ciuk_new bg

SWIFTsimIO

Post-processing the next-generation
of cosmological simulations

Josh Borrow

Institute for Computational Cosmology, Durham University

Movitation

We run large-scale simulations of the universe with up
to 100 billion particles.

Largest simulations now producing petabytes of data.

Individual snapshots are around 10 TB, and represent
a huge dynamic range.

However, individual objects (galaxies) in these
simulations only represent <1 GB of data.

Need to efficiently extract these objects!

9JdnleJdaduws |

Metadata

Key to solving big data challenges: producing
enough metadata to efficiently slice the data at
a later stage.

Physicists think spatially - package (very cheap)
spatial metadata with outputs.

y . o . Run on-the-fly object finders to deal with huge
. . | S Akl PO ‘ dynamic range, along with a top-level grid.

Store each file ordered by top-level cell.

Figure 1: Left shows the top-level cell grid (projected in 2D) of a typical
cosmological volume simulated with the SWIFT code. Objects identified by the on-
| - o o the-fly object finder are shown as white circles, with the top-level cells identified

, ' : : : ’ by swiftsimio to read from the snapshot highlighted in various colours. This

. | reduces the data size sigfnicantly; each cell contains only around a hundred
Reading Data

d9313e| Jeq

thousand particles.

Metadata is stored for every object
in the simulation, including properties . | | | |

such as mass, size, temperature, etc. : | T | | Vj_ Sua]_ j_ Sa t j_ on
such that often it is not necessary to | - .
go back to the particle data.

—
o

Data O Once loaded, very cheap to
When it is necessary, thanks to the o iR - i i 4 §
: - visualise data.

spatial metadata, the time to read a
fixed volume of data is completely
independent of the size of the
dataset (see Figure 2).

O

(0¢]

Accelerated routines with
numba to produce SPH-
smoothed visualisations.

(@) ~

Ul

Wallclock per particle [us]
Wallclock per pixel [us]

See background for examples!

N

Figure 2: Left shows
the (constant) time
to access a fixed

volume of data 1883 3763 5643 7523 5122 10242 20482 40962 81922 163842 Vlsu.allsatlon IS.nOtJUSt for
(here much larger | " gl or ELRIES NUmMBEEEgEe s ma klng pretty pICtU res,

than any object in a RS " Figure 3: The left panel shows the cost of making a fixed 4096x4096 image of a o cps
typical S|mu1at|on) . , dataset of different sizes. The cost per particle actually decreases as the (particle) PrOJECtEd CI uantities ma p

as a function of the : resolution increases as each particle is smoothed over fewer pixels. swiftsimio : .
size of the dataset. ' > shows very close agreement to theoretical best scaling here. The ri%ht panel d | I’eCt|y to astronomlcal

The rightmost : : shows how the cost per pixel scales as a function of the image resolution for a
dataset represents ¥ 2 | fixed particle count (1883). This should be constant, but overheads dominate for Observables-

g\é?{'glgodgt% O+Che . I small images, with large images generally being cheaper.
| : '

dashed lines show a ? I : - . = - 2 s
range of £10% in . \

= = = = =
N N N W w
EN o 0 o R

Wallclock time to read fixed volume [s]

O
N

3763 5643 7523 read time.
Number of particles

swiftsimio allows users of the SWIFT
simulation code deal with huge snapshots
trivially through the use of spatial metadata.

It turns a petascale big data analysis problem
into something simple to perform even on a
laptop computer.

The code is available on GitHub
(swiftsim/swiftsimio) and on PyPI.

<

"‘.." . ®
-y . %" ,
.

. Y
5 mi.llimligﬁc;‘.)@r
p- .':o.- .. .

s W

- B REE . A
",. ’°‘ ' .
13 _ . d - ¥ 7
AN | : S R e 8
’ Durha . - _“.j /.I / /%7 7:_-'7'/;_‘
'?!7 R VA VA VAV Ay A A

. . SEVAT A VAW,
University A

':';. . é»

Y [[[[H N HEEN

