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Need lots of labeled data

Low complexity method

High complexity method

Performance

Training size



Yes

No

No

?

Use labels that are easier to obtain



Yes



6

MIL Applications

• Predict molecule activity

• Different number of conformations per molecule

• Molecule is active iff 1 or more conformations are 
active



MIL Applications

• At least 1 abnormal patch = abnormal scan

• For a new scan: 
• What is the diagnosis? 
• Where are the abnormalities?

Weak annotations





• Bag of instances (feature 
vectors)

• A bag is positive if and
only if it has a positive or 
concept instance

Multiple Instance Learning





Yes

No



Many possible assumptions that fit in this paradigm

Assumptions

Cheplygina, V., Tax, D. M. J., & Loog, M. (2015). Multiple instance learning with bag 
dissimilarities. Pattern Recognition, 48(1), 264-275.



• Predict labels for
previously unseen
bags

• Predict labels for
previously unseen
instances

Goal of classifier
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MIL classifiers

“SimpleMIL”



• Find concept or instance labels, s.t.
bag constraints are satisfied

• Explicit combining of instances, e.g. 
max or mean 

• Instance labels are provided
• Not always robust

Learning: instance-level



• Supervised SVM

• “Find a plane which separates the instances well, such that the 
instance (pixel) labels are more or less correct”

Labeled instances / pixels

Classifier

Learning: instance-level



• miSVM

• Find the instance labels and a plane …, such that …, and the bag 
label assumption holds

Bag labels

Instance labels

Learning: instance-level



Learning: instance-level

Ilse, M., Tomczak, J. M., & Welling, M. (2018). Attention-based deep multiple instance learning.
arXiv preprint arXiv:1802.04712.

• Classifier is in instance space  instance posteriors can be 
visualized



• Bag distance or kernel

• Bag “summary” + supervised 
classifier

• Implicit mean combining

• Robust in practice
• Usually no instance labels

Learning: bag-level



Learning: bag-level

• Example: dissimilarity-space

• Use ALL information in distance 
matrix

• Good for e.g. multi-concept data



https://pixabay.com/photos/thought-idea-innovation-imagination-2123970/

Examples



Normal COPD

COPD in CT: Destruction of lung tissue (emphysema)

Images Marleen de Bruijne



Case courtesy of Radswiki, Radiopaedia.org, rID: 11384



Case courtesy of A.Prof Frank Gaillard, Radiopaedia.org, rID: 8095

Does this person have COPD?



Image = COPD or not (lung function), 50 ROIs Texture filters

…

Histograms
MIL

Images Marleen de Bruijne



• 600 chest CT images 
(train/validation/test)

• Instance-level vs bag-level 
classifiers

• Naïve approach already good

• Good to take all instances into 
account

Cheplygina, V., Sorensen, L., Tax, D. M. J., Pedersen, J. H., Loog, M., & de Bruijne, M. (2014). Classification of 
COPD with multiple instance learning. In International Conference on Pattern Recognition (pp. 1508-1513). 



Work by Isabel Pino Pena



Cheplygina, V., de Bruijne, M., & Pluim, J. P. W. (2019). Not-so-supervised: a survey of semi-supervised, multi-
instance, and transfer learning in medical image analysis. Medical Image Analysis. URL

• Classification of cancerous tissue 
in histology most popular

• Brain, eye, lung, heart, breast 
and others

• About half classify instances

MIL in medical 
imaging

https://arxiv.org/abs/1804.06353
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Bioinformatics

• Proteins that bind or not to Calmodulin
• Instances = sequences of length 21, substring co-occurrence features
• MI SVM
• “The weights for the 1-spectrum features closely follow the amino acid 

propensities in CaM binding sites”

Minhas, F. U. A. A., & Ben-Hur, A. (2012). Multiple instance learning of Calmodulin binding 
sites. Bioinformatics, 28(18), i416-i422.
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• Bag = DNA sequence, binds or not to a TF
• Instances = all subsequences, represented by co-occurrence features
• SimpleMIL, mean combining

Gao, Z., & Ruan, J. (2017). Computational modeling of in vivo and in vitro protein-DNA 
interactions by multiple instance learning. Bioinformatics, 33(14), 2097-2105.
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• Predict distribution of taxa in a metagenomics DNA read (bag)

Georgiou, A., Fortuin, V., Mustafa, H., & Rätsch, G. (2019). Deep Multiple Instance Learning 
for Taxonomic Classification of Metagenomic read sets. arXiv preprint arXiv:1909.13146.



• Representation
– Instance = often “part of” bag (not “is a”)
– “Distribution” problems more common
– Instance correlations?

• Label type
– Class label, proportion in medical imaging
– Label, ranking, distribution 

Similarities & Differences



• Methods
– Existing vs “novel” methods
– Simple methods are competitive

• Instance labels 
– Source of labels
– Use of instance labels for training

• Open science

Similarities & Differences



https://pixabay.com/en/mountain-climbing-mountaineer-802099/

Challenges



• Relationship bag/instances, “is 
a” or “is part of”?

• What are the assumptions 
about the labels? 

• What is the goal of the 
classifier?

Many variants



Multiple Instance Learning

Cheplygina, V., Tax, D. M. J., & Loog, M. (2015). On classification with bags, groups and 
sets. Pattern Recognition Letters, 59, 11-17.

Group-based Classification

Set Classification

Collective Classification



Case courtesy of A.Prof Frank Gaillard, Radiopaedia.org, rID: 8095

Where are the abnormalities?

Ground 
truth?



Work by Isabel Pino Pena



Vroeger of later kan ook; vind ik ook 
prima.

Instance labels often not available
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MIL classifier

Tr
ai

ni
ng

Te
st



How often patches are labeled abnormal
Ideally: either 0x or 10x

Fraction of agreement 
Ideally: always 1.0

Instance labels can be unstable

Cheplygina, V., Sørensen, L., Tax, D. M. J., de Bruijne, M., & Loog, M. (2015)  Label Stability in Multiple 
Instance Learning. In Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 539-546



6 datasets, 8 MIL classifiers

Trade-off bag performance and instance stability

Similar situation in other datasets



Kandemir, M., & Hamprecht, F. A. (2015). Computer-aided diagnosis from weak supervision: 
a benchmarking study. Computerized Medical Imaging and Graphics, 42, 44-50.

Bag-level

Instance-level

Bag vs instance performance



Training on 100% bags and adding 0-80% instances
Testing on 20% instances

Adding instances helps! 

Bag vs instance performance

Li, Z., Wang, C., Han, M., Xue, Y., Wei, W., Li, L. J., & Li, F. F. (2017). Thoracic Disease Identification
and Localization with Limited Supervision. arXiv preprint arXiv:1711.06373. 



Li, Z., Wang, C., Han, M., Xue, Y., Wei, W., Li, L. J., & Li, F. F. (2017). Thoracic Disease Identification and 
Localization with Limited Supervision. arXiv preprint arXiv:1711.06373. 

Training on 80% instances and 0-100% bags
Testing on 20% instances

Adding bags does can even hurt performance

Bag vs instance performance



• Multiple instance learning
– Definition
– Classifiers

• Examples
- Medical imaging
- Bioinfomatics

• Challenges
- Definitions, what is MIL?
- Instance label evaluation
- Bag/instance trade-off

Summary
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Transfer learning from (dis)similar datasets

Cheplygina, V. (2019). Cats or CAT scans: transfer learning from natural or medical image 
source datasets?. Current Opinion in Biomedical Engineering. URL

https://www.sciencedirect.com/science/article/pii/S2468451118300527


Cheplygina, V., Moeskops, P., Veta, M., Bozorg, B. D., & Pluim, J. (2017). Exploring the similarity of medical imaging 
classification problems. In Large-Scale Annotation of Biomedical Data and Expert Label Synthesis (MICCAI LABELS) (pp. 59-66)

Meta-learning: how to quantify similarity of data?
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