
Reproducible, Replicable, Reusable Research (RRRR) in Computational Geodynamics
LOUIS MORESI (AND THE UNDERWORLD DEVELOPMENT TEAM)

PROFDIABLO@UNDERWORLDCODE.ORG ; HTTP://WWW.UNDERWORLDCODE.ORG ; @UNDERWORLDCODE

Abstract

Reproducibility (the ability to re-run an experiment with the
same outcome), and replicability (that the experiment can be
independently verified) are core concepts in science and they
ought to be straightforward to implement in computational
disciplines.

It can be surprisingly hard to implement workflows that make
results reproducible, particularly after a number of years have
elapsed. Replicability contains a component of subjectivity:
what does it take to have an independent result ? Do the
algori thms need to be independent or only the
implementation ? What does it mean to get the same answer
in a numerical environment where errors are not derived from
experimental "noise" ?

Going beyond each of these concepts is the idea that
numerical models should be re-usable too. This means that it
is possible to build new models and results from existing  
ones. This extends the expectations of publishing results to
include the fact that people should be able to validate the
numerical analysis and extend it with their own idea and
data.

Reproducibility

It is relatively simple to ensure that a self-contained program
can be re-run exactly if all the components are deterministic.
We can make use of container systems such as docker that
guarantee reproducibility of the execution environment
provided that the hardware virtualisation is persistent through
time. Containers can run in high performance (parallel)
environments using systems such as shifter. If a model is
initiated using external data, has an inherent sensitivity to

(for example) the parallel decomposition or
with some randomness is used to seed

the simulation, then the notion
of reproducibility

needs some further development. A model is not reproducible
if the data it depends upon cannot be marshalled at any point
in the future exactly as it was at the first run time. Clearly this
poses interesting problems for accessing continually evolving
and very large datasets that cannot simply be bundled with
the code. Randomness and non-deterministic algorithms mean
that exact reproducibility is not possible. From run to run, we
may instead consider ‘replicating’ a result.  

Replicability

A scientific result can be replicated if the experiments result
in the same interpreted outcome each time it is conducted
even if that is in a different laboratory or with a different
implementation of an algorithm or with two algorithms that
purport to solve the same equations.

Replicability is about understanding the uncertainty inherent
in a scientific experiment and realising that a question cannot
be considered to have been answered until we understand the
scope of alternative interpretations of the same experiment or
model. Benchmarking is an example of how we develop this
knowledge.

One computational approach to assisting in replicability of
numerical experiments is to create abstract model descriptions
that can switch between algorithmic implementations or even
physical representations of the problem at run-time or within
an ensemble of models. See Figure 2 for an example of high-
level model description.

Re-use

“… if I have seen further, it is by standing on the
shoulders of giants.” Isaac Newton (1675).

Reproducibility and Replicability allow us to trust a
model and to interpret it in the context of its
inherent uncertainty.

If we actually wish to build on a model, then we also
need to be able to modify and extend the work. This is
very different from the slavish reproduction of a
previous model but many of the technical issues are
related.

To build upon a model, we must first be able to run
that model (i.e. it should be reproducible for us). To
understand the model as it runs, we ought to
be able to explore its sensitivity and replicate
some of the scientific results even if the
model we wish to run has a different choice
of parameters or updated data.

Both of these can be satisfied if we build code,
workflows and scripts into a container that
can be re-run repeatedly and consistiently.

The Underworld approach to model re-use is
to supply simplified examples of published
results in the form of jupyter notebooks that
run, reliably in the cloud. Figure 3 shows the
architecture of the Underworld cloud which
allows models to be developed and run based
on cookbook examples.

One goal is to transport those cloud-cookbooks examples
directly to parallel HPC on demand and to provide
a u t o m a t e d m e c h a n i s m s f o r e x p l o r i n g h o w
implementation details impact the details of a given
experiment.

References

Hughes, Ted. The Iron Man .
London: Faber and Faber, 2005. 

 
Newton, Isaac. “Letter to Robert
Hooke,” February 5, 1675.

Acknowledgements

On a personal note, these ideas
were refined as a result of

many conversations with
Louise Kellogg at CIG

a n d C I D E R
w o r k s h o p s .

Illustration: Tom
G a u l t , f r o m

Hughes (2005)

Kubernetes

jupyterhub
jupyterlab

u1

jupyterlab

u2

jupyterlab

u3
jupyterlab

uN

…store u1 store u2 store u3 store uN

Github
Oauth

GoogleDrive
Plugin

Github
Plugin

docker

Figure 3: Architecture of the Underworld Cloud

Figure 2: Code snippet showing use of uw.function to create
an abstraction of the model away from the implementation

DI33C-004
7

Figure 1: Assorted cyber-gadgetry that promotes RRRR

http://www.underworldcode.org
http://www.underworldcode.org

	Reproducible, Replicable, Reusable Research (RRRR) in Computational Geodynamics
	Louis Moresi (and the Underworld development team)
	Abstract
	Reproducibility
	Replicability
	Re-use
	References
	Acknowledgements

