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 A self-consistent effective medium method is used to calculate the effective dynamic properties of a random composite.
The model is applied to solid particles in a viscous liquid 
The model takes into account the wave mode conversion by including shear waves in the viscous liquid.
 Effective bulk modulus and effective dynamic density have been derived analytically.
 Bulk modulus is equivalent to static case, effective density is frequency-dependent and reaches the static or inviscid limit at different 
conditions.
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Introduction
When an acoustic wave, having wavelength larger than the dimension of inhomogeneities (e.g. particles, cracks, voids), propagates through a

complex medium, the wave is unaffected by the substructure (e.g. the arrangement of the scatterers) of the medium. Instead the wave “sees” the
composite as an entirely different homogeneous medium with well-defined “effective” properties, different from its constituent materials’
properties.
Modelling of wave propagation in a random medium is almost impossible to solve analytically, being a multi-body interaction problem with
continuity requirements at each particle surface and infinite multiple scattering events. It is, however, often possible to solve and simplify the
problem by replacing the complex medium with a homogeneous “effective medium” which can be characterized by its effective properties. These
properties are dynamic, relating to a harmonic frequency-dependent process, and may be different from the static effective properties. Here, we
consider, in particular, the effects of a viscous suspending fluid on the dynamic effective properties of solid particle suspensions.
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Figure 1(b): the effective medium model treats
this as equivalent to a particle (“core”)
embedded in the viscous host liquid (“shell”),
surrounded by the effective medium. Scattering
from the core-shell particle should vanish (self-
consistency condition). Concentration in the
shell is equivalent to that in the suspension as
a whole. Here , and are density and two
Lamé parameters of the host fluid respectively.
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Figure 2(a) shows the
variation of real part
of the normalized
effective density with
the real part of the
normalized shear
wavenumber.

Figure 2(b) shows the variation of imaginary part of
the normalized effective density with the real part of
the normalized shear wavenumber. The imaginary part
is related to the translational viscosity of the
suspension. When the thickness of the viscous
boundary layer becomes comparable to the dimension
of the core-shell particle, the system undergoes
maximum attenuation due to viscosity, which being
reflected in the pronounced peak.
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