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C1. Wetting states of a droplet on the SCAS.

Figure 1 is the schematic of a droplet on the superhydrophobic conical array surface (SCAS). From

the following geometric relationships

S. =27R(0)*(1-cos ), (S1)

Sy = ZTR(O)* sin” O, (S2)

a= arctan(Db —D, j , (S3)
2H

the radius of the droplet R(6) related to the apparent contact angle 6 can be expressed as

3 1 j . (S4)

R(O)= (—

n 2—3cosf@+cos’ O

For the above system, the free energy includes the energy of interface free energy, potential energy
and line tension. It is assumed that the influence of gravity and line tension can be ignored, and the total

free energy of the system G is taken as
G =7yySiy +Vs1SsL * VsvSsy (S5)

where Spvy, Ss. and Ssy are the liquid-air interface, the solid-liquid interface and the solid-gas interface,

respectively, and ypy, ysp and ygy are the corresponding surface energies of the droplet.

According to the geometry, the area fraction f, the infiltration area fraction /' and the roughness
factor r of the conical microstructures and the spherical microstructures on the SCAS are listed in Table

S1.



Table S1. The infiltration area fraction and roughness factor of the conical microstructures and the

spherical microstructures on the SCAS.
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(1) Assuming that both the conical microstructures and the spherical microstructures are in the

Composite wetting state (0 <x, < H,0<x, <a), the total free energy of the system is

Geomp.comp = 71y |:Sext + Spase (1 -/ )yl + SbasefI' (1 - f5 )yz :| +7sL (Sbasefl,fz’ )

+7/SV l:(Stotal _Sbase)rlrz +Sbase (f’i _ﬁ’)FZ +Sbaseﬁ’ (1’2 _fz')J > (S6)

= 7LVSext + ySVStotalrlr2 + }/LVSbaseCl
where
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(2) Assuming that the spherical microstructures are in the Composite wetting state, the conical

microstructures are in the Wenzel state (x, = / ,0<x, <a), the total free energy of the system is
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where
C2=—[r1f2'cosl90+lq(f2—l)y2] (S9)

(3) Assuming that the conical microstructures are in the Composite wetting state and the spherical

microstructures are in the Wenzel state (0 <x, < H ,x, =a), the total free energy of the system is
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(4) Assuming that both the conical microstructures and the spherical microstructures are both in

the Wenzel state (x, = H , x, = a), the total free energy of the system is

Gy = VivSew T Vst Shaselils T Vsy |:(Stotal — Shase ) 7'1”2]

= 7/LVSext + 7SVSt0talrlr2 + }/LVSbaseC4

) (812)

where



C, =-rrcosb, . (S13)
Bring Equations (S1) and (S2) into the above formulas (S6, S8, S10, S12),
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The non-quantized expression of free energy G* obtained from Equation (S14) is

*_ G_]/SVStotalrlr2 _ 2(1—COS 19)+ Csin2 0
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(S15)

Solving Equation S15 gives cos@=—-C or cosd=-1. When cos@=-1, it indicates that the

droplet contact angle is 180° and the droplet does not contact the substrate. It does not conform to the

model and therefore is discarded.

When both the conical microstructures and the spherical microstructures are in a composite wetting

state (0<x, <H , 0<x, <a), the minimum energy is obtained as c0S O qp.comp = —C, . The apparent

contact angle equation in this state is

€08 Oconp.comp = f1’f2’ cos 6, +(f1 _1)371 +f1’ (fz —1))/2 . (S16)

Take the second derivative of this with respect to x,

tan o
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Assume that f, = fz' , and the material intrinsic contact angle is 110°, in order that Equation (S17)

is greater than 0, then sina >1— f,/2, and the derivative of the Equation (S16) is also greater than 0. It
can be seen that when the half apex angle o >arcsin(1— £/ 2), the droplets will infiltrate in the

microstructure, and when f, =0.227, then o > 62.44°. It can be seen that in this model, the droplets do

not infiltrate the conical arrays. From the above Equation (S16), as the y increases, the free energy

increases. Therefore, when y, =y, =1, the energy is the smallest in this state. That is, the droplet is in

the CB-CB state, and the equation for the apparent contact angle of the state is

2 2 2 2
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That is, in the Cassie-Baxter state, the depth of droplet penetration for the conical arrays is x;=0,
and the spherical structure x,=0.33a. Similarly, for the other three wetting states, the contact angle

equations are
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Figure S1. The scanning electron microscopy images of SCAS with different microstructural spacing.
The ratio of conical arrays is (a) S/Dy=0.5, (b) S/Dy=1.0, (¢) S/Dy=1.5, (d) S/D,=2.0, (e) S/D,=2.5, and

(f) S/Dy=3.0.

Table S2. Geometrical parameters of the SCAS with different ratios of conical arrays.

/D Height H  Top surface diameter ~ Bottom surface diameter Bottom spacing between
b (um) Dy (um) Dy, (um) the two posts S (um)

0.5 600 10 100 50
1.0 600 10 100 100
1.5 600 10 100 150
2.0 600 10 100 200
2.5 600 10 100 250
3.0 600 10 100 300
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Figure S2. The wetting states of a droplet on the SCAS with different half-apex angles (S/Dy=1). The

solid triangle in the figure is the experimental value of previous experiments.
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C2. The bouncing states of a droplet on the SCAS with different spacing /D),
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Figure S3-1. Under a different Weber number We, the bouncing states of a droplet on the SCAS with

microstructural spacing ratio S/D,=0.5. The droplet radius is Ry=1.45 mm.
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Figure S3-2. Under different Weber number We, the bouncing states of a droplet on the SCAS with

microstructural spacing ratio S/D,=1.0. The droplet radius is Ry=1.45 mm.
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Figure S3-3. Under different Weber number We, the bouncing states of a droplet on the SCAS with

microstructural spacing ratio S/D,=1.5. The droplet radius is Ry=1.45 mm.
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Figure S3-4. Under different Weber number We, the bouncing states of a droplet on the SCAS with

microstructural spacing ratio S/Dy=2.0. The droplet radius is Ry=1.45 mm.
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Figure S3-5. Under different Weber number We, the bouncing states of a droplet on the SCAS with

microstructural spacing ratio S/D,=2.5. The droplet radius is Ry=1.45 mm.

11




C3. The relationship between a droplet’s size and its rebound states
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Figure S4. A snapshot picture of the moment when the droplets of different volumes (a) V=3uL, (b)
V=5uL, (c) V=8uL, (d) V=12uL, (e) V=15.5uL, (f) ¥=28uL, (g) V=50uL, (h) V=75uL, rebound on the

SCAS with S/Dy=1 at We=20.
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Figure SS. The relationship between the contact time 7, and radius R of droplets under different
microstructural spacing: (a) S=50um, (b) S=100um and (c¢) S=150pum. The red part in the figure
corresponds to the area where the droplets cannot theoretically undergo pancake bouncing with the ratio
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Figure S6. A phase diagram showing the pancake bouncing of droplets with different droplet radiuses
and microstructure sizes. The ratio of the nanosphere structures b/a=1 at We =~ 20. The dotted lines
represent the comparable timescales &k for pancake bouncing. The experimental points on the right side
have errors in fitting with the theory. The reason for this error is that the size of rebounded droplets has a

great influence on the effective mass parameter f;, which makes the timescale £ cannot be well fitted.

C4. The relationship between the spacing of the conical arrays $/D;, and half apex angle a
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Figure S7. A phase diagram showing the range of bouncing states of a droplet (Ry=1.45 mm) rebounded
under different ratios between the spacing of the conical arrays S/Dy, and half apex angle o under the
limitations of the pancake bouncing. The ratio of the nanosphere structures b/a=1 and We=16. The
pointed line represents the appropriate wetting states S/D,<2.2 when b/a=1, as shown in Figure 2(a); the
dash dotted line represents the energy criterion (based on Equation (7)); and the dashed lines represent
the comparable timescales k for pancake bouncing, respectively.
REFERENCES
(1) Wu, H. P.; Zhu, K.; Wu, B. B.; Lou, J.; Zhang, Z.; Chai, G. Z. Influence of Structured
Sidewalls on the Wetting States and Superhydrophobic Stability of Surfaces with Dual-scale

Roughness. Appl. Surf. Sci. 2016, 382, 111-120.

(2) Chen, Z.; Tian, F.; Hu, A.; Li, M. A facile process for preparing superhydrophobic nickel

films with stearic acid. Surf. Coat. Technol. 2013, 231, 88-92.

(3) Liu, Y. H.; Mhyman, G.; Bormashenko, E.; Hao, C. L.; Wang, Z. K. Controlling Drop

Bouncing Using Surfaces with Gradient Features. Appl. Phys. Lett. 2015, 107, 051604.

(4) Liu, Y. H.; Moevius, L.; Xu, X. P.; Qian, T. Z.; Yeomans, J. M.; Wang, Z. K. Pancake

Bouncing on Superhydrophobic Surfaces. Nat. Phys. 2014, 10, 515-519.

15



