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In mantle convection models it has become common to make use of a modified (pressure sen-
sitive, Boussinesq) von Mises yield criterion to limit the maximum stress the lithosphere can
support. This approach allows the viscous, cool thermal boundary layer to deform in a rela-
tively plate-like mode even in a fully Eulerian representation.

In large-scale models with embedded continental crust where the mobile boundary layer rep-
resents the oceanic lithosphere, the von Mises yield criterion for the oceans ensures that the
continents experience a realistic broad-scale stress regime. In detailed models of crustal defor-
mation it is, however, more appropriate to choose a Mohr-Coulomb yield criterion based upon
the idea that frictional slip occurs on whichever one of many randomly oriented planes happens
to be favorably oriented with respect to the stress field. As coupled crust/mantle models become
more sophisticated it is important to be able to use whichever failure model is appropriate to a
given part of the system. We have therefore developed a way to represent Mohr-Coulomb fail-
ure within a code which is suited to mantle convection problems coupled to large-scale crustal
deformation.

Our approach uses an orthotropic viscous rheology (a different viscosity for pure shear to that
for simple shear) to define a prefered plane for slip to occur given the local stress field. The
simple-shear viscosity and the deformation can then be iterated to ensure that the yield criterion
is always satisfied. We again assume the Boussinesq approximation - neglecting any effect of
dilatancy on the stress field. An additional criterion is required to ensure that deformation
occurs along the plane aligned with maximum shear strain-rate rather than the perpendicular
plane which is formally equivalent in any symmetric formulation.

It is also important to allow strain-weakening of the material. The material should remember
both the accumulated failure history and the direction of failure. We have included this capac-
ity in a Lagrangian-Integration-point finite element code and will show a number of examples
of extension and compression of a crustal block with a Mohr-Coulomb failure criterion, and
comparisons between mantle convection models using the von Mises versus the Mohr-Coulomb
yield criteria. The formulation itself is general and applies to 2D and 3D problems, although it
is somewhat more complicated to identify the slip plane in 3D.

1 Mohr-Coulomb failure model

During our conversation yesterday, I think there are some pieces which I am
not really clear about but I guess after looking at the Key pages, I finally got
your points :)

Anyway,

I need your opinion about this:

I’ve developed a plugin that can read the value of a form field using a simple
syntax (e.g.

So basically, we can put the ψ data in the meta data and they can be accessed
with a simple

ψ =
∫
1

0

!(x,z)dxdz (1)

And of course, the setvar script can be updated easily to change the meta
data (i.e form fields) of a page.

What do you think?

2 Anisotropic model
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Figure 1 — (a) conceptual picture of a medium with many potential failure directions which will grow according to the loading conditions, (b) the resolved stresses on an arbitrarily oriented surface element.
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Figure 4 — A simple "benchmark" showing the angle to the vertical / horizontal of shear band formation in the notched beam test after 2% extension / compression for a range of the friction coefficient. The solid line is the microscopic failure angle

Figure 4Figure 2 — (a) conceptual picture of the integration scheme of equation (7), and scematic of the particle slip-history and orientation updating process
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Figure 3 — Director evolution in shear. Due to the symmetry of the problem two orthogonal directions are equally weak. Only one of these directions hardens with time.
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In mantle convection models it has become common to make use of a modified
(pressure sensitive, Boussinesq) von Mises yield criterion to limit the maximum
stress the lithosphere can support. This approach allows the viscous, cool thermal
boundary layer to deform in a relatively plate-like mode even in a fully Eulerian
representation.

In large-scale models with embedded continental crust where the mobile bound-
ary layer represents the oceanic lithosphere, the von Mises yield criterion for the
oceans ensures that the continents experience a realistic broad-scale stress regime.
In detailed models of crustal deformation it is, however, more appropriate to choose
a Mohr-Coulomb yield criterion based upon the idea that frictional slip occurs on
whichever one of many randomly oriented planes happens to be favorably oriented
with respect to the stress field. As coupled crust/mantle models become more so-
phisticated it is important to be able to use whichever failure model is appropriate
to a given part of the system. We have therefore developed a way to represent
Mohr-Coulomb failure within a code which is suited to mantle convection problems
coupled to large-scale crustal deformation.

Our approach uses an orthotropic viscous rheology (a different viscosity for pure
shear to that for simple shear) to define a prefered plane for slip to occur given
the local stress field. The simple-shear viscosity and the deformation can then be
iterated to ensure that the yield criterion is always satisfied. We again assume the
Boussinesq approximation - neglecting any effect of dilatancy on the stress field. An
additional criterion is required to ensure that deformation occurs along the plane
aligned with maximum shear strain-rate rather than the perpendicular plane which
is formally equivalent in any symmetric formulation.

It is also important to allow strain-weakening of the material. The material should
remember both the accumulated failure history and the direction of failure. We have
included this capacity in a Lagrangian-Integration-point finite element code and will
show a number of examples of extension and compression of a crustal block with a
Mohr-Coulomb failure criterion, and comparisons between mantle convection mod-
els using the von Mises versus the Mohr-Coulomb yield criteria. The formulation
itself is general and applies to 2D and 3D problems, although it is somewhat more
complicated to identify the slip plane in 3D.

Mantle convection simulations often incorporate a yield criterion
to account for the finite strength of the cool lithosphere. On the
scale of the lithosphere failure generally occurs through shear on
thin fault surfaces — the overburden pressure is sufficiently high
to prevent significant opening.

An idealized representation of a fault is an infinitely thin frictional
surface which slips when the shear stress (τs) overcomes the fric-
tional resistance.

τs = µσn+ c (1)

Where τs = siσi jn j, σn = niσi jn j, {ni} is the surface normal and {si} is
the slip direction (See Figure 1b).

On a lithospheric scale where the structure of the fault cannot be
resolved, the slip resulting from failure is inherently anisotropic.

Failure model

The Mohr-Coulomb failure model assumes that a fault which devel-
ops when an intact material yields occurs at the minimum possible
stress for which (1) can be satisfied. In a material with incipient
faults of all possible angles (Figure 1a), the ones which can slide
at the minimum stress are oriented at ±θ to the maximum (here:
most compressive) principle stress direction, where

tan2θ =
1

µ
(2)

The slip vector lies in the slip plane in the direction of the minimum
principal stress. The two possible failure planes (±θ ) are entirely
equivalent when failure occurs in an intact material.

Anisotropic slip model

Following Mühlhaus et al (Mühlhaus et al., 2002), we define an
anisotropic viscous material as a correction to an isotropic viscous
part 2ηD′i j of the model by means of the !i jkl tensor

σi j = 2ηD′i j−2(η−ηs)!i jlmD′lm− pδi j (3)

where a prime designates the deviator of the respective quantity, p
is the pressure, Di j is the stretching, σi j is the Cauchy stress and

!i jkl =
1

2
(ninkδl j+n jnkδil +ninlδk j+n jnlδik)−2nin jnknl (4)

is the anisotropy tensor. In (3) and (4) the vector ni is the unit
normal of the failure surface given intially by (2). During material
deformation, the surface orientation then transforms as

ṅi = ni,t + v jni, j =−v j,in j (5)

where vi is the velocity vector.
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The anisotropic viscosity model has been implemented into the
Lagrangian integration point finite element code, ELLIPSIS (Moresi
et al., 2003).

ELLIPSIS uses a standard mesh to discretize the domain into ele-
ments. The shape functions interpolate node points in the mesh
in the usual fashion and are used to compute derivatives of nodal
variables. Material property variations, and history variables such
as failure plane orientation and failure history are stored on in-
tegration points which are also material points of the fluid. The
problem is formulated through the usual FEM weak form to give
an integral equation which is decomposed to a series of element
integrals, which, through the usual Galerkin discretization proce-
dure, give element stiffness matrices, KE:

K
E =

∫

"E

B
T (x)C(x)B(x)d" (6)

we replace the continuous integral by a summation

K
E =#

p

wpB
T
p(xp)Cp(xp)Bp(xp) (7)

Here the matrix B consists of the appropriate gradients of interpo-
lation functions which transform nodal point velocity components
to strain-rate pseudo-vectors at any points in the element domain.
C the constitutive operator corresponding to (3) is composed of two
parts C= Ciso+Caniso.
In standard finite elements, the positions of the sample points, xp,
and the weighting, wp are optimized in advance. In our scheme, the
xp’s correspond precisely to the Lagrangian points embedded in the
fluid, and wp must be recalculated at the end of a timestep for the
new configuration of particles.

Failure

For a given stress field, σ , the most favorable failure directions are
obtained from (2) for each integration point. If the shear stress
exceeds the failure criterion in (1), the second viscosity, ηs is set to

ηs← η µσn+ c

τs
(8)

which ensures that the stress is returned to the yield surface at
this point assuming no consequent change in the stress field. This
process must then be repeated for all integration points, the stress
recalculated, and the whole procedure iterated until changes in the
stress field are small.

Failure history

We would like to be able to consider the possibility that the failure of
a point is governed by whether the point has failed previously, and
that the orientation of previous failure can influence the current
failure mode. This means that each integration point should record
both a scalar measure of the extent of failure and the preferred
orientation of failure (Figure 2b).

In subsequent iterations we consider whether a particle has failed
in a previous iteration. If so, then the previous failure plane is
tested to see if it will yield allowing for any accumulated weakening
of the yield criterion. In the examples shown here, we assume that
the plane which has the lowest ηs is the one which will fail first.

hardening v. softening

Due to the symmetry of our anisotropic model there are two equiv-
alent weak orientations — the director is either aligned parallel or
perpendicular to the sense of shear. However, only one of these
directions (with the director perpendicular to the shear) is stable.
When the director is parallel to the shear it rotates in a hardening
direction (see equation 5). We therefore need to include as an ad-
ditional failure criterion the condition that existing failure planes
should only fail if they are oriented in the softening direction.

strain history

A measure of the accumulated strain during yield for a given mate-
rial point is given by the integrating the resolved strain-rate

a=
∫ ∂u‖

∂x⊥
dt (9)

In our model both the yield strength and the viscosity are strain
weakening by the same amount — linearly dependent on the strain
measure above normalized by a reference strain, ε0, and character-
ized by the ratio of intact strength to strength at ε0
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The slip vector lies in the slip plane in the direction of the minimum
principal stress. The two possible failure planes (±θ ) are entirely
equivalent when failure occurs in an intact material.
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Figure 5— Layer extension: of 6%, 12%, 26%, 40% and 54% horizontal strain 

extension

Figure 6 — Layer compression: at 5%, 10%, 20%, 30% and 40% horizontal strain
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Following Mühlhaus et al (Mühlhaus et al., 2002), we define an
anisotropic viscous material as a correction to an isotropic viscous
part 2ηD′i j of the model by means of the !i jkl tensor

σi j = 2ηD′i j−2(η−ηs)!i jlmD′lm− pδi j (3)

where a prime designates the deviator of the respective quantity, p
is the pressure, Di j is the stretching, σi j is the Cauchy stress and

!i jkl =
1

2
(ninkδl j+n jnkδil +ninlδk j+n jnlδik)−2nin jnknl (4)

is the anisotropy tensor. In (3) and (4) the vector ni is the unit
normal of the failure surface given intially by (2). During material
deformation, the surface orientation then transforms as

ṅi = ni,t + v jni, j =−v j,in j (5)

where vi is the velocity vector.

References

L. Moresi, F. Dufour, and H. B. Muhlhaus. A lagrangian integration point finite element method for large deformation
modeling of viscoelastic geomaterials. Journal Of Computational Physics, 184:476–497, 2003.
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failure mode. This means that each integration point should record
both a scalar measure of the extent of failure and the preferred
orientation of failure (Figure 2b).

In subsequent iterations we consider whether a particle has failed
in a previous iteration. If so, then the previous failure plane is
tested to see if it will yield allowing for any accumulated weakening
of the yield criterion. In the examples shown here, we assume that
the plane which has the lowest ηs is the one which will fail first.

hardening v. softening

Due to the symmetry of our anisotropic model there are two equiv-
alent weak orientations — the director is either aligned parallel or
perpendicular to the sense of shear. However, only one of these
directions (with the director perpendicular to the shear) is stable.
When the director is parallel to the shear it rotates in a hardening
direction (see equation 5). We therefore need to include as an ad-
ditional failure criterion the condition that existing failure planes
should only fail if they are oriented in the softening direction.

strain history

A measure of the accumulated strain during yield for a given mate-
rial point is given by the integrating the resolved strain-rate

a=
∫ ∂u‖

∂x⊥
dt (9)

In our model both the yield strength and the viscosity are strain
weakening by the same amount — linearly dependent on the strain
measure above normalized by a reference strain, ε0, and character-
ized by the ratio of intact strength to strength at ε0

In the examples below the model is applied to a layered system in
extension and in compression which is applied as an end velocity
boundary condition, v=±1. In each case there are three layers: (1)
a compressible “air” layer which accomodates the change in volume
of the mesh and has a very low viscosity to approximate a free
surface boundary on (2) a layer with a viscous / brittle rheology
(η = 1.0, µ = 0.4, c = 1.5 in extension, c = 0.5 in compression) and
strain weakening with ε0 = 0.001 and strength ratio 0.05. The lower
layer is purely viscous, η = 1
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