
1)Takes in a sequence of word
vectors, basically sequences of
“meaning” that represent each word
in the problem.

2) Applies a 3-word long filter over
the vectors, allowing it to recognize
simple phrases and entities like
numbers and variables.

4) Used during training to prevent
memorization by randomly
dropping parts of the vectors.

5) An LSTM memory layer that
allows the model to understand
the problem as a whole, probably
allowing the model to learn to
reference variables together.

3) Applies ReLu activation to
the model, a non-linear function
inspired by biology.

6) A tanh activation function, which
turns the encoder’s output into a
positive gentle curve.

7) Used during training to prevent
memorization by randomly
dropping parts of the encoder’s
outputs.

I Encoder

8) A densely connected layer that
predicts how important the inputs

will be for each output.

9) Permutes (“pivots”) the attention
tensor to show how much each

output relies on each input.

10) Applies a softmax function
to the attention tensor, creating

weights that sum to one for each
output timestep.

11) Multiplies the encoder outputs
(a sequence over time) by the
attention weights from earlier.

12) Averages the input axis of
the encoder outputs weighted

by attention creating an output
sequence.

II Attention

17) A final, magical layer that
predicts each part of the equation
using a softmax activation function.

III Decoder

16) Concatenates the attention
and decoded representation of the
equation together to help the final
layer reference important numbers
in the problem.

13) An LSTM that receives the
attention as input for each timestep,
and probably creates a universal
representation of the equation.

14) A dropout layer used during
training to prevent memorization
by randomly dropping parts of the
tensor.

15) A densely-connected layer,
probably used to create a
representation of the equation in
MathLite.

M
at

h
Li

te
 D

ec
o

d
er

D
ec

o
d

er

A
tten

tio
n

En
co

d
er

P
re

-E
n

co
d

er

INPUTS
Words are first converted into vectors - numerical represen-
tations of word meaning - using spaCy, then fed into the net-
work. This lessens the data required for training the network.

LSTM
A layer similar to a dense layer that can
remember state across timesteps.

Dense
A layer consisting of neurons connected to
all of the neurons in the layer before it.

Convolutional
A layer consisting of filters applied to limited
groups of nuerons in the previous layer. This
allows for pattern matching.

Layer Types

Model Designsolve::words
applying(machine_learning) to:
 automaticallySolve(math_word_problems)

actualexpected

Figure 1: A demonstration of attention
Input Text

Figure 2: A solved sentence

Results
The best model scored 94.09% per-character accuracy on its testing
dataset of problems. This translates to generating correct
equations for 25.74% of the problems in the model’s training
dataset and 12.34% of problems outside of the model’s training
dataset.

Conclusion
Computers struggle with understanding word problems. When compared
to other models on real-world problems, SolveWords achieved 12.35%
accuracy. In Huang et al. (2016), the highest accuracy solver
scored about 15.9%, using a similarity-based model that may fail
outside the scope of problems on which it has been trained. Since
SolveWords processes the entire sentence, it should be more
accurate tested against problems unlike those it has seen before
compared to other models, but a lack of data makes it hard to
verify this.

SolveWords achieved testing scores of 25.74% (and could obtain
more with training time), an indicator that the model fits word
problems well, but “overfits” (failed to generalize) on training
data because of a lack of samples. In the future, it should be
possible to achieve higher accuracy with this model by simply
gathering more data to train with, ideally at least 30,000
problems (which was impossible due to budget constraints). Still,
using limited publically available datasets, SolveWords is a
state-of-the-art model for solving word problems.

Design Process &
Explanation
The initial design for Solve Words was a rule-based process. It involved pars-
ing a sentence using a natural language parser, classifying each token to create
a tree (“classification“), then converting that tree through a series of defined
steps to “reify” the tree into an equation ready to use with a computer algebra
system (“reification”). This proved problematic: English is not static, even with
nicely written word problems. Attempting to take a static route from tree to an
equation is almost impossible to do well.

To address this difficulty the design shifted to combine the classification and
reification stages using a neural network. Sequence to sequence models work well
for machine translation (Wu et al., 2016), thus the design of the network is
based on a sequence to sequence model.

The model consists of three sections: the encoder, decoder, and attention. The
encoder section creates a tensor containing a representation of each word’s use
in the equation. The attention section generates a score for each word’s impor-
tance, which is used to compute a weighted average of the encoded representation
for each output. The decoder decodes the attention and outputs a set of values,
each corresponding to either an operation, a variable, or a number from the input
sentence.

Instead of writing equations in standard notation, a machine-friendly prefix no-
tation is used instead. It reduces errors by assigning numerical indexes to vari-
ables in equations and can be represented with high information density.

Because of limitations on available data, the model is only able to generate
equations with a length of fewer than 70 characters, using single-token numbers
contained in the first 71 words of the problem. Pre-trained word vectors from
SpaCy are used as inputs, cutting data requirements.

Materials
The model was built with Keras (Chollet F., 2015) and using the Tensorflow
backend (Abadi et al., 2015).

The training and validation dataset is a mix of problems from MAWPS (Koncel-
Kedziorski et al., 2016) and Dolphin 18k (Huang, Shi, Lin, Yin, & Ma, 2016)
and consists of about 5,000 problems when cleaned. The testing dataset is
from Upadhyay S. & Change, 2016. All datasets are cleaned to only contain
problems with correct equations that use numbers from the text.

Due to the small size of publically available word problem corpuses and
the high cost of generating and labeling new ones, the model takes spaCy
(Honnibal & Montani, 2017) word vectors as input to lessen training data
requirements.

The model was trained on Google’s ML Engine - a public cloud platform for
training neural networks built with TensorFlow.

Sympy is used to solve the generated equations, an open-source Python
computer algebra system (Meurer et al., 2017).

The source of the algorithm is written in Python 2.7

All graphs and visuals created by the researcher using TensorBoard and
Matplotlib (Hunter, 2007)

References
Chollet, F., & others. (2015). Keras. GitHub. Retrieved from https://github.com/keras-team/keras
Clark, P., Etzioni, O., Khot, T., Sabharwal, A., Tafjord, O., Turney, P. D., & Khashabi, D. (2016). Com-
bining Retrieval, Statistics, and Inference to Answer Elementary Science Questions. In AAAI (pp. 2580–
2586).
Honnibal, M., & Montani, I. (2017). spaCy 2: Natural language understanding with Bloom embeddings, con-
volutional neural networks and incremental parsing. To Appear.
Hosseini, M. J., Hajishirzi, H., Etzioni, O., & Kushman, N. (2014). Learning to solve arithmetic word
problems with verb categorization. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP) (pp. 523–533).
Huang, D., Shi, S., Lin, C.-Y., Yin, J., & Ma, W.-Y. (2016). How well do computers solve math word prob-
lems? Large-scale Dataset construction and evaluation. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers) (Vol. 1, pp. 887–896).
Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing In Science & Engineering, 9(3),
90–95. https://doi.org/10.1109/MCSE.2007.55
Koncel-Kedziorski, R., Roy, S., Amini, A., Kushman, N., & Hajishirzi, H. (2016). MAWPS: A math word prob-
lem repository. In Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (pp. 1152–1157).
Kushman, N., Artzi, Y., Zettlemoyer, L., & Barzilay, R. (2014). Learning to automatically solve algebra
word problems. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers) (Vol. 1, pp. 271–281).
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, … Xiaoqiang Zheng.
(2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Retrieved from https://www.
tensorflow.org/
Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B., Rocklin, M., … Scopatz, A. (2017).
SymPy: symbolic computing in Python. PeerJ Computer Science, 3, e103. https://doi.org/10.7717/peerj-
cs.103
Upadhyay, S., & Chang, M.-W. (2016). Annotating Derivations: A New Evaluation Strategy and Dataset for
Algebra Word Problems. CoRR, abs/1609.07197. Retrieved from http://arxiv.org/abs/1609.07197

OUTPUT

Rationale
For a long time, a goal for researchers has been to automatically
solve mathematical word problems (Upadhyay & Chang, 2017).
Contained within the text of most mathematical word problems is
all the information needed to solve it, meaning they can easily be
solved without understanding the full implications of what words
mean. Still, they combine both a task that is easy for humans,
natural language parsing and understanding as well as advanced
mathematics, and act as a measure of artificial intelligence (Clark &
Etzioni, 2016).

A current standard for automatic word problem solvers advocates
solving word problems by deriving templates and solving them
(Upadhyay & Chang, 2017). Template equations are limited in scope,
and can only solve equations similar to those it’s already seen -
it’s not smart enough to do multi-step problems. Another published
method, called ARRIS, uses verb categorization (Hosseini, Hajishirzi,
Etzioni & Kushman 2014). Verb categorization methods fall prey
to errors related to parsing errors, set completion, irrelevant
information, and entailment, reaching accuaracy of only 70% in
perfect scenarios (Hosseini et. al 2014).

New research shows that it’s possible to parse sentences with 92.1%
accuracy (Kong, Alberti, Andor, Bogatyy, & Weiss, 2017) by using
Sequence to Sequence models (Suskever, Vinyals & Le, 2017). I
propose an algorithm that uses a sequence to sequence model, based
on these recent advances in machine learning technology, to extract
equations from word problems.

The results of this research could be generalized to enhance personal
assistants like Apple’s Siri or the Google Assistant.

