \rho_{\tau}\left(Y_{i}-\mathbf{X}_{i}^{\mathrm{T}} \boldsymbol{\Theta}_{r_{0}} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right) / n
$$

are both bounded away from zero, which leads to that

$$
\begin{equation*}
P\left\{\operatorname{SIC}(r)>\operatorname{SIC}\left(r_{0}\right)\right\} \rightarrow 1 \text { for any } r<r_{0} \tag{27}
\end{equation*}
$$

Case 2. ($r>r_{0}$, overfitted model) By the same arguments as in (26), we have

$$
\operatorname{SIC}(r)-\operatorname{SIC}\left(r_{0}\right)
$$

$$
\begin{aligned}
= & \log \left(1+\frac{\left.\left.\sum_{i} \rho_{\tau}\left(Y_{i}-\mathbf{X}_{i}^{\mathrm{T}} \widehat{\boldsymbol{\Theta}}_{r} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \widehat{\boldsymbol{\beta}}_{f}\right)\right)\right) / n-\sum_{i} \rho_{\tau}\left(Y_{i}-\mathbf{X}_{i}^{\mathrm{T}} \widehat{\boldsymbol{\Theta}}_{r_{0}} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \widehat{\boldsymbol{\beta}}_{f}\right)\right)\right) / n}{\left.\sum_{i} \rho_{\tau}\left(Y_{i}-\mathbf{X}_{i}^{\mathrm{T}} \widehat{\boldsymbol{\Theta}}_{r_{0}} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \widehat{\boldsymbol{\beta}}_{f}\right)\right)\right) / n}\right) \\
& +\left(r-r_{0}\right)\left(p+K-r-r_{0}\right) \frac{\log n}{2 n} \\
= & \log \left(1+\frac{\sum_{i} \rho_{\tau}\left(Y_{i}-\mathbf{X}_{i}^{\mathrm{T}} \boldsymbol{\Theta}_{r} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right) / n-\sum_{i} \rho_{\tau}\left(Y_{i}-\mathbf{X}_{i}^{\mathrm{T}} \boldsymbol{\Theta}_{r_{0}} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right) / n+O_{p}\left(r_{n}^{2}\right)}{\sum_{i} \rho_{\tau}\left(Y_{i}-\mathbf{X}_{i}^{\mathrm{T}} \boldsymbol{\Theta}_{r_{0}} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right) / n+O_{p}\left(r_{n}^{2}\right)}\right) \\
& +\left(r-r_{0}\right)\left(p+K-r-r_{0}\right) \frac{\log n}{2 n} .
\end{aligned}
$$

In the overfitting case, we note that $\boldsymbol{\Theta}_{r}=\boldsymbol{\Theta}_{r_{0}}$, which implies

$$
\operatorname{SIC}(r)-\operatorname{SIC}\left(r_{0}\right)=O_{p}\left(\frac{K}{n}\right)+\left(r-r_{0}\right)\left(p+K-r-r_{0}\right) \frac{\log n}{2 n},
$$

and thus

$$
\begin{equation*}
P\left\{\operatorname{SIC}(r)>\operatorname{SIC}\left(r_{0}\right)\right\} \rightarrow 1 \text { for any } r>r_{0} \tag{28}
\end{equation*}
$$

Proof of Theorem 5. First, we can show the existence of a r_{n}-consistent local minimizer for the penalized optimization problem (4). Using Lemma 1, similar to the proof of Theorem 1, we can show that for $\left\|\boldsymbol{\Theta}-\boldsymbol{\Theta}_{0}\right\|+\left\|\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right\|=L r_{n}$ with $L>0$ sufficiently large,

$$
\sum_{i} \rho_{\tau}\left(Y_{i}-\mathbf{X}_{i}^{\mathrm{T}} \boldsymbol{\Theta B}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right)>\sum_{i} \rho_{\tau}\left(Y_{i}-\mathbf{X}_{i}^{\mathrm{T}} \mathbf{\Theta}_{0} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right.\right.
$$

with probability approaching one.
Considering the penalty terms, for $j \leq q$, with $\left\|\boldsymbol{\theta}_{j}-\boldsymbol{\theta}_{0 j}\right\| \leq L r_{n}$, using the concrete form of the SCAD penalty, we have $p_{\lambda}\left(\left\|\boldsymbol{\theta}_{j}\right\|_{\mathbf{A}_{j}}\right)=p_{\lambda}\left(\left\|\boldsymbol{\theta}_{0 j}\right\|_{\mathbf{A}_{j}}\right)$ since $\lambda=o(1)$ and both $\left\|\boldsymbol{\theta}_{j}\right\|$ and $\left\|\boldsymbol{\theta}_{0 j}\right\|$ are bounded away from zero. On the other hand, when $j>q$, we have $p_{\lambda}\left(\left\|\boldsymbol{\theta}_{j}\right\|_{\mathbf{A}_{j}}\right) \geq p_{\lambda}\left(\left\|\boldsymbol{\theta}_{0 j}\right\|_{\mathbf{A}_{j}}\right)=0$. Combining the two cases above, we get

$$
n \sum_{j} p_{\lambda}\left(\left\|\boldsymbol{\theta}_{j}\right\|_{\mathbf{A}_{j}}\right) \geq n \sum_{j} p_{\lambda}\left(\left\|\boldsymbol{\theta}_{0 j}\right\|_{\mathbf{A}_{j}}\right) .
$$

Thus, we get that, uniformly for $\left\|\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right\|=L r_{n}$ with L sufficiently large,

$$
\sum_{i} \rho_{\tau}\left(Y_{i}-\mathbf{X}_{i}^{\mathrm{T}} \boldsymbol{\Theta} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right)\right)+n \sum_{j} p_{\lambda}\left(\left\|\boldsymbol{\theta}_{j}\right\|_{\mathbf{A}_{j}}\right)>\sum_{i} \rho_{\tau}\left(Y_{i}-\mathbf{X}_{i}^{\mathrm{T}} \boldsymbol{\Theta}_{0} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right)+n \sum_{j} p_{\lambda}\left(\left\|\boldsymbol{\theta}_{0 j}\right\|_{\mathbf{A}_{j}}\right) .
$$

This implies the existence of a r_{n}-consistent local minimizer.
The next step is to show that this r_{n}-consistent local minimizer, denoted as $(\widetilde{\boldsymbol{\beta}}, \widetilde{\boldsymbol{\theta}})$, satisfies part (i) of Theorem 5. We prove this fact by contradition. If (i) is not true, we can assume $\widetilde{\boldsymbol{\theta}}_{j^{*}} \neq 0$ for some $j^{*}>q$. We define $\widetilde{\boldsymbol{\theta}}^{*}$ to be the same as $\widetilde{\boldsymbol{\theta}}$, but we replace $\widetilde{\boldsymbol{\theta}}_{j^{*}}$ by $\widetilde{\boldsymbol{\theta}}_{j^{*}}^{*}=0$. Due to the check loss function is convex, we have $\rho_{\tau}(x)-\rho_{\tau}(y) \geq(\tau-I\{y \leq 0\})(x-y)$, implying that

$$
\begin{align*}
& \sum_{i} \rho_{\tau}\left(Y_{i}-\mathbf{X}_{i}^{\mathrm{T}} \widetilde{\boldsymbol{\Theta}} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \widetilde{\boldsymbol{\beta}}\right)\right)-\sum_{i} \rho_{\tau}\left(Y_{i}-\mathbf{X}_{i}^{\mathrm{T}} \widetilde{\boldsymbol{\Theta}}^{*} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \widetilde{\boldsymbol{\beta}}\right)\right) \\
\geq & -\sum_{i}\left(\tau-I\left\{Y_{i} \leq \mathbf{X}_{i}^{\mathrm{T}} \widetilde{\boldsymbol{\Theta}} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \widetilde{\boldsymbol{\beta}}\right)\right\}\right) X_{i j} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \widetilde{\boldsymbol{\beta}}\right)^{\mathrm{T}} \widetilde{\boldsymbol{\theta}}_{j^{*}} \\
= & -\sum_{i}\left(\tau-I\left\{e_{i} \leq 0\right\}\right) X_{i j} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \widetilde{\boldsymbol{\beta}}\right) \widetilde{\boldsymbol{\theta}}_{j^{*}} \\
& -\sum_{i}\left(I\left\{e_{i} \leq 0\right\}-I\left\{e_{i} \leq \mathbf{X}_{i}^{\mathrm{T}} \widetilde{\boldsymbol{\Theta}} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \widetilde{\boldsymbol{\beta}}\right)-m_{i}\right\}\right) X_{i j} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \widetilde{\boldsymbol{\beta}}\right)^{\mathrm{T}} \widetilde{\boldsymbol{\theta}}_{j^{*}} . \tag{29}
\end{align*}
$$

The first term above can be bounded as $\sum_{i}\left(\tau-I\left\{e_{i} \leq 0\right\}\right) X_{i j} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \widetilde{\boldsymbol{\beta}}\right) \widetilde{\boldsymbol{\theta}}_{j^{*}}=O_{p}(\sqrt{n K})\left\|\widetilde{\boldsymbol{\theta}}_{j^{*}}\right\|$. For the second term above, let M_{n} be any positive sequence diverging to infinity, we have, since $\left|\mathbf{X}_{i}^{\mathrm{T}} \widetilde{\boldsymbol{\Theta}} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \widetilde{\boldsymbol{\beta}}\right)-m_{i}\right|=O_{p}\left(\sqrt{K} r_{n}\right), P\left(\left|\mathbf{X}_{i}^{\mathrm{T}} \widetilde{\boldsymbol{\Theta}} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \widetilde{\boldsymbol{\beta}}\right)-m_{i}\right|>M_{n} \sqrt{K} r_{n}\right) \rightarrow$ 0 , and

$$
\begin{aligned}
& E\left[\left\|\sum_{i}\left(I\left\{e_{i} \leq 0\right\}-I\left\{e_{i} \leq \mathbf{X}_{i}^{\mathrm{T}} \widetilde{\boldsymbol{\Theta}} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \widetilde{\boldsymbol{\beta}}\right)-m_{i}\right\}\right) X_{i j^{*}} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \widetilde{\boldsymbol{\beta}}\right)\right\|^{2}\right. \\
\leq & \left.\left.E\left[\left(\sum_{i}\left|I\left\{e_{i} \leq M_{n} \sqrt{K} r_{n}\right\}-I\left\{e_{i} \leq-M_{n} \sqrt{K} r_{n}\right\}\right| \cdot\left\|\mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \widetilde{\boldsymbol{\beta}}\right)\right\|\right)^{\mathrm{T}} \widetilde{\boldsymbol{\beta}}\right)-m_{i} \mid \leq M_{n} \sqrt{K} r_{n}\right\}\right] \\
= & E\left[\sum_{i} I\left\{-M_{n} \sqrt{K} r_{n} \leq e_{i} \leq M_{n} \sqrt{K} r_{n}\right\} \cdot\left\|\mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \widetilde{\boldsymbol{\beta}}\right)\right\|^{2}\right] \\
& +\sum_{i \neq i^{\prime}} E\left[I\left\{-M_{n} \sqrt{K} r_{n} \leq e_{i} \leq M_{n} \sqrt{K} r_{n}\right\} I\left\{-M_{n} \sqrt{K} r_{n} \leq e_{i^{\prime}} \leq M_{n} \sqrt{K} r_{n}\right\}\right. \\
\leq & C\left(\mathbf{W}_{i}^{\mathrm{T}} \widetilde{\boldsymbol{\beta}}\right)\left\|\left\|\mathbf{B}\left(\mathbf{W}_{i^{\prime}}^{\mathrm{T}} \widetilde{\boldsymbol{\beta}}\right)\right\|\right] \\
\leq & \left.\sqrt{K} r_{n}+n^{2} M_{n}^{2} K r_{n}^{2}\right)\left\|\widetilde{\boldsymbol{\theta}}_{j^{*}}\right\|^{2},
\end{aligned}
$$

and thus the second term of $\sqrt{29}$ is $O_{p}\left(n \sqrt{K} r_{n}\right)\left\|\widetilde{\boldsymbol{\theta}}_{j^{*}}\right\|$. Besides, considering the difference of the penalty, we have

$$
\begin{equation*}
n \sum_{j} p_{\lambda}\left(\left\|\widetilde{\boldsymbol{\theta}}_{j}\right\|_{\mathbf{A}_{j}}\right)-n \sum_{j} p_{\lambda}\left(\left\|\widetilde{\boldsymbol{\theta}}_{j}\right\|_{\mathbf{A}_{j}}\right)=n p_{\lambda}\left(\left\|\widetilde{\boldsymbol{\theta}}_{j^{*}}\right\|_{\mathbf{A}_{j}}\right)=n \lambda\left\|\widetilde{\boldsymbol{\theta}}_{j^{*}}\right\|_{\mathbf{A}_{j}}, \tag{30}
\end{equation*}
$$

where the last equality used the fact that $p_{\lambda}(|x|)=\lambda|x|$ when $|x|<\lambda$. Putting together (29) and (30), we get

$$
\sum_{i} \rho_{\tau}\left(Y_{i}-\mathbf{X}_{i}^{\mathrm{T}} \widetilde{\boldsymbol{\Theta}} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \widetilde{\boldsymbol{\beta}}\right)\right)+n \sum_{j} p_{\lambda}\left(\left\|\widetilde{\boldsymbol{\theta}}_{j}\right\|_{\mathbf{A}_{j}}\right)>\sum_{i} \rho_{\tau}\left(Y_{i}-\mathbf{X}_{i}^{\mathrm{T}} \widetilde{\boldsymbol{\Theta}} \mathbf{B}\left(\mathbf{W}_{i}^{\mathrm{T}} \widetilde{\boldsymbol{\beta}}\right)\right)+n \sum_{j} p_{\lambda}\left(\left\|\widetilde{\boldsymbol{\theta}}_{j}^{*}\right\|_{\mathbf{A}_{j}}\right)
$$

with probability approaching one. This leads to a contradiction.
Finally, to show part (ii) of the theorem, we note that given part (i) holds, restricted to a r_{n}-neighborhood, the penalty $n \sum_{j=1}^{q} p_{\lambda}\left(\left\|\widetilde{\boldsymbol{\theta}}_{j}\right\|_{\mathbf{A}_{j}}\right)$ remains a constant. Thus the local minimizer without a penalty is also a local minimizer of the objective function with a penalty. Then asymptotic properties we want to prove directly follows from Theorem 1 .

Finally, since the proof of Theorem 6 is similar to that of Theorem 4, we choose to omit the details here.

