
1)Takes in a sequence of word 
vectors, basically sequences of 
“meaning” that represent each word 
in the problem.

2) Applies a 3-word long filter over 
the vectors, allowing it to recognize 
simple phrases and entities like 
numbers and variables.

4) Used during training to prevent 
memorization by randomly 
dropping parts of the vectors.

5) An LSTM memory layer that 
allows the model to understand 
the problem as a whole, probably 
allowing the model to learn to 
reference variables together.

3) Applies ReLu activation to 
the model, a non-linear function 
inspired by biology.

6) A tanh activation function, which 
turns the encoder’s output into a 
positive gentle curve.

7) Used during training to prevent 
memorization by randomly 
dropping parts of the encoder’s 
outputs.

I Encoder

8) A densely connected layer that 
predicts how important the inputs 

will be for each output.

9) Permutes (“pivots”) the attention 
tensor to show how much each 

output relies on each input.

10) Applies a softmax function 
to the attention tensor, creating 

weights that sum to one for each 
output timestep.

11) Multiplies the encoder outputs 
(a sequence over time) by the 
attention weights from earlier.

12) Averages the input axis of 
the encoder outputs weighted 

by attention creating an output 
sequence.

II Attention

17) A final, magical layer that 
predicts each part of the equation 
using a softmax activation function.

III Decoder

16) Concatenates the attention 
and decoded representation of the 
equation together to help the final 
layer reference important numbers 
in the problem.

13) An LSTM that receives the 
attention as input for each timestep, 
and probably creates a universal 
representation of the equation.

14) A dropout layer used during 
training to prevent memorization 
by randomly dropping parts of the 
tensor.

15) A densely-connected layer, 
probably used to create a 
representation of the equation in 
MathLite.
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INPUTS
Words are first converted into vectors - numerical represen-
tations of word meaning - using spaCy, then fed into the net-
work. This lessens the data required for training the network.

LSTM
A layer similar to a dense layer that can 
remember state across timesteps.

Dense
A layer consisting of neurons connected to 
all of the neurons in the layer before it.

Convolutional
A layer consisting of filters applied to limited 
groups of nuerons in the previous layer. This 
allows for pattern matching.

Layer Types

Model Designsolve::words
applying(machine_learning) to:
    automaticallySolve(math_word_problems) 

actualexpected

Figure 1: A demonstration of attention
Input Text

Figure 2: A solved sentence

Results
The best model scored 94.09% per-character accuracy on its testing 
dataset of problems. This translates to generating correct 
equations for 25.74% of the problems in the model’s training 
dataset and 12.34% of problems outside of the model’s training 
dataset.

Conclusion
Computers struggle with understanding word problems. When compared 
to other models on real-world problems, SolveWords achieved 12.35% 
accuracy. In Huang et al. (2016), the highest accuracy solver 
scored about 15.9%, using a similarity-based model that may fail 
outside the scope of problems on which it has been trained. Since 
SolveWords processes the entire sentence, it should be more 
accurate tested against problems unlike those it has seen before 
compared to other models, but a lack of data makes it hard to 
verify this.

SolveWords achieved testing scores of 25.74% (and could obtain 
more with training time), an indicator that the model fits word 
problems well, but “overfits” (failed to generalize) on training 
data because of a lack of samples. In the future, it should be 
possible to achieve higher accuracy with this model by simply 
gathering more data to train with, ideally at least 30,000 
problems (which was impossible due to budget constraints). Still, 
using limited publically available datasets, SolveWords is a 
state-of-the-art model for solving word problems.

Design Process &
Explanation
The initial design for Solve Words was a rule-based process. It involved pars-
ing a sentence using a natural language parser, classifying each token to create 
a tree (“classification“), then converting that tree through a series of defined 
steps to “reify” the tree into an equation ready to use with a computer algebra 
system (“reification”). This proved problematic: English is not static, even with 
nicely written word problems. Attempting to take a static route from tree to an 
equation is almost impossible to do well.

To address this difficulty the design shifted to combine the classification and 
reification stages using a neural network. Sequence to sequence models work well 
for machine translation (Wu et al., 2016), thus the design of the network is 
based on a sequence to sequence model.

The model consists of three sections: the encoder, decoder, and attention. The 
encoder section creates a tensor containing a representation of each word’s use 
in the equation. The attention section generates a score for each word’s impor-
tance, which is used to compute a weighted average of the encoded representation 
for each output. The decoder decodes the attention and outputs a set of values, 
each corresponding to either an operation, a variable, or a number from the input 
sentence.

Instead of writing equations in standard notation, a machine-friendly prefix no-
tation is used instead. It reduces errors by assigning numerical indexes to vari-
ables in equations and can be represented with high information density.

Because of limitations on available data, the model is only able to generate 
equations with a length of fewer than 70 characters, using single-token numbers 
contained in the first 71 words of the problem. Pre-trained word vectors from 
SpaCy are used as inputs, cutting data requirements. 

Materials
The model was built with Keras (Chollet F., 2015) and using the Tensorflow 
backend (Abadi et al., 2015).

The training and validation dataset is a mix of problems from MAWPS (Koncel-
Kedziorski et al., 2016) and Dolphin 18k (Huang, Shi, Lin, Yin, & Ma, 2016) 
and consists of about 5,000 problems when cleaned. The testing dataset is 
from Upadhyay S. & Change, 2016. All datasets are cleaned to only contain 
problems with correct equations that use numbers from the text.

Due to the small size of publically available word problem corpuses and 
the high cost of generating and labeling new ones, the model takes spaCy 
(Honnibal & Montani, 2017) word vectors as input to lessen training data 
requirements.

The model was trained on Google’s ML Engine - a public cloud platform for 
training neural networks built with TensorFlow.

Sympy is used to solve the generated equations, an open-source Python 
computer algebra system (Meurer et al., 2017).

The source of the algorithm is written in Python 2.7

All graphs and visuals created by the researcher using TensorBoard and 
Matplotlib (Hunter, 2007)
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Rationale
For a long time, a goal for researchers has been to automatically 
solve mathematical word problems (Upadhyay & Chang, 2017). 
Contained within the text of most mathematical word problems is 
all the information needed to solve it, meaning they can easily be 
solved without understanding the full implications of what words 
mean. Still, they combine both a task that is easy for humans, 
natural language parsing and understanding as well as advanced 
mathematics, and act as a measure of artificial intelligence (Clark & 
Etzioni, 2016).

A current standard for automatic word problem solvers advocates 
solving word problems by deriving templates and solving them 
(Upadhyay & Chang, 2017). Template equations are limited in scope, 
and can only solve equations similar to those it’s already seen - 
it’s not smart enough to do multi-step problems. Another published 
method, called ARRIS, uses verb categorization (Hosseini, Hajishirzi, 
Etzioni & Kushman 2014). Verb categorization methods fall prey 
to errors related to parsing errors, set completion, irrelevant 
information, and entailment, reaching accuaracy of only 70% in 
perfect scenarios (Hosseini et. al 2014). 

New research shows that it’s possible to parse sentences with 92.1% 
accuracy (Kong, Alberti, Andor, Bogatyy, & Weiss, 2017) by using 
Sequence to Sequence models (Suskever, Vinyals & Le, 2017).  I 
propose an algorithm that uses a sequence to sequence model, based 
on these recent advances in machine learning technology, to extract 
equations from word problems.

The results of this research could be generalized to enhance personal 
assistants like Apple’s Siri or the Google Assistant.


