Supporting Information

Self-formed Channel Boosts Ultra-fast Lithium Ion Storage in Fe₃O₄@Nitrogen-doped Carbon Nanocapsule

Huanhuan Duan,^a Shenkui Zhang,^a Zhuowen Chen,^a Anding Xu,^a Shuzhong Zhan,^a

Songping Wu^{a,*}

a- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China.

*Corresponding author, E-mail: chwsp@scut.edu.cn

Pure Fe₂O₃ particles and Fe₂O₃ electrode:

In this work, the pure Fe_2O_3 material, an annealed product of precursor FeOOH at air atmosphere under the same temperature, can be used as a comparison to compare with $Fe_3O_4@NC$ because they possess similar morphology, reaction mechanism and approximate theoretical capacity. ¹⁻³

We also note that the capacity of Fe_2O_3 electrode is higher than that of Fe_3O_4 @NC at initial stage, because it has a higher theoretical capacity (~1007 mAh g⁻¹). This behavior also existed in rate test, at small current densities during first 30 cycles.

Figure S1. XRD profile of pure Fe₂O₃.

Figure S2. FT-IR spectra of precursor FeOOH, intermediate FeOOH@PDA and $Fe_3O_4@NC$.

There existed a series of peaks at 639, 704, 863, 1087, between 3359 and 3490 cm⁻¹ for precursor FeOOH. Among them, the peaks of 639, 863 and 3359 – 3490 cm⁻¹ reflected the signal of Fe-O, α -FeOOH and -OH group, respectively. ⁴⁻⁵ And the peaks at 704 and 1087 cm⁻¹ could be assigned to in-plane and out-of-plane Fe-O-H bending modes (Figure S2). ⁶ We also observed that the absorption peak signals of intermediate FeOOH@PDA were similar with those of precursor except for intensity difference due to PDA coating.

Figure S3. TG analysis of Fe₃O₄@NC.

The carbon content of Fe₃O₄@NC composite was accurately determined by thermogravimetric (TG) analysis carried out in air atmosphere with a heating rate of 10 °C min⁻¹. In Figure S3, we observed three steps during heating process. The first 2.94% weight loss below 150 °C was due to a physical process, *i.e.*, the volatilization of absorbed water. Similar to literature, an oxidation reaction of Fe₃O₄ \rightarrow Fe₂O₃ could cause a slightly increased weight between 200 °C and 300 °C. ⁷ Soon afterwards, the carbon component was completely combusted above 400 °C, resulting in a fast weight loss. Thus the carbon content of 23.36% could be calculated according to above results.

Figure S4. (a) XPS spectrum and (b) Fe 2p XPS analysis of Fe_3O_4 @NC.

Figure S5. Nitrogen adsorption/desorption isothermal curves of pure Fe₂O₃.

Figure S6. SEM images of (a, b) precursor FeOOH, (d, e) intermediate FeOOH@PDA and (g, h) $Fe_3O_4@NC$; TEM images of (c) precursor FeOOH, (f) intermediate FeOOH@PDA and (i) $Fe_3O_4@NC$.

Figure S7. SEM image of pure Fe₂O₃.

Figure S7 showed the morphology of pure Fe_2O_3 material, with a block structure and mesoporous nature. It is due to a serious aggregation occurring in phase conversion from precursor FeOOH to Fe_2O_3 under annealing process, in the absence of PDA coating layer.

Figure S8. Cyclic voltammetry curves of Fe_2O_3 electrode with first three cycles at a scan rate of 0.5 mV s⁻¹.

Figure S9. Nyquist plots of Fe_3O_4 @NC and Fe_2O_3 electrodes (Inset: equivalent circuit diagram; R_s represents electrolyte resistance, R_{sei} represents SEI resistance, R_{ct} represents charge transfer resistance, Z represents Warburg impedance, CPE1/CPE2: surface films capacitance/double-layer capacitance).

Table S1. The specific simulated values of Fe_3O_4 @NC and Fe_2O_3 electrodes according to equivalent circuit diagram above.

Electrode	R _s (ohm)	R _{sei} (ohm)	R _{ct} (ohm)	
Fe ₃ O ₄ @NC	6.12	11.26	39.08	
Fe ₂ O ₃	5.05	18.90	96.34	

Figure S10. The EIS simulated values of Fe_3O_4 @NC electrode at different states of charge (SOCs).

Figure S11. Galvanostatic current intermittent titration (GITT) curves of Fe_2O_3 electrode (Inset: partial enlarged detail).

Figure S12. The specific internal resistances of (a) Fe_3O_4 @NC electrode and (b) Fe_2O_3 electrode obtained by GITT tests.

Figure S13. Cycling performance and corresponding Coulombic efficiency of Fe_2O_3 electrode at a high rate of 5 A g⁻¹.

Table S2. The structure, synthetic method and electrochemical performances of Fe_3O_4 -based composites reported in literatures.

Structure	Synthetic method	Mass loading (mg cm ⁻²)	Current density (mA g ⁻¹)	Cycle number	Capacity (mAh g ⁻¹)	Ref.
Double-shelled constructed Fe ₃ O ₄ yolk-shell magnetite nanoboxes	precipitation approach	~1	500 3000	200 600	870 670	8
1D sandwich-like C@Fe ₃ O ₄ @C coaxial nanotubes	bottom-up method		100	150	1087	9
3D sandwich-like C@Fe ₃ O ₄ @C coaxial nanocables	bottom-up approach		92	100	1357	10
C/Fe ₃ O ₄ sea-sponge-like structure	ultrasonic spray pyrolysis/therm al decomposition		1500	1000	460	11
Pomegranate-like, carbon-coated Fe ₃ O ₄ nanoparticle	bottom-up assembly/top-d own etching	~1.2	5000	1000	520	12
Fe ₃ O ₄ @C-N yolk-shell nanocapsules	hydrothermal method/calcinat ion	~2	500	150	832	13
Honeycomb-like carbon network-encapsula ted Fe/Fe ₃ C/Fe ₃ O ₄ composites	in situ synthesis method		200 5000	120 500	1295 345	14
Porous Fe ₃ O ₄ /carbon microspheres	electrostatic spraying/heat treatment.	0.32	100 1000 5000	130 300 300	1317 746 525	15
Fe ₃ O ₄ @nitrogen- doped carbon nanocapsule	Hydrothermal -coating-annea ling route	~1	500 5000 10000 20000	200 500 500 1000	1028 873 612 480	This work

Figure S14. Long-term cycling performances and corresponding Coulombic efficiencies of (a) $Fe_3O_4@NC-S1$ electrode, $Fe_3O_4@NC-S2$ electrode and (b) solid $Fe_3O_4@NC$ electrode at a high rate of 20 A g⁻¹.

Figure S15. TEM images of (a) Fe₃O₄@NC-S1 and (b) Fe₃O₄@NC-S2.

Figure S16. TEM image of solid Fe₃O₄@NC sample.

Figure S17. The shape of atrovirens area represents capacitive contribution at different sweep rates of (a) 0.1 mV s^{-1} , (b) 0.3 mV s^{-1} , (c) 1.0 mV s^{-1} and (d) 1.5 mV s^{-1} , respectively.

Figure S18. (a) The potential-time profile of Fe₃O₄@NC electrode for a single current pulse; (b) The linear relation of E vs $\tau^{1/2}$.

We calculated the apparent diffusion coefficient of lithium ion through GITT tests for Fe₃O₄@NC and Fe₂O₃ electrodes, respectively. Figure S18a showed the potential-time curve of a single current pulse for Fe₃O₄@NC electrode with prominent signs of different parameters. We further determined the perfect linear relation between E and $\tau^{1/2}$ existed for above titration (Figure S18b). Hence, we could directly apply Equation S1 to confirm apparent Li⁺ diffusion coefficient (D_{app, Li+}). ¹⁶⁻¹⁷

$$D_{Li^+} = \frac{4}{\pi \tau} \left(\frac{m_B V_M}{M_B S} \right)^2 \left(\frac{\Delta E_S}{\Delta E_\tau} \right)^2 \qquad \left(\tau \ll L^2 / D_{Li^+} \right) \qquad (\text{Equation S1})$$

The means of every parameter was defined as follows.

 τ : The time of galvanostatic current.

 m_B : The molar mass of electrode material.

- M_B : The molecular weight of electrode material.
- V_M : The molar volume of electrode material.
- S: The contact surface area of electrode and electrolyte.
- ΔE_S : The quasi-equilibrium voltage after relaxation period of 2h.

 ΔE_{τ} : The voltage change during current pulse.

L: The thickness of electrode.

References

(1) Zhang, W. M.; Wu, X. L.; Hu, J. S.; Guo, Y. G.; Wan, L. J. Carbon Coated Fe₃O₄ Nanospindles as a Superior Anode Material for Lithium-ion Batteries. *Adv. Funct. Mater.* **2008**, *18*, 3941-3946.

(2) Wang, P.; Gao, M. X.; Pan, H. G.; Zhang, J. L.; Liang, C.; Wang, J. H.; Zhou, P.; Liu, Y. F. A Facile Synthesis of Fe₃O₄/C Composite with High Cycle Stability as Anode Material for Lithium-ion Batteries. *J. Power Sources* **2013**, *239*, 466-474.

(3) Park, G. D.; Hong, J. H.; Jung, D. S.; Lee, J.-H.; Kang, Y. C. Unique Structured Microspheres with Multishells Comprising Graphitic Carbon-coated Fe₃O₄ Hollow Nanopowders as Anode Materials for High-performance Li-ion Batteries. *J. Mater. Chem. A* **2019**, *7*, 15766-15773.

(4) Xu, W. W.; Xie, Z. Q.; Wang, Z.; Dietrich, G.; Wang, Y. Interwoven Heterostructural Co₃O₄-carbon@FeOOH Hollow Polyhedrons with Improved Electrochemical Performance. *J. Mater. Chem. A* **2016**, *4*, 19011-19018.

(5) Li, X. Y.; Huang, Y.; Li, C.; Shen, J. M.; Deng, Y. Degradation of pCNB by Fenton Like Process using alpha-FeOOH. *Chem. Eng. J.* **2015**, *260*, 28-36.

(6) Nguyen, T.; Montemor, M. F. gamma-FeOOH and Amorphous Ni-Mn Hydroxide on Carbon Nanofoam Paper Electrodes for Hybrid Supercapacitors. *J. Mater. Chem. A* **2018**, *6*, 2612-2624.

(7) Liu, Z.; Yu, X. Y.; Paik, U. Etching-in-a-box: a Novel Strategy to Synthesize Unique Yolk-shelled Fe₃O₄@Carbon with an Ultralong Cycling Life for Lithium Storage. *Adv. Energy Mater.* **2016**, *6*, 1502318.

(8) Zhao, R. F.; Shen, X.; Wu, Q. H.; Zhang, X. E.; Li, W. L.; Gao, G.; Zhu, L. Y.; Ni, L. B.; Diao, G.
W.; Chen, M. Heterogeneous Double-shelled Constructed Fe₃O₄ Yolk-shell Magnetite Nanoboxes with Superior Lithium Storage Performances. *ACS Appl. Mater. Inter.* **2017**, *9*, 24662-24670.

(9) Qu, Q. T.; Chen, J. M.; Li, X. X.; Gao, T.; Shao, J.; Zheng, H. H. Strongly Coupled 1D Sandwich-like C@Fe₃O₄@C Coaxial Nanotubes with Ultrastable and High Capacity for Lithium-ion Batteries. *J. Mater. Chem. A* **2015**, *3*, 18289-18295.

(10) Wang, Y.; Qu, Q. T.; Han, Y. Y.; Gao, T.; Shao, J.; Zuo, Z. C.; Liu, W. J.; Shi, Q.; Zheng, H. H. Robust 3D Nanowebs Assembled from Interconnected and Sandwich-like C@Fe₃O₄@C Coaxial Nanocables for Enhanced Li-ion Storage. *J. Mater. Chem. A* **2016**, *4*, 10314-10320.

(11) Chen, S. P.; Wu, Q. N.; Wen, M.; Wu, Q. S.; Li, J. Q.; Cui, Y.; Pinna, N.; Fan, Y. F.; Wu, T. Sea-sponge-like Structure of Nano-Fe₃O₄ on Skeleton-C with Long Cycle Life under High Rate for Li-ion Batteries. *ACS Appl. Mater. Inter.* **2018**, *10*, 19656-19663.

(12) Han, D.; Guo, G.; Yan, Y.; Li, T.; Wang, B.; Dong, A. Pomegranate-like, Carbon-coated Fe₃O₄ Nanoparticle Superparticles for High-performance Lithium storage. *Energy Storage Materials* **2018**, *10*, 32-39.

(13) Wu, Q. H.; Zhao, R. F.; Liu, W. J.; Zhang, X.; Shen, X.; Li, W. L.; Diao, G. W.; Chen, M. In-depth Nanocrystallization Enhanced Li-ions Batteries Performance with Nitrogen-doped Carbon Coated Fe₃O₄ Yolk-shell Nanocapsules. *J. Power Sources* **2017**, *344*, 74-84.

(14) Guo, C.; He, J. P.; Wu, X. Y.; Huang, Q. W.; Wang, Q. P.; Zhao, X. S.; Wang, Q. H. Facile Fabrication of Honeycomb-like Carbon Network-encapsulated Fe/Fe₃C/Fe₃O₄ with Enhanced Li-storage Performance. *ACS Appl. Mater. Inter.* **2018**, *10*, 35994-36001.

(15) Han, W. J.; Qin, X. Y.; Wu, J. X.; Li, Q.; Liu, M.; Xia, Y.; Du, H. D.; Li, B. H.; Kang, F. Y. Electrosprayed Porous Fe₃O₄/carbon Microspheres as Anode Materials for High-performance Lithium-ion Batteries. *Nano Res.* **2018**, *11*, 892-904.

(16) Rui, X. H.; Ding, N.; Liu, J.; Li, C.; Chen, C. H. Analysis of the Chemical Diffusion Coefficient of Lithium Ions in Li₃V₂(PO₄)₃ Cathode Material. *Electrochim. Acta* **2010**, *55*, 2384-2390.

(17) Wang, Y.-Y.; Hou, B.-H.; Guo, J.-Z.; Ning, Q.-L.; Pang, W.-L.; Wang, J.; Lü, C.-L.; Wu, X.-L. An Ultralong Lifespan and Low-Temperature Workable Sodium-Ion Full Battery for Stationary Energy Storage. *Adv. Energy Mater.* **2018**, *8*, 1703252.