Supplementary Information

π-Extended *C*₂-Symmetric Double NBN-Heterohelicenes with

Exceptional Luminescent Properties

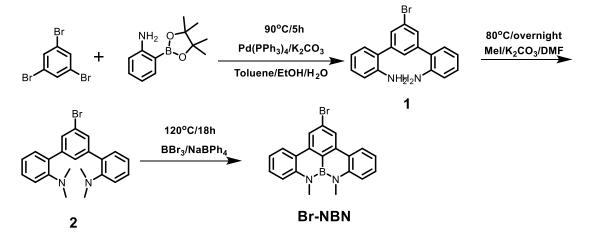
Zuobang Sun^{†#}, Chen Yi^{‡#}, Qifeng Liang[§], Chiranjeevi Bingi[†], Wenqing Zhu[‡], Peirong Qiang[†], Dongqing Wu^{*†}, Fan Zhang^{*†}

[†]School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China [‡]School of Materials Science and Engineering, Shanghai University, Shanghai 200072, P. R. China

[§]Department of Physics, Shaoxing University, 312000 Shaoxing, P. R. China [#]These two authors contributed equally to this work

Table of Contents

1.	Materials and Methods	.2
2.	Single-Crystal X-Ray Analysis	.8
3.	Photophysical Properties	12
4.	Electrochemical Properties	.15
5.	Electroluminescent Device	16
6.	Computational Studies	17
7.	Optical Resolution of Naph-NBNDH	24
8.	NMR and HRMS Spectra	27

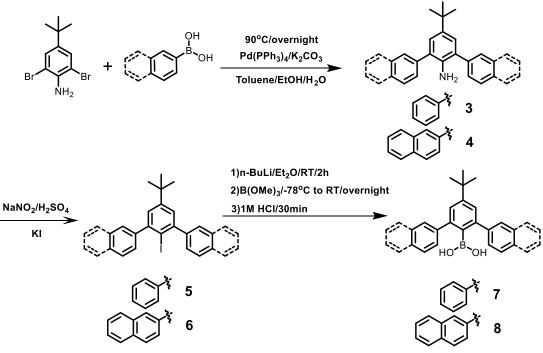

1. Materials and Methods.

All the reagents were purchased from Sigma-Aldrich and Admas-beta, unless otherwise stated, the commercially available reagents and dry solvents were used without further purification. The reactions were performed using standard vacuum-line and Schlenk techniques, work-up and purification of all compounds were performed under air with reagent-grade solvents. Column chromatography was performed with silica gel (200-300 mesh). Analytical thin-layer chromatography (TLC) was performed on 0.2 mm silica gel coated glass sheets with F254 indicator. All yields given referred to isolated yields.

Nuclear magnetic resonance (NMR) spectra were measured on Mercury plus 400 or Bruker AVANCE III HD 500 spectrometers. ¹H NMR chemical shifts were referenced to tetramethylsilane (0 ppm), ¹³C NMR chemical shifts were referenced to CDCl₃ (77.0 ppm). High-resolution electrospray ionization mass spectrometry was performed on a Ultra High Performance Liquid/Supercritical Fluid Chromatography - Quadrupole Time of Flight Mass Spectrometer (Waters: AcquityUPLC/UPC2/Xevo G2-XS QTOFMS) and MALDI-MS was performed on Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (Bruker Daltonics: SolariX 7.0T FT ICR MS, Agilent 1260 HPLC). Ultraviolet-visible (UV-Vis) spectra were recorded on a Perkin Elmer Lambda 35 Spectrophotometer. The fluorescence spectroscopy (PL) emission spectra were obtained with a Perkin Elmer LS 55 spectrophotometer. The transient fluorescence decay characteristics and fluorescence quantum yields were measured using an Edinburgh Instrument FLS100 spectrometer. CD and CPL spectra were measured on Jasco J-810 spectropolarimeter and Jasco CPL 200, respectively. CV was performed in anhydrous DCM containing recrystallized tetra-n-butyl- ammoniumhexafluorophosphate (TBAPF₆, 0.1 M) as supporting electrolyte at 298 K. A conventional three electrode cell was used with a platinum working electrode (surface area of 0.3 mm²) and a platinum wire as the counter electrode. The Pt working electrode was routinely polished with a polishing alumina suspension and rinsed with acetone before use. The measured potentials were recorded with respect to the Ag/AgCl reference electrode. All electrochemical measurements were carried out under an atmospheric pressure of nitrogen.

Synthetic Procedures

General Procedures: For reactions that require heating, the heat source is oil bath. *Scheme S1* Synthesis of **Br-NBN**



5'-bromo-[1,1':3',1''-terphenyl]-2,2''-diamine (1). 500 In а mL Schlenk flask, (5 15.98 1.3.5-tribromobenzene mmol), g, 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline(6.7 g, 31.8 mmol) and K₂CO₃ (13.2 g, 31.8 mmol) were charged under the protection of nitrogen. After adding 100 mL toluene, ethanol (28 mL) and H₂O (28 mL), the mixture was degassed for 30 min. Pd(PPh₃)₄ (923 mg, 0.8 mmol) was added, then the mixture was heated to 90 °C and stirred for 5 h. The resulting mixture was poured into brine and extracted with CH₂Cl₂ for three times. The combined organic layer was dried over anhydrous Na₂SO₄ and the solvents were removed under reduced pressure. The crude product was purified by silica gel column chromatography (petroleum ether : $CH_2Cl_2 = 2:1$) to give product as white powder (3.03 g, 56 %). ¹H NMR (400 MHz, CDCl₃) δ 7.61 (s, 2H), 7.52 (s, 1H), 7.19 – 7.12 (m, 4H), 6.84 – 6.76 (m, 4H), 3.79 (s, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 143.4, 142.0, 130.6, 130.4, 129.1, 128.5, 125.8, 123.2, 118.8, 115.8. HRMS m/z [M+H]⁺ calculated for $C_{18}H_{16}BrN_2^+$ 341.0471 found 341.0482.

5'-bromo-N2,N2,N2'',N2''-tetramethyl-[1,1':3',1''-terphenyl]-2,2''-diamine (2). To a mixture of 5'-bromo-[1,1':3',1"-terphenyl]-2,2"-diamine (4.1 g, 12.2 mmol), K₂CO₃ (13.5 g, 97.4 mmol) and DMF (250 mL) was added MeI (17.3 g, 121.7 mmol). The mixture was heated to 80 °C and stirred overnight. The resulting mixture was poured into brine and extracted with CH₂Cl₂ for three times. The combined organic layer was dried over anhydrous Na₂SO₄ and the solvents were removed under reduced pressure. The crude product was purified by silica gel column chromatography (petroleum ether : CH₂Cl₂ = 4:1) to give product as white powder (4.73 g, 98 %). ¹H NMR (500 MHz, CDCl₃) δ 7.75 (s, 1H), 7.65 (d, *J* = 1.5 Hz, 2H), 7.30-7.28 (m, 2H), 7.23 (dd, *J* = 7.5, 1.5 Hz, 2H), 7.05(m, 4H), 2.59 (s, 12H). ¹³C NMR (125 MHz, CDCl₃) δ 151.2, 143.9, 132.7, 131.5, 129.5, 128.5, 127.8, 122.1, 121.5, 117.7, 43.4. HRMS *m*/*z* [M+H]⁺ calculated for C₂₂H₂₄BrN₂⁺ 395.1117,397.1097; flound 395.1114, 397.1099.

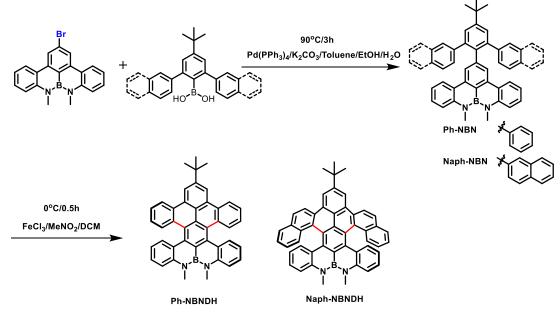
2-bromo-8,9-dimethyl-8H,9H-8,9-diaza-8a-borabenzo[*fg*]tetracene (**Br-NBN**). In a 250 mL Schlenk tube, 5'-bromo-N2,N2,N2",N2"-tetramethyl-[1,1':3',1"-terphenyl]-2,2"-diamine (4.6 g, 11.6 mmol) and NaBPh₄ (4.6 g, 17.3 mmol)were charged under the protection of nitrogen. After adding *o*-dichlorobenzene (55 mL) and BBr₃ (13.9 mmol, 13.9 mL, 1M in CH₂Cl₂), the mixture was heated to 120 °C and stirred for 18 h. The resulting mixture was filtered, poured into brine and extracted with CH₂Cl₂ for three times. The combined organic layer was dried over anhydrous Na₂SO₄ and the solvents were removed under reduced pressure. The crude product was purified by silica gel column chromatography (petroleum ether : CH₂Cl₂ = 8:1) to give product as white powder (2.6 g, 60%). ¹H NMR (500 MHz, CDCl₃) δ 8.28 (s, 2H), 8.22 (dd, *J* = 8.0 Hz, 2H), 7.51-7.47 (m, 2H), 7.40 (d, *J* = 8.0 Hz, 2H), 7.19-7.16 (m, 2H), 3.61 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 144.9, 139.8, 129.1, 125.9, 124.3, 122.6, 122.0, 120.1, 115.6, 37.5. ¹¹B NMR (128 MHz, CDCl₃) δ 29.7. HRMS *m*/*z* [M+H]⁺ calculated for C₂₀H₁₇BrN₂ is 375.0663, 377.0642; found 375.0672, 377.0653.

Scheme S2 Synthesis of the boronic acid^{S1}

5'-(tert-butyl)-[1,1':3',1''-terphenyl]-2'-amine (3). 500 In mL Schlenk а flask, 2,6-dibromo-4-(tert-butyl)aniline (5.0 g, 16.2 mmol), phenylboronic acid (5.9 g, 48.8 mmol) and K₂CO₃ (22.5 g, 162.7 mmol)were charged under the protection of nitrogen. After adding toluene (150 mL), ethanol (35 mL) and H₂O (35 mL), the mixture was degassed for 30 min. Pd(PPh₃)₄ (0.95 g, 0.8 mmol) was added, then the mixture was heated to 90 °C and stirred overnight. The resulting mixture was poured into brine and extracted with CH₂Cl₂ for three times. The combined organic layer was dried over anhydrous Na₂SO₄ and the solvents were removed under reduced pressure. The crude product was purified by silica gel column chromatography (petroleum ether : $CH_2Cl_2 = 4:1$) to give product as white powder (4.5 g, 91 %). ¹H NMR (CDCl₃, 400 MHz): δ 7.55 (d, J = 7.2 Hz, 4H), 7.48 (t, J = 7.2 Hz, 4H), 7.37 (t, J = 7.2 Hz, 2H), 7.16 (s, 2H), 3.74 (s, 2H), 1.35 (s, 9H) ppm; ¹³C NMR (CDCl₃, 125 MHz) 140.9, 140.2, 138.2, 129.4, 128.8, 127.6, 127.1, 126.8, 34.0, 31.6 ppm; HRMS (MALDI-FTICR): Calcd for C₂₂H₂₃N 301.1830 found 301.1829

5'-(tert-butyl)-2'-iodo-1,1':3',1''-terphenyl (5). To a suspension of solid NaNO₂ (1.0 g, 13.9) (15)mmol) conc. sulfuric acid mL) was added a solution of 5'-(tert-butyl)-[1,1':3',1"-terphenyl]-2'-amine(4.0 g, 13.2 mmol) in acetic acid (20 mL) at 0 °C dropwise. After stirring for 1 h at 0 °C, the resulting mixture was added to a solution of KI (2.3 g, 13.9 mmol) in H₂O (35 mL) at 50 °C and stirred at 70 °C for 1 h. The reaction mixture were quenched with water and extracted with with CH₂Cl₂ for three times. The organic layer was washed with saturated hypo and dried over anhydrous Na₂SO₄ and the solvents were removed under reduced pressure. The crude product was purified by silica gel column chromatography (petroleum ether : $CH_2Cl_2 = 10:1$) to give product as white powder (3.8 g, 70 %).¹H NMR (CDCl₃, 500 MHz): δ 7.42-7.40 (m, 10H), 7.28 (s, 2H), 1.36 (s, 9H) ppm; ¹³C NMR (CDCl₃, 125 MHz) 150.7, 147.5, 145.9, 129.5, 127.8, 127.4, 126.1, 99.8, 34.6, 31.2 ppm; HRMS(MALDI-FTICR): Calcd for C₂₂H₂₁I 412.0688 found 412.0710

(5'-(tert-butyl)-[1,1':3',1''-terphenyl]-2'-yl)boronic acid (7). To solution of а 5'-(tert-butyl)-2'-iodo-1,1':3',1"-terphenyl (3.7 g, 8.9 mmol) in anhydrous diethyl ether (35 mL) was added n-BuLi (8.4 mL, 1.6 M, 13.4 mmol) dropwise via a syringe at room temperature under the protection of nitrogen. The mixture was stirred at room temperature for 2 h. After cooled to -78 °C, B(OMe)₃ (2.0 mL, 17.9 mmol) was added and the resulting mixture was stirred at RT overnight. The reaction mixture was quenched with HCl (1M), stirred for another 30 min and then extracted with CH₂Cl₂ for three times. The combined organic layer was dried over anhydrous Na₂SO₄ and the solvents were removed under reduced pressure. The crude product was purified by silica gel column chromatography (petroleum ether : $CH_2Cl_2 = 1:2$) to give product as white powder (1.8 g, 62%).¹H NMR (CDCl₃, 500 MHz) δ 7.49-7.48 (m, 4H), 7.45-7.36 (m, 8H), 4.09 (s, 2H), 1.38 (s, 9H) ppm; ¹³C NMR (CDCl₃, 125 MHz) 152.2, 145.8, 143.6, 128.6, 128.5, 127.4, 125.3, 34.9, 31.3 ppm; HRMS (ESI-MS) [M+Na]⁺: Calcd for C₂₂H₂₃BNaO₂⁺ 353.1683 found 353.1683


4-(tert-butyl)-2,6-di(naphthalen-2-yl)aniline (4). 500 In a mL Schlenk flask, 2,6-dibromo-4-(tert-butyl)aniline (7.1 g, 23.2 mmol), naphthalen-2-ylboronic acid (9.9 g, 57.5 mmol) and K₂CO₃ (32.0 g, 232.5 mmol) were charged under the protection of nitrogen. After adding toluene (170 mL), ethanol (40 mL) and H₂O (40 mL), the mixture was degassed for 30 min. Pd(PPh₃)₄(1.3 g, 1.1 mmol) was added, then the mixture was heated to 90 °C and stirred overnight. The resulting mixture was poured into brine and extracted with CH₂Cl₂ for three times. The combined organic layer was dried over anhydrous Na₂SO₄ and the solvents were removed under reduced pressure. The crude product was purified by silica gel column chromatography (petroleum ether : $CH_2Cl_2 = 4:1$) to give product as white powder (8.1 g, 87 %). ¹H NMR (CDCl₃, 400 MHz): δ 8.02 (s, 2H), 7.95 (d, J=8.4 Hz, 2H), 7.89-7.88 (m, 4H), 7.71 (d, J = 8.4 Hz, 2H), 7.52-7.50 (m, 4H), 7.30 (s, 2H), 3.83 (s, 2H), 1.37 (s, 9H) ppm; ¹³C NMR (CDCl₃, 125 MHz) 141.2, 138.6, 137.7, 133.6, 132.5, 128.4, 128.1, 128.0, 127.7, 127.7, 127.6, 127.1, 126.3, 126.0, 34.1, 31.6 ppm; HRMS(MALDI-FTICR): Calcd for C₃₀H₂₇N 401.2143 found 401.2139

2,2'-(5-(tert-butyl)-2-iodo-1,3-phenylene)dinaphthalene (6). To a suspension of solid NaNO₂ (1.2 g, 18.2 mmol) conc. sulfuric acid (25 mL) was added a solution of 4-(tert-butyl)-2,6-di(naphthalen-2-yl)aniline (7.0 g, 17.4 mmol) in acetic acid (35 mL) at 0 °C dropwise. After stirring for 1 h at 0 °C, the resulting mixture was added to a solution of KI (3.0 g, 18.2 mmol) in H₂O (65 mL) at 50 °C and stirred at 70 °C for 1 h. The reaction mixture were quenched with water and extracted with with CH₂Cl₂ for three times. The organic layer was washed with saturated hypo and dried over anhydrous Na₂SO₄ and the solvents were removed under reduced pressure. The crude product was purified by silica gel column chromatography (petroleum ether : CH₂Cl₂ = 10:1) to give product as white powder (4.0 g, 45 %).¹H NMR (CDCl₃, 500 MHz): δ 7.91-7.88 (m, 6H), 7.85 (s, 2H), 7.58 (dd, *J* = 8.5, 1.5 Hz, 2H), 7.53-7.48 (m, 4H), 7.40 (s, 2H), 1.37 (s, 9H) ppm; ¹³C NMR (CDCl₃, 125 MHz): δ 151.0, 147.5, 143.4, 133.0, 132.6, 128.1, 128.1, 128.0, 127.8, 127.2, 126.5, 126.2, 126.1, 99.8, 34.7, 31.3 ppm; HRMS(MALDI-FTICR): Calcd for C₃₀H₂₅I 512.1001 found 512.1033

(4-(tert-butyl)-2,6-di(naphthalen-2-yl)phenyl)boronic acid (8). To a solution of 2,2'-(5-(tert-butyl)-2-iodo-1,3-phenylene)dinaphthalene (3.0 g, 5.9 mmol) in anhydrous diethyl

ether (45 mL) was added *n*-BuLi (5.4 mL, 1.6 M, 8.74 mmol) dropwise via a syringe at room temperature under the protection of nitrogen. The mixture was stirred at room temperature for 2 h. After cooled to -78 °C, B(OMe)₃ (1.3 mL, 11.8 mmol) was added and the resulting mixture was stirred at RT overnight. The reaction mixture was quenched with HCl (1M), stirred for another 30 min and then extracted with CH₂Cl₂ for three times. The combined organic layer was dried over anhydrous Na₂SO₄ and the solvents were removed under reduced pressure. The crude product was purified by silica gel column chromatography (petroleum ether : CH₂Cl₂ = 1:2) to give product as white powder (1.0 g, 40 %). ¹H NMR (CDCl₃, 500 MHz): δ 7.96 (d, *J* = 1.0 Hz, 2H), 7.92-7.88(m, 6H), 7.66 (dd, *J* = 8.0, 1.5 Hz, 2H), 7.54 (s, 2H), 7.52-7.48 (m, 4H), 4.12 (s, 2H), 1.43 (s, 9H) ppm; ¹³C NMR (CDCl₃, 125 MHz): δ 152.3, 145.9, 141.1, 133.4, 132.6, 128.2, 128.2, 127.8, 127.3, 127.1, 126.4, 126.1, 125.6, 35.0, 31.4 ppm; HRMS (ESI-MS) [M+Na]⁺: Calcd for C₃₀H₂₇BNaO₂ 453.1996 found 453.1997

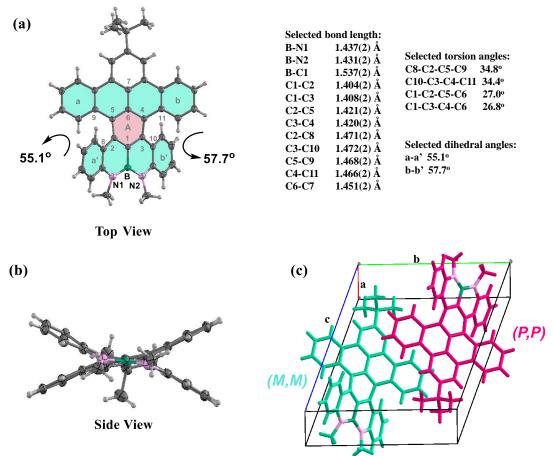
Scheme S3 Synthesis of Ph-NBNDH and Naph-NBNDH

2-(5'-(tert-butyl)-[1,1':3',1''-terphenyl]-2'-yl)-8,9-dimethyl-8H,9H-8,9-diaza-8a-borabenzo[fg]tetracene (Ph-NBN). In 100 mL Schlenk flask, а 2-bromo-8,9-dimethyl-8H,9H-8,9-diaza-8a-borabenzo[fg]tetracene (375.0 mg, 1.0 mmol), (5'-(tert-butyl)-[1,1':3',1"-terphenyl]-2'-yl)boronic acid (396.0 mg, 1.2 mmol) and K₂CO₃ (1.38 g, 10 mmol) were charged under the protection of nitrogen. After adding toluene (25 mL), ethanol (7 mL) and H₂O (7 mL), the mixture was degassed for 30 min. Pd(PPh₃)₄ (115.0 mg, 0.1 mmol) was added, then the mixture was heated to 90 °C and stirred for 3 h. The resulting mixture was poured into brine and extracted with CH₂Cl₂ for three times. The combined organic layer was dried over anhydrous Na₂SO₄ and the solvents were removed under reduced pressure. The crude product was purified by silica gel column chromatography (petroleum ether : $CH_2Cl_2 = 4:1$) to give product as white powder (464.0 mg, 0.8 mmol, 80%). ¹H NMR (500 MHz, CDCl₃): δ 7.69 (s, 2H), 7.68 (dd, J=8.0, 1.5 Hz, 2H), 7.55 (s, 2H), 7.38-7.35 (m, 2H), 7.31 (dd, J= 8.0, 0.5 Hz, 2H), 7.20-7.18 (m, 4H), 7.11-7.07 (m, 4H), 7.03-6.98 (m, 4H), 3.54 (s, 6H), 1.47 (s, 9H); ¹³C NMR (125 MHz, CDCl₃,): δ 150.3, 144.6, 142.5, 141.8, 141.1, 137.0, 136.5, 130.0, 128.0, 127.6, 126.9, 126.3,

124.1, 123.9, 123.5, 119.7, 115.2, 37.4, 34.8, 31.5; ¹¹B NMR (225 MHz, CDCl₃) δ 29.3; HRMS (MALDI-FTICR): Calcd for C₄₂H₃₇BN₂ 580.3050, found 580.3049

2-(4-(tert-butyl)-2, 6-di(naphthalen-2-yl)phenyl)-8, 9-dimethyl-8H, 9H-8, 9-diaza-8a-borabenzo100 [fg]tetracene (Naph-NBN). In a mL Schlenk flask, 2-bromo-8,9-dimethyl-8H,9H-8,9-diaza-8a-borabenzo[fg]tetracene (375.0 mg, 1.0 mmol), (4-(tert-butyl)-2,6-di(naphthalen-2-yl)phenyl)boronic acid (516.0 mg, 1.2 mmol) and K₂CO₃ (1.4 g, 10.0 mmol) were charged under the protection of nitrogen. After adding toluene (25 mL), ethanol (7 mL) and H_2O (7 mL), the mixture was degassed for 30 min. Pd(PPh₃)₄(115.0 mg, 0.1 mmol) was added, then the mixture was heated to 90 °C and stirred for 3 h. The resulting mixture was poured into brine and extracted with CH₂Cl₂ for three times. The combined organic layer was dried over anhydrous Na₂SO₄ and the solvents were removed under reduced pressure. The crude product was purified by silica gel column chromatography (petroleum ether : $CH_2Cl_2 = 2 : 1$) to give product as white powder (476.0 mg, 0.7 mmol, 70 %). ¹H NMR (400 MHz, CDCl₃): δ 7.89 (s, 2H), 7.82 (s, 2H), 7.76 (d, J= 8.0 Hz, 2H), 7.66 (s, 2H), 7.60 (d, J= 8.0 Hz, 2H), 7.54 (d, J=7.6 Hz, 2H), 7.44 (d, J=8.4 Hz, 2H), 7.39-7.35 (m, 2H), 7.32-7.28 (m, 4H), 7.23-7.21 (m, 2H), 7.18-7.16 (m, 2H), 6.83 (t, J= 6.8 Hz, 2H), 3.48 (s, 6H), 1.51 (s, 9H); ¹³C NMR (125 MHz, CDCl₃,): δ 150.4, 144.5, 141.8, 141.0, 140.3, 136.6, 133.2, 131.9, 128.4, 128.4, 127.9, 127.8, 127.5, 127.4, 126.9, 125.7, 125.5, 124.0, 123.9, 123.9, 123.4, 119.6, 115.1, 37.3, 34.9, 31.5; ¹¹B NMR (225 MHz, CDCl₃) δ 29.1; HRMS (MALDI-FTICR): Calcd for C₅₀H₄₁BN₂ 680.3363, found 680.3354

20-(tert-butyl)-9,10-dimethyl-9H,10H-9,10-diaza-9a-borapentabenzo[a,cd,f,j,o] perylene (Ph-NBNDH). 100 In overdried mL Schlenk flask, а 2-(5'-(tert-butyl)-[1,1':3',1"-terphenyl]-2'-yl)-8,9-dimethyl-8H,9H-8,9-diaza-8a-borabenzo[fg] tetracene (Ph-NBN) (0.070 g, 0.12 mmol) was charged under the protection of nitrogen. After adding anhydrous CH₂Cl₂ (150 mL), the mixture was degassed for 30 min. Then the reactants were cold to 0 °C and FeCl₃ (0.48 mg, 3.00 mmol) in 3 mL nitromethane was added dropwise. After stirring at 0 °C for another 0.5 h, the resulting mixture was quenched with methanol and ice and extracted with CH₂Cl₂ for three times. The combined organic layer was dried over anhydrous Na₂SO₄ and the solvents were removed under reduced pressure. The crude product was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 40 : 1) to give product as green powder (0.058 g, 83 %). ¹H NMR (500 MHz, CDCl₃): δ 9.01 (s, 2H), 8.76 (d, J=8.0 Hz, 2H), 8.53 (d, J=8.0 Hz, 2H), 8.03 (dd, J= 8.0, 1.0 Hz, 2H), 7.57-7.53 (m, 4H), 7.41-7.37 (m, 4H), 7.24-7.23 (m, 2H), 6.87-6.84 (m, 2H), 3.89 (s, 6H), 1.72 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 149.1, 144.2, 132.0, 131.8, 130.8, 130.3, 130.0, 129.8, 128.0, 127.7, 126.7, 125.6, 125.5, 123.4, 122.8, 121.2, 119.4, 118.6, 115.8, 37.8, 35.6, 31.9; ¹¹B NMR (225 MHz, CDCl₃): δ 27.9; HRMS (MALDI-FTICR): Calcd for C₄₂H₃₃BN₂ 576.2737, found 576.2742


24-(tert-butyl)-11,12-dimethyl-11H,12H-11,12-diaza-11a-boratribenzo[cd,j,o]

dinaphtho[1,2-a:2',1'-f]perylene (Naph-NBNDH). In a overdried 100 mL Schlenk flask, 2-(4-(tert-butyl)-2,6-di(naphthalen-2-yl)phenyl)-8,9-dimethyl-8H,9H-8,9-diaza-8a-borabenzo[fg]t etracene (Naph-NBN) (0.10 g, 0.15 mmol) was charged under the protection of nitrogen. After adding anhydrous CH_2Cl_2 (150 mL), the mixture was degassed for 30 min. Then the reactants

were cold to 0 °C and FeCl₃ (0.71g, 4.40 mmol) in 3 mL nitromethane was added dropwise. After stirring at 0 °C for another 0.5 h, the resulting mixture was quenched with methanol and ice and extracted with CH₂Cl₂ for three times. The combined organic layer was dried over anhydrous Na₂SO₄ and the solvents were removed under reduced pressure. The crude product was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 40 : 1) to give product as orange powder (0.049 g, 49 %). ¹H NMR (400 MHz, CDCl₃): δ 9.12 (s, 2H), 8.96 (d, *J*=8.8 Hz, 2H), 8.08 (d, *J*=8.8 Hz, 2H), 8.00 (d, *J*= 8.4 Hz, 2H), 7.84 (d, *J*= 7.6 Hz, 2H), 7.51 (d, *J*= 8.4 Hz, 2H), 7.24-7.22 (m, 2H), 7.14-7.07 (m, 4H), 6.86 (t, *J*= 7.2 Hz, 2H), 6.33 (t, *J*= 7.2 Hz, 2H), 4.01 (s, 6H), 1.76 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 149.1, 143.7, 143.6, 134.1, 132.5, 130.4, 129.8, 129.8, 128.7, 128.4, 127.7, 127.4, 127.2, 127.0, 125.8, 125.3, 124.6, 121.3, 120.9, 119.1, 118.7, 115.2, 38.1, 35.8, 32.0; ¹¹B NMR (225 MHz, CDCl₃): δ 28.3; HRMS (MALDI-FTICR): Calcd for C₅₀H₃₇BN₂ 676.3050, found 676.3074

2. Single-Crystal X-Ray Analysis^{S2}

Ph-NBNDH: The single crystal was obtained by diffusing methanol vapor into its toluene solutions. Intensity data were collected at 173 K on a Bruker SMART CCD X-ray Diffractometer (APEX II) with Cu K α radiation ($\lambda = 1.54178$ Å) and graphite monochrometer.

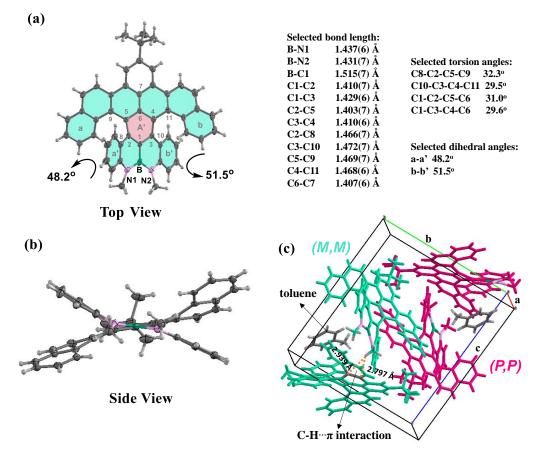
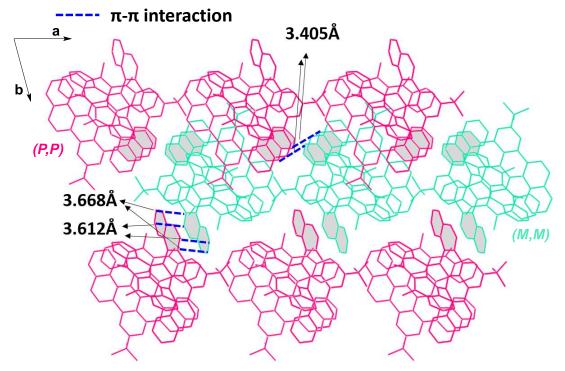


Figure S1 (a,b) X-ray crystal structures of **Ph-NBNDH** and selected crystal data. Thermal ellipsoids are shown at 50% probability. (c) Packing of one pair of enantiomers in one unit cell.


Table S1 Crystal data of Ph-NBNDH (CCDC: 1949280) :

Empirical formula	$C_{42} H_{33} B N_2$
Formula weight	576.51
Temperature/K	173(2)
Crystal system	triclinic
Space group	P-1
a/Å	7.22270(10)
b/Å	13.2949(2)
c/Å	15.8359(2)
α/°	100.1010(10)
β/°	99.8290(10)
γ/°	101.2940(10)
Volume/Å ³	1434.59(4)
Z	2
$\rho_{calc}g/cm^3$	1.335
µ/mm ⁻¹	0.583
F(000)	608
Crystal size/mm ³	0.220 x 0.180 x 0.150
Radiation	$CuK\alpha \ (\lambda = 1.54178)$
2Θ range for data collection/	° 3.472 to 68.229
Index ranges	$-8 \le h \le 8, 15 \le k \le 16, 19 \le l \le 19$
Reflections collected	22409
Independent reflections	5240 [R(int) = 0.0311]
Data/restraints/parameters	5240 / 0 / 411
Goodness-of-fit on F ²	1.022
Final R indexes [I>= 2σ (I)]	R1 = 0.0437, wR2 = 0.1198
R indices (all data)	R1 = 0.0512, wR2 = 0.1272
Largest diff. peak/hole / e Å ⁻	³ 0.241 and -0.182

Naph-NBNDH: The single crystal was obtained by diffusing methanol vapor into its toluene solutions. Intensity data were collected at 293 K on a Bruker SMART CCD X-ray Diffractometer (APEX II) with Cu K α radiation ($\lambda = 1.54178$ Å) and graphite monochrometer.

Figure S2 (a,b) X-ray crystal structures of **Naph-NBNDH** and selected crystal data. Thermal ellipsoids are shown at 30% probability. (c) Packing of two pairs of enantiomers in one unit cell.

Figure S3 Intermolecular π - π interactions of **Naph-NBNDH**.

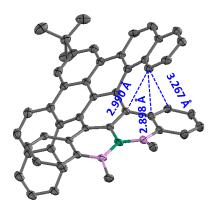


Figure S4 Intramolecular π - π interactions of Naph-NBNDH

-	L	,
	Empirical formula	$C_{107}H_{82}B_2N_4\\$
	Formula weight	1445.38
	Temperature/K	293(2)
	Crystal system	triclinic
	Space group	P-1
	a/Å	13.1533(8)
	b/Å	16.6236(10)
	c/Å	17.7637(10)
	α/°	87.371(5)

β/°	84.199(5)
γ/°	75.854(5)
Volume/Å ³	3746.2(4)
Z	2
$\rho_{calc}g/cm^3$	1.281
µ/mm⁻¹	0.558
F(000)	1524.0
Crystal size/mm ³	$0.32\times0.16\times0.12$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
20 range for data collection/	° 7.342 to 150.626
Index ranges	$\text{-16} \le h \le \text{16}, \text{-20} \le k \le \text{20}, \text{-16} \le \text{l} \le \text{22}$
Reflections collected	47690
Independent reflections	14800 [$R_{int} = 0.2035$, $R_{sigma} = 0.2276$]
Data/restraints/parameters	14800/0/1029
Goodness-of-fit on F ²	0.941
Final R indexes [I>=2 σ (I)]	$R_1=0.0890,wR_2=0.2118$
Final R indexes [all data]	$R_1 = 0.1898, wR_2 = 0.2704$
Largest diff. peak/hole / e Å ⁻	³ 0.38/-0.43

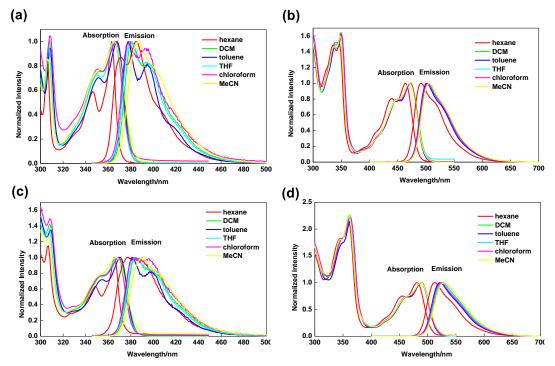
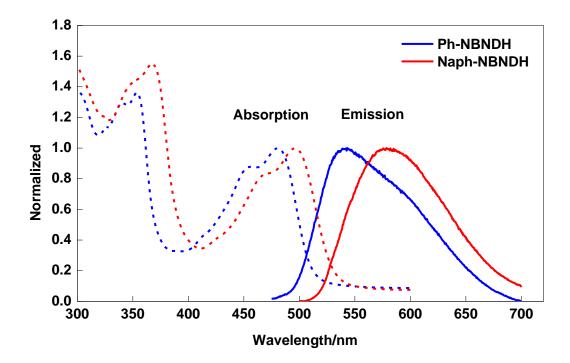
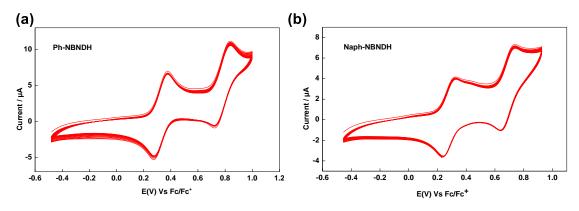



Figure S5 UV-vis Absorption and Fluorescence spectra of (a) Ph-NBN, (b) Ph-NBNDH, (c) Naph-NBN, (d) Naph-NBNDH; $c = 2*10^{-5}$ M.

Figure S6 UV-vis Absorption (dotted line) and Fluorescence spectra (solid line) of film state. The absorption maxima: λ_{ab} = 481 nm for **Ph-NBNDH**, λ_{ab} = 496 nm for **Naph-NBNDH**; The emission maxima: λ_{em} = 543 nm for **Ph-NBNDH**, λ_{em} = 579 nm for **Naph-NBNDH**.

Table S3. Photophysical property data of **Ph-NBN**, **Ph-NBNDH**, **Naph-NBN** and **Naph-NBNDH**in DCM

	absor	rption	fluorescence			Excited-state Dynamics			
Compound	$\lambda_{ab}(nm)$	Log ε	λ _{em} (nm)	$ \Phi_{\rm F} $ in solutions	$arPhi_{ m F}$ in film	τ (ns)	$k_{\rm r}({\rm s}^{-1})$	$k_{\rm nr}({\rm s}^{-1})$	
Ph-NBN	367	4.25	381	39%	/	3.6	1.1*10 ⁸	1.7*10 ⁸	
Ph-NBNDH	473	4.41	505	83%	2.78%	6.4	1.3*10 ⁸	2.7*10 ⁷	
Naph-NBN	369	4.26	384	7.4%	/	$ au_1 = 1.4 \ 73.86\%$ $ au_2 = 2.6 \ 26.14\%$	4.4*10 ⁷	5.4 *10 ⁸	
Naph-NBNDH	489	4.29	528	80%	2.48%	7.1	1.1*10 ⁸	2.8 *107	


Table S4. Performance comparison of our NBN-embedded double helicenes with the reported representative multiple helicenes. (λ_{em} : emission maxima; Φ_F : fluorescence quantum yields)

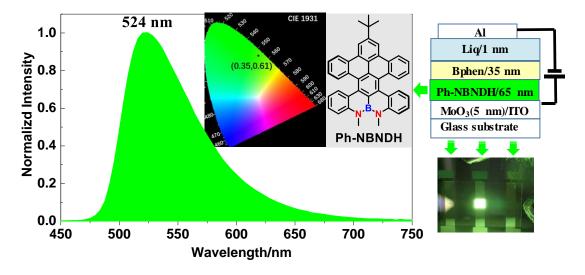
Compound	Isomers	λ_{em}/nm	$arPhi_{ m F}$	Reference
Ph-NBNDH	(P,P) or (M,M) 505 0.83		Present	
Naph-NBNDH	(P,P) or (M,M)	528	0.80	work

	(P,P) or (M,M)	525	0.052	
Double [6]carbohelicene 1	(P,M)	496	0.42	Ref S4(a)
	(P,M,P,P,M,P)	517	0.041	
Hexapole [5]carboheicene	(P,M,P,M,P,M)	517	0.039	Ref S4(b)
	(P,P) or (M,M)	565	0.34	
Double [7]carbohelicene 1	(P,M)	538	0.11	Ref S4(c)
Double [7]carbohelicene 2	(P,P) or (M,M)	697	0.035	Ref S4(d)
	(P,P,P,P,P) or	527,	0.055	
Quintuple [6]carboelicene	(M, M, M, M, M)	553	0.03	Ref S4(e)
Double [6]carbohelicene 2	(P,P)	494	0.018	
Double [6]carbohelicene 3	(P,P)	434	0.041	Ref S4(f)
	(P,P,P,P,P,P) or		01011	
Hexapole [9]carboheicene	(M, M, M, M, M)	870	0.046	Ref S4(g)
Double [6]carbohelicene 4	(P,P) or (M,M)	529	0.75	Ref S4(h)
	(P,P,P,P,P,P) or	836,		
Hexapole [7]carboheicene	(M,M,M,M,M)	934	0.016	Ref S4(i)
		524,	0.00	
S-embedded double [6]helicene	(P,P) or (M,M)	558	0.20	Ref S5(a)
		536,		
S-embedded quadruple helicene	(P,P)- (P,P)	570	0.017	Ref S5(b)
	(P,P)-(M,M)	514	0.11	
S-embedded quintuple		502,	0.02	$\mathbf{D}_{\mathbf{C}}(\mathbf{Q}_{\mathbf{C}}(\mathbf{x}))$
[6]helicene	(P,P,M,P,M)	534	0.02	Ref S5(g)
OBO-embedded double		430	0.68	
[5]helicene 1	(P,P) or (M,M)	430	0.68	Ref S5(c)
OBO-embedded double	(P,P) or (M,M)	436	0.65	Ref S5(d)
[5]helicene 2	(\mathbf{F},\mathbf{F}) or (\mathbf{M},\mathbf{M})	430	0.05	
OBO-embedded double	(P,P) or (M,M)	490	0.03	Ref S5(e)
[5]helicene 3	(1,1) 07 (191,191)	470	0.05	Kei 55(e)
OBO-embedded double	(P,P) or (M,M)	487	0.036	Ref S5(f)
[7]helicene	(1,1)01 (11,11)	+07	0.050	Kei 55(i)
Imide-fused sixfold [5]helicene	(P,P,P,P,P,P) or	617	0.24	
	(M,M,M,M,M)	017	0.21	Ref S5(h)
Imide-fused Se-embedded sixfold	(P,P,P,P,P,P) or	617	0.06	~~ (m)
[5]helicene	(M,M,M,M,M)			
Imide-fused quintuple [6]elicene	(P,P,P,P,P) or	/	0.0736	
1	(M,M,M,M,M)			Ref S5(i)
Imide-fused quintuple [6]helicene	(P,P,P,P,M) or	/	0.1185	~ /
2	(M,M,M,M,P)			
N-embedded double [6]helicene	(P,P) or (M,M)	454,	0.094	Ref S5(j)
N omhodded deethle [6]bei'e		480	0.049	$\mathbf{D}_{\mathbf{r}}\mathbf{f} \mathbf{G} \mathbf{f} (1)$
N- embedded double [5]helicene	(P,P) or (M,M)	568	0.048	$\frac{\text{Ref S5}(k)}{\text{Ref S5}(1)}$
Imide-fused double [6]helicene	(P,P) or (M,M)	549	0.44	Ref S5(l)

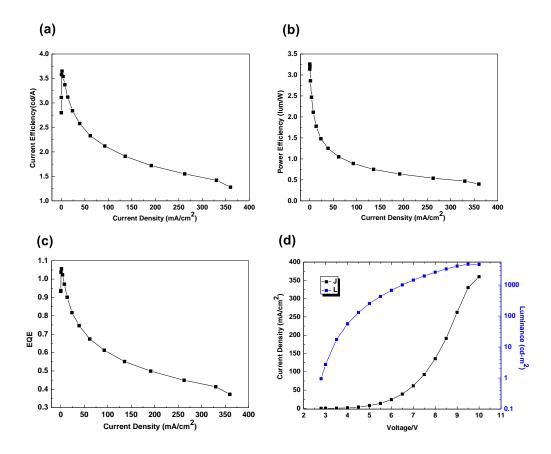
Imide-fused S-embedded double [6]helicene 1	(P,P) or (M,M)	726	0.025	
Imide-fused S-embedded double	(P,P) or (M,M)	726	0.031	Ref S5(m)
[6]helicene 2	$(\mathbf{r},\mathbf{r}) O (\mathbf{M},\mathbf{M})$	720	0.031	

4. Electrochemical Properties

Figure S7 20-cycle cyclic voltammograms scans of (a) **Ph-NBNDH** and (b) **Naph-NBNDH** in dichloromethane containing 100 mM of $TBAPF_6$ at scan rate of 0.1V s⁻¹. Fc = ferrocene.


Table S5. Electrochemical data: redox peak vs ferrocene. The potentials evaluated by onset or $(E_{\text{ox}}+E_{\text{red}})/2$

Compumd	E^{1}/V	E^2/\mathbf{V}
Ph-NBN	0.60	\
Ph-NBNDH	0.33	0.78
Naph-NBN	0.52	/
Naph-NBNDH	0.29	0.69


5. Electroluminescent device

Device fabrication and measurement of electroluminescence characteristics:

The OLED device was fabricated in the structure of ITO/MoO₃(5nm)/ Ph-NBNDH(65 nm)/Bphen (35 nm)/Liq(1nm)/Al (100 nm) employing ITO as the anode; MoO₃ as the hole injection layer; Ph-NBNDH as the emitting layer and hole transporting layer; 4,7-diphenyl-1,10-phenanthroline (Bphen) as the electron transporting layer; 8-hydroxy-quinolinato lithium (Liq) as the electron injection layer and Al as the cathode, respectively. The prepared ITO coated glass substrates were cleaned using detergent, de-ionized water, acetone, and isopropanol. After treated with a UV-ozone environment for 15 min, the substrate was immediately loaded into a custom-made high vacuum thermal evaporation chamber. The MoO_3 layer, the entire organic layers, and the Al cathode were successfully evaporated and deposited using shadow masks under a base pressure lower than 1.0×10^{-5} mbar. The deposition rates for MoO₃, organic materials, and Al were typically 0.3, 1.0 and 5.0 Å's ⁻¹, respectively. By this way, an OLEDs device with an active areas of 5 mm² was obtained. The electroluminescence characteristics were measured using a Keithley 2400 source meter and a PR650 Spectra Colorimeter under ambient condition at room temperature. The luminance and spectra were measured in the direction perpendicular to the substrate.

Figure S8 Electroluminescent (EL) device properties: the structure, luminescent spectra and CIE coordinate (inset). Bphen: 4,7-Diphenyl-1,10-phenanthroline.

Figure S9 Electroluminescent (EL) device properties:(a) Current density-Current efficiency plots; (b) Current density-Power efficiency plots; (c) Current density-External quantum efficiency(EQE) plots; (d)voltage-current density(black line)/brightness plots (blue line)

Table S6 The	performances	of the	Electroluminescent	device	with	Ph-NBNDH	as	the	host
material									

voltage	\mathbf{L}^{a}	$\eta_c{}^b$	η_p^{c}	EQE ^d	CIE	
(V)	(cd/m ²)	(cd/A)	(lm/W)	(%)	X	у
2.8	0.95	2.80	3.14	0.93	0.36	
					0.59	
4.0	55.98	3.65	2.86	1.06	0.36	
					0.60	
9.5	4692	1.42	0.47	0.41	0.35	
					0.61	

*a*luminance; *b*current efficiency; *c*power efficiency; *d*external quantum efficiency.

6. Computational Studies

All density functional theory (DFT) calculation was performed using the Gaussian 09 program^{S3}. The B3LYP functional with 6-31G(d) basis set were used for geometry optimization in the ground state. All geometry optimization was done in the gas phase and based on the single crystal structure. In order to simulate the UV-Vis spectra of the molecules TD-DFT calculations

using B3LYP functional and 6-31G(d) basis set. For better comparison to the experimental absorption spectra the polarity of the solvent dichloromethane was added. The isomerization processes were calculated by nudged elastic band (NEB) method using Vienna ab initio Simulation Package (VASP).

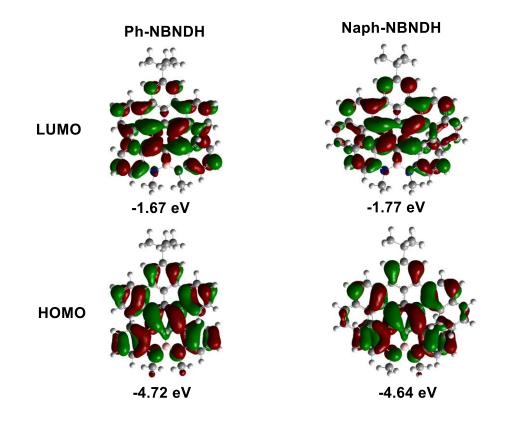


Figure S10 Calculated molecular orbitals of Ph-NBNDH and Naph-NBNDH

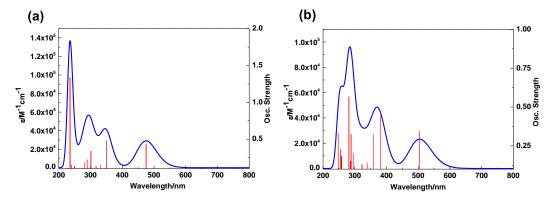


Figure S11 Simulated absorption spectra of (a) Ph-NBNDH and (b) Naph-NBNDH

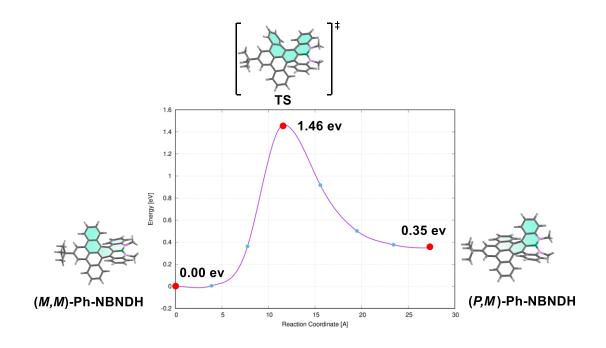


Figure S12 Calculated isomerization processes and relative internal energy of Ph-NBNDH

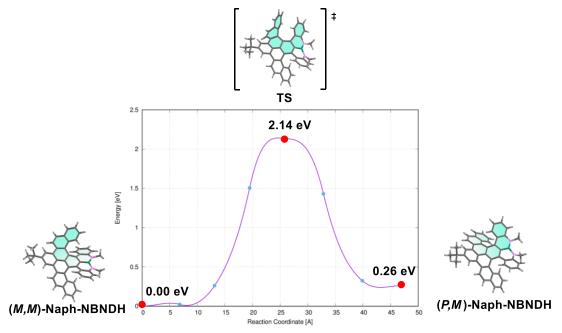


Figure S13 Calculated isomerization processes and relative internal energy of Naph-NBNDH

 Table S7 Selected calculated wavelength, oscillator strength and compositions of major transitions of Ph-NBNDH.

Wavelength (nm)Osc. Strength(f)		Major contribution
474.9	0.4295	HOMO->LUMO (99%)

		HOMO-2->LUMO (18%)
350.7	0.4795	HOMO-1->LUMO (36%)
		HOMO->LUMO+1 (33%)

Table S8 Selected calculated wavelength, oscillator strength and compositions of majortransitions of Naph-NBNDH.

Wavelength (nm)	Osc. Strength(f)	Major contribution
504.4	0.3441	HOMO->LUMO (98%)
380.2	0.4426	HOMO-3->LUMO (20%) HOMO-2->LUMO (56%) HOMO->LUMO+1 (13%)

Appendix: Cartesian coordinates for DFT calculations (*M*,*M*)-Ph-NBNDH:

1					
	Tag	Symbol	Х	Y	Z
	1	Ν	-4.44018	1.24075	0.13716
	2	С	-3.74632	2.33584	0.68013
	3	В	-3.75921	-0.0211	-0.00289
	4	С	-3.79037	4.48638	1.82905
	5	Н	-4.36529	5.31325	2.2376
	6	Ν	-4.41999	-1.29346	-0.14425
	7	С	-4.45199	3.4378	1.20313
	8	Н	-5.53463	3.45472	1.1569
	9	С	-2.39962	4.45462	1.96362
	10	Н	-1.87541	5.24808	2.48819
	11	С	-1.69087	3.39091	1.42594
	12	Н	-0.61298	3.36186	1.53572
	13	С	-2.32162	2.33646	0.73423
	14	С	-1.54655	1.21441	0.18512
	15	С	-2.22484	-0.00893	-0.00153
	16	С	-1.5267	-1.22215	-0.18589
	17	С	-2.28319	-2.35675	-0.73545
	18	С	-2.32546	-4.47728	-1.96252
	19	Н	-1.78772	-5.26324	-2.48468
	20	С	-1.63455	-3.40219	-1.42418
	21	Н	-0.55694	-3.35676	-1.53117
	22	С	-3.71592	-4.53	-1.83196
	23	Н	-4.27707	-5.36589	-2.24131

24	С	-4.39517	-3.49094	-1.20904
25	Н	-5.47756	-3.52428	-1.16586
26	С	-3.70783	-2.37796	-0.68497
27	С	-5.79043	-1.54674	0.29928
28	Н	-5.83254	-2.49665	0.84308
29	Н	-6.51376	-1.59727	-0.52606
30	Н	-6.10073	-0.75655	0.98285
31	С	-5.8133	1.47279	-0.30964
32	Н	-6.53916	1.51311	0.51404
33	Н	-6.11002	0.67728	-0.99307
34	Н	-5.86866	2.42143	-0.85449
35	С	1.97475	2.4046	-0.72835
36	С	2.62682	3.52955	-1.28285
37	Н	3.70734	3.53979	-1.36613
38	С	1.92177	4.61491	-1.77062
39	Н	2.45428	5.46084	-2.19686
40	С	0.5198	4.59454	-1.74898
41	Н	-0.04906	5.41737	-2.17344
42	С	-0.1418	3.50967	-1.20503
43	Н	-1.22378	3.49108	-1.22271
44	С	0.55658	2.41236	-0.64584
45	С	-0.155	1.24322	-0.12551
46	С	0.55464	0.01242	0.00258
47	С	2.00341	0.02322	0.00171
48	С	2.71687	1.21279	-0.31103
49	С	4.12093	1.19725	-0.28217
50	Н	4.65364	2.11467	-0.48725
51	С	4.85261	0.04304	-0.00799
52	С	4.13363	-1.12323	0.27242
53	Н	4.68663	-2.03223	0.47412
54	С	2.73511	-1.1597	0.31167
55	С	2.00895	-2.3606	0.73428
56	С	0.59158	-2.38794	0.65174
57	С	-0.13661	-1.22932	0.12872
58	С	2.67673	-3.47305	1.29377
59	Н	3.75724	-3.46614	1.37874
60	С	1.98696	-4.56707	1.78489
61	Н	2.53115	-5.40351	2.21505
62	С	0.58511	-4.56692	1.76151
63	Н	0.0276	-5.39648	2.18792
64	С	-0.09159	-3.493	1.21371
65	Н	-1.17378	-3.48966	1.23034
66	С	6.39271	0.01162	-0.00539
67	С	7.01047	1.38494	-0.33142

68	Н	8.10368	1.3098	-0.3169
69	Н	6.7234	2.14694	0.40218
70	Н	6.71809	1.73909	-1.3266
71	С	6.88812	-1.00046	-1.06588
72	Н	7.98449	-1.03755	-1.07393
73	Н	6.54965	-0.71477	-2.06832
74	Н	6.52291	-2.01344	-0.86693
75	С	6.89879	-0.42139	1.39129
76	Н	7.99508	-0.45653	1.40529
77	Н	6.5303	-1.41436	1.6693
78	Н	6.57094	0.28424	2.16308

(*M*,*M*)-Naph-NBNDH:

pr	I-NBNDH:				
	Tag	Symbol	Х	Y	Z
	1	Ν	4.2267	1.33601	-0.37268
	2	Ν	4.2964	-1.09882	0.39741
	3	С	-2.83462	-1.31904	0.04571
	4	С	0.00271	-3.68904	-0.74383
	5	С	1.33971	1.20332	-0.37573
	6	С	-0.71426	-0.02839	-0.00155
	7	С	-0.81707	2.45292	0.21082
	8	С	-2.90711	1.13753	-0.0538
	9	С	-0.67091	-2.50893	-0.22126
	10	С	-4.99578	-0.15536	0.00588
	11	С	-2.15261	-0.07102	-0.00344
	12	С	2.06198	0.05272	0.00468
	13	С	-2.72005	-3.83344	-0.05455
	14	Н	-3.77352	-3.89656	0.18987
	15	С	-2.0692	-2.56008	-0.05314
	16	С	-0.21641	3.6739	0.72804
	17	С	-0.68542	-4.94237	-0.75223
	18	С	1.40712	-1.13797	0.3808
	19	С	-2.21437	2.42236	0.0356
	20	С	0.02354	-1.25335	0.04637
	21	С	-4.24033	-1.32545	0.06009
	22	Н	-4.75835	-2.2728	0.08109
	23	С	-2.044	-4.98638	-0.32996
	24	Н	-2.55435	-5.94587	-0.29538
	25	С	2.06403	2.23664	-1.12613
	26	С	3.48837	2.28614	-1.10359
	27	С	-4.30584	1.05947	-0.05726
	28	Н	-4.88362	1.97446	-0.07217
	29	С	-0.04896	1.23789	-0.0479
	30	С	2.18613	-2.12795	1.13449

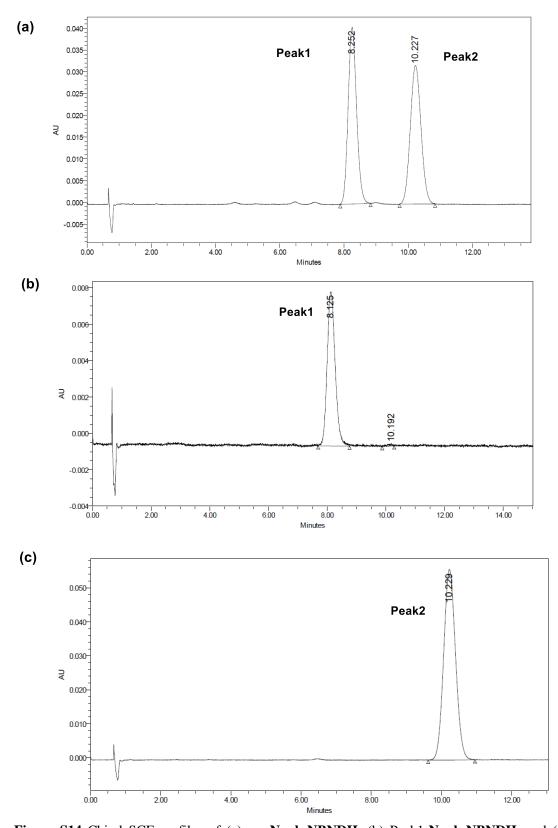
31C -0.03532 -6.10636 -1.23258 32 H -0.5754 -7.05004 -1.20389 33 C 1.28912 -3.65382 -1.34344 34 H 1.80101 -2.70557 -1.44431 35 C -2.93781 3.65523 0.02022 36 H -3.99088 3.65438 -0.23422 37 C 1.55681 -3.07899 1.96106 38 H 0.47461 -3.07325 2.02278 39 C -2.3313 4.84802 0.28841 40 H -2.89519 5.77642 0.23999 41 C 3.61103 -2.09234 1.12197 42 C 1.59267 4.89522 1.82836 43 H 2.5705 4.88648 2.30247 44 C -0.97581 4.88568 0.72044 45 C 1.06553 3.71837 1.33647 44 C -0.97581 4.88568 0.72044 45 C 1.06553 3.07454 -2.03002 50 C 1.23542 -6.04184 -1.76045 51 H 1.72082 -6.93745 -2.13883 52 C 1.88659 -4.79369 -1.84209 53 H 2.86531 -4.72426 -2.3093 54 C 2.27382 -4.00963 2.6983 55 H 1.75153 -4.7265 3.32501 56 C $0.$					
33C 1.28912 -3.65382 -1.34344 34H 1.80101 -2.70557 -1.44431 35C -2.93781 3.65523 0.02022 36H -3.99088 3.65438 -0.234222 37C 1.55681 -3.07899 1.96106 38H 0.47461 -3.07325 2.02278 39C -2.3313 4.84802 0.28841 40H -2.89519 5.77642 0.23999 41C 3.61103 -2.09234 1.12197 42C 1.59267 4.89522 1.82836 43H 2.5705 4.88648 2.30247 44C -0.97581 4.88568 0.72044 45C 1.06553 3.71837 1.33647 46H 1.63103 2.8024 1.44949 47C -6.53679 -0.1573 0.01653 48C 1.38497 3.14574 -1.96036 49H 0.30558 3.07454 -2.03002 50C 1.23542 -6.04184 -1.76045 51H 1.72082 -6.93745 -2.13883 52C 1.88659 -4.79369 -1.84209 53H 2.86531 -4.72426 -2.3093 54C 2.27382 -4.00963 2.6983 55H 1.75153 -4.7265 3.32501 56C 0.39716 6.89521 1.19399	31	С	-0.03532	-6.10636	-1.23258
34H 1.80101 -2.70557 -1.44431 35 C -2.93781 3.65523 0.02022 36 H -3.99088 3.65438 -0.23422 37 C 1.55681 -3.07899 1.96106 38 H 0.47461 -3.07325 2.02278 39 C -2.3313 4.84802 0.28841 40 H -2.89519 5.77642 0.23999 41 C 3.61103 -2.09234 1.12197 42 C 1.59267 4.89522 1.82836 43 H 2.5705 4.88648 2.30247 44 C -0.97581 4.88568 0.72044 45 C 1.06553 3.71837 1.33647 46 H 1.63103 2.8024 1.44949 47 C -6.53679 -0.1573 0.01653 48 C 1.38497 3.14574 -1.96036 49 H 0.30558 3.07454 -2.03002 50 C 1.23542 -6.04184 -1.76045 51 H 1.72082 -6.93745 -2.13883 52 C 1.88659 -4.79369 -1.84209 53 H 2.86531 -4.72426 -2.3093 54 C 2.27382 -4.00963 2.6983 55 H 1.75153 -4.7265 3.32501 56 C -0.3971 6.08952 1.19399 57 H -0.99044	32	Н	-0.5754	-7.05004	-1.20389
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	С	1.28912	-3.65382	-1.34344
36H -3.99088 3.65438 -0.23422 37 C 1.55681 -3.07899 1.96106 38 H 0.47461 -3.07325 2.02278 39 C -2.3313 4.84802 0.28841 40 H -2.89519 5.77642 0.23999 41 C 3.61103 -2.09234 1.12197 42 C 1.59267 4.89522 1.82836 43 H 2.5705 4.88648 2.30247 44 C -0.97581 4.88568 0.72044 45 C 1.06553 3.71837 1.33647 46 H 1.63103 2.8024 1.44949 47 C -6.53679 -0.1573 0.01653 48 C 1.38497 3.14574 -1.96036 49 H 0.30558 3.07454 -2.03002 50 C 1.23542 -6.04184 -1.76045 51 H 1.72082 -6.93745 -2.13883 52 C 1.886591 -4.72426 -2.3093 54 C 2.27382 -4.00963 2.6983 55 H 1.75153 -4.7245 3.32501 56 C 0.3971 6.08952 1.19399 57 H -0.99044 7.0016 1.15308 58 C 0.8713 6.10309 1.73087 59 H 1.30167 7.02847 2.10414 60 C -7.06313 <	34	Н	1.80101	-2.70557	-1.44431
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	С	-2.93781	3.65523	0.02022
38H 0.47461 -3.07325 2.02278 39C -2.3313 4.84802 0.28841 40H -2.89519 5.77642 0.23999 41C 3.61103 -2.09234 1.12197 42C 1.59267 4.89522 1.82836 43H 2.5705 4.88648 2.30247 44C -0.97581 4.88568 0.72044 45C 1.06553 3.71837 1.33647 46H 1.63103 2.8024 1.44949 47C -6.53679 -0.1573 0.01653 48C 1.38497 3.14574 -1.96036 49H 0.30558 3.07454 -2.03002 50C 1.23542 -6.04184 -1.76045 51H 1.72082 -6.93745 -2.13883 52C 1.88659 -4.79369 -1.84209 53H 2.86531 -4.72426 -2.3093 54C 2.27382 -4.00963 2.6983 55H 1.75153 -4.7265 3.32501 56C -0.3971 6.08952 1.19399 57H -0.99044 7.0016 1.15308 58C 0.8713 6.10309 1.73087 59H 1.30167 7.02847 2.10414 60C -7.06313 0.52108 -1.27066 61H -6.72621 -0.01798 -2.1634 <t< td=""><td>36</td><td>Н</td><td>-3.99088</td><td>3.65438</td><td>-0.23422</td></t<>	36	Н	-3.99088	3.65438	-0.23422
39C -2.3313 4.84802 0.28841 40H -2.89519 5.77642 0.23999 41C 3.61103 -2.09234 1.12197 42C 1.59267 4.89522 1.82836 43H 2.5705 4.88648 2.30247 44C -0.97581 4.88568 0.72044 45C 1.06553 3.71837 1.33647 46H 1.63103 2.8024 1.44949 47C -6.53679 -0.1573 0.01653 48C 1.38497 3.14574 -1.96036 49H 0.30558 3.07454 -2.03002 50C 1.23542 -6.04184 -1.76045 51H 1.72082 -6.93745 -2.13883 52C 1.88659 -4.79369 -1.84209 53H 2.86531 -4.72426 -2.3093 54C 2.27382 -4.00963 2.6983 55H 1.75153 -4.7245 3.32501 56C -0.3971 6.08952 1.19399 57H -0.99044 7.00016 1.15308 58C 0.8713 6.10309 1.73087 59H 1.30167 7.02847 2.10414 60C -7.06313 0.52108 -1.27066 61H -6.72621 -0.01798 -2.1634 64C 4.14931 3.29182 -1.83445 <	37	С	1.55681	-3.07899	1.96106
40 H -2.89519 5.77642 0.23999 41 C 3.61103 -2.09234 1.12197 42 C 1.59267 4.89522 1.82836 43 H 2.5705 4.88648 2.30247 44 C -0.97581 4.88568 0.72044 45 C 1.06553 3.71837 1.33647 46 H 1.63103 2.8024 1.44949 47 C -6.53679 -0.1573 0.01653 48 C 1.38497 3.14574 -1.96036 49 H 0.30558 3.07454 -2.03002 50 C 1.23542 -6.04184 -1.76045 51 H 1.72082 -6.93745 -2.13883 52 C 1.88659 -4.79369 -1.84209 53 H 2.86531 -4.72426 -2.3093 54 C 2.27382 -4.00963 2.6983 55 <	38	Н	0.47461	-3.07325	2.02278
41C 3.61103 -2.09234 1.12197 42C 1.59267 4.89522 1.82836 43H 2.5705 4.88648 2.30247 44C -0.97581 4.88568 0.72044 45C 1.06553 3.71837 1.33647 46H 1.63103 2.8024 1.44949 47C -6.53679 -0.1573 0.01653 48C 1.38497 3.14574 -1.96036 49H 0.30558 3.07454 -2.03002 50C 1.23542 -6.04184 -1.76045 51H 1.72082 -6.93745 -2.13883 52C 1.88659 -4.79369 -1.84209 53H 2.86531 -4.72426 -2.3093 54C 2.27382 -4.00963 2.6983 55H 1.75153 -4.7265 3.32501 56C -0.3971 6.08952 1.19399 57H -0.99044 7.00016 1.15308 58C 0.8713 6.10309 1.73087 59H 1.30167 7.02847 2.10414 60C -7.06313 0.52108 -1.27066 61H -6.72621 -0.01798 -2.1634 64C 4.14931 3.29182 -1.83445 65H 5.23189 3.34267 -1.82381 66C 2.05025 4.11602 -2.69504	39	С	-2.3313	4.84802	0.28841
42C 1.59267 4.89522 1.82836 43 H 2.5705 4.88648 2.30247 44 C -0.97581 4.88568 0.72044 45 C 1.06553 3.71837 1.33647 46 H 1.63103 2.8024 1.44949 47 C -6.53679 -0.1573 0.01653 48 C 1.38497 3.14574 -1.96036 49 H 0.30558 3.07454 -2.03002 50 C 1.23542 -6.04184 -1.76045 51 H 1.72082 -6.93745 -2.13883 52 C 1.88659 -4.79369 -1.84209 53 H 2.86531 -4.72426 -2.3093 54 C 2.27382 -4.00963 2.6983 55 H 1.75153 -4.7265 3.32501 56 C -0.3971 6.08952 1.19399 57 H -0.99044 7.00016 1.15308 58 C 0.8713 6.10309 1.73087 59 H 1.30167 7.02847 2.10414 60 C -7.06313 0.52108 -1.27066 61 H -6.72621 -0.01798 -2.1634 64 C 4.14931 3.29182 -1.83445 65 H 5.23189 3.34267 -1.82381 66 C 2.05025 4.11602 -2.69504 69 H 1.49056 <td>40</td> <td>Н</td> <td>-2.89519</td> <td>5.77642</td> <td>0.23999</td>	40	Н	-2.89519	5.77642	0.23999
43H 2.5705 4.88648 2.30247 44C -0.97581 4.88568 0.72044 45C 1.06553 3.71837 1.33647 46H 1.63103 2.8024 1.44949 47C -6.53679 -0.1573 0.01653 48C 1.38497 3.14574 -1.96036 49H 0.30558 3.07454 -2.03002 50C 1.23542 -6.04184 -1.76045 51H 1.72082 -6.93745 -2.13883 52C 1.88659 -4.79369 -1.84209 53H 2.86531 -4.72426 -2.3093 54C 2.27382 -4.00963 2.6983 55H 1.75153 -4.7265 3.32501 56C -0.3971 6.08952 1.19399 57H -0.99044 7.00016 1.15308 58C 0.8713 6.10309 1.73087 59H 1.30167 7.02847 2.10414 60C -7.06313 0.52108 -1.27066 61H -6.72621 -0.01798 -2.1634 64C 4.14931 3.29182 -1.82381 65H 5.23189 3.34267 -1.82381 66C 2.05025 4.11602 -2.69504 68C 2.05025 4.11602 -2.69504 69H 1.49056 4.7299 3.19591 <	41	С	3.61103	-2.09234	1.12197
44C -0.97581 4.88568 0.72044 45C 1.06553 3.71837 1.33647 46H 1.63103 2.8024 1.44949 47C -6.53679 -0.1573 0.01653 48C 1.38497 3.14574 -1.96036 49H 0.30558 3.07454 -2.03002 50C 1.23542 -6.04184 -1.76045 51H 1.72082 -6.93745 -2.13883 52C 1.88659 -4.79369 -1.84209 53H 2.86531 -4.72426 -2.3093 54C 2.27382 -4.00963 2.6983 55H 1.75153 -4.7265 3.32501 56C -0.3971 6.08952 1.19399 57H -0.99044 7.00016 1.15308 58C 0.8713 6.10309 1.73087 59H 1.30167 7.02847 2.10414 60C -7.06313 0.52108 -1.27066 61H -6.72621 -0.01798 -2.1634 64C 4.14931 3.29182 -1.83445 65H 5.23189 3.34267 -1.82381 66C 4.32586 -3.05829 1.85573 67H 5.4096 -3.04403 1.85296 68C 2.05025 4.11602 -2.69504 69H 1.49056 4.79855 -3.32777 <t< td=""><td>42</td><td>С</td><td>1.59267</td><td>4.89522</td><td>1.82836</td></t<>	42	С	1.59267	4.89522	1.82836
45C 1.06553 3.71837 1.33647 46H 1.63103 2.8024 1.44949 47C -6.53679 -0.1573 0.01653 48C 1.38497 3.14574 -1.96036 49H 0.30558 3.07454 -2.03002 50C 1.23542 -6.04184 -1.76045 51H 1.72082 -6.93745 -2.13883 52C 1.88659 -4.79369 -1.84209 53H 2.86531 -4.72426 -2.3093 54C 2.27382 -4.00963 2.6983 55H 1.75153 -4.7265 3.32501 56C -0.3971 6.08952 1.19399 57H -0.99044 7.00016 1.15308 58C 0.8713 6.10309 1.73087 59H 1.30167 7.02847 2.10414 60C -7.06313 0.52108 -1.27066 61H -6.72621 -0.01798 -2.1634 64C 4.14931 3.29182 -1.83445 65H 5.23189 3.34267 -1.82381 66C 4.32586 -3.05829 1.85573 67H 5.4096 -3.04403 1.85296 68C 2.05025 4.11602 -2.69504 69H 1.49056 4.79855 -3.32777 70C 3.6689 -4.00775 2.6287	43	Н	2.5705	4.88648	2.30247
46H 1.63103 2.8024 1.44949 47C -6.53679 -0.1573 0.01653 48C 1.38497 3.14574 -1.96036 49H 0.30558 3.07454 -2.03002 50C 1.23542 -6.04184 -1.76045 51H 1.72082 -6.93745 -2.13883 52C 1.88659 -4.79369 -1.84209 53H 2.86531 -4.72426 -2.3093 54C 2.27382 -4.00963 2.6983 55H 1.75153 -4.7265 3.32501 56C -0.3971 6.08952 1.19399 57H -0.99044 7.00016 1.15308 58C 0.8713 6.10309 1.73087 59H 1.30167 7.02847 2.10414 60C -7.06313 0.52108 -1.27066 61H -6.7193 1.55697 -1.35757 62H -8.16002 0.53319 -1.27411 63H -6.72621 -0.01798 -2.1634 64C 4.14931 3.29182 -1.83445 65H 5.23189 3.34267 -1.82381 66C 2.05025 4.11602 -2.69504 68C 2.05025 4.11602 -2.69504 69H 1.49056 4.79855 -3.32777 70C 3.6689 -4.00775 2.6287 <	44	С	-0.97581	4.88568	0.72044
47C -6.53679 -0.1573 0.01653 48C 1.38497 3.14574 -1.96036 49H 0.30558 3.07454 -2.03002 50C 1.23542 -6.04184 -1.76045 51H 1.72082 -6.93745 -2.13883 52C 1.88659 -4.79369 -1.84209 53H 2.86531 -4.72426 -2.3093 54C 2.27382 -4.00963 2.6983 55H 1.75153 -4.7265 3.32501 56C -0.3971 6.08952 1.19399 57H -0.99044 7.00016 1.15308 58C 0.8713 6.10309 1.73087 59H 1.30167 7.02847 2.10414 60C -7.06313 0.52108 -1.27066 61H -6.7193 1.55697 -1.35757 62H -8.16002 0.53319 -1.27411 63H -6.72621 -0.01798 -2.1634 64C 4.14931 3.29182 -1.82381 65H 5.23189 3.34267 -1.82381 66C 2.05025 4.11602 -2.69504 68C 2.05025 4.11602 -2.69504 69H 1.49056 4.79855 -3.32777 70C 3.6689 -4.00775 2.6287 71H 4.25026 -4.7299 3.19591	45	С	1.06553	3.71837	1.33647
48C 1.38497 3.14574 -1.96036 49H 0.30558 3.07454 -2.03002 50C 1.23542 -6.04184 -1.76045 51H 1.72082 -6.93745 -2.13883 52C 1.88659 -4.79369 -1.84209 53H 2.86531 -4.72426 -2.3093 54C 2.27382 -4.00963 2.6983 55H 1.75153 -4.7265 3.32501 56C -0.3971 6.08952 1.19399 57H -0.99044 7.00016 1.15308 58C 0.8713 6.10309 1.73087 59H 1.30167 7.02847 2.10414 60C -7.06313 0.52108 -1.27066 61H -6.7193 1.55697 -1.35757 62H -8.16002 0.53319 -1.27411 63H -6.72621 -0.01798 -2.1634 64C 4.14931 3.29182 -1.82381 65H 5.23189 3.34267 -1.82381 66C 2.05025 4.11602 -2.69504 69H 1.49056 4.79855 -3.32777 70C 3.6689 -4.00775 2.6287 71H 4.25026 -4.7299 3.19591 72C -7.1251 -1.57993 0.07896 73H -6.83157 -2.18268 -0.78808 <td>46</td> <td>Н</td> <td>1.63103</td> <td>2.8024</td> <td>1.44949</td>	46	Н	1.63103	2.8024	1.44949
49H 0.30558 3.07454 -2.03002 50C 1.23542 -6.04184 -1.76045 51H 1.72082 -6.93745 -2.13883 52C 1.88659 -4.79369 -1.84209 53H 2.86531 -4.72426 -2.3093 54C 2.27382 -4.00963 2.6983 55H 1.75153 -4.7265 3.32501 56C -0.3971 6.08952 1.19399 57H -0.99044 7.00016 1.15308 58C 0.8713 6.10309 1.73087 59H 1.30167 7.02847 2.10414 60C -7.06313 0.52108 -1.27066 61H -6.72621 -0.01798 -2.1634 64C 4.14931 3.29182 -1.82381 65H 5.23189 3.34267 -1.82381 66C 4.32586 -3.05829 1.8573 67H 5.4096 -3.04403 1.85296 68C 2.05025 4.11602 -2.69504 69H 1.49056 4.79855 -3.32777 70C 3.6689 -4.00775 2.6287 71H 4.25026 -4.7299 3.19591 72C -7.1251 -1.57993 0.07896 73H -6.83157 -2.18268 -0.78808	47	С	-6.53679	-0.1573	0.01653
50C 1.23542 -6.04184 -1.76045 51 H 1.72082 -6.93745 -2.13883 52 C 1.88659 -4.79369 -1.84209 53 H 2.86531 -4.72426 -2.3093 54 C 2.27382 -4.00963 2.6983 55 H 1.75153 -4.7265 3.32501 56 C -0.3971 6.08952 1.19399 57 H -0.99044 7.00016 1.15308 58 C 0.8713 6.10309 1.73087 59 H 1.30167 7.02847 2.10414 60 C -7.06313 0.52108 -1.27066 61 H -6.7193 1.55697 -1.35757 62 H -8.16002 0.53319 -1.27411 63 H -6.72621 -0.01798 -2.1634 64 C 4.14931 3.29182 -1.82381 66 C 4.32586 -3.05829 1.85573 67 H 5.4096 -3.04403 1.85296 68 C 2.05025 4.11602 -2.69504 69 H 1.49056 4.79855 -3.32777 70 C 3.6689 -4.00775 2.6287 71 H 4.25026 -4.7299 3.19591 72 C -7.1251 -1.57993 0.07896 73 H -6.83157 -2.18268 -0.78808	48	С	1.38497	3.14574	-1.96036
51H 1.72082 -6.93745 -2.13883 52 C 1.88659 -4.79369 -1.84209 53 H 2.86531 -4.72426 -2.3093 54 C 2.27382 -4.00963 2.6983 55 H 1.75153 -4.7265 3.32501 56 C -0.3971 6.08952 1.19399 57 H -0.99044 7.00016 1.15308 58 C 0.8713 6.10309 1.73087 59 H 1.30167 7.02847 2.10414 60 C -7.06313 0.52108 -1.27066 61 H -6.7193 1.55697 -1.35757 62 H -8.16002 0.53319 -1.27411 63 H -6.72621 -0.01798 -2.1634 64 C 4.14931 3.29182 -1.83445 65 H 5.23189 3.34267 -1.82381 66 C 2.05025 4.11602 -2.69504 69 H 1.49056 4.79855 -3.32777 70 C 3.6689 -4.00775 2.6287 71 H 4.25026 -4.7299 3.19591 72 C -7.1251 -1.57993 0.07896 73 H -6.83157 -2.18268 -0.78808	49	Н	0.30558	3.07454	-2.03002
52C 1.88659 -4.79369 -1.84209 53 H 2.86531 -4.72426 -2.3093 54 C 2.27382 -4.00963 2.6983 55 H 1.75153 -4.7265 3.32501 56 C -0.3971 6.08952 1.19399 57 H -0.99044 7.00016 1.15308 58 C 0.8713 6.10309 1.73087 59 H 1.30167 7.02847 2.10414 60 C -7.06313 0.52108 -1.27066 61 H -6.7193 1.55697 -1.35757 62 H -8.16002 0.53319 -1.27411 63 H -6.72621 -0.01798 -2.1634 64 C 4.14931 3.29182 -1.83445 65 H 5.23189 3.34267 -1.82381 66 C 4.32586 -3.05829 1.85573 67 H 5.4096 -3.04403 1.85296 68 C 2.05025 4.11602 -2.69504 69 H 1.49056 4.79855 -3.32777 70 C 3.6689 -4.00775 2.6287 71 H 4.25026 -4.7299 3.19591 72 C -7.1251 -1.57993 0.07896 73 H -6.83157 -2.18268 -0.78808	50	С	1.23542	-6.04184	-1.76045
53 H 2.86531 -4.72426 -2.3093 54 C 2.27382 -4.00963 2.6983 55 H 1.75153 -4.7265 3.32501 56 C -0.3971 6.08952 1.19399 57 H -0.99044 7.00016 1.15308 58 C 0.8713 6.10309 1.73087 59 H 1.30167 7.02847 2.10414 60 C -7.06313 0.52108 -1.27066 61 H -6.7193 1.55697 -1.35757 62 H -8.16002 0.53319 -1.27411 63 H -6.72621 -0.01798 -2.1634 64 C 4.14931 3.29182 -1.82381 65 H 5.23189 3.34267 -1.82381 66 C 2.05025 4.11602 -2.69504 69 H 1.49056 4.79855 -3.32777 70 C 3.6689 -4.00775 2.6287 71 H 4	51	Н	1.72082	-6.93745	-2.13883
54C 2.27382 -4.00963 2.6983 55 H 1.75153 -4.7265 3.32501 56 C -0.3971 6.08952 1.19399 57 H -0.99044 7.00016 1.15308 58 C 0.8713 6.10309 1.73087 59 H 1.30167 7.02847 2.10414 60 C -7.06313 0.52108 -1.27066 61 H -6.7193 1.55697 -1.35757 62 H -8.16002 0.53319 -1.27411 63 H -6.72621 -0.01798 -2.1634 64 C 4.14931 3.29182 -1.83445 65 H 5.23189 3.34267 -1.82381 66 C 4.32586 -3.05829 1.85573 67 H 5.4096 -3.04403 1.85296 68 C 2.05025 4.11602 -2.69504 69 H 1.49056 4.79855 -3.32777 70 C 3.6689 -4.00775 2.6287 71 H 4.25026 -4.7299 3.19591 72 C -7.1251 -1.57993 0.07896 73 H -6.83157 -2.18268 -0.78808	52	С	1.88659	-4.79369	-1.84209
55H1.75153-4.72653.3250156C-0.39716.089521.1939957H-0.990447.000161.1530858C0.87136.103091.7308759H1.301677.028472.1041460C-7.063130.52108-1.2706661H-6.71931.55697-1.3575762H-8.160020.53319-1.2741163H-6.72621-0.01798-2.163464C4.149313.29182-1.8344565H5.231893.34267-1.8238166C4.32586-3.058291.8557367H5.4096-3.044031.8529668C2.050254.11602-2.6950469H1.490564.79855-3.3277770C3.6689-4.007752.628771H4.25026-4.72993.1959172C-7.1251-1.579930.0789673H-6.83157-2.18268-0.78808	53	Н	2.86531	-4.72426	-2.3093
56 C -0.3971 6.08952 1.19399 57 H -0.99044 7.00016 1.15308 58 C 0.8713 6.10309 1.73087 59 H 1.30167 7.02847 2.10414 60 C -7.06313 0.52108 -1.27066 61 H -6.7193 1.55697 -1.35757 62 H -8.16002 0.53319 -1.27411 63 H -6.72621 -0.01798 -2.1634 64 C 4.14931 3.29182 -1.82445 65 H 5.23189 3.34267 -1.82381 66 C 4.32586 -3.05829 1.85573 67 H 5.4096 -3.04403 1.85296 68 C 2.05025 4.11602 -2.69504 69 H 1.49056 4.79855 -3.32777 70 C 3.6689 -4.00775 2.6287 71 <	54	С	2.27382	-4.00963	2.6983
57H-0.990447.000161.1530858C0.87136.103091.7308759H1.301677.028472.1041460C-7.063130.52108-1.2706661H-6.71931.55697-1.3575762H-8.160020.53319-1.2741163H-6.72621-0.01798-2.163464C4.149313.29182-1.8344565H5.231893.34267-1.8238166C4.32586-3.058291.8557367H5.4096-3.044031.8529668C2.050254.11602-2.6950469H1.490564.79855-3.3277770C3.6689-4.007752.628771H4.25026-4.72993.1959172C-7.1251-1.579930.0789673H-6.83157-2.18268-0.78808	55	Н	1.75153	-4.7265	3.32501
58C 0.8713 6.10309 1.73087 59 H 1.30167 7.02847 2.10414 60 C -7.06313 0.52108 -1.27066 61 H -6.7193 1.55697 -1.35757 62 H -8.16002 0.53319 -1.27411 63 H -6.72621 -0.01798 -2.1634 64 C 4.14931 3.29182 -1.83445 65 H 5.23189 3.34267 -1.82381 66 C 4.32586 -3.05829 1.85573 67 H 5.4096 -3.04403 1.85296 68 C 2.05025 4.11602 -2.69504 69 H 1.49056 4.79855 -3.32777 70 C 3.6689 -4.00775 2.6287 71 H 4.25026 -4.7299 3.19591 72 C -7.1251 -1.57993 0.07896 73 H -6.83157 -2.18268 -0.78808	56	С	-0.3971	6.08952	1.19399
59H1.301677.028472.1041460C-7.063130.52108-1.2706661H-6.71931.55697-1.3575762H-8.160020.53319-1.2741163H-6.72621-0.01798-2.163464C4.149313.29182-1.8344565H5.231893.34267-1.8238166C4.32586-3.058291.8557367H5.4096-3.044031.8529668C2.050254.11602-2.6950469H1.490564.79855-3.3277770C3.6689-4.007752.628771H4.25026-4.72993.1959172C-7.1251-1.579930.0789673H-6.83157-2.18268-0.78808	57	Н	-0.99044	7.00016	1.15308
60C-7.063130.52108-1.2706661H-6.71931.55697-1.3575762H-8.160020.53319-1.2741163H-6.72621-0.01798-2.163464C4.149313.29182-1.8344565H5.231893.34267-1.8238166C4.32586-3.058291.8557367H5.4096-3.044031.8529668C2.050254.11602-2.6950469H1.490564.79855-3.3277770C3.6689-4.007752.628771H4.25026-4.72993.1959172C-7.1251-1.579930.0789673H-6.83157-2.18268-0.78808	58	С	0.8713	6.10309	1.73087
61H-6.71931.55697-1.3575762H-8.160020.53319-1.2741163H-6.72621-0.01798-2.163464C4.149313.29182-1.8344565H5.231893.34267-1.8238166C4.32586-3.058291.8557367H5.4096-3.044031.8529668C2.050254.11602-2.6950469H1.490564.79855-3.3277770C3.6689-4.007752.628771H4.25026-4.72993.1959172C-7.1251-1.579930.0789673H-6.83157-2.18268-0.78808	59	Н	1.30167	7.02847	2.10414
62H-8.160020.53319-1.2741163H-6.72621-0.01798-2.163464C4.149313.29182-1.8344565H5.231893.34267-1.8238166C4.32586-3.058291.8557367H5.4096-3.044031.8529668C2.050254.11602-2.6950469H1.490564.79855-3.3277770C3.6689-4.007752.628771H4.25026-4.72993.1959172C-7.1251-1.579930.0789673H-6.83157-2.18268-0.78808	60	С	-7.06313	0.52108	-1.27066
63H-6.72621-0.01798-2.163464C4.149313.29182-1.8344565H5.231893.34267-1.8238166C4.32586-3.058291.8557367H5.4096-3.044031.8529668C2.050254.11602-2.6950469H1.490564.79855-3.3277770C3.6689-4.007752.628771H4.25026-4.72993.1959172C-7.1251-1.579930.0789673H-6.83157-2.18268-0.78808	61	Н	-6.7193	1.55697	-1.35757
64C4.149313.29182-1.8344565H5.231893.34267-1.8238166C4.32586-3.058291.8557367H5.4096-3.044031.8529668C2.050254.11602-2.6950469H1.490564.79855-3.3277770C3.6689-4.007752.628771H4.25026-4.72993.1959172C-7.1251-1.579930.0789673H-6.83157-2.18268-0.78808	62	Н	-8.16002	0.53319	-1.27411
65H5.231893.34267-1.8238166C4.32586-3.058291.8557367H5.4096-3.044031.8529668C2.050254.11602-2.6950469H1.490564.79855-3.3277770C3.6689-4.007752.628771H4.25026-4.72993.1959172C-7.1251-1.579930.0789673H-6.83157-2.18268-0.78808	63	Н	-6.72621	-0.01798	-2.1634
66 C 4.32586 -3.05829 1.85573 67 H 5.4096 -3.04403 1.85296 68 C 2.05025 4.11602 -2.69504 69 H 1.49056 4.79855 -3.32777 70 C 3.6689 -4.00775 2.6287 71 H 4.25026 -4.7299 3.19591 72 C -7.1251 -1.57993 0.07896 73 H -6.83157 -2.18268 -0.78808	64	С	4.14931	3.29182	-1.83445
67H5.4096-3.044031.8529668C2.050254.11602-2.6950469H1.490564.79855-3.3277770C3.6689-4.007752.628771H4.25026-4.72993.1959172C-7.1251-1.579930.0789673H-6.83157-2.18268-0.78808	65	Н	5.23189	3.34267	-1.82381
68C2.050254.11602-2.6950469H1.490564.79855-3.3277770C3.6689-4.007752.628771H4.25026-4.72993.1959172C-7.1251-1.579930.0789673H-6.83157-2.18268-0.78808	66	С	4.32586	-3.05829	1.85573
69H1.490564.79855-3.3277770C3.6689-4.007752.628771H4.25026-4.72993.1959172C-7.1251-1.579930.0789673H-6.83157-2.18268-0.78808	67	Н	5.4096	-3.04403	1.85296
70C3.6689-4.007752.628771H4.25026-4.72993.1959172C-7.1251-1.579930.0789673H-6.83157-2.18268-0.78808	68	С	2.05025	4.11602	-2.69504
71H4.25026-4.72993.1959172C-7.1251-1.579930.0789673H-6.83157-2.18268-0.78808	69	Н	1.49056	4.79855	-3.32777
72C-7.1251-1.579930.0789673H-6.83157-2.18268-0.78808	70	С	3.6689	-4.00775	2.6287
73 H -6.83157 -2.18268 -0.78808	71	Н	4.25026	-4.7299	3.19591
	72	С	-7.1251	-1.57993	0.07896
74 H -8.21943 -1.52428 0.08595					
	74	Н	-8.21943	-1.52428	0.08595

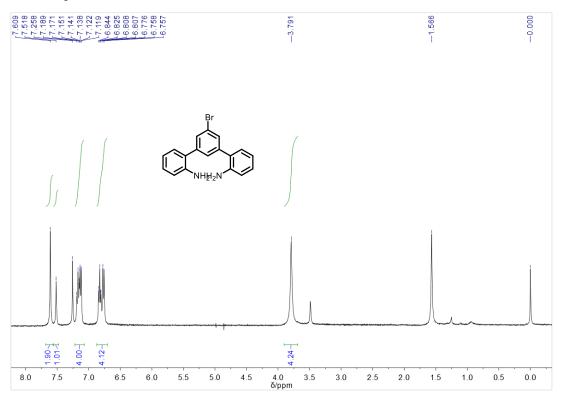
75	Н	-6.8165	-2.11036	0.98705
76	С	3.44229	4.19836	-2.6148
77	Н	3.98345	4.95289	-3.17961
78	С	5.68251	-1.3822	0.02591
79	Н	6.39309	-1.24318	0.85212
80	Н	5.97722	-0.73014	-0.79633
81	Н	5.7668	-2.41786	-0.32049
82	С	-7.04353	0.62413	1.25244
83	Н	-6.69187	0.15986	2.18079
84	Н	-8.14026	0.63684	1.27229
85	Н	-6.69934	1.66363	1.24903
86	В	3.59573	0.09881	0.01008
87	С	5.5918	1.70032	0.00545
88	Н	6.31297	1.60514	-0.81787
89	Н	5.92116	1.06522	0.82781
90	Н	5.61339	2.73864	0.35364

7. Optical Resolution of Naph-NBNDH

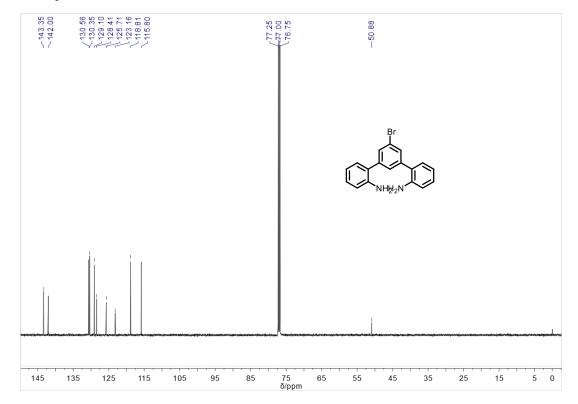
Preparative Seperation Method

Instrument: MG II preparative SFC (SFC-11) Column: ChiralPak AD, 250×30mm I.D., 5µm Mobile phase: A for CO₂ and B for Ethanol(0.1%NH3H2O) Gradient: B 40% Flow rate: 70 mL /min Back pressure: 100 bar Column temperature: 38°C Wavelength: 220nm Cycle time: ~10min Analytical separation method: Instrument: Waters UPC2 analytical SFC (SFC-H) Column: ChiralPak AD, 150×4.6mm I.D., 3µm Mobile phase: A for CO₂ and B for Ethanol (0.05% DEA) Gradient: B 40% Flow rate: 2.5 mL/min Back pressure: 100 bar Column temperature: 35°C Wavelength: 220nm

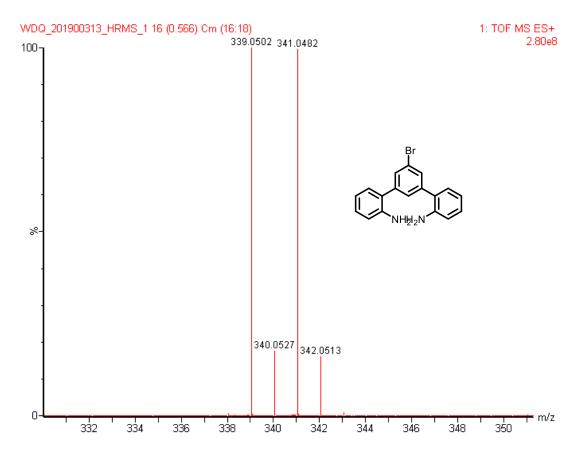


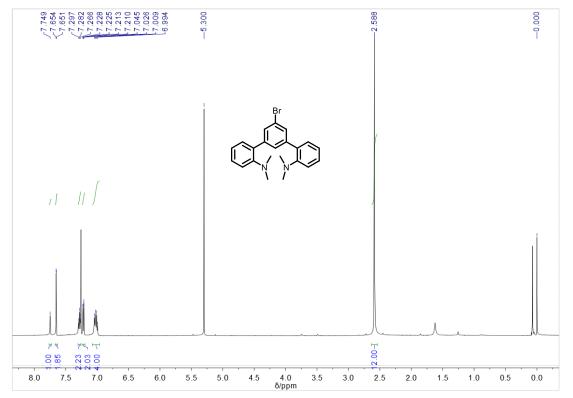

Figure S14 Chiral SCF profiles of (a) rac-Naph-NBNDH, (b) Peak1-Naph-NBNDH, and (c) Peak2-Naph-NBNDH.

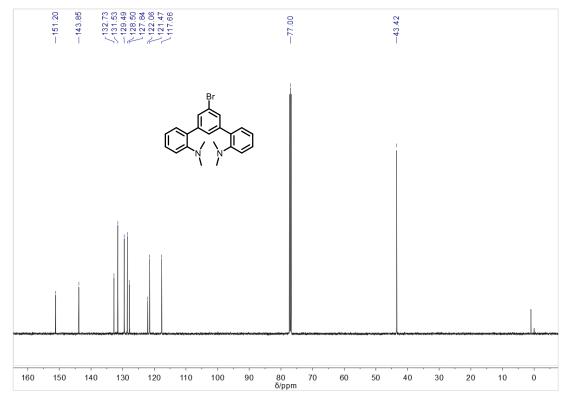
	1	I			
	Fraction	Retention Time /min	Area	Area%	ee
rac Form	Peak 1	8.252	743073	50.18	
	Peak 2	10.227	737734	49.82	
Peak 1	Peak 1	8.125	160691	99.19	00.20
	Peak 2	10.192	1307	0.81	98.38
Peak 2	Peak 1	0	0	0	100%
	Peak 2	10.229	1320204	100.00	100%

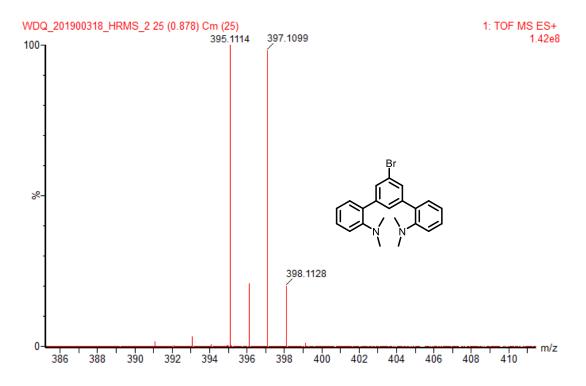

Table S9 The SCF profiles of Naph-NBNDH

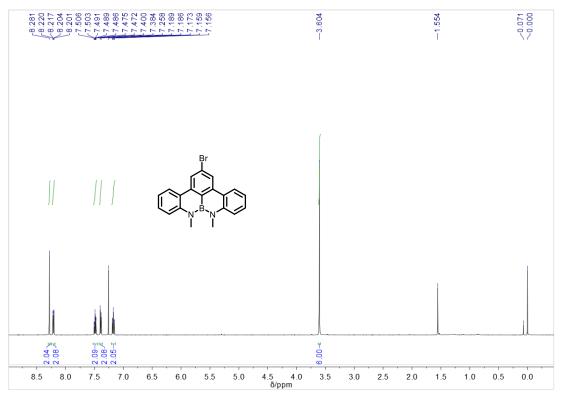
8. NMR Spectra and HRMS Spectra

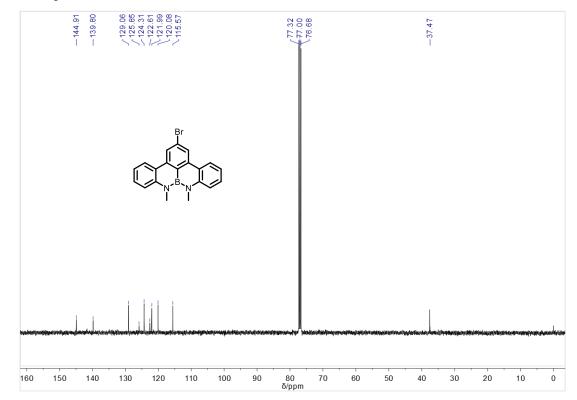

 ^1H NMR spectrum of $\boldsymbol{1}$ (400 M Hz, CDCl_3)

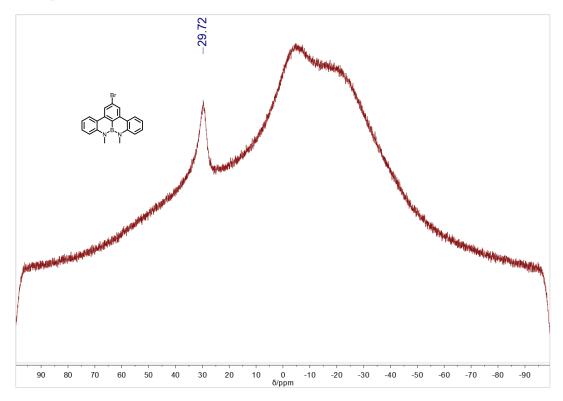

 ^{13}C NMR spectrum of 1 (125 M Hz, CDCl_3)

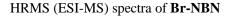

HRMS (ESI-MS) spectra of 1

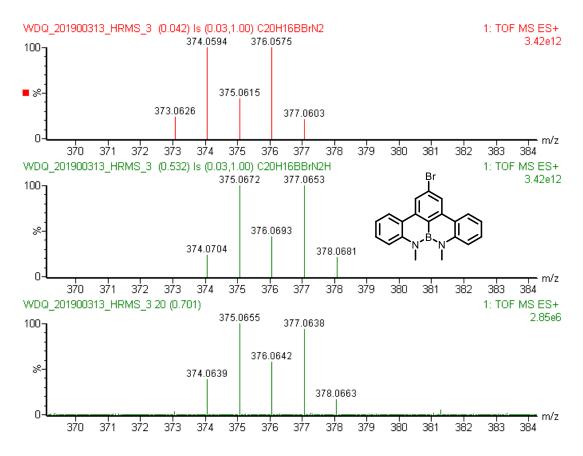

 1 H NMR spectrum of 2 (500 M Hz, CDCl₃)

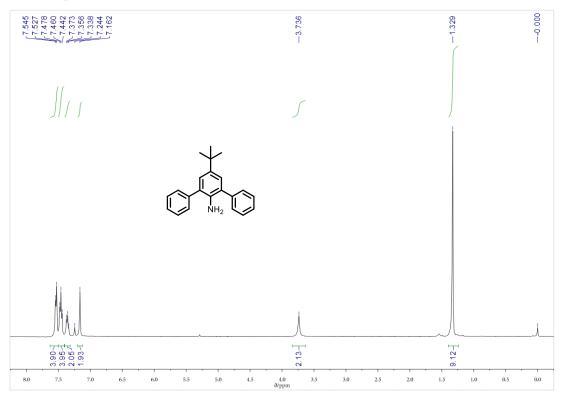

^{13}C NMR spectrum of $\boldsymbol{2}$ (125 M Hz, CDCl₃)

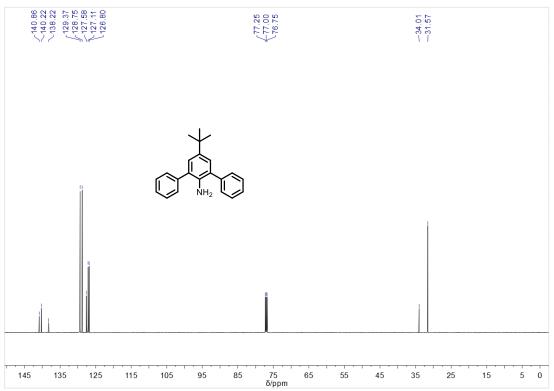

HRMS (ESI-MS) spectra of 2

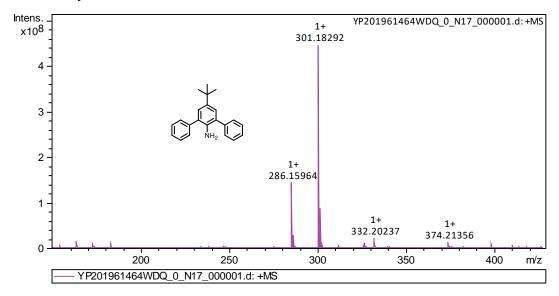




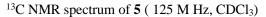

 ^{13}C NMR spectrum of Br-NBN (100 M Hz, CDCl_3)

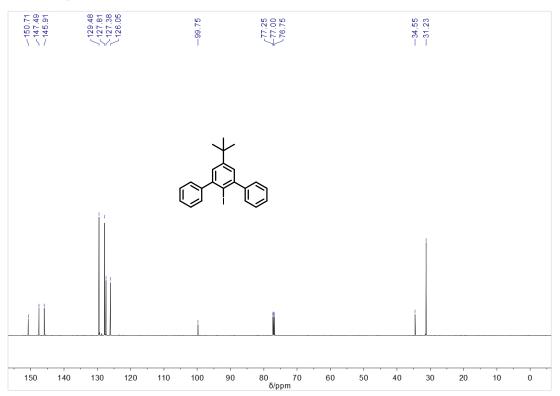

 ^{11}B NMR spectrum of Br-NBN (128 M, CDCl_3)



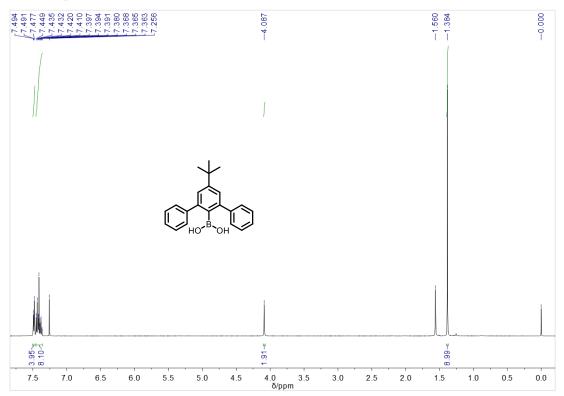

 1 H NMR spectrum of **3** (400 M Hz, CDCl₃)

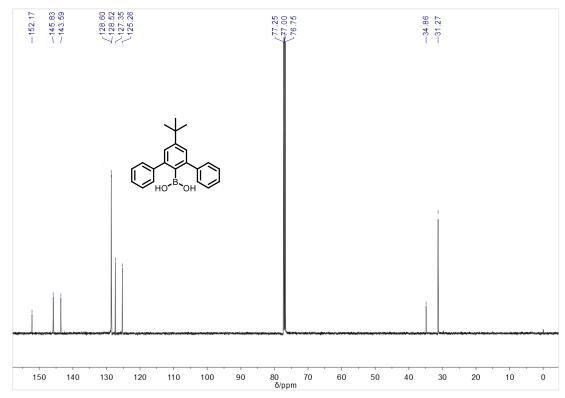
 ^{13}C NMR spectrum of $\boldsymbol{3}$ (125 M Hz, CDCl₃)

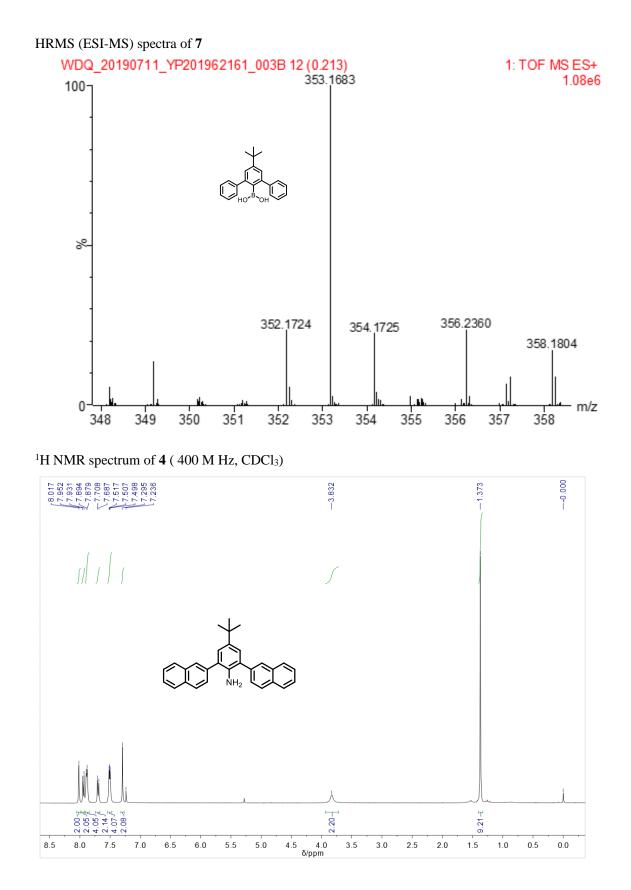



MALDI-FTICR spectra of 3

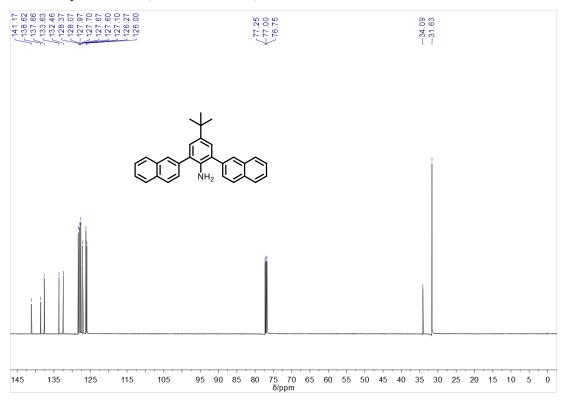
¹H NMR spectrum of **5** (500 M Hz, CDCl₃)



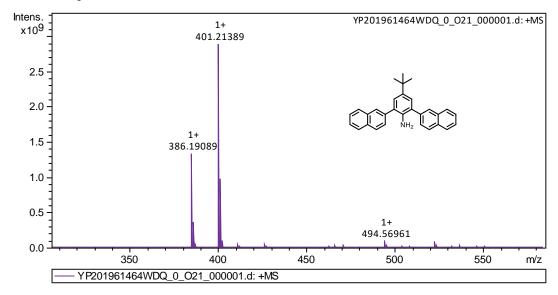


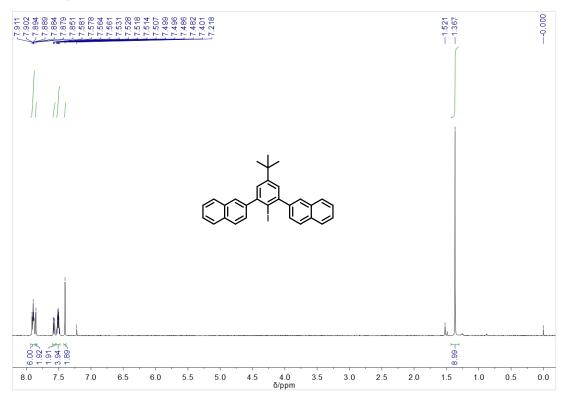


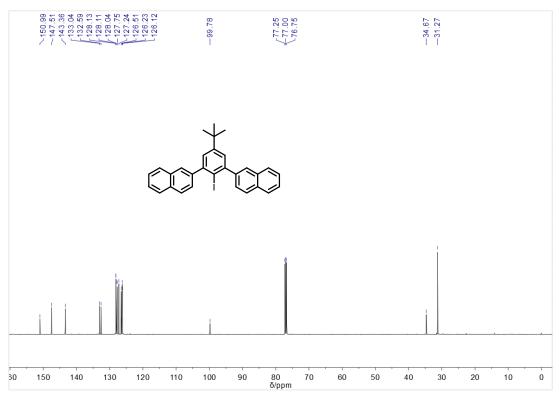
1 H NMR spectrum of 7 (500 M Hz, CDCl₃)

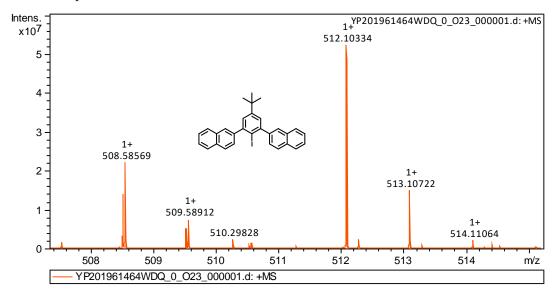


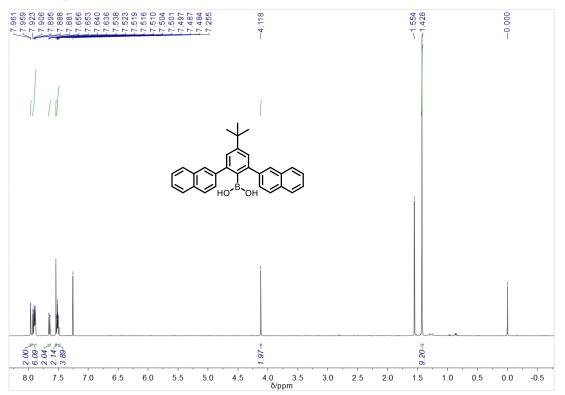
 ^{13}C NMR spectrum of 7 (125 M Hz, CDCl_3)

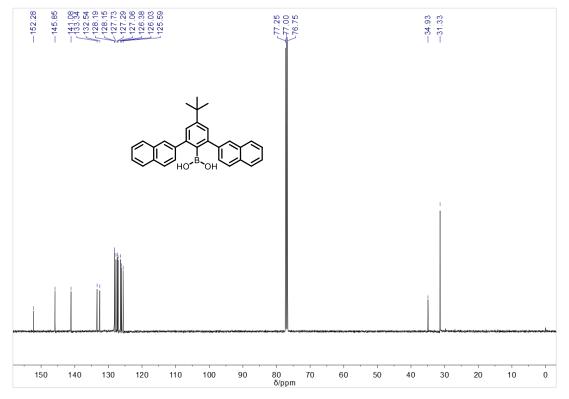


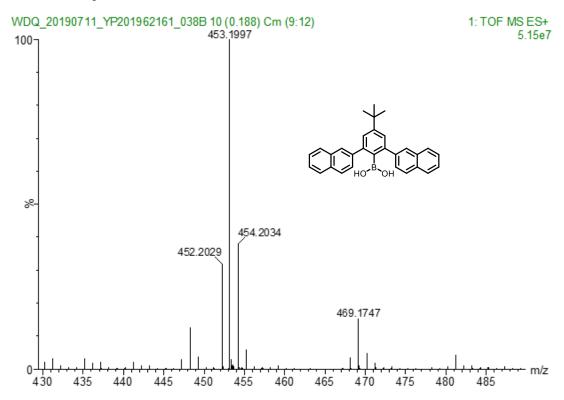

¹³C NMR spectrum of 4 (125 M Hz, CDCl₃)

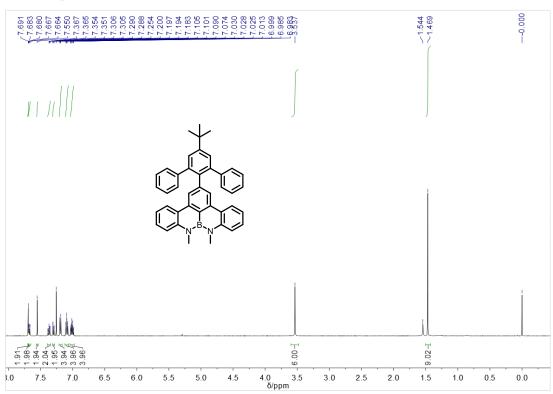

MALDI-FTICR spectra of 4


¹H NMR spectrum of **6** (500 M Hz, CDCl₃)

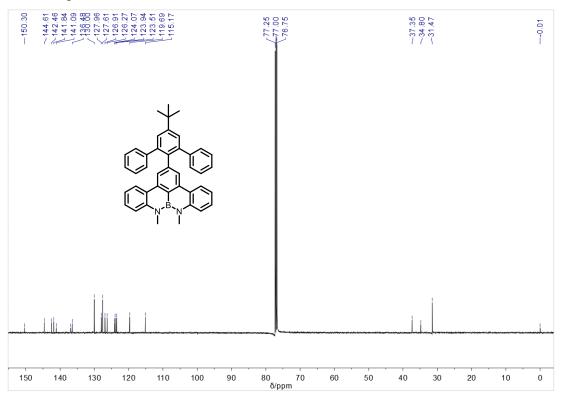

¹³C NMR spectrum of 6 (125 M Hz, CDCl₃)

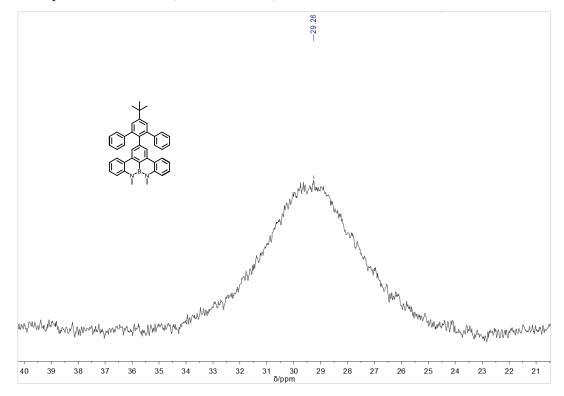

MALDI-FTICR spectra of 6


¹H NMR spectrum of 8 (500 M Hz, CDCl₃)



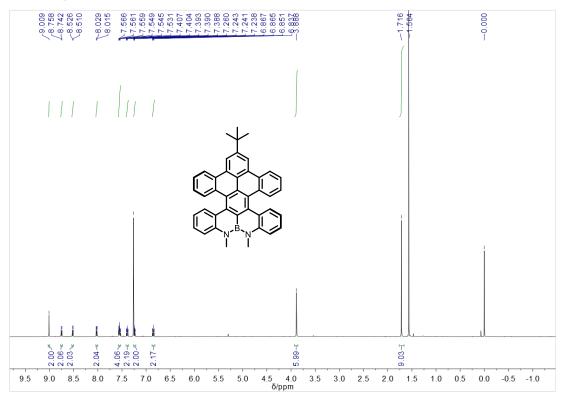
¹³C NMR spectrum of 8(125 M Hz, CDCl₃)



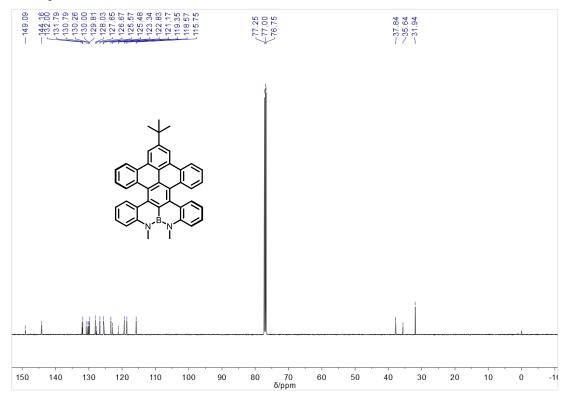


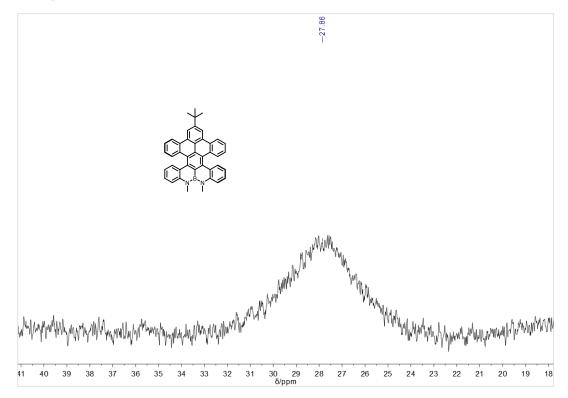
¹H NMR spectrum of **Ph-NBN** (500 M Hz, CDCl₃)

¹³C NMR spectrum of **Ph-NBN**(125 M Hz, CDCl₃)

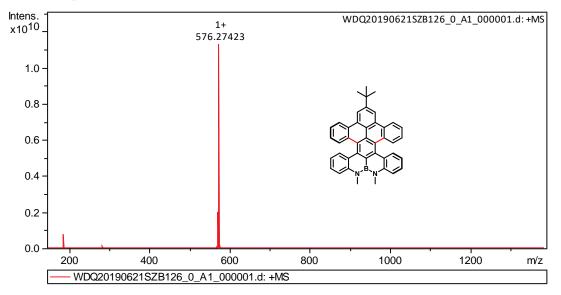


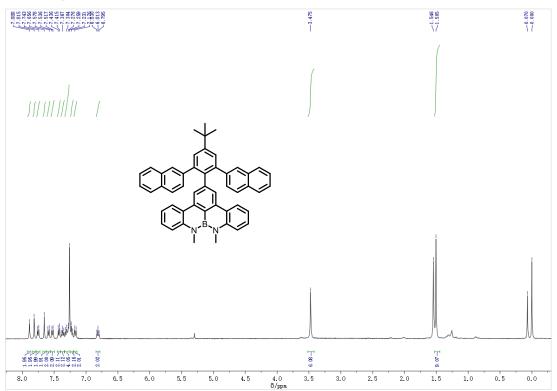
¹¹B NMR spectrum of Ph-NBN (225 MHz, CDCl₃)

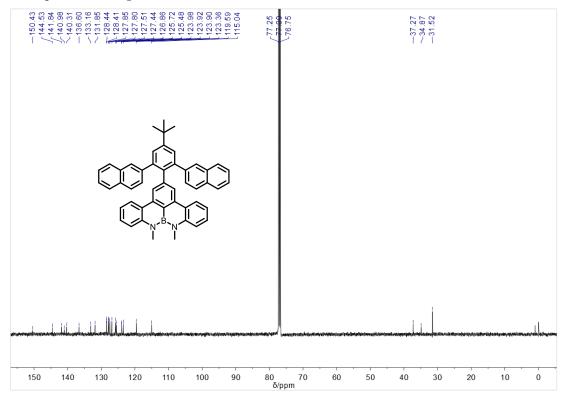

MALDI-FTICR spectra of Ph-NBN

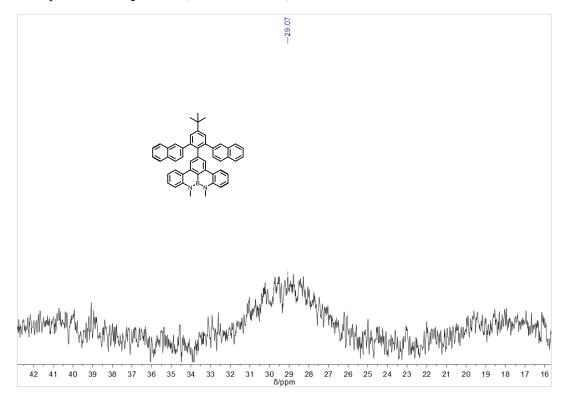


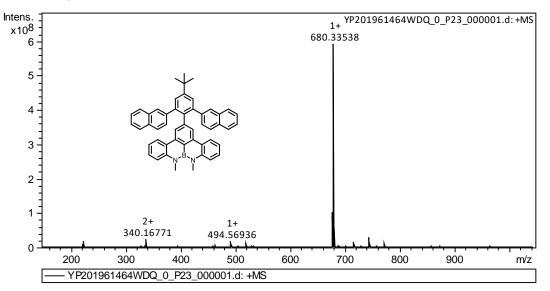
¹H NMR spectrum of **Ph-NBNDH** (500 M Hz, CDCl₃)

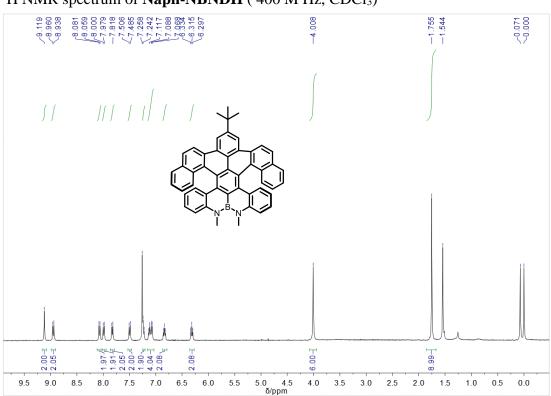

¹³C NMR spectrum of **Ph-NBNDH**(125 M Hz, CDCl₃)



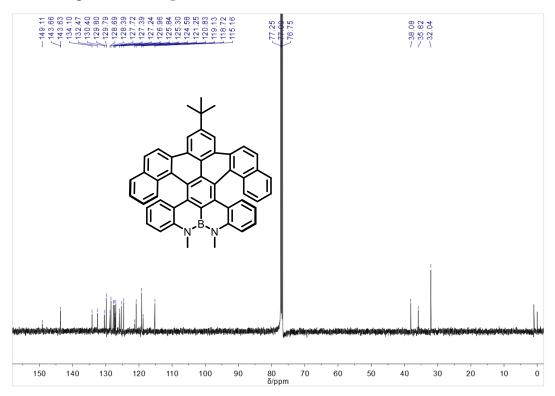

MALDI-FTICR spectra of Ph-NBNDH

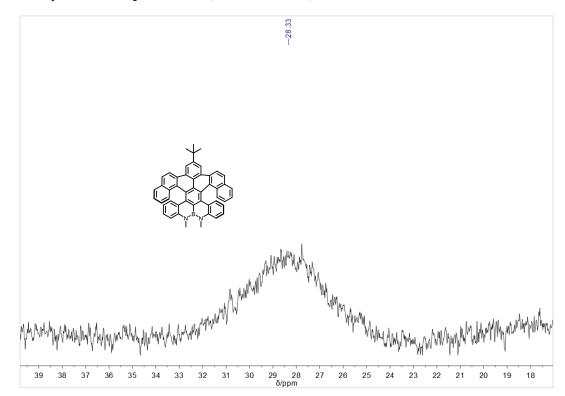



¹³C NMR spectrum of Naph-NBN(125 M Hz, CDCl₃)

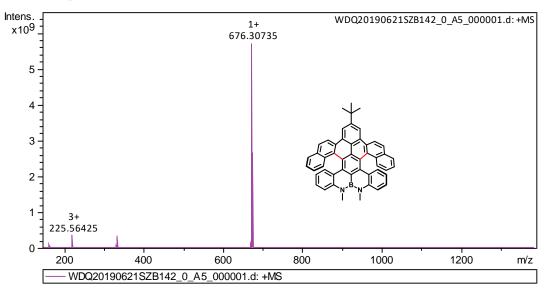


¹¹B NMR spectrum of Naph-NBN (225 MHz, CDCl₃)


MALDI-FTICR spectra of Naph-NBN



¹H NMR spectrum of Naph-NBNDH (400 M Hz, CDCl₃)


¹³C NMR spectrum of Naph-NBNDH(125 M Hz, CDCl₃)

¹¹B NMR spectrum of Naph-NBNDH (225 MHz, CDCl₃)

MALDI-FTICR spectra of Naph-NBNDH

Reference:

- S1. Schlütter, F.; Nishiuchi, T.; Enkelmann, V.; Müllen, K. Polymer Chemistry 2013, 4, 2963.
- S2. SHELXL-97, Program for the Refinement of Crystal Structure, Sheldrick, G. M. University of Götingen, Götingen (Germany), 1997.
- S3. Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2009**.
- S4. (a) Fujikawa, T.; Segawa, Y.; Itami, K. J. Am. Chem. Soc. 2015, 137, 7763. (b) Hosokawa, T.; Takahashi, Y.; Matsushima, T.; Watanabe, S.; Kikkawa, S.; Azumaya, I.; Tsurusaki, A.; Kamikawa, K. J. Am. Chem. Soc. 2017, 139, 18512. (c) Hu, Y.; Wang, X. Y.; Peng, P. X.; Wang, X. C.; Cao, X. Y.; Feng, X.; Müllen, K.; Narita, A. Angew. Chem. Int. Ed. 2017, 56, 3374. (d) Hu, Y.; Paterno, G. M.; Wang, X. Y.; Wang, X. C.; Guizzardi, M.; Chen, Q.; Schollmeyer, D.; Cao, X. Y.; Cerullo, G.; Scotognella, F.; Müllen, K.; Narita, A. J. Am. Chem. Soc. 2019, 141, 12797. (e) Kato, K.; Segawa, Y.; Scott, L. T.; Itami, K. Angew. Chem. Int. Ed. 2018, 57, 1337. (f) Tanaka, H.; Ikenosako, M.; Kato, Y.; Fujiki, M.; Inoue, Y.; Mori, T. Commun. Chem. 2018, 1,38. (g) Wang, Y.; Yin, Z.; Zhu, Y.; Gu, J.; Li, Y.; Wang, J. Angew. Chem. Int. Ed. 2019, 58, 587. (h) Yamano, R.; Shibata, Y.; Tanaka, K. Chem. - Eur. J. 2018, 24, 6364. (i) Zhu, Y.; Guo, X.; Li, Y.; Wang, J. J. Am. Chem. Soc. 2019, 141, 5511.
- S5. (a) Fujikawa, T.; Mitoma, N.; Wakamiya, A.; Saeki, A.; Segawa, Y.; Itami, K. Org. Biomol. Chem. 2017, 15, 4697. (b) Fujikawa, T.; Segawa, Y.; Itami, K. J. Am. Chem. Soc. 2016, 138, 3587. (c) Katayama, T.; Nakatsuka, S.; Hirai, H.; Yasuda, N.; Kumar, J.; Kawai, T.; Hatakeyama, T. J. Am. Chem. Soc. 2016, 138, 5210. (d) Wang, X. Y.; Narita, A.; Zhang, W.; Feng, X.; Müllen, K. J. Am. Chem. Soc. 2016, 138, 9021. (e) Wang, X. Y.; Dienel, T.; Di Giovannantonio, M.; Barin, G. B.; Kharche, N.; Deniz, O.; Urgel, J. I.; Widmer, R.; Stolz, S.; De Lima, L. H.; Muntwiler, M.; Tommasini, M.; Meunier, V.; Ruffieux, P.; Feng, X.; Fasel, R.; Müllen, K.; Narita, A. J. Am. Chem. Soc. 2017, 139, 4671. (f) Wang, X. Y.; Wang, X. C.; Narita, A.; Wagner, M.; Cao, X. Y.; Feng, X.; Müllen, K. J. Am. Chem. Soc. 2016, 138, 12783. (g) Lin, H. A.; Kato, K.; Segawa, Y.; Scott, L. T.; Itami, K. Chem. Sci. 2019, 10, 2326. (h) Liu, G.; Koch, T.; Li, Y.; Doltsinis, N. L.; Wang, Z. Angew. Chem. Int. Ed. 2019, 58, 178. (i) Meng, D.; Liu, G.; Xiao, C.; Shi, Y.; Zhang, L.; Jiang, L.; Baldridge, K. K.; Li, Y.; Siegel, J. S.; Wang, Z. J. Am. Chem. Soc. 2019, 141, 5402. (j) Nakamura, K.; Furumi, S.; Takeuchi, M.; Shibuya, T.; Tanaka, K. J. Am. Chem. Soc. 2014, 136, 5555. (k) Sakamaki, D.; Kumano, D.; Yashima, E.; Seki, S. Angew. Chem. Int. Ed. 2015, 54, 5404. (1) Schuster, N. J.; Hernandez Sanchez, R.; Bukharina, D.; Kotov, N. A.; Berova, N.; Ng, F.; Steigerwald, M. L.; Nuckolls, C.

J. Am. Chem. Soc. 2018, 140, 6235. (m) Zeng, C.; Xiao, C.; Feng, X.; Zhang, L.; Jiang, W.; Wang, Z. Angew. Chem. Int. Ed. 2018, 57, 10933.