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Computational Details for the Surface Hopping Nona-

diabatic Dynamics Simulations

The surface hopping simulation protocol implemented in SHARC1,2 program was employed

to simulate the nonadiabatic photodissociation of thiophenol. Details of the protocol are

given in ref.2 The electronic structure calculations were performed using MOLPRO3 pro-

gram at the state-averaged CASSCF(4/6)/6-31G* level of theory with four lowest adiabatic

electronic states are taken into account. The local diabatization algorithm based on the over-

lap matrices between the adiabatic electronic states 〈ψβ(t)|ψα(t+ ∆t)〉 is used to propagate

the electronic wavefunction under the effect of nonadiabatic couplings, while the nuclear co-

ordinates are propagated using Newtons equations. Surface hopping probability is calculated

as described in ref.2 Given the coefficient vectors c(t) and c(t + ∆t) and the corresponding

propagator matrix P , hopping probabilities from electronic state β to α is calculated by

hβ→α =

(
1− |cβ(t+ ∆t)|2

|cβ(t)|2

) <
[
cα(t+ ∆t)(Pαβ)∗(cβ(t))∗

]
|cβ(t)|2 −<

[
cβ(t+ ∆t)(Pββ)∗(cβ(t))∗

] . (S1)

We employed the energy-based decoherence correction scheme to describe the electronic

decoherence when two surfaces drift away after passing the CI.4 In this decoherence scheme,

the wavefunction coefficients are rescaled according to the relation below.

c′α = cα · exp

[
−∆t

|Eα − Eβ|
~

(
1 +

C

Ekin

)−1]
, (α 6= β), (S2)

c′β =
cβ
|cβ|
·

[
1−

∑
α 6=β

|c′α|2
]

(S3)

The electronic population (ρii; diagonal element of the density matrix) and the coherence (ρij;

off-diagonal element of the density matrix) in the adiabatic electronic state can be calculated

from the wavefunction coefficient vector c(t), ρii(t) = |ci(t)|2 and ρij(t) = ci(t)c
∗
j(t). The
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Raman shift |∆Eij| was obtained from the energy difference between the adiabatic electronic

states Si and Sj. The transition charge density σij(r) is calculated at every nuclear time

step to account the geometrical change. All quantities presented in the paper are in the

adiabatic electronic basis. The total propagation time was 49 fs and the time steps for

propagation of the nuclear and the electronic degrees of freedom were 0.05 fs and 0.002 fs,

respectively. 45 initial geometries were sampled by using the quantum harmonic oscillator

Wigner distribution at around the ground state equilibrium geometry. The nonadiabatic

surface hopping dynamics was initiated by promoting the system on S2 (1πσ∗) state. 45

trajectories were simulated and averaged out to provide the signals. Fig. S2-4 shows the

convergence of the population dynamics ρii and coherences ρ12 and ρ01 with the number of

trajectories taken into account.

We have investigated the dynamics of the S-H dissociation of thiophenol that takes place

after its initial photoexcitation in S2 (1πσ∗) state (impulsive excitation approximation; no

external pump pulse was taken into account in the surface hopping dynamics). In practice,

excitation at long wavelength λ > 275 nm excites the system to 11ππ∗ state, while the 1πσ∗

state can be excited at shorter excitation wavelengths.5–7 H-tunnelling from 11ππ∗ state to

1πσ∗ state may play a role in the photodissociation of thiophenol after an excitation to S1

(11ππ∗) state, which may not be properly described by the semi-classical surface hopping

method. It is known that H-tunnelling plays an important role in a photodissociation of

phenol after excitation to S1 (11ππ∗) state.8–10 Therefore, a photodissociation dynamics

following an initial excitation to S2 (1πσ∗) state was considered in this paper.

The electronic population and the coherence can be calculated from the wavefunction co-

efficient vector c(t), ρii(t) = |ci(t)|2 and ρij(t) = ci(t)c
∗
j(t). Raman shift |∆Eij| was obtained

from the energy difference between the electronic states. We employed the energy-based de-

coherence correction scheme to describe the electronic decoherence when two surfaces drift

away after passing the CI.
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The Signal

The SXRI signal is defined as the time-integrated rate of change of photon number in the

(attosecond) broadband field A1

S(ω,ks) =

∫
drdt〈 d

dt
N̂1
ω〉 =

∫
drdt〈 d

dt
Â
†
1 · Â1〉 (S4)

where the N̂1
ω is the number operator for the photon mode with frequency ω and the 1

superscript indicates restriction to modes occupied by the Â1.

Using the Heisenberg equation of motion for the operator with the minimal-coupling

interaction Hamiltonian in the off-resonant limit, by discarding the resonant interaction

term ĵ · Â, is given by,

Hint(t) =
1

2

∫
dr

(
σ̂(Â

†
0Â1 + Â

†
0Â1)

)
(S5)

where σ̂ is the charge density operator and the vector potential is expressed as the field mode

expansion

Â(r) =
∑
kjλj

√
2π

Ωωj

(
ε(λj)(kj)âje

ikj ·r + ε(λj)∗(kj)â
†
je
−ikj ·r

)
(S6)

where âj (â†j) the photon field boson annihilation (creation) operator for mode j, Ω the field

quantization volume, and ε(λj)(kj) the polarization vector.

We start with the Heisenberg equation of motion for the photon number operator N̂1
ω =

Â
†
1Â1

〈 d
dt

(Â
†
1 · Â1)〉 = 〈 d

dt
(Â
†
1) · Â1〉+ c.c. = 2<〈 d

dt
(Â
†
1) · Â1)〉. (S7)
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The time derivative in the last term can be calculated

d

dt
Â
†
1 = −i[Ĥint, Â

†
1] = − i

2

∫
dr′[σ̂(Â

†
0Â1 + Â

†
0Â1), Â

†
1] = − i

2

∫
dr′[σ̂(Â

†
0Â1 + Â0Â

†
1), Â

†
1]

(S8)

= − i
2

∫
dr′[σ̂Â

†
0Â1, Â

†
1] = − i

2

∫
dr′σ̂Â

†
0 (S9)

where we have used [Â1, Â
†
1] = 1, [Â

†
0, Â

†
1] = 0, [Â0Â

†
1, Â

†
1] = 0, [Â0Â

†
1, Â

†
1] = 0, and

[Â
†
0Â1, Â

†
1] = Â

†
0. Plugging eq. S9 into eq. S7, we have

S(ω,ks) =

∫
drdt〈 d

dt
Â
†
1 · Â1〉 = 2<

∫
drdt〈 d

dt
(Â
†
1) · Â1)〉 = −=

∫
drdr′dt〈σ̂Â†0 · Â1〉

(S10)

= −=
∫
dtdrdr′eiks(r−r′)A0(r

′, t)A∗1(r, t)〈σ̂(r′, t)〉. (S11)

By assuming that the probe pulses have plane wave-like spatial variation

A0(r
′, t) = A0(t)e

ik0·r′
(S12)

A1(r, t) = A1(t)e
ik1·r (S13)

and integrating over r and r′,

S(ω, q, T ) = −=
∫
dteiω(t−T )A∗1(ω)A0(t− T )〈σ̂(q, t)〉 (S14)

where we have used

〈σ(q, t)〉 =

∫
dre−iq·r〈σ(r, t)〉. (S15)

When we expand the signal in the molecular eigenbasis,

S(ω, q, T ) =

∫
dteiω(t−T )A∗1(ω)A0(t− T )

∑
a,c

ρac(t)σac(q, t). (S16)

S5



The time-dependence of σ(q, t) arises from the nuclear dynamics.

Frequency-Resolved SXRI signal

Fig. S1 shows the simulated SXRI signal at different detection frequency ω. The SXRI

signal appears when the electronic surfaces become close, i.e., at a small Raman transition

frequency. Frequency-resolved SXRI signal reveals how the electronic transition between the

surfaces occurs in the vicinity of conical intersections.
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Figure S1: Simulated SXRI signal S(ω,Q, T ) for (a) ω = 0.5 eV, (b) ω =1.5 eV, and (c)
ω = −0.5 eV at several time-delay T . S12 (S01) represent the signal contribution from
the |1〉〈2| (|0〉〈1|) coherence, which is turned-on while passing through the CI-1 (CI-2).
STotal = S01 + S12.
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Figure S2: Convergence of the population dynamics ρii for Si state with the number of
trajectories.
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Figure S3: Convergence of the absolute, real, and imaginary values of the coherence ρ12(T )
with the number of trajectories..
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Figure S4: Convergence of the absolute, real, and imaginary values of the coherence ρ01(T )
with the number of trajectories.
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