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Figure S1. Wet and dried alginate hydrogel printed on non-treated and UV/O; treated glass
substrates by different inkjet printing techniques (food dye was added for better visualization of

hydrogel structures).
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Figure S2. Jetting waveform for (a) Precursor and (b) Cross-linker used in the micro-reactive

inject printing system.
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Table S1. Ohnesorge and Z number parameters for all precursor and cross-linker ink formulations.

it h
Viscosity Sur .a ce Density Ohnersorge y/
tension number
n Y p Oh 1/0Oh
(cP) (mN m) (kg m?) - -
Ink 1
0.8 wt% alginate 3.38 78 1000 0.049 20.24
1.0 wt% alginate 4.24 78 1000 0.062 16.13
1.5 wt% alginate 6.14 78 1000 0.090 11.14
2.0 wt% alginate 11.4 78 1000 0.167 6.00
2.5 wt% alginate 20.98 78 1000 0.307 3.26
Ink 2
3.0 wt%
CaCl,.6H,0 1.27 80 1000 0.018 54.55
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Figure S3. Stroboscopic images demonstrating the in-air coalescence of precursor and cross-linker

droplets taken at 500 Hz.
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Figure S4. Thermal gravimetric analysis (TGA) of a printed alginate hydrogel. The weight loss of

hydrogel at 120 °C was used to evaluate the water content of the hydrogel.
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Derivation of evaporation rate for alginate hydrogel pillar

When the water evaporates from the alginate hydrogel, the evaporation rate of the cone can be

d
described as I =—-zrVh? +r2Dd—c; where 7, h, D, ¢ are radius, height, diffusion coefficient,

cone e
and concentration, respectively. At an infinite distance from the cone, the following boundary
conditions were imposed: ¢ = ¢, when » = and ¢ =c¢, when r =, where r, is the radius of the

27w Dh(c, — Hc,)

cone. Hence, the evaporation rate of aconeis /., = Similarly,

In I+ +h, ' B +r’ —h,
hl hl

d
= —27rth—c with the boundary

the evaporation rate of the cylinder can be defined as / 7
r

cylinder

conditions ¢ =c, when r=c and c=c,, where r; is the radius of the cone at infinite distance.

_ 27zDhy(c, — He,)

Therefore, the evaporation rate of a cylinder is /... = . | |
n|r,

linder
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Figure S5. Viscoelasticity of printed alginate hydrogels showing storage modulus G’ and loss

modulus G” as a function of frequency.
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Movie S1

Full-reactive inkjet printing of hydrogel.

Movie S2

Micro-reactive inkjet printing of hydrogel.

Movie S3

A hydrogel pillar printed using the micro-reactive inkjet printing technique.

Movie S4

Shrinkage of a fine hydrogel pillar after printing.

Movie S5

A hydrogel thin film printed using the micro-reactive inkjet printing technique.

Movie S6

A hydrogel hollow tube printed using the micro-reactive inkjet printing technique.
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