Supporting Information

Series-Connected Flexible Biobatteries for Higher-

Voltage Electrical Skin Patches

Shotaro Yoshida, Takaya Mizuno, Shinya Kusama, Kaito Sato, Bibek Raut,

and Matsuhiko Nishizawa*

Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan.

*nishizawa@biomems.mech.tohoku.ac.jp

Figure S1. Stability of the biobattery. Both single original battery and the series-connected four quarter batteries connected with 20 k Ω load resistance (mimicking skin resistance) generated power for 12 hours with maintaining 80% output, which was sufficient durability for disposable skin patch application.

Figure S2. Equivalent circuit models and theoretical performance of (a) a single cell and parallel cells, and (b) a single cell and series-connected cells. The data fitted well to the experimental results in Figure 3.

Figure S3. (a) Equivalent circuit model of the series-connected divided biobatteries. (b) The simulated cell voltage for various number of divisions $(1/1 \sim 1/16)$. (c) The simulated cell current for various number of divisions $(1/1 \sim 1/16)$.

Movie S1. Demonstration of the powering of a wrist watch by the series-connected divided biobatteries.