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Introduction

/~ When an acoustic wave, having wavelength larger than the dimension of inhomogeneities (e.g. particles, cracks, voids), propagates through a
complex medium, the wave is unaffected by the substructure (e.g. the arrangement of the scatterers) of the medium. Instead the wave “sees” the
composite as an entirely different homogeneous medium with well-defined “effective” properties, different from its constituent materials’

properties.

Modelling of wave propagation in a random medium is almost impossible to solve analytically, being a multi-body interaction problem with
continuity requirements at each particle surface and infinite multiple scattering events. It is, however, often possible to solve and simplify the
problem by replacing the complex medium with a homogeneous “effective medium” which can be characterized by its effective properties. These
properties are dynamic, relating to a harmonic frequency-dependent process, and may be different from the static effective properties. Here, we
consider, in particular, the effects of a viscous suspending fluid on the dynamic effective properties of solid particle suspensions.
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In recent years it has been theoretically and experimentally
demonstrated that, as particle concentration in a suspension increases,
the viscous nature of the host fluid becomes more and more significant
and thereby needs to be taken into consideration when calculating
effective properties for acoustic propagation [1]. One approach to the
problem is to incorporate wave conversion phenomena, primarily
between compressional and shear wave modes, into the models for
effective properties.

We employ an effective medium model to determine the effective
dynamic properties of a random suspension of spherical solid particles in
a viscous fluid (Figure 1). Analysis proceeds by use of the self-
consistency condition [2] (i.e. no scattering from the core-shell system),
using Rayleigh partial wave analysis for monopole and dipole terms, and
using long compressional wavelength (small k.a ). Here, we include
shear wave motion in the viscous fluid, differentiating from the simpler
inviscid case.

Figure 1(a): an incident plane compressional wave with wavenumber
k. is propagating though an viscous suspension. The wave gets
scattered due the particles and hence experiences attenuation.

The effective bulk modulus B, obtained from the monopole mode is
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where B and u are bulk and shear moduli of the host fluid
respectively.

The static mass density of a composite is the volume average of its
components’ densities.

po=(1-0)p+0p

If, however, the wave mode conversion is taken into account, the
effective mass density becomes dynamic (frequency-dependent) at
higher concentration and/or frequency which can be calculated
from the dipole mode in the following form :

pe=(1=0)p+p' +iwx(e)+w (o)
where i = x/—_l ¢ and w are, imaginary unit, volume

concentration and angular frequency, respectively. X(¢) and 1/J(¢)
are analytical functions of concentration.
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Lamé parameters of the host fluid respectively.

Numerical Calculation

Figure 2(a) shows the
variation of real part
of the normalized 10

Figure 2(b) shows the variation of imaginary part of
the normalized effective density with the real part of
the normalized shear wavenumber. The imaginary part
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The real part of the effective density is related to the effective inertia of the suspension. At very low kga values, the steady Stokesian drag
dominates over the inertial force, the effective density being the static volume-averaged density. As the frequency increases, the viscous boundary
layer starts to become thinner. At sufficiently elevated frequencies, the viscous regime gives way to the inertial regime: the fluid behaves an inviscid
one, and the effective mass density is given by the Ament’s inviscid formula.

Conclusion

» A self-consistent effective medium method is used to calculate the effective dynamic properties of a random composite.
»The model is applied to solid particles in a viscous liquid

»The model takes into account the wave mode conversion by including shear waves in the viscous liquid.

» Effective bulk modulus and effective dynamic density have been derived analytically.

» Bulk modulus is equivalent to static case, effective density is frequency-dependent and reaches the static or inviscid limit at different
conditions.
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