
Computational techniques for kinematically 
constrained convection models

And the winner is ...

The BFBt preconditioners, particularly when combined with GM-
RES, beat the Citcom solver strategy in the simple tests by a re-
spectable margin. In the slab subduction test they are consider-
ably more robust. Importantly, their convergence is uniform to
at small tolerances where the Citcom scheme falls off in efficiency
quite early.

In Summary

We regard a preconditioner as optimal if the iterative method
used exhibits convergence rates independent of the discretisation
parameter h, and independent of the constitutitve behaviour.
These stringent requirements are tough to satisfy under all cir-
cumstances. From a suite of Stokes flow derived numerical ex-
periments in which grid resolution and viscosity contrast were
our free parameters, we observe the BFBt preconditioner satis-
fies our definition of an optimal preconditioner. The commonly
used choice of Ŝ = diag(GT )(diag(K))�1G, demonstrates
a sensitivity to both the grid resolution and the viscosity contrast.

The development of generic block structure objects enables us to
easily define coupled systems arsing from the discretisation of
PDEs. In addition, block based preconditioners can also be de-
fined with minimal effort. Togther, we envisage that these tools
will enable improved efficiency in solving simple constrained prob-
lems such as Stokes flow, and more complex constrained systems
such as coupled mantle flow, plate kinematic problem.

We ran three simple test examples to guage the ability of a very
large range of solvers to address typical challenges: flow models
driven by internal density contrasts with: 1) exponentially vary-
ing vertical gradient in viscosity of �� = 106; 2) exponen-
tially varying horizontal viscosity gradient (�� = 106); and
3) a sinking, dense ball of viscosity contrast 108
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Comparison of preconditioned iterative 
        methods applied to Stokes flow
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Introduction

In order to mix plate kinematic constraints with mantle dynam-
ics we need to be able to apply plate-like boundary conditions
to convection models in which the penalty for the model failing
to satisfy the condition can be weighted according to the uncer-
tainty in the kinematic reconstruction. Constraints typically in-
clude the near-rigidity of oceanic plate interiors and prescribing
observed plate motions.

An additional requirement is a kinematically-plausible dynamic
model for the deformation at plate boundaries and regions where
there is poor observational constraints on the kinematics.

Numerically, the application of the rigidity constraint can be
achieved by either penalizing the strain-rate in the plate inte-
rior or by prescribing that the velocities must be consistent with a
rigid body motion. Plate reconstruction information is imposed
upon the rigid plates by an additional penalty on the mismatch
between the convection model plate velocities and those from the
reconstructed plate motions.

Here we address the issue of solving the typical systems of equa-
tions which emerge when such constraints are applied, and which
are present when appropriate constitutive models for the plate
boundaries are included.

The context for our investigation is the Particle-in-Cell Finite
Element Method described in Moresi et al. (2002, 2003). This
has the capacity to include the relevant constitutive behaviour
(e.g. strain-softening plasticity) expressed with a standard Fi-
nite Element formulation in which the constraint problem can be
formulated.

Constrained Flow — template problem

The archetypal problem is Stokes flow

⇥ · � �⇥p = g⇤ẑ (1)

subject to various constraints including, for example, incompress-
ibility

⇥ · u = 0 (2)

and strongly varying material properties (viscosity or an equiva-
lent parameter which acts as a penalty on the plate-rigidity con-
straint)

⌅ij = ⇥(x, y, z)
�
⇧ui
⇧xj

+
⇧uj
⇧xi

⇥
� p�ij (3)

Discrete Problem

An important issue in the large-scale constrained modelling prob-
lem is choosing a preconditioned iterative method. While there
are many possible approaches, thus we would like to experiment
to determine which strategy is optimal.

To provide flexibility in defining both the iterative method and a
suitable preconditioner, we prefer to define the discrete counter-
part to each operator in (1) as an individual matrix. The resulting
system of equations is then given as a block matrix —

�
A B
C 0

⇥�
x
y

⇥
=
�
f
h

⇥
(4)

Here, B represents the discrete gradient operator and C =
BT , the discrete divergence. In the general case, each ofA,B,C
may themselves be block matrices.

The constraint system above is indefinite due to the zero (2, 2)
block. As a consequence, a common operator for use in either
defining a preconditioner or operator for a Krylov subspace method
is the Schur complement, S = CA�1B.

Preconditioners can be constructed from the manipulating the
block matrices in (4) (in some manner) or through a block pre-
conditioner

Â =
�

Â11 B
0 Â22

⇥
(5)

which has been shown to effective when applied as a right pre-
conditioner to (4). See Elman et al. (2002), Elman (2002).

We implemented arbitrary sized block vectors, matrices and pre-
conditioner objects within PETSc Balay et al. (1997), with a ma-
trix free representation of the Schur complement and other pre-
conditioners for S.

The acid test

To demonstrate the benefits of using a block framework, we com-
pare several solution strategies applied to a number of Stokes
flow models. The reference solver upon which we seek to im-
prove is the segregated approach employed by Citcom as define
in Moresi and Solomatov (1995).

Figure F– a FD subduction model run which has strong rheological 
variations due to natural layering and the development of 
localization. The material is constrained to be incompressible. 

Figure B – The qualifying round: which solvers can beat Citcom out-
of-the-box ?  Any which come in under the qualifying time for the 
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Figure : – How well does the best alternative preconditioning 
strategy stack up against Citcom ?  The convergence for the slab-
subduction challenge shows very reliable residual reduction without 
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