
Gas
Density

Temperature
Dark

Matter
Shocks

Enrichment

5 million light-years

SWIFTsimIO
Post-processing the next-generation

of cosmological simulations
Josh Borrow

Institute for Computational Cosmology, Durham University

We run large-scale simulations of the universe with up
to 100 billion particles.
Largest simulations now producing petabytes of data.
Individual snapshots are around 10 TB, and represent
a huge dynamic range.
However, individual objects (galaxies) in these
simulations only represent < 1 GB of data.
Need to efficiently extract these objects!

Movitation

0

Key to solving big data challenges: producing
enoughmetadata to efficiently slice the data at
a later stage.
Physicists think spatially – package (very cheap)
spatial metadata with outputs.
Run on-the-fly object finders to deal with huge
dynamic range, along with a top-level grid.
Store each file ordered by top-level cell.

Figure 1: Left shows the top-level cell grid (projected in 2D) of a typical
cosmological volume simulated with the SWIFT code. Objects identified by the on-
the-fly object finder are shown as white circles, with the top-level cells identified
by swiftsimio to read from the snapshot highlighted in various colours. This
reduces the data size sigfnicantly; each cell contains only around a hundred
thousand particles.

Metadata

1
Metadata is stored for every object
in the simulation, including properties
such as mass, size, temperature, etc.
such that often it is not necessary to
go back to the particle data.
When it is necessary, thanks to the
spatial metadata, the time to read a
fixed volume of data is completely
independent of the size of the
dataset (see Figure 2).

Reading Data

2
1883 3763 5643 7523

Number of particles

0.22

0.24

0.26

0.28

0.30

0.32

W
al
lc
lo
ck

tim
e
to

re
ad

fix
ed

vo
lu
m
e
[s
]

+10%

-10%

Figure 2: Left shows
the (constant) time
to access a fixed
volume of data
(here much larger
than any object in a
typical simulation)
as a function of the
size of the dataset.
The rightmost
dataset represents
over 100 Gb of
particle data. The
dashed lines show a
range of ±10% in
read time.

swiftsimio allows users of the SWIFT
simulation code deal with huge snapshots
trivially through the use of spatial metadata.
It turns a petascale big data analysis problem
into something simple to perform even on a
laptop computer.
The code is available on GitHub
(swiftsim/swiftsimio) and on PyPI.

Conclusion

4

Once loaded, very cheap to
visualise data.
Accelerated routines with
numba to produce SPH-
smoothed visualisations.
See background for examples!
Visualisation is not just for
making pretty pictures;
projected quantitiesmap
directly to astronomical
observables.

1883 3763 5643 7523
Number of particles

2

4

6

8

10

W
al
lc
lo
ck

pe
r
pa
rt
ic
le
[μ
s]

Data
Theoretical Best

5122 10242 20482 40962 81922 163842
Number of pixels

4

5

6

7

8

9

W
al
lc
lo
ck

pe
r
pi
xe
l[
μs
]

Visualisation

3
Figure 3: The left panel shows the cost of making a fixed 4096x4096 image of a
dataset of different sizes. The cost per particle actually decreases as the (particle)
resolution increases as each particle is smoothed over fewer pixels. swiftsimio
shows very close agreement to theoretical best scaling here. The right panel
shows how the cost per pixel scales as a function of the image resolution for a
fixed particle count (188³). This should be constant, but overheads dominate for
small images, with large images generally being cheaper.


