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Abstract

We consider the classical European option pricing problem in a general stochastic volatility
framework with time-dependent parameters. It is possible to express the price of a European
option as the expectation of a functional of the integrated variance process. In particular,
this functional itself is similar to that of a Black-Scholes formula, which possesses many
well studied properties. This is referred to as the mizing solution methodology by Hull and
White [The Journal of Finance, 42, 1987]. From there, it is possible to utilise expansion
techniques to approximate the option price in a closed-form manner. We achieve this
using two different types of approaches, one contingent on change of measure techniques,
the other on Malliavin calculus machinery. As an error term is generated through the
expansion, we explore the possibility of achieving sharp bounds on it. Furthermore, we
investigate the numerical implementation of our approximation formulas in application.
We devise a fast calibration scheme for both approximation procedures. In addition, for
the change of measure methodology, we carry out a numerical error and sensitivity analysis
for the Heston and GARCH models. For the Malliavin calculus methodology, we perform
a numerical error and sensitivity analysis in the stochastic Verhulst model, which possesses
a quadratic drift term. In all cases, we find that the numerical errors are well within the
range for application purposes. In addition, with respect to certain parameter ranges, we
find that the approximations exhibit behaviour that we expect.
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Chapter 1

Introduction

The purpose of this thesis is to investigate methodology pertaining to the closed-form
approximation of the price of a European option (here on in referred to as simply an option)
in a general framework of stochastic volatility models with time-dependent parameters. To
achieve this, we express the price of an option as the expectation of a functional of the
underlying integrated volatility or variance process. Conveniently, this functional is similar
to a Black-Scholes formula, which is well studied in the literature. This methodology
is referred to as the mizing solution by Hull and White [38]. In view of this, we are
able to appeal to expansion techniques in order to obtain an explicit expression for the
approximation of the option price. In addition, our general framework consists of a volatility
or variance process driven by arbitrary drift and diffusion coefficients with time-dependent
parameters, which satisfy some regularity conditions. Due to the approximation procedure,
an error term is induced. We give mathematical results on bounding this error, as well
as numerical analyses. This thesis not only details the derivation of explicit formulas for
approximating option prices, but also their numerical implementation in application. For
both procedures, we devise a fast calibration scheme under the assumption of piecewise-
constant parameters.

This thesis is comprised of seven chapters:

1. Chapter 1 and Chapter 2 are the introduction and background chapters respectively.
We advise that all readers refer to the notation section (Section 1.1) so as to familiarise
themselves with the notation used in this thesis.

2. Chapter 3 and Chapter 4 are based on our paper ‘Closed-form expansions with respect
to the mixing solution for option pricing under stochastic volatility’. This work details
the approximation of a put option price in a variety of stochastic volatility models
with time-dependent parameters via the use of change of measure techniques. Chap-
ter 3 involves deriving the explicit representation of the approximation formula and
error term, as well as bounding the error term. Chapter 4 is dedicated to numerical
implementation and analysis of the approximation formula in the Heston and GARCH
models. This paper has been submitted to the journal of Finance and Stochastics and
is currently on the arXiv.

3. Chapter 5 and Chapter 6 are based on our draft academic manuscript ‘Closed form
expansions with respect to the mixing solution for option pricing via Malliavin cal-
culus’. This work details the approximation of a put option price in a general frame-
work of stochastic volatility models with time-dependent parameters through the use



1.1. NOTATION

of Malliavin calculus machinery. Chapter 5 involves obtaining the explicit expres-
sion for the approximation formula and error term, as well as obtaining a bound on
the latter. Chapter 6 is dedicated to numerical implementation and analysis of our
approximation formula in the stochastic Verhulst model.

Chapter 7 gives concluding remarks for the two expansion procedures explored in
thesis. We also comment on further work.

1.1 Notation

The purpose of this section is to fix notation that will be used throughout the rest of the
thesis. The majority of notation used in this thesis is common throughout the fields of
stochastic analysis and derivative pricing.

1.1.1 Spaces

1.
2.

3.

10.

R = (=00, 00).
R, = (0,00).
R_ = (—00,0).
R = [~00, o).

. R, = (0,00].
R_ = [~0o0,0).
N={1,2...}
Z={.,-1,01,.. .}

C™(A; B) denotes the space of functions with domain A and codomain B which are
n times differentiable over A with a continuous n-th derivative.

C*(A; B) denotes the space of functions with domain A and codomain B which are
infinitely differentiable (or smooth) over A.

1.1.2 Analysis

Let f:[0,00) — R be an extended real valued function.

1.

We denote by f(t) := inf,<,{f(u)} and f(t) := sup,{f(u)} its running infimum
and supremum respectively.

f-(z) :== max(—f(z),0) and fi(z):= max(f(x),0) denote the negative and positive
part of f respectively.

x Ay :=min(z,y) and x V y := max(z,y).

=) _ 0.

g(z)

We say that f = o(g) (read: ‘f is little-oh of ¢’) if lim,

. We say that f = 0g(g) (read: ‘f is little-oo of ¢’) if lim, o @) —

g(x)



1.2. ELEMENTS OF THE GENERAL THEORY

Let (E1,&1) and (FEs, €3) be measurable spaces. We write g : Ey/& — E3/Es to
denote a function g with domain F; and codomain Fs,, which is measurable in the
sense that any preimage of a measurable set in €, under g is a measurable set in &;.

Let g : X — Y. We say that g obeys property P on (A; B) if it obeys property P on
A C X, and the image of A under g is B.

1.1.3 Probability and stochastic analysis

1.

10.

A stochastic process {X; : t € [0,T]} will be denoted by (X;) or simply X, when the
context is clear.

. Q will refer to a risk-neutral measure rather than the set of rationals.

B and W will refer to standard one-dimensional Brownian motions.

For a probability space (2, F,P), LP := LP(2, F,P) denotes the space of equivalence
classes of random variables with finite LP-norm, where the L? norm is given by ||-||, :=
(E| - |P)*? for p > 1. In particular, || - ||, = || - |-

For two stochastic processes X and Y, their quadratic covariation from time 0 to ¢ is
denoted by (X,Y);. None of the stochastic processes in this thesis occur with jumps,
and so the need to distinguish between sharp bracket and square bracket processes is
superfluous.

Suppose M is a martingale on a filtered probability space (2, F, (F;),P). To distin-
guish the filtration and probability measure M exists with respect to, we will simply
refer to it as a ((F;),P) martingale. For a sub/super/semi/local martingale or Brow-
nian motion, we will do the same.

We write X ~ N(u,0?) to signify that X is normally distributed with mean p and
variance o2

We write Y ~ LN(u, o) to signify that Y is log-normally distributed, such that In(Y")
has mean p and variance o2.

Confusingly but common to the field, N will also denote the standard normal distri-
bution function. That is, N(z) = [* #e”ﬁﬂdu.

¢ denotes the standard normal density function. That is, ¢(z) =

1.2 Elements of the general theory

In this section, we present some well known results from the general theory of stochastic
calculus and derivative pricing. The purpose of this section is to list results that are
pertinent to the rest of this thesis. We make no claims that this is an exhaustive nor
comprehensive treatment of either of these subjects. As these are standard theorems from
the literature, we do not present the proofs. However, we do provide references to the
sources of the original proofs, alongside others. In addition, we refer the reader to the
works of Klebaner [11], Shreve [59], Rogers and Williams [55] and Cherny and Engelbert
[17] for a comprehensive treatment on these topics.



1.2. ELEMENTS OF THE GENERAL THEORY

1.2.1 Stochastic calculus

Let (2, F, (Ft)o<t<r, P) be a filtered probability space. In the following, consider the one-
dimensional SDE

dXt = /,L(t, Xt)dt + O'(t, Xt)dBt, XO = Xy, (].].)

where i, 0 : [0, 7] xR — R are both measurable and B is a ((F;)o<t<7, P) Brownian motion.
Many of the following definitions and results hold for multidimensional SDEs. However, we
will only require results concerning one-dimensional SDEs in this thesis.

Definition 1.2.1 (Weak solution). A weak solution to eq. (1.1) is a pair of processes (X, B)
on a filtered probability space (€2, F,(F;)o<i<r,P) where B is a ((F;)o<i<r,P) Brownian
motion and X is adapted to (F)o<i<7 such that

t t
Xy =z0+ / p(u, Xy )du + / o(u, X,)dB,.
0 0

Definition 1.2.2 (Strong solution). A strong solution to eq. (1.1) is a pair of processes
(X, B) on (2, F,(F)o<t<r, P) where X is adapted to (F;)o<t<r such that

t t
X, =x0+ / p(u, Xy )du + / o(u, X,)dB,.
0 0

Remark 1.2.1. A solution to eq. (1.1) can refer to either a weak or strong solution.

Definition 1.2.3 (Solution unique in law). Suppose (X, BM) and (X®, B?) are so-
lutions to eq. (1.1). Then the two solutions are unique in law if the finite dimensional
distributions of X and X agree.

Definition 1.2.4 (Pathwise unique solution). Suppose (X, BW) and (X®, B@) are

solutions to eq. (1.1) on the same filtered probability space (2, F, (F;)o<i<r, P). Then the
two solutions are pathwise unique if

P(xM = x? vt e0,T]) =1.

Theorem 1.2.1 (Sufficient conditions for pathwise uniqueness). Suppose there exists a
solution to eq. (1.1). Then the solution is pathwise unique if the following both hold:

L |u(t,x) — p(t,y)| < k(|x — y|) uniformly in ¢, where xk : R, — R, is convex, strictly
increasing and satisfies [ (k(u)) ™" du = oo for some & > 0.

2. |o(t,z) —o(t,y)| < p(|z —y|) uniformly in ¢, where p : R, — R, is strictly increasing
and satisfies [ (p(w)) > du = oo for some & > 0.

Proof. See Yamada et al. [65]. O

Corollary 1.2.1. Suppose there exists a solution to eq. (1.1). Then the solution is pathwise
unique if the following both hold:

1. p is Lipschitz continuous in z, uniformly in ¢.
2. o is Holder continuous in x of order > 1/2, uniformly in ¢.

Proof. This is just a direct consequence of Theorem 1.2.1 with x(u) = u and p(u) = u® for
a>1/2. O



1.2. ELEMENTS OF THE GENERAL THEORY

Theorem 1.2.2 (Yamada-Watanabe). Suppose there exists a weak solution to eq. (1.1).
In addition, assume the solution is pathwise unique. Then the solution is strong.

Proof. See Yamada et al. [65]. O

Theorem 1.2.3 (Girsanov’s theorem for Brownian motion). Let (2, F, (F;)o<t<7, P) be a
filtered probability space and B a ((F;)o<t<7, P) Brownian motion. Let H be an arbitrary
(Ft)o<t<r adapted process and define M, := fot H,dB,. Denote by 5(M) the Doléans-Dade
exponential of M. That is

t t
3§M) — oo HsdBs—3 [y Hids

Suppose 3™ is a true martingale. Then it defines a Radon-Nikodym derivative, meaning
B(A) = / S (P(w), AeF
A

is a probability measure on (€2, F). Then the following holds:

1. P is equivalent to P.

2. The process B defined as B; := B, — fg H,du is an ((F)o<i<r, I@) Brownian motion.
Proof. See Girsanov [32]. O

Remark 1.2.2. Let (Q, F, (F;)o<t<r, P) be a filtered probability space and M a ((F1)o<i<r, P)
continuous local martingale with A, = 0. Denote by 3 its Doléans-Dade exponential.
That is

3§M) — Mi—3 (M, M)

As 3™ is a positive local martingale, then it is a supermartingale. Sufficient conditions for
3M) to be a true martingale are:

1. Nowikov’s condition:
Eez(M:M)r < 0.
2. Kazamaki’s condition:
1
sup,.p Ee2Mt < 0.

Notice that Novikov’s condition implies Kazamaki’s condition, and so the latter is a less
stringent condition.

Theorem 1.2.4 (Benes’ conditions). Let (2, F, (F;)o<i<7, P) be a filtered probability space
and B an ((F;)o<t<r, P) Brownian motion. Define the continuous local martingales

t
M, ::/ o(B,)dB,,
0

t
N, = / Bu(Bio)dBu,
0

where ¢ : R — R and f, is a functional of B up to time u. Specifically, g : [0,T] x
C([0,7);R) — R. Denote by 3*) and 3™ the Doléans-Dade exponentials of M and N
respectively. That is

5§M) — oJo o(Bu)dBu—3 ¥ o%(Bu)du

5§N) — 6f0t Bu(Bo,u))dBu—3 [y B2 (Bjo,u))du.

Y



1.2. ELEMENTS OF THE GENERAL THEORY

1. Suppose 0%(y) < C(1+y?2). Then 3™ is a true martingale, or equivalently E(31")) =

1.
2. Suppose 32 (yj0.u) < C(1+sup,<, yf ) Then 3% is a true martingale, or equivalently
EG) =1
37 ) :
Proof. See Klebaner and Liptser [42]. O

1.2.2 Black-Scholes formulas and results

In the following, let K, k, (r#)o<;<r and (7{ Jo<t<T correspond to the strike, log-strike, time-
dependent domestic interest rate and foreign interest rate respectively. Furthermore, as-
sume K > 0,k € R and rd,r{ € [0,1] for all ¢ € [0,T]. Proofs of Proposition 1.2.1,
Proposition 1.2.2 and Proposition 1.2.3 are standard results, and are thus not included.

Definition 1.2.5 (Black-Scholes put formula for spot, strike and integrated variance). The
Black-Scholes put formula parametrised for spot, strike and integrated variance is defined
as

Putps(z,y) := Ke™ Iy ’”gdtN(—d_) —xe” fOT’"{dtN(—dJr),

where

Proposition 1.2.1. Suppose that S solves the SDE
dSt == (Tf—rZ)Stdt—i— \/y/TSthVt, SO = X.

[ts explicit pathwise unique strong solution is given by

T 1
St = rexp (/ (7‘5 — n{)du — éy + \/?J/TWT> :
0
Then
e~ foT nguE(K — ST)+ = PUtBS(xa y)

Definition 1.2.6 (Black-Scholes put formula for log-spot, log-strike and integrated vari-
ance). The Black-Scholes put formula parametrised for log-spot, log-strike and integrated
variance is defined as

Pos(,y) = ebe™ o HUN(—d) — ere o AN (—dl?),
where

T — k+f0T(rf—rf)dt 1

N £ 5V0

Proposition 1.2.2. Suppose that X solves the SDE

1
dX; = ((rf —rf) - 5%) dt +y/TdW,,  Xo = 1.

do(.y) = i =

Then



1.2. ELEMENTS OF THE GENERAL THEORY

Lemma 1.2.1. Putgg is smooth on (R?;R) and Pgg is smooth on (R x R;;R).

Proof. This is a clear consequence of the fact that the composition of smooth functions is
again smooth. O]

Proposition 1.2.3 (Put-Call parities). The Black-Scholes call option formulas analogous
to Putgg and Pgg are given by

Callgs(x,y) := xe~ I ’"{dtN(dQ — Ke o ridN(d_),
Cgs(z,y) :=e"e” Iy T{dtN(dlf) — kel RN (@),
respectively. Then the Put-Call parities are the following equations:
Callgs(z,y) — Putps(z,y) = ze™ Jorldt e Jo ridt.
Cps(z,y) — Pgs(x,y) = e"e” Jo rlat _ ko= Ji riat

For our numerical experiments we will require the notion of strikes corresponding to the
value of a put option Delta. This is done by solving the Black-Scholes put option Delta
(parametrised for spot, volatility and strike) for the strike value.

Remark 1.2.3. Denote by A the Black-Scholes put option Delta, where A € (0, —1). The
strike value corresponding to the value of A is given by

Ka = Soeaﬁ+%g2TefOT(rffr{)dt exp <N71 (—AefoT T{dt>) ,

where N~! denotes the normal quantile function. Notice all quantities are known except
the volatility o. This will be estimated by the initial value of the volatility process in the
stochastic volatility model.

1.2.3 Well known inequalities

We will make use of the following inequalities common in analysis and stochastic analysis.
Let X and Y be random variables, M a continuous local martingale null at ¢ = 0 and
f iR — R an extended real valued function.

1. Cauchy-Schwarz:
XY < [ X [[Y ]2
2. Holder:
I XY < [|X[[p]Y]lq for 1/p+1/q = 1, where p,q > 1.
3. Minkowski:
X + Yl < [[X]l, + [Vl for p > 1.
4. Jensen:
For convex g and concave h, g(E(X)) <E(g(X)) and E(h(X)) < h(E(X)).
5. Burkholder-Davis-Gundy:

¢, E ((M, M}f/2> <E ((Mt)p) < CE ((M, M>f/2> for p € (0, 00) and some constants
¢, and C), solely depending on p.

(17 s)las)” < et 19l for p > 1.

(=}

7



1.2. ELEMENTS OF THE GENERAL THEORY

1.2.4 Taylor’s theorem

The expansion procedures used in this thesis will rely on Taylor expansions, and thus
Taylor’s theorem will be paramount. We list it here predominantly to fix the notation.

Theorem 1.2.5. Let ACR,BC R and f: A— B be a C? function in a closed interval
about the point a € A. Then the Taylor series of f around the point a is given by

f() = fa) + f'(a)w — @) + 37" (@) (& — a)? + R(z),

where

1

Ra) = 3 [ o= 0P = 5 - a)3/0 (1= w2f"(a + u(w - a))du.

Theorem 1.2.6. Let A C R2. B C R and g : A — B be a C? function in a closed ball
about the point (a,b) € A. Then the Taylor series of g around the point (a, b) is given by

g(x,y) = g(a,b) + g(a,b)(x — a) + g,(a,b)(y — b)

+ 1gm(m b)(z —a)® + 1gyy(a, b)(y — b)* + gay(a, b)(z — a)(y — b) + R(x,y),

2 2
where
Ren =3 L g - - by
1 9
Eo(z,y) = /0 (1-— u)QWg(a +u(zr —a),b+u(y —b))du,
with v := (g, an) and |o| := ay + a.



Chapter 2

Background

Financial derivatives are contracts whose values are contingent on an underlying asset.
Amongst the myriad of such contracts, the European put option is a classic example,
which gives the owner the right but not the obligation to sell the underlying asset at a
predetermined price and date. A natural question that arises is, at its conception, what is
the price of this contract? This is the question that the area of derivative pricing is devoted
to answering.

2.1 Derivative pricing

Before one can consider establishing the price of a derivative, a model for the underlying
asset needs to be built. Through his thesis dissertation in 1900, Bachelier [6] was the
first in the literature to propose a model for an asset price process driven by Brownian
motion. Specifically, this process corresponded to the arithmetic Brownian motion process.
As the marginals of a such a process are normally distributed, this implies that the process
takes negative values with positive probability. Clearly, such a feature is not desirable in
a model for an asset price. Nonetheless, the idea to model the dynamics of an asset price
process driven by Brownian motion was novel and paved the path for the future of financial
modelling. Samuelson [56] in 1965 rediscovered the work of Bachelier, extending his ideas
by proposing that log-returns of the asset price process should be normally distributed, or
equivalently, that returns are log-normally distributed. This results in the asset price being
governed by a geometric Brownian motion process, guaranteeing its positivity.

The influential paper by Black and Scholes [10] in 1973 expanded upon Samuelson’s
idea. Here Black and Scholes assume a geometric Brownian motion for the asset price
process, and in addition invoke a dynamic hedging strategy in order to price a European
option. Specifically, this involves constructing a replicating portfolio whose sensitivities!
with respect to certain parameters perfectly offset the same sensitivities of the option.
Such a replicating portfolio is called a dynamic hedge, and the corresponding procedure
is called dynamic replication. This in turns leads to the option price being expressed as
the solution to a PDE. Black and Scholes then solve this PDE explicitly, yielding their
famous Black-Scholes formula. Indeed, the concept of dynamic replication was such a
significant contribution to the field of derivative pricing that it resulted in Black and Scholes
being awarded the Nobel prize in economics. Although intuitively straightforward, dynamic
replication leads to derivative prices being expressed as solutions to PDEs. It is well known

1Sensitivity of a portfolio with respect to some parameter is the change in the value of the portfolio
over an infinitesimal time period with respect to this arbitrary parameter. Clearly, this is analogous to the
partial derivative of the portfolio with respect to the parameter.



2.2. VOLATILITY SMILES AND SKEWS: EXTENSIONS TO THE CLASSICAL
FRAMEWORK

that existence of an explicit solution to a PDE is rare. If one moves away from the Black-
Scholes framework, there is no guarantee that the induced PDE will be easily solvable.

A turning point for the theory of derivative pricing was the seminal paper by Harrison
and Pliska [30] in 1981. Their work lead to the culmination of the fundamental theorems of
asset pricing, which made the notions of arbitrage mathematically rigorous and unified the
mathematical theory of derivative pricing. The fundamental theorems of asset pricing give
sufficient and necessary conditions for when a financial model does not contain an arbitrage
opportunity, and also an alternative and often more convenient representation for the price
of a derivative. Specifically, the price of derivative can be represented as the expectation of
the payoff of the derivative under a risk-neutral measure?. Thus, in the field of derivative
pricing, one can represent the price of a derivative as either the solution to a PDE or as
a risk-neutral expectation of a functional of the underlying asset price process. Evidently,
the fields of PDEs and stochastic analysis are both paramount when one considers the area
of derivative pricing.

2.2 Volatility smiles and skews: extensions to the clas-
sical framework

From the last few decades, empirical evidence has been used to establish that volatility
is highly dependent on the strike and maturity of option contracts. In theory, the Black-
Scholes model assumes that volatility is constant in all parameters. However, what is
observed is that implied volatility® is a function of both strike and maturity. By fixing
maturity and varying strike, one can observe that implied volatility usually exhibits a shape
akin to that of either a smile or a skewed trajectory. This phenomenon is called the volatility
smile or skew, clearly an attribute the Black-Scholes model fails to address. In response,
there have been a number of frameworks proposed to model the volatility smiles and skews
observed in the market. Although chronologically not the first type of framework proposed
to explain the smile phenomenon, local volatility models are the simplest extension to the
classic modelling framework. They were pioneered in 1994 by the works of Dupire et al.
[28], Dupire [27] and are specifically of the form

dSt = Ttdt + O'(t, St)Stth7 S().

The novel feature of this model is the volatility function o, which itself depends on the
spot. Dupire showed that under a local volatility model, one can derive a PDE and solve
for the volatility function as

8TC’ + rtK(?KC
%KQaKKO ’

o*(T,K) = (2.1)

where C(T, K) is the price of a European call option with strike K and maturity 7.*
Evidently, the RHS of eq. (2.1) can be rewritten in terms of Black-Scholes implied volatili-
ties. Thus, calibration of a local volatility model from the market observed data is rather
straightforward from Dupire’s equation.

2A risk-neutral measure is a probability measure equivalent to the real world probability measure, such
that the discounted asset price process is a martingale.

3Implied volatility is defined as the volatility required to be plugged into the Black-Scholes formula to
reproduce an option price.

4 Although the derivation of eq. (2.1) is relatively straightforward, the focus of this thesis is on stochastic
volatility models. We refer the reader to Gatheral [31] chapter 1 for a concise derivation of Dupire’s equation.
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2.2. VOLATILITY SMILES AND SKEWS: EXTENSIONS TO THE CLASSICAL
FRAMEWORK

Stochastic volatility models® were introduced a few years before local volatility models
by Hull and White [38] in 1987. Here the volatility itself is a stochastic process possibly
correlated with the spot. For most purposes, the general framework follows the diffusion

dS; = Sy((rd — r))dt + /7 dW}),  So,
dUt = a(tagt)dt_'_ﬁ(tao't)dBta 00,
(W, B), = pudt,

or

ds, = Sy((rd — rHdt + VidW,), S,
dV; = a(t,V,)dt + 8(t, V;)dB;, Vo = vy,
(W, B)y = p,dt,

where ¢ and V are called the variance and volatility process respectively. Some classic
models include the Heston and SABR models [37, 35], and there has been extensive research
done on these models in the literature. As opposed to local volatility models, one could
postulate that stochastic volatility models are more realistic, as they capture the random
behaviour of volatility. Hagan et al. [35] argue that local volatility models model the
smile behaviour of volatility ineffectively. This is because as the underlying assets price
increases or decreases, it can be observed empirically that the smile effect moves in the
same direction. Instead, local volatility models tend to display the opposite behaviour.
However, due to the added source of randomness in stochastic volatility models, the market
becomes incomplete®. This can be seen via Girsanov’s theorem; there exists infinitely many
risk-neutral measures in such a framework. One often has to make some assumption about
the market price of volatility risk in order to choose a unique risk-neutral measure. In some
applications, for example calibration, this is not necessary. The intuition behind this is
the following: as practitioners and investors assume that there exists a unique risk-neutral
measure under which the real market operates, then parameters calibrated from real market
data will uniquely determine the risk-neutral measure.

Evidently, financial practitioners will prefer models which are realistic, such as local or
stochastic volatility models. However, when one describes the movement of asset prices
through these more sophisticated models, this in turn complicates the mathematical prop-
erties of the asset price process. What is paramount to practitioners is not only the realism
of the model, but also the potential the model possesses for use in application. For ex-
ample, obtaining a closed-form price for a derivative involves solving a PDE or calculating
a risk-neutral expectation explicitly. When one uses these more sophisticated models, the
associated PDE or risk-neutral expectation representing a derivative price becomes increas-
ingly complicated to solve or compute. This is because, as is well known, the majority of
PDEs and expectations of functionals of processes cannot be evaluated explicitly. Clearly
this is an issue; although an expression for the price of a derivative is relatively simple to
obtain, representing this expression in terms of elementary functions is usually non-trivial.
For this reason, numerical procedures to evaluate PDEs (numerical PDE solvers) and ex-
pectations (Monte Carlo simulation) have been substantially developed in the literature,
see for example Van der Stoep et al. [62], Andersen [3]. However, these numerical proce-
dures have their own issues. Although under most circumstances they will ‘work’, meaning
the numerical value obtained through the numerical procedure does indeed represent the

5By which we mean one-factor stochastic volatility models.
6Precisely, an incomplete market is one where, for each derivative, there may not exist a dynamic hedge
which replicates it.
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2.2. VOLATILITY SMILES AND SKEWS: EXTENSIONS TO THE CLASSICAL
FRAMEWORK

arbitrage free price of a derivative’, the time complexity with implementing the numeri-
cal procedure can be many orders of magnitude higher than that of evaluating an explicit
expression. Depending on the application, this can be detrimental. For example, if the
derivative price needs to be evaluated many times, then having a slow numerical procedure
is undesirable. One specific application where this does occur is calibration of a stochastic
volatility model. Calibration involves choosing parameters in such a way that the model
agrees with observed market data as best as possible. In order to achieve this, usually a
least squares algorithm is implemented, in which the derivative price must be computed
several times. This is unlike a local volatility model, where Dupire’s equation can instead
be utilised for calibration.

In a stochastic volatility model, if we assume that the characteristic function of the
log-spot is known explicitly, then the option price can be computed quasi-explicitly®, albeit
under the restrictive assumption of constant or piecewise-constant parameters [37, 15, 50].
One class of models where this occurs are the affine models. Affine stochastic volatility
models are those such that In[E (ewln(st)) is affine in In Sy, that is, the log of the character-
istic function of the log-spot is an affine function in In Sy [24, 1]. For example, consider the
classical Heston model [37]

dSt = St<Ttdt + \/O_'tth), So,
dO't = H(e — Ut)dt + )\\/;tdBt, 0o,
(W, B); = pdt.

Heston shows that in his model, the price of a put option P with strike KX and maturity T’
can be written as

P=Ke ™ (1-PR)— Sy(1—P),

00 —iuln(K
Pty l/ % (6 ! %(M) .
2w w
L[ (et 0y,
2 7/ iuwpr(—1)
Here or(u) = E(e™™™57)) and %R denotes the real part. Thus, P, and P, are one-
dimensional complex integrals of expressions involving the characteristic function of the
log-spot. As long as this characteristic function is known explicitly, then these integrals
can be numerically computed. It is tempting to want to perform a fast Fourier transform
to calculate P; and P,. However, the integrands are unfortunately singular at u = 0. For
this reason, Carr and Madan [15] instead establish that the Fourier transform of the call
option price (with perturbation term) in the log-strike k is a quasi closed-form expression
involving the characteristic function of the log-spot.
Indeed, this representation of the option price is not unique to the affine models; un-
der any stochastic volatility model it is possible to write the option price as an expression
involving integrals of the characteristic function of the log-spot. However, obtaining an

explicit expression for the characteristic function of the log-spot is usually only possible
in the affine models. For non-affine models, the characteristic function of the log-spot is

where

Py =

"To be precise, the approximation of the arbitrage free price, as numerical methods are inherently
approximations of the true quantity.

8Quasi-explicit meaning in terms of at most one-dimensional complex integrals, where the integrands
are explicit functions.
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2.3. CLOSED-FORM APPROXIMATIONS

rarely known explicitly, and such a procedure will not be effective. Non-affine models,
although usually intractable compared to their affine counterparts, are often far more real-
istic. This has been shown in a number of studies, see for example Gander and Stephens
[30], Christoffersen et al. [18], Kaeck and Alexander [40].

2.3 Closed-form approximations

Closed-form approximations are an alternative methodology for derivative pricing, where
the derivative price is approximated by an explicit expression. Since the expression is ex-
plicit, the derivative price can be computed rapidly. Additionally, as transform methods
are not employed, time-dependent parameters can usually be handled well. In a sense,
they combine the best of both worlds. One can utilise a realistic model for their asset price
process, and additionally the pricing of a derivative can be executed rapidly. Unfortunately,
there are disadvantages to closed-form approximation methodologies. Firstly, obtaining a
closed-form approximation is almost always very difficult and tedious, requiring a plethora
of sophisticated mathematical machinery. Furthermore, it is usually only possible to ob-
tain closed-form approximations for contracts with simple payoffs, for example European
options. Secondly, the approximation procedure often makes some sort of assumption on
parameter ranges or magnitudes. For example, one might assume vol-vol is small and per-
form expansion techniques to yield a closed-form approximation. Intuitively, one would
then expect that the approximation formula will result in large errors for when the vol-vol
size is large, and in practice this is often observed.

There have been a plethora of results on closed-form approximations in the literature.
The most famous closed-form approximation result is due to Hagan et al. [35] in their SABR
model. Although closed-form approximation methods did exist before, their approach was
arguably the first to garner widespread attention from both academics and practitioners.
Specifically, the SABR model is given by

dF, = aw Faw,, Fy = f,
doy = vaydB;, «p = a,

where v > 0, § € [0,1] and F;, = el rudu G is the forward asset price process. By use
of singular perturbation expansion techniques, they derive the well known closed-form ap-
proximation for implied volatility, denoted by oy, as

ol f, K) = > ( ” )
T el SR (g k) ¢ S () )\ )
(1-58)2 a? 1 pBra 2 — 3p?

'{H 21 (K8 AK)AE T 2 T+

2= ~(fK) PP n(f/K),

1—2pz+224+2—p
z(z) :=In :
L—=p

Although this expression for implied volatility seems formidable, it is indeed entirely ex-
plicit. The success of the methodology behind the SABR model spurred interest in the
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2.4. MODEL FRAMEWORK FOR THIS THESIS

area of closed-form approximations. For example, Lorig et al. [47] derive a general closed-
form approximation for the price of an option via a PDE approach, as well as its corre-
sponding implied volatility. In Pagliarani and Pascucci [53], the authors derive the exact
implied volatility in a region close to both expiry and money. Alos [2] show that from
the mixing solution’, one can approximate the option price by decomposing it into a sum
of two terms, one being completely correlation independent and the other dependent on
correlation. However, neither terms are explicit. Under the Heston model, Sartorelli [57]
implement the so-called Edgeworth expansion in order to obtain a closed-form approxima-
tion for the option price. However, their method relies on the affine nature of the Heston
model, as the characteristic function of the log-spot is required in closed-form. Utilisation
of the Edgeworth expansion has also been studied by Fukasawa et al. [29]. Furthermore,
Antonelli and Scarlatti [5], Antonelli et al. [4] show that under the assumption of small
correlation, an expansion can be performed with respect to the mixing solution, where the
resulting expectations can be computed using Malliavin calculus techniques. Benhamou
et al. [7, 8] and Gobet and Suleiman [33] develop the so-called proxy model methodology
in local volatility models. This involves assuming a proxy model in order to approximate
the true model’s dynamics. In addition, this proxy model is chosen to be either normal or
log-normal so that the price of the derivative in the proxy model is explicit. Thus, the price
of a derivative in the true model can then be expressed as the price in the proxy model,
with the addition of some correction terms which can be made explicit. In addition, Bompis
and Gobet [12] establish higher order approximations for option prices via the proxy model
methodology. Moreover, in his thesis dissertation, Bompis [11] extends the proxy model
methodology by considering pricing in a stochastic local volatility framework, where the
volatility is driven by a square root process. This is further elaborated upon in Bompis and
Gobet [14].

2.4 Model framework for this thesis

This thesis focuses on obtaining a closed-form approximation for an option price in a
stochastic volatility framework, where parameters are assumed to be time-dependent. Stochas-
tic volatility models usually model either the volatility directly, or indirectly via the vari-
ance process. A critical assumption is that volatility or variance has some sort of mean
reversion behaviour, and this is supported by empirical evidence, see for example Gatheral
[31], Clark [19], Kaeck and Alexander [40]. Specifically, for modelling the variance, this
class of stochastic volatility models is given by

dSt = St((rf — Tg)dt + \/U_tth)a SOv
dO't = Ht<9t0'f — O{L)dt + )\thdBt, ao,
(W, B); = pydt,

whereas for modelling the volatility, this class is of the form

dSt = St((rf — T{)dt + ‘/;‘/th>7 807
AV, = k(0. V= VAL + MVFAB,, Vo =y,
d<m B>t = ptdt,

9The mixing solution will be introduced in later sections of this thesis. Briefly, this result states that the
price of a European option in a specific class of stochastic volatility models can be expressed as the expecta-
tion of a Black-Scholes like formula, whose arguments are functionals of the underlying volatility /variance
process.
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2.4. MODEL FRAMEWORK FOR THIS THESIS

for some i, /i and p € R In this thesis, we will focus on these classes of stochastic
volatility models. Some popular models from the literature that belong in this class include:

Model Variance/Volatility | Dynamics || p
Heston [37] Variance doy = k(0 — op)dt + A/ d By 01/|1/2
Schébel and Zhu [58] Volatility dV, = k(0; — V3)dt + N\ d B, 011
GARCH [51, 64] Variance doy = k(0 — oy)dt + \yoyd By 011
Inverse Gamma, [44] Volatility dV, = k(0; — V3)dt + N\ Vi d B, 011

3/2 Model [45] Variance doy = k(6100 — 02)dt + Mo} ?dB, | 1| 2 | 3/2
Verhulst?[46, 16] Volatility dV; = ke (0;V; = VAdt + M VidB; |1 ]2 |1

0T here exist other classes of stochastic volatility models. For example, the exponential Ornstein-
Uhlenbeck model (Wiggins [63]) is not a part of either of these classes.
1 Our model formulation here is for FX market purposes, but can be easily adjusted for equity and fixed

income markets purposes.

12 Also known as the Logistic or XGBM model.
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Chapter 3

Change of measure methodology

3.1 Introduction

In this chapter, we explore how a second-order expansion of the mixing solution, alongside
change of measure techniques, can result in a closed-form approximation for the price of a
European put option. The tractability of our methodology relies largely on the dynamics
of the underlying variance process. Our method extends that of Drimus [23], in which the
Heston model is considered with constant parameters. Our contribution is as follows. We
apply the expansion methodology to obtain the explicit approximation of a European put
option price in a variety of of stochastic volatility models including the Heston, GARCH and
Inverse-Gamma with time-dependent parameters. We also include a robust error analysis
section. The sections are organised as follows:

e Section 3.2 details preliminary calculations, where we express the put option price as
the mixing solution. Once done, a second-order Taylor expansion is performed, giving
the approximation formula in terms of a number of expectations of functionals of the
underlying variance process.

e Section 3.3 details how to derive more convenient expressions for these expectations
obtained in Section 3.2 through change of measure techniques. Specifically, we rewrite
the spot St as a convenient expression so as to construct a term which is a Doléans-
Dade exponential, thereby defining a Radon-Nikodym derivative. This term allows
us to change measure, allowing for more convenient calculations.

e Section 3.4 introduces specific models. As precise dynamics are assumed, the objective
is to derive explicit expressions for the expectations from Section 3.3. In particular,
we consider the Heston, GARCH and Inverse-Gamma models.

e In Section 3.5 we perform an error analysis, bounding the error in the expansion in
terms of higher order moments of the underlying variance process.

3.2 Preliminary calculations
Suppose the spot S with variance o follows the dynamics

dS; = Sy((rd — r))dt + /7 dW}),  So,
dUt = a(taat)dt+6(t70t)d3ta 00,
(W, B), = pudt,
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3.2. PRELIMINARY CALCULATIONS

where W and B are Brownian motions with instantaneous correlation (p;)o<i<r, defined on
the filtered probability space (Q2,F, (F;)o<i<r, Q). Here T is a finite time horizon, where
(r®)o<i<r and (1 )o<y<r are the deterministic, time-dependent domestic and foreign inter-
est rates respectively. Furthermore, (F;)o<i<r is the filtration generated by (W, B) which
satisfies the usual assumptions.! In the following, E(-) denotes the expectation under Q,
where Q is a risk-neutral measure which we assume to be chosen. We assume that the drift
and and diffusion coefficients of o are such that ¢ has a pathwise unique strong solution.
However, this is not particularly important, as our approximation methodology eventually
requires assuming specific models, which will always have a pathwise unique strong solu-
tion. This is in contrast with the methodology which will be seen in Chapter 5, where the
approximation procedure is not model dependent. In that case, it becomes critical that we
state specific conditions on the drift and diffusion coefficients.

Definition 3.2.1 (Geometric Brownian motion process). A process Y is called a Geometric
Brownian motion (GBM) process if it solves the SDE

dY; = pY;dt + 1,Y,dB,, Yy = yp.

Assuming p and v are adapted to the Brownian filtration and satisfy some regularity con-
ditions?, Y has the well known explicit pathwise unique strong solution

t 1 t 5
Y, = yoexp {/ (pu — §y5> du —l—/ yudBu} .
0 0

We call the process Y a GBM(yo; e, 14).

We decompose the Brownian motion W as W; = fg pudB, + f(f /1= p2dZ,, where Z is

a Brownian motion under Q independent of B. Then, noticing S is a GBM(Sy; r¢—r7, \/7),
we obtain the expression

T 1 T T
ST = SOET exp {/ (Tf — T{)dt — 5/ O't(l - p?)dt + / \/ O't(l — p%)dZt} ,
0 0 0

t 1 t
¢ = exp {/ Pur/ 0 d B, — 5/ pzaudu} .
0 0

3.2.1 Pricing a put option
Denote by (FP)o<i<r the filtration generated by the Brownian motion B.
Proposition 3.2.1. The price of a put option on .S, denoted by Put, can be expressed as

Put = e~ Jo "UE(K — Sp), = ]E{e— Jo R [(K — Sp), |FE] }
T (3.1)
=E <PU.tBS (SogT,/ O't(l — pg)dt)) s
0

Putgs(z,y) := Ke~ fOTngth(—d_) —ze T{dtN(—d+),

_ In(z/K) + fOT(Tf —r)dt N l\/@
Vi 2V

Proof. This is a consequence of the mixing solution methodology, which is detailed in

Appendix C.1. O]

"Meaning that (F:)o<t<7 is right continuous and augmented by Q null-sets.
2For example, y and v bounded on [0, 7] is sufficient.

where

di(x,y) =dy :
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3.2. PRELIMINARY CALCULATIONS

3.2.2 Expansion

To obtain an explicit approximation to the put option price, we utilise a Taylor expansion
of the function Putgs.

Assumption 3.2.1. £ is a martingale, or equivalently, that E({r) = 1.

Since £ is a Doléans-Dade exponential of an Ito integral process, sufficient conditions
for when Assumption 3.2.1 is true are given by Theorem 1.2.4 (Bene$’ conditions), or
Remark 1.2.2.

Proposition 3.2.2 (Second-order put option price approximation). The second-order put
option price approximation, denoted by Put®, is given by

PU_t(Q) = PutBS (JAI, Q)
1 L Ay Q2 2 1 s ! 2 2
+ éawPutBs(x, 9)SE(Er — 1)° + §8nyutBs(m, 7)E (1= p;)(or — E(oy))dt
0

+ OpyPutps (2, 7)SoE {(éT - 1) (/0 (1 —pH(oy — ]E(at))dt) } :
(3.2)
where (,9) = (So, [} (1 — p?)E(o)dt).

Proof. Recall from Lemma 1.2.1 that Putps is smooth on (R%;R;). We expand around
the mean of (SogT,fOT oi(1 —pf)dt). Under Assumption 3.2.1, the expansion point is

(2,9) = (S0, Jy (1= p})E(o7)dt). Thus
T
PUtBS (SogT,/ O't(l — p?)dt) ~ PutBs(SAC,ZD
0

+ 9, Putpg(z, §)So(ér — 1) 4 0,Putpgs (&, ) ( /0 (1—pi)(ov — E(Ut))dt)

1 o 1 L T
+ §<9mPutBs(af, 9)Sg(&r — 1)* + §8nyutBs(x, ¥) ( / (1= p})(ov — E(Ut))dt>
0

+Putes(z. )Su(er 1) ([ (1= (o~ Blo)at).

Taking expectation gives a second-order approximation to the put option price, that is,
Put®. Notice that Putgs(#, ) is a deterministic quantity, thus the first order terms will
vanish. O

Remark 3.2.1 (Second-order Greeks approximation). The Put Delta is obtained via partial
differentiation of the Put price with respect to the underlying Sj.

ds,Put® = 0,Putps(, 9)
1
—|— 5 [QSOaxIPutBS(i‘, :I)) + SgamxxPUtBS(‘%? g))] ]E(éT B 1)2

+ %&;nyutBs(fc, 7)E (/OT(l — (o) — E(at))dt)2

0 Prts(5.5) + SufhmPutes (292 { 6~ 1) (1= o Blo0)i) |
(3.3)
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3.3. CALCULATION OF EXPECTATIONS

The Put Gamma is obtained via partial differentiation of the Delta with respect to the
underlying Sp.

85050Put(2) == awautBs(i’, :&)

1
+ 5 [2axxPUtBS(i'a ?3) + 2506zxxputBS(j7 :g) + Sgaxz’xxPUtBS (jv .’g)} E(ST - 1)2
2

+ %8mnyutBs(:%,g)E ( /0 Y1 D)o E(@)dt)
+ (2040, Puts (7, §) + SoDreyPuitis(E, §)] E {(gT _ ) ( /0 Y1 Ao — E(at))dt) } |
(3.4)

The above partial derivatives of Putgg are given in Appendix A.1. What remains to be
done is the calculation of each of the expectations, which are

]E(gT - 1)2a (35)

E(A?l—ﬁx@—EwanQ, (3.6

e {0 ([ 0~ —soar) . (3.7

3.3 Calculation of expectations

The following lemmas will be useful in order to calculate egs. (3.5) to (3.7). These lemmas
are clear consequences of Girsanov’s theorem, and so we omit the proofs.

Lemma 3.3.1. There exists a probability measure Q; ~ Q defined by the Radon-Nikodym

derivative
d T 17
% = €T = exp {/0 Puv/ UudBu - 5/0 piaudu} )
such that B} := B; — fg Puv/0udu is a Q; Brownian motion. Furthermore, expectations

can be calculated under the new measure by the equation E(X&r) = Eqg, (X) or E(X) =
Eq, (X )
T er

We can extend the above idea to a sequence of equivalent measures.

Lemma 3.3.2. Let (Q,),>0 be a sequence of probability measures equivalent to Q, defined
by the Radon-Nikodym derivatives

d@n—i—l .
dQ, -

where Qq := Q and B® := B. Under Q,,, B := B]" ' — fot Pur/0wdu is a Brownian motion.
Furthermore, we have the relationship between densities as

T T
n 1
— §(T) = exp {/ pur/ 0, dB; — 5/ Piaudu} ’ g)) =&, n20,
0 0

e = gr Ve o plonde >, (3.8)
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3.3. CALCULATION OF EXPECTATIONS

Expectations can also be calculated as
Eq, (X) = Eq, , (X&),
1 (3.9)
Eq, . (X) = Eq, <XW) :

T

The two above relationships, eq. (3.8) and eq. (3.9), allow for alternative and often more
convenient calculations of expectations under Q.

Using these tools, we can now give alternative expressions for the expectations seen in

eq. (3.5), eq. (3.6) and eq. (3.7).

3.3.1 E(& —1)2
First, expanding eq. (3.5) gives
E(ér —1)* = E(&7) —
This second moment can be dealt with a number of changes of measures
E(€3) = Eq, (¢7) = Eq, (€1elo i)
= Eq, (elo rioudty, (3.10)

Under the assumption of constant parameters® we may calculate eq. (3.10) explicitly via the
Laplace transform for certain processes 0. However to our knowledge, there exists no explicit
solution when parameters are time-dependent, see Hurd and Kuznetsov [39]. Instead, we

approximate eq. (3.10) by expanding the exponential around the mean of fOT pioydt to
second-order.

EQ2 (efoT pfgtdt)

~ EQz {efoT P?IEQQ (o¢)dt

T 1 T
1 +/ pi (00 — Egy(0y)) dt + 3 (/ pi (00 — Eq, Ut)dt>>
0 0
T
(/ p?( E@2 Ut dt )
0
— o PiEgy(0r)d {1+/ Pt/ 2Covg, as,at)dsdt}

where we have used the fact that <f0 dt> =2 fOT f(t) (fg f(s)ds) dt

1
= elo PiBoy(on)dt {1 + §EQ2

3.3.2 E@ﬁyﬁﬁm—ﬁwmuf

To calculate eq. (3.6), we use the same trick from Section 3.3.1.

E (/OTu — (o, — E(ot))dt>2 - 2[(1 _ ) (/Otu — p)Cov(a, crt)ds> dr.

That is, a(t,0¢) = a(o), B(t, o) = B(o¢) and p, = p.
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3.3.3 {57—1 (g — ) Hﬂ%»do}

Calculation of the mixed expectation eq. (3.7) gives

e{@-n( (1= (o Boot) | - | "1 = ) (Blera) — E()dt
= [ 0= ) (Ba () - Bl

3.4 Pricing equations for specific models

We now introduce specific dynamics for both the spot and its underlying variance process.
From Section 3.3, it is apparent that a closed-form expression for Put® will largely depend
on the tractability of the variance process ¢ under the original measure Q, as well as the
artificial measures Q; and Qs.

3.4.1 Heston model

Suppose the spot S with variance V follows the Heston dynamics

dS, = Sy((r! — r)dt + /VidW,), S,
AV = ke(0; — Vi)dt + e/ VidBy, Vo =y, (3.11)
d<VV7 B)t - ptdtv
where (kt)o<t<r, (0)o<t<r and (A)o<t<7 are time-dependent, deterministic, strictly positive

and bounded on [0, T]. Here we model the variance directly, that is, in the language of the
initial sections, o; = V;. This is convenient for the calculations.

Definition 3.4.1 (CIR process). A process V is called a CIR process if it solves the SDE

dv; = A ‘Zﬁ)dt + M\ VidB,, Vi = Do,

where we assume (k¢ )o<t<T, (01)o<t<r and (A)o<i<r are time-dependent, deterministic, strictly
positive and bounded on [0,7]. It can be integrated to obtain

t t
V, = dge” Jor=ds 4 / e~ fur=dzi 0, du + / e~ Jur=d2 )\ AV, dB,.
0 0

We call the process V a CIR(%o; ki, 0, \e).
It is clear that the variance process V' in eq. (3.11) is a CIR(vg; k¢, 0¢, Ar).

Lemma 3.4.1. Let (Q,),>0 be a sequence of probability measures equivalent to Q, defined
by the Radon-Nikodym derivatives

AQusr _ o _ N 0. _
——— =& = exp puN VudB, — = p Vudup, &0 =&, n >0,
d@n 0 2 0

where Qp := Q and B := B. Under Q,,, B := Bt — fot puV Vydu is a Brownian motion.
For n > 0, the dynamics of V' under the measure Q,, are

0,k

d‘/t = (Klt — n)\tpt) ( - ‘/t> dt + )\t\/thBtn7

Kt — APy

o).

which is a CIR(vg; ky — nApy,

Lkt
Kt—nAtpt’
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3.4. PRICING EQUATIONS FOR SPECIFIC MODELS

Proof. This lemma is simply obtained through Lemma 3.3.2, then expressing V' under the
new measures Q,. O

Thus, the variance process V is a CIR process under all measures considered, and we
have explicit expressions for its moments and covariance. All the terms needed can be
calculated explicitly.

Pricing under the Heston framework

The second-order approximation of the put option price in the Heston framework is given
by the following theorem.

Theorem 3.4.1 (Second-order Heston put option price). The second-order approximation

to the put option price in the Heston model, denoted by Put%2 ), is

Put!? = Putpg(, §)
2

T
# 30uaPutas(a, DSFE(Er — 1P + 50, Putns(a, 0B ( [ (1= Vi~ B0t )
0

+aputestz. )i (e 1) ([ - phvi-sar) b,
(3.12)

where

E(ér — 1) ~ olo PEEg, (Vi)d {1 +/ pt/ 2Covg, Vs,Vt)dsdt}

Eq, (Vi) = voe ™ Jo =" ”Z”zd“r/ e~ Jums=2erdag g du,
0

S u
+ s u _[v _
Cw@@@w%=€ﬂ“”&””/fﬁﬁ””””%“[wfk&ﬁbwh+/je&Hz”ww@%@ﬂmu

0 0

2

E(Aal—mﬂw BVt

T t s U
= /o (1-p7) (/0 (1—p2) {e_ Js “zdz/o /\ze_”zf redz {voe_ Jo re=dz +/0 e “Zdzl-@]ﬁpdp} du} ds) dt,

and

T
E{@T—n(/<1—&xv a@mQ}
0
T t t t t t
— / (1 — p?){vo (6_ fo Kz—Azp-dz — e fo "@zdz> _|_/ (6_ fu Kz—Azpzdz — e fu lizdz) /ﬂ)ueudu}dt
0 0

Furthermore, & = Sy and § = fOT(l—p?)E(Vt dt = fo (1—p?) {voe_ Jorwedz 4 fg el “zdzﬂueudu} dt.

Proof. Use Proposition 3.2.2 and adapt Section 3.3 to the Heston framework. Furthermore,
the CIR moments are obtained from Appendix B.1. O]
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3.4.2 GARCH diffusion model
Suppose the spot S with variance V follows the GARCH diffusion dynamics
48, = S,((rt — rdt + /V.dWy),  So,

d% = /ﬁ?t<0t — V;)dt + )\t‘/tdBty % = Vo, (313)
d(W, B), = pdt,

where (k¢)o<t<T, (0¢)o<t<r and (A¢)o<i<7 are time-dependent, deterministic, strictly positive
and bounded on [0, 7. Like the Heston model, we model the variance directly.

Definition 3.4.2 (Inverse-Gamma process). A process V is called an Inverse-Gamma (IGa)
process if it solves the SDE

d‘z - Kt(gt - ‘Zﬁ)dt + )\t{/tdét, ‘70 = 7,

where we assume (¢ )o<t<T, (01)o<t<r and (A)o<t<7 are time-dependent, deterministic, strictly
positive and bounded on [0,7]. Let Y be a GBM(1; —x¢, A;). Then the explicit pathwise
unique strong solution of V' is

¥ ~ t/{ugu
Vt:YZ(Uo—i— Y, du>.

We call the process V an 1Ga(Do; ke, O, At)-
It is evident that the variance process V' in eq. (3.13) is an 1Ga(vg; Ky, 0y, Ay).

Lemma 3.4.2. Let (Q,),>0 be a sequence of probability measures equivalent to Q, defined
by the Radon-Nikodym derivatives

dQp 1 (n) T B (0)
a0, =&p =exp i pu\/VudBu—§ i pVudu o, &5 =&, n >0,

where Qq := Q and B° := B. Under Q,,, B := B]" ' — fot puv/Vydu is a Brownian motion.
For n > 0, the dynamics of V' under the measure Q,, are

APt

AV = k; (et —Vi+ vf”) dt + \V,dB?.

Ry

Proof. This lemma is simply obtained through Lemma 3.3.2, then expressing V' under the
new measures Q,,. O

Lemma 3.4.3. Suppose the arbitrary diffusion U solves the SDE
AU, = f(t,Uy)dt + v U By, Uy = o, (3.14)

where (v4)o<t<r is adapted to the Brownian filtration and f and v satisfy some regularity
conditions* so that a pathwise unique strong solution for U exists. Then if an explicit
solution exists, it is given by

Ut - Y;E/Ev

4 f being Lipschitz in z, uniformly in ¢ and v bounded on [0, T] (and thus (¢, ) = v,z is Lipschitz in =
uniformly in ¢) is enough for this to be true.
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where F is a GBM(1; 12, —14), That is,

dFt = I/EFtdt — VtFtdBt, FO = 1,

tl t 5
:>Ft:exp{/ —ngu—/ VudBu},
0 2 0

and Y solves the integral equation (written in differential form)

Y,
dy, = E,f (t, Ft) dt, Yy = uy. (3.15)
t

Proof. We essentially verify that this form of U satisfies the SDE eq. (3.14).

Y, 1
d(— ) =d(1/R)Y,+ —=dY, +d(1/F)dY,
F Fy

_({ap, - Y s Y Y+ f(t,Y:/F)dt+0
- E t Ft Ft t y 1t t

Y,
= FtthBt + f(t,Y/Fy)dt
t
= VtUtdBt + f(t, Ut)dt
[l

Remark 3.4.1. Let Q,, be defined as in Lemma 3.4.2. Under the measures Q,, n > 1, V
has no known explicit solution, nor known explicit moments.

Validity of Remark 3.4.1. The SDE in Lemma 3.4.2 is a linear diffusion type SDE. From
Lemma 3.4.3, it is known that if an explicit solution exists, it is given by

‘/t:Y;f/Ft?

where F is a GBM(1; A2, —);) and Y is the solution to the integral equation (written in
differential form)

t

A _
dm = (/ftgtFt — K'ti/;f + AP Y;S/ZFt 1/2) dt.
K

Define A; := k0, F; and C; = %F;lm. Then first note that A; and C; are both non-
differentiable in ¢. Thus

dYt = <At — K“t}/;f ‘I— Ct}/;g/Q) dt

As far as we know, there is no explicit solution to these types of integral equations in the
literature, even when A and C' are differentiable. As for explicit moments, it is unclear how
to approach this problem. There seems to be no approach to this problem in the literature,
especially in the case of time-dependent parameters, see for example Kloeden and Platen
[43] chapter 4.4 for a comprehensive list of explicitly solvable SDEs. Furthermore, as an
explicit solution does not exist, we cannot use the method of approximating moments via
the SDE’s solution.
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Pricing under the GARCH diffusion framework: p =0

The change of measure technique gives an intractable dynamic for V; we cannot appeal
to it for calculating expectations. However, in the case of p = 0 a.e., this implies & = 1
Q a.s., and one will notice that the terms in the expansion requiring a change of measure
will disappear. Of course, the cost is the unrealistic assumption that spot and volatility
movements are uncorrelated. We hope to mitigate this issue in future work by combining
this approach with small correlation expansion methods, see Antonelli and Scarlatti [5],
Antonelli et al. [4].

Theorem 3.4.2 (Second-order GARCH put option price). Assume p = 0 a.e.. Then the

second-order put option price in the GARCH diffusion model, denoted by PutgiRCH, is

o1 o T ?
Put@A ey = Putss(#, §) + §8nyuth(x, J)E < /0 (V, — JE(V;))dt) . (3.16)

- 2/0T (/Ot Cov(V5, m)ds) dt.

Proof. Use Proposition 3.2.2 under the assumption of p = 0 a.e.. Both Cov(Vj, V;) and
E(V;) are given in Appendix B.2. O

Here the expectation is

e( [ Wie E(V) )

Furthermore, & = Sy and ¢ = fOT E(V;)dt.

2

3.4.3 Inverse-Gamma model

Suppose the spot S with volatility V' follows the Inverse-Gamma dynamics

ds, = S,((rd — rHdt + V,dW,),  So,
dVi = k(0 — Vi)dt + M Vid By, Vo = o,
d<W> B)t = pdt,

where (kt)o<t<r, (0)o<t<r and (A)o<t<r are time-dependent, deterministic, strictly positive
and bounded on [0, 7]. Unlike the Heston model, we are no longer modelling the variance
directly. Instead, we model its square root, the volatility. To arrive at the desired frame-
work, one replaces o; with V2 from the initial sections. Immediately, it is clear that the
calculations are less straightforward, as the process V2 is not nearly as convenient as V.

Lemma 3.4.4. Let (Q,),>0 be a sequence of probability measures equivalent to Q, defined
by the Radon-Nikodym derivatives

dQ, n T 1 [
Wt _ ) o / puVud Bl — —/ pEViduy, &V =¢&r, n>0,

where Qp := Q and B? := B. Under Q,, B} := Bt"_1 — fot puVudu is a Brownian motion.
For n > 0, the dynamics of V' under the measure Q,, are

NP

dV, =k, (et —Vi+ Vf) dt + )\ V;d B}

Rt

Proof. This lemma is simply obtained through Lemma 3.3.2, then expressing V' under the
new measures Q,. O
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Under the measures Q,,, n > 1, V has no explicit solution, nor explicit moments. This
can seen in a similar way of Remark 3.4.1; the resulting integral equation needed to be
solved has no known explicit solution. Thus, we cannot explicitly calculate some of the
terms in the expansion for the IGa model.

Pricing under the Inverse-Gamma framework: p =0

Again, the dynamics of V' are intractable under @Q,,. Assuming p = 0 a.e. will eliminate
the terms we cannot calculate.

Theorem 3.4.3 (Second-order IGa put option price). Assume p = 0 a.e.. The second-order

put option price in the IGa model, denoted by Put%)a, is

1 T ?
Putl?) = Putpg(Z, §) + 5 OPutns (. §)E < / (V2 — E(Vf))dt) . (3.17)
0

Here the expectation is

E (/OT(Vt2 - E(Vf))dt)Q = Q/OT (/Ot Cov(V2, Vf)ds) dt.

Furthermore, £ = Sy and y = fOT E(V;?)dt.

Proof. Use Proposition 3.2.2 under the assumption of p = 0 a.e.. Both Cov(V2,V/?) and
E(V;?) are given in Appendix B.2. O

3.5 Error analysis

We present an explicit bound on the error term in our expansion in terms of higher order
moments of the corresponding variance process. Specifically, this means bounding the
remainder term in the second-order expansion of the function Putgg, and for the case when
p # 0, the error term associated with the expansion of elo pioudu,

We will need explicit expressions for the error terms. These are given by Taylor’s theorem,
which is presented in Section 1.2.4. As the expansion is second-order, we only consider the
results up to second-order.

3.5.1 Explicit expression for error term

The representation for the total error due to the expansion can be summarised by the
following theorem.

Theorem 3.5.1 (Total expansion error). As a functional of the underlying variance process
o, let €pg(0) and &(o) correspond to the error induced by the expansion of Putgg and
elo Pioudu respectively. The error due to Taylor expansions for a general variance process o
is given by

&(o) = €ps(o) + &(0),
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where

tast0) = 3 Ao B (st [ ot = ) st ([ - o~ Boan)

|ar|=3
T 1 o3
E, (SoﬁT,/O o (1 — pf)dt) = /0 (1-— u)2WPutBs (F(u),G(u)) du,
F(U) = SO + USO(gT - 1),

G = [ (- Bt + u ( / - Ao E(at»dt) |

3

T
E(0) = 20, Pt (,5)Siche I s ( / pi<au—E@2<au>>du)
0

1
' / (1 — w)2elo PnEay(@m)dmou fi pin(om—Egy (@m))dm gy,
0

Proof. First, we deal with the error term associated with the function Putgg, that is, Egs(o).
Recall the expansmn of Putgg around the point (z,§) := (S, fo (0¢)(1 — p?)dt) evaluated
at (Soér, fo o(1 — p?)dt) for a general variance process o:

T
PutBs (SofT,/ O't(l - p?)dt) = PutBS(i )
0

]
+ 0, Putps(Z, §)S0({r — 1) + 0,Putps(Z, ) ( (1= p})(or — ]E(Ut))dt)
2

 yPusPutas(a, S3(Er — 17+ g0, Putns(2,) ([ (1= e - Blo)a )
+ Oy Putps (2, 9)So(§r — 1) (/0 (1 —p?) (o) — E(at))dt) + Eps(0).

Using Theorem 1.2.6 for the function Putgg, this gives the error term as

bas(o) = 3 oy (S St ) s -1 ([0 o - o)

T 1 83
Ea <SO€T7/O O't(l — pg)dt) = /0 (]. — U)QWPutBS (F(U), G(U)) du,
F(U) = SO + US()(gT — 1),

6= [ (- AE(o)dl +u (/ - D)o B(o))t).

We now investigate the error term associated with the calculation of E¢Z, that is, é(a). Let
us look at this term without the expectation.

8 = (e W s off o

We expand eo Pioudt around the expectation of the exponential’s argument under QQ;. Note
T
that {re™ Jo Pioudu ig the Radon-Nikodym derivative which changes measure from Q to Q.
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Expanding to second-order gives

T 1 T 2
olo Proudu _ [ pREq, (0u)du (1 + / P20y — Eq,(0,))du + 3 (/ p2(oy — EQQ(JU))du>
0 0

1/ (7 ’
#3 ([ o Eeloa)
0

Finally, the coefficient in front of & in the pricing formula is $0,,Putps(#,§)S3. Thus, the

1
/ (1 ) efo p2.Eq, (om)dm uf 2, O'meQ2(0'm))dmdu'
0

error term &(o) can be written as
~ T T 3
E(o) = 8mPutBs( §)S2e2e Jo pioudu ( / P2 (o, _E@2(au))du>
0
1
'/(medﬁmwww%mﬁmwﬁwwmmm
0

]

Corollary 3.5.1 (Total expansion error: p = 0). The error due to Taylor expansions for a
general variance process o with p = 0 a.e., denoted by £(0), is given by

Eo(0) = % ( /O (o — E(at))dt) /0 (1= )20,y Putes (5. Glw) du,

Glu) = /OT E(0,)dt + u (/OT(@ - E(at)dt> |

which is just Egs(o) when p =0 a.e..

3

3.5.2 Bounding error term

The hope now is to be able to bound E(E(0)) in terms of the higher order moments of
the variance process 0. To do this, we will need to show that the partial derivatives
8‘13511;;;52 (F(u), G(u)) for u € (0,1) where oy + ap = 3, are functions of 7" and K which are
bounded. First, we notice the following is true.

83PutBs

Dro1oyo2 where a1+

Lemma 3.5.1. Consider the third-order partial derivatives of Putgs,

ay = 3. Let f(z) :== In(z/K) —i—fo (rt —rt>dt Then

03PutBs

lim | == —BS
10 Oxr1 Jy*2

yJ0

= .
f(z)=0

Furthermore, this is the only case where the partial derivatives explode.

Proof. In the following, we will repeatedly denote as F' to be an arbitrary polynomial of
some degree, as well as A to be an arbitrary constant. That is, they may be different on
each use. From Appendix A.1, it can seen that as a function of x and y, the third-order
partial derivatives are of the form

L9)

xnym/Z

F(dy,d_,\/y), neZmeN (3.18)
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Recall

In(z/K) + [ (rf — r{) dt 4
de = ds(z,y) = + VY,

VY 2

Written in this form eq. (3.18), it is evident that the partial derivatives could only blow up
if either x or y tend to 0 or infinity. We need only look at these limits independently of the
other variable.

ds) F(dsd_./5)

1. For fixed z: From eq. (3.18) the partial derivatives are of the form AL /3

It can be shown that
o(d) = Ae PP,

where Dy = %(f(x))Q and D; = 1/8. Hence both Dy and D; are non-negative.

However, there will be two cases to consider, when Dy > 0 or Dy = 0.

(a) Suppose Dy > 0, then f(x) # 0. As F'is a polynomial in d,d_, and /y, we
can say that F(dy,d_,/y) = 0o(1/y™/?) and F(d,,d_, /y) = o(y™/?) for some
M, My € N. Thus

A doy )| _ e P o (1))
ym/2 - ym/2
and also
Gd)Fds d i) | A|eD2iDlyo(yM/2>
ym/Q o ym/2

Then as y | 0 or y — oo, the partial derivatives tend to 0.
(b) Suppose Dy = 0, then f(z) = 0. Thus d, = sy and ¢(dy) = Ae ¥, Evi-

dently, F(dy,d_, \/y) = Zi\io C;y*/? for some N € N and constants C, . .., Cy.
Thus

P Y, Cug”)
ym/2 ’

‘ ¢(dy)F(dy,d,\/y)

R

This quantity tends to 0 as y — 00, as the exponential decay makes the polyno-
mial growth/decay irrelevant. However, when y | 0, then this limit depends on
the polynomial F. If N > m and if one of the Cy, C,. .., C,, are non-zero then
this quantity tends to oo as y | 0. If N < m then this quantity tends to oo as
y | 0. For each of the partial derivatives, it can be shown that either of these
cases are satisfied. Thus the partial derivatives tend to oo when y | 0.

To conclude, for fixed z, if f (x) = 0, then the partial derivatives tend to 0 if y — oo,
and to oo if y | 0. When f(z) # 0, the partial derivatives tend to 0 if y | 0 or y — 0.

Pld4)F(drd-) 4

Tn

2. For fixed y: From eq. (3.18), the partial derivatives are of the form
can be shown that

6(dy) = Aa~BE
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where Fy > 0 and E; € R. Furthermore, as F' is a polynomial in d; and d_, then

N
F(d,,d_ Z G| |In'(z

for some N € N and constants Cj, ... Cy. It is clear F' = o(z) and F = op(In" ™ (2)).
Thus

‘¢<d+>F<d+,d>

Then as © — o0, this quantity tends to 0. In addition

dy ) F(dy,d_
‘Qb( +) :L‘S] ) )‘ _ |A|JI_E2ln(x)_El_HOQ(lnN—’—l(x)).
Then as = | 0 this quantity tends to 0. So for fixed y, the partial derivatives tend to
0asx ] 0orxz— oo

]

We will however, be concerned with the behaviour of u %PutBS(F (u), G(u)),
meaning we will have to consider both arguments simultaneously, as they are both linear
functions of w.

Lemma 3.5.2. Consider the third-order partial derivatives of Putgs, 883(1131%1;;527 where o +

ay = 3 as well as the linear functions hy, hy : [0,1] — R, such that hy(u) = u(dy — 1) + ¢
and ho(u) = u(dy — ¢3) + ¢o. Assume there exists no point a € (0,1) such that

In(hy(v)/K) + [ (rd — rDdt
fg P K) £ o (= re)dt lim hs(u) = 0.

u—a hQ('LL) u—a
Then there exists functions M, bounded on Ri such that

83PutBS
sup

ue(0,1) W(h( u), ha(u))| = Mo(T, K).

Furthermore, the behaviour of M, for fixed K and T is characterised by the functions (
and 7 respectively, where

C(T) _ Ae— fOT r{dte—EzfQ(T)e—Eﬁ(T) Z Cﬂ:i(T),

=0

with 7(T' fo t rt )dt and Ey > 0, Fy € R, Ae R, n € Nand cg,...,c, are constants,
and

N
N(K) = AK=P2m0O N = 0y (—1) I’ (K),

1=0

with Dy > 0,D; e R,Ae R, N € N and C,,...,Cy are constants.
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Proof. Under the assumptions of h; and ho, by a direct application of Lemma 3.5.1, this
supremum will be bounded. Next, we need to show that M, are bounded on Ri and behave
as ( and 7 for fixed K and T respectively.

In the following, A denotes an arbitrary constant and F' an arbitrary polynomial of some
degree. They may be different on each use.

1. Behaviour in T": Fix all variables as constant except 7". Then we can write the partial
derivatives as

Ae™ o g (d ) F(dy,d_).

Expanding and collecting terms with 7', we can write the partial derivatives in the

form
Ae™ fOT r{dteszfQ(T)efElf(T) Zcﬂzz(T) _ C(T>7
i=0
where Fy > 0, B4 € R, n € N and ¢, ...,c, are constants. As ( is a composition

of polynomials and exponentials of 7(7), then it is bounded for any closed interval
not containing 0. Now since sup;o7(|rf — r/]) = R < 1 then |#(T)| < RT. Thus
7(T) = o(T") and 7(T) = 0o(T"). Hence ( tends to 0 as T' | 0 or T"— oo. Thus ( is
bounded on R, .

2. Behaviour in K: Now fix all variables as constant except K. Then the partial deriva-
tives can be written as

AG(d)F(ds,d-).

Expanding and collecting terms with K, the partial derivatives can be written in the
form

AR P09 D B (a1 K)) = (K,

where Dy > 0 and D; € R. Then writing out the polynomial explicitly

N
n(K) = AK=P2EPUN 7 G (1) I (K),

i=0
where N € N and C, ...,Cy are constants. Thus

N
()| < [A]IP2EE0Y 7l (k).
=0
n is bounded for any closed interval not containing 0 since it is a composition of
exponentials and logarithms. Then as In‘(K) = o(K) and In‘(K) = oy(In" ™ (K)), 5
tends to 0 as K | 0 or K — oo. Thus 7 is bounded on R,.

O

Proposition 3.5.1. There exists functions M, as in Lemma 3.5.2 such that

9
[ — < S..
uil()gf)l) Gy Putps (F(u),G(u))| < M, (T,K) Q as
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Proof. Since F and G are linear functions, then from Lemma 3.5.2; this claim is immediately
true if we can show that G is bounded away from 0. Recall

Glu) = (1 — ) (/OT@ _ pf)E(at)dt) + u/OTu ot

G corresponds to the linear interpolation of fOT(l — p?)E(0;)dt and fOT(l — p?)odt. Tt is
clear supte[O’T](l — p?) > 0. As o corresponds to the variance process, in application this is
always chosen to be a non-negative process such that the set {¢ € [0,7] : oy > 0} has non-
zero Lebesgue measure. Thus, these integrals are strictly positive and hence GG is bounded
away from 0 Q a.s.. O]

We obtain the following corollary.

Corollary 3.5.2. There exists a function M as in Lemma 3.5.2 such that

sup |0y, Putps (So,é(u)>‘ <M(T,K) Qas.

u€(0,1)

Gu) = (1 —u) ( /O ' E(at)dt> +u /0 "ot

Then by the same argument in the proof of Proposition 3.5.1, G is bounded away from 0
Q a.s.. Hence by Lemma 3.5.2, the claim is true. O

Proof. Recall

Theorem 3.5.2 (Error bounds for general o). The error term in the pricing formula is
bounded as

T 1/2
E ()] < Y CaMa(T, K)T** 555" (B(er — 1)) {/ (1 p2)**Elo, —E(au)|2a2du}
|or|=3 0

+ ONI(T, K) ST #hBas(omin ([ off 26l =5 ool is

1/2

T
( / p;2E@2|au—E@2<o—u>|6du) ,

where M(T,K) = 0,,Putps(i,9) is bounded on R? and C = 1/12,C, = %al‘%z! are
constants, the latter depending on «a.

Proof. First, by Proposition 3.5.1, we have that E,(Sor, fOT oi(1—p})) < M, (T, K). By
Theorem 3.5.1, the error is decomposed as (o) = Epg(o) + (o). We will make use of the
integral inequality

(/OT \f(u)|du)p < vl /OT |f(w)|Pdu, p>1. (3.19)

For the term Epg(c), we have

T
|Eps(0)] < Z CoMy (T, K)Sy* |ep — 1|*1 T2 (/ (1—p2)*2|o, — E(au)|a2> ,
0

|af=3
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where we have used the integral inequality eq. (5.31). Applying the Cauchy-Schwarz in-
equality, we obtain

. 9y 1/2
El&ps(0)| < D CaMo(T, K)S' T (Elér — 1) {E (/ (1= p2)*2loy — E(%)I”) }
la|=3 0

1/2

T
o1 o — a 1/2 a2 a2
< 3 CuMo (T, K)S T (Blér — 1P )/T“{E ( | a=so, )P )} ,

laf=3

where we have used the integral inequality eq. (5.31) for the second inequality.

For the term &(o), notice that

3

- - 1 T
E(E(0)) = Eo, (El0)gr el sinetn ) = Lo, Ptz @)S&E@g{ ([ o~ Bau(oan)
0
1
/ (1 — u)Zef()TPEnEQQ(UM)dmeufoT p?n(o'mEQz(UM))dmdu}_
0

Now for u € (0,1), e Jo Pin(om=Eoy(om))dm < et fo Pmlom—Eqy(om)ldm  Thyg

T T
Sup eufo pgn(o—m_E@Q(a'm))dm S e fo p?n'”'m_EQz(o—m)ldm.
u€e(0,1)

Hence

1
/ (1 — u)2elo oz (om)dm gu fg pf (7m —Egy (om))dm gy, < L T 52 (Bay (0m)+Hom—Eq, (om))am.
3
0

Thus

3

T
E|E(0)] < C’axxputBS(i«7g)S§€foT p?n]E@z(Um)dm]EQ2{ (/ P2 (0 — E@2(Ju))du) effpillom—ﬂ*l@g(am)ldm}‘
0

Finally, using the Cauchy-Schwarz inequality and the integral inequality eq. (5.31), we
obtain

T 1/2
E|E(0)] < Cé?mPutBs(A,g))Sgefg PnEay <0m>me5/2< / PrEq,|0 — ]EQQ(Ju)\Gdu>
0

: (E@Q <€IOT 2p$n|am—E@2<am)|dm>>

Furthermore, notice that 0,,Putgs(#, ) = M(T, K), where M (T, K) is a function which
behaves like M (T, K). O

1/2

Corollary 3.5.3 (Error bounds for general o: p = 0). For p = 0 a.e., the error term in the
pricing formula is bounded as

E (&0(0))| < CM(T, K)T? / Elo, — E(oy)dt,

where C' = 1/6 is a constant.
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3.5. ERROR ANALYSIS

Proof. From Corollary 3.5.1, we have

Eo(0) = % (/OT(@ _ E(at))dt)

Notice that ([ |f(t)|dt)® < T% [ |f(t)]dt and use Corollary 3.5.2. Then the result is
immediate. u

3

1
/ (1 — u)?9,,,Putps (So, é’(u)) du.
0

In this section, we have derived a bound on the error term that depends directly on the
higher moments of the underlying variance process, and not through the partial derivatives
of Putgs. To do this, we notice that the partial derivatives appear in integrals with argu-
ments that are linear functions in the dummy variable u. We show the supremum of the
partial derivatives in the dummy variable u are functions in 7" and K whose behaviour for
fixed K and T is characterised by the functions ¢ and 7 defined in Lemma 3.5.2. Then,
standard inequalities from stochastic analysis are used to obtain the final form of the bound.
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Chapter 4

Change of measure methodology:
numerical implementation

In this chapter, we devise a fast calibration scheme using the second-order approximation
formulas from Chapter 3 under the assumption of piecewise-constant parameters. We also
perform a numerical error and sensitivity analysis for the Heston and GARCH models in
order to assess our approximation formula in application.

e Section 4.1 details our fast calibration scheme. In particular, we rewrite the pricing
functions found for the Heston and GARCH models in Chapter 3 in terms of specific
integral operators, which can be shown to satisfy some convenient recursive properties
when parameters are assumed to be piecewise-constant.

e Section 4.2 is dedicated to a numerical error and sensitivity analysis for the Heston
and GARCH models.

4.1 Fast calibration

To this end, define the integral operator

T
w(Tk’l) ::/ Luedo =42 dy, (4.1)
0
In addition, we define the n-fold integral operator using the following recurrence:
(n=1) y(n=1)y ... (x(1) (1)
(n) 1(n)Y (k(n—1) (n—1) 1) 7(1) JACONICOMG il )5 (K1)

et T={0="Ty,T1,...,Txy_1,Ty = T} be a collection of maturity dates on [0, 7], with
AT; :=T;y1 —T; and ATy = 1. When the dummy functions are piecewise-constant, that
is, 1M = lg”) on t € [T}, Tj41) and similarly for k™, then we can recursively calculate the
integral operators eq. (4.1) and eq. (4.2). Define

() B tn ()
egk SRRSO N D Dy dz’

t

k, » k.dz

A0 = [ aptwelt e,
T;

IFor example

T us u2
(@ 13y (k@ 1@y (D 1Dy 3 u3 1.(3) 4, 2 U2 1.(2) 4, 1 (S ACDE
Wy = lgs)efo = lgz)efo z lv(“)efo = “duy ) dus ) dus.
J0 0 0
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4.1. FAST CALIBRATION

where v;(u) := (u —T;)/AT; and p € NU{0}. In addition, define recursively

(k:(n)7pn),...,(k(2>,pz),(k(l),pl) R / f)/ ( ) fT (n)dz k(n_l)7pn71)7"'7(k(2)7p2) k(l)ypl)d
Tt T A T;u
T;

where p, € NU {0}.2 With the assumption that the dummy functions are piecewise-
constant, we can obtain the integral operator at time T;,; expressed by terms at time
T;.

(B 1) . w(k(l)’l(l)) i l(l)e(k(l)) (M,0)
- YT %

Y

Tit1 T; T, Tit10
(k(2>,l(2>),(k<1),l<1)) . (k(2),l(2)),(k(1),l(1))
Tit1 = Wr,
l(z (KO (K2 0) (K 10)
T, T T
1 i ir i1 )
(k(3),l(3)),(k(2),l(2)),(k(1),l(l)) . w(k(S)’Z(S))’(k@)’l@))’(k(l)’l(l))
Ti+1 - T'
—l—l(3 (3)) (£®,0) (k@ 12) (kD) 1(1)
T3 Ti1 Ty
3) E® k(2 k3 0),(k® 0 £ )
T R Y
(3)7(2);(1) (K@ k@ kD) (K3),0),(k2),0),(k1),0)
+ LGl e T ,
i1
wgnkw’l(4))’m’(k(1)’l(1)) _ w;k(4)’l(4))’(k(3)’l(g))’(k@)’Z(Q))’(km’l(l))
i1 ]
—l—l(4 (4)) g{c(;)’o) rEFJC(S)71(3)),(/.3(2>71(2)),(/€(1>,l<1>)
isdit1 T 1y
4) PAONACY E® 0),(k®3) 0 E@ 1) (kW) (1)
IO R D 0.0 KD I, (D)
4)7(3 E® ((3) k(2 @ 0).(3) 0).(k3) 0o k() (1)
+ lz( l’f )lz( )ef(l“l ’ ) :(T“Tl;?( ’ )7( ’ )wf(l“z y )
(4)7(3)7(2);(1) (@ &3 k2 kD) (£*),0),(k®),0),(k(),0),(k1),0)
+ 1L e T T

(2

(k<5) ,l<5)),...,(k(1) J(l)) (k<5),l<5)),(k(4),1(4))7(1:(3)7l(3>),(k(2>,l(2>),(k(1) ,l(l))

Tit1
(5 <5>) (£),0) (KW 1®), (k) 1)), (k(2),12)), (1),1))
l Tini+1wTi
l(5 l( ( 5>7k(4)) (k(5)70)7(k<4)70) (k(3)7l(3))7(k(2>7l(2>)7(k<1>7l<1>)
i 61, T;,Tit1 wr,
1O kKD KD (KO0, (D0, (k,0) (1), (6D 1)
1 7 T; T;,Tit1 wTi
4 (O[O RO KD KD KE) (K ,0),(D.0), (R ,0),(2).0) , (KEID)
i Y Y T T3, Ti41 wTi
1(5)1(4)l(3)l(2)l( ) (k(B)’k(4)7k(3)7k(2)ak(1)) (k(5)70)7(k(4)70)7(k(3)70)’(k(2)a0))(k(1)70)
A A Ti Ti,Tit1 .

2For example

t ) us uz
() 1p3), (@ pa), (kM p 3 k(P de 22 k(Pdz 1(Mdy
Pt ?) 2) = 7?3(113)6le * ’752(U2)€fT% & ’yfl(ul)eT = “duq | dus ) dus.
T; T; T;
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4.1. FAST CALIBRATION

3The only terms here that are not explicit are the functions elr)

t € (T}, T;41], we can derive the following:

and goT’ ) () For

egk(n),,..,k(l)) _ e%("),...,k(l)) ATyy;() 35— NI ezzm 1 AT, ?zlk%)eﬁTm(t) " )
where e(k( bk ) g By using integration by parts and basic integration properties, we
find that
& (0T — o) kA 02
ot = & (e ), b 00 =0,
AT (1), ki =0,p> 0.

In addition, for n > 2,

~

(n) (n—1) (1)
1 Pn kAT (t (k 5D 71)7“"(’6 ’pl)
(n) fyz (t)e i z’Yz( )SOTZ',t n
i
(k(n)7p’ﬂ71)7(k(n71)7p7l—1)7"'7(k(1)7p1)
_ATZ (’OTizt
(k£ pptpr 1), (k72 pr_2),..., (K1) 1) (n)

YTt ! ) kz 7é Oapn > 17

e

(k?(")vpn),---,(k“ﬁzn)_< 1 (ekf”)ATlryz(t) (k=Y 1), (D) p1)

Ti,t k(n) e
_ngf:)*k(n_l)’Pn—l)v(k(”_m,pn—z)v--w(k(l),pl))’ ]gg”) #0,p, =0,
AT, (PntL (3 gf("’l),pnﬂ) ~~~~~ (kM) p1)
pntl Wt
) AR )

To implement our fast calibration scheme, one executes the following algorithm. Let p; =
o= (O, 1@, ... p™) be an arbitrary set of parameters and denote by w;, an arbitrary
integral operator.

e Calibrate u over [0,7}) to obtain p. This involves computing wr, .

e Calibrate p over [T, T3) to obtain p;. This involves computing wp, which is in terms
of wy,, the latter already being computed in the previous step.

e Repeat until time Tly.

4.1.1 Heston calibration scheme

From Theorem 3.4.1, recall the second-order put option price in the Heston model,

Put!? = Putpg(2, §)
2

1 . 1 . g
 50uaPutas(6, DSEE(Er — P + 30, Putns(a, 9B ( [ (1= )V~ B0t )
0

+@Jmmdﬂwﬁﬂ{@T—U(Azl—ﬁXW—EOQMQ}-

3In general

n+1 m—
w(k(n)J(n)) ,,,,, (k(2>,l(2)),(k(1>,l(1)) _ w(k<n7m+1>7l(n7m+l)) ,,,,, (k(l)J(l)) H (n—j) (k(" m+2) k(l)) (k(" m+2) ,0),..., (k(l) 0)
Tiia E T; PT, Tipy
m=1 j=0
where whenever the index goes outside of {1,...,n}, then that term is equal to 1.
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4.1. FAST CALIBRATION

The three expectations were calculated in Section 3.4.1. We can write them in terms of the
integral operators eq. (6.1) and eq. (6.2).

E(ér — 1) = exp {vowgp_('{_%p)’pg) + wr}_('{_2)‘”)”’2)’(“_2/\/’7"69) } {1 + Uow(T—('i—Q/\ﬂ)7P2)7(—(H—2>\p)7p2),(ﬁ—2/\p,/\2)

+ w;_(N_ZAp)7p2)v(_(K_QAp)vfﬂ)7(5_2>‘p7>‘2)7(5_2>‘p7’{9)} _ 1

T 2
E (/ (1 — p?)(‘/t _ E(‘/t))dt) fry 2U0w§1_ﬁ’l_p2)7(_K71_p2)7(’€7)‘2) + 2w§1_571_p2)7(_“{71_p2)7(57)‘2)7(’%’”0)‘
0

T
E {(fT -1) (/ (1= pI)(V; — E(V}))dt) } = g (wt(r—(’f—/\P)J—Pz) _ wgp—fe,l—p?)) i wi(p_(“_)‘p)’1_’)2)’(“_’\’)’”0)
0

(7“{717P2)7(’{7“{6)
— Wp .

Furthermore # = Sy and § = vow(_ﬁ’l_prz) + wgp_”’l_pQ)’(”’”e).

Assuming the parameters are all piecewise-constant on {0 = Ty, T1,...,Tn_1,Tn = T},
that is,
(Htaety/\tapt) = ("iiaeiaAiapi)a t e [E)Eﬁ-l)a ZZO,N— 17

then we can use the scheme presented in Section 4.1 to calibrate the Heston parameters
forwards in time.

4.1.2 GARCH calibration scheme: p =0
From Theorem 3.4.2, recall the second-order put option price in the GARCH model,

2

N 1 . T
Puth pon = Putgs(, ) + §8nyutBs(:r;, J)E ( /O (V, — E(Vt))dt)

We can write the expectation in terms of the integral operators eq. (6.1) and eq. (6.2).

T 2
E (/ (‘/t i E(W))dt) _ 2<U(Q)wéﬂfn,l),(fn,l),()\Q,/\Q) + 2U0w§:n,1),(fﬁ,l),()\2,)\2),(7()\271-@),/@9)
0

4 ZM(T_HJ),(_HJ),(A?,A?),(_(AZ’_K),HQ),(H,H@) '

Furthermore = Sy and
T
y= / E(V;)dt = Uow;_”’l) + w;—ﬁ,l),(n,mﬂ)'
0

Assuming the parameters are all piecewise-constant on {0 = T4, T1,...,Tn_1,Tn = T},
that is,
(Iit,gt,At) = (Iii,gi,/\i) t € [ﬂ,ﬂ.ﬂ), Z:O,N— ]_,

then we can use the scheme presented in Section 4.1 to calibrate the GARCH diffusion
parameters forwards in time.
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4.2. NUMERICAL TESTS AND SENSITIVITY ANALYSIS

4.2 Numerical tests and sensitivity analysis

We test our approximation method by considering the sensitivity of our approximation
with respect to one parameter at a time. Specifically, for an arbitrary parameter set
(M, 1@ ™), we vary only one of the u(¥ at a time and keep the rest fixed. Then,
we compute implied volatilities via our approximation method as well as the Monte Carlo
for strikes corresponding to Put 10, 25 and ATM deltas. Specifically,

EI’I’OI"(IU) = O—IMprprox(,Uy K) - OIMfMonte<,ua K)

for K corresponding to Put 10, Put 25 and ATM strikes.

For all our simulations, we use 2,000,000 Monte Carlo paths, and 24 time steps per day.
This is to reduce the Monte Carlo and discretisation errors sufficiently well.

4.2.1 Heston sensitivity analysis

We consider maturity times 7' € {1/12,3/12,6/12,1}. We start from a ‘safe’ parameter,
which are parameters calibrated by Bloomberg USD/JPY FX option price data on 9/07/18.
The safe parameter set is (So, vo, rq, 7¢) = (100.00, 0.0036, 0.02, 0) with

5.000,0.019,0.414, —0.391), T = 1/12,
5.000,0.011,0.414, —0.391), T = 3/12,
5.000,0.009,0.414, —0.391), T = 6/12,
)

(
(K'/7 87 A? p) = E
(5.000,0.009,0.414, —0.391), T = 1.

In our analysis, we vary one of the (k, 0, \, p) and keep the rest fixed.*

Varying «
We vary k over the values {1,2,3,4,5,6,7,8}.

Table 4.1: x: Error for ATM implied volatilities in basis points

K 1 2 3 4 ) 6 7 8

1M -1.31 0.10 1.12 1.85 240 282 314 3.39
3M  -51.25 -28.87 -16.79 -9.69 -5.25 -2.35 -0.39 0.97
6M -125.36 -60.43 -31.45 -16.74 -8.64 -3.92 -1.07 0.70
1Y -198.02 -72.32 -29.82 -12.27 -4.22 -0.32 1.66 2.67

4The Feller condition is
260 > A2

We will use red text to indicate when the Feller condition is not satisfied. Note that in application, this
condition is almost always violated. That is, parameters calibrated from market data almost always violate
the Feller condition, see for example Clark [19], Da Fonseca and Grasselli [21], Ribeiro and Poulsen [54].
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4.2. NUMERICAL TESTS AND SENSITIVITY ANALYSIS

Table 4.2: x: Error for Put 25 implied volatilities in basis points

K 1 2 3 4 ) 6 7 8

1M -0.86 0.60 1.61 2.33 2.86 3.25 355 3.78
3M -49.82 -27.87 -16.03 -9.08 -4.74 -1.92 -0.02 1.29
6M -121.83 -57.64 -29.37 -15.03 -7.19 -2.66 0.05 1.70
1Y -194.14 -69.80 -27.98 -10.85 -3.11 0.60 241 3.31

Table 4.3: x: Error for Put 10 implied volatilities in basis points

K 1 2 3 4 ) 6 7 8

1M -0.79 0.77 1.84 2.59 3.14 355 3.86 4.09
3M -4842  -26.74 -15.11 -830 -4.09 -1.35 0.47 1.72
6M -118.47 -55.45 -27.71 -13.80 -6.19 -1.81 0.80 2.37
1Y -191.35 -68.26 -27.22 -10.51 -2.94 0.65 241 3.27

Varying 6

We vary 6 over the values
{7e-03,10e-03, 13e-03, 16e-03, 19e-03, 22e-03, 25e-03, 28e-03}.

Table 4.4: 6: Error for ATM implied volatilities in basis points

0 7e-03  10e-03 13e-03 16e-03 19e-03 22e-03 25e-03  28e-03

1M -0.26 0.70 1.42 1.97 2.40 2.75 3.04 3.28
3M  -12.55 -6.34  -278  -0.55  0.95 2.02 2.80 3.39
6M -14.60 -7.29 -345 -1.14 0.34 1.35 2.07 2.60
1y -821 -3.30 -0.81 0.62 1.51 2.10 2.50 2.79

Table 4.5: 6: Error for Put 25 implied volatilities in basis points

0 7e-03  10e-03 13e-03 16e-03 19e-03 22e-03 25e-03 28e-03

1M -0.20 0.77 1.51 2.07 2.50 2.86 3.15 3.40
3M -11.62 -5.76 -2.38 -0.25  1.17 2.17 291 3.47
6M -13.50 -6.47 -2.76  -0.56  0.86 1.82 2.50 3.00
1Y -6.48 -1.69  0.75 2.17 3.06 3.67 4.10 4.41
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Table 4.6: 6: Error for Put 10 implied volatilities in basis points

0 7e-03  10e-03 13e-03 16e-03 19e-03 22e-03 25e-03 28e-03

1M -0.09 0.87 1.58 2.12 2.54 2.88 3.16 3.39

3M -11.88 -6.22 -3.01 -1.01  0.31 1.23 1.90 241

6M -11.89 -497 -1.31  0.87 2.29 3.26 3.95 4.48

1Y -6.33 -1.89  0.29 1.50 2.24 2.7 3.03 3.25
Varying A

We vary A over the values {0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}.

Table 4.7: X: Error for ATM implied volatilities in basis points

A 02 03 04 0.5 0.6 0.7 0.8 0.9
IM 280 297 224 -056 -6.59 -16.77 -31.73 -51.86
3M 295 150 -4.39 -17.01 -37.79 -67.67 -107.02 -155.90
6M 2.77 053 -6.99 -22.03 -45.92 -79.29 -122.64 -176.50
1Y 3.08 1.78 -3.14 -13.33 -29.85 -b53.44 -84.54 -123.02
Table 4.8: \: Error for Put 25 implied volatilities in basis points
A 02 03 04 0.5 0.6 0.7 0.8 0.9
IM 380 4.11 3.51 086  -4.98 -14.88 -29.54 -49.41
3M  3.59 242 -3.08 -15.25 -35.61 -64.91 -103.80 -152.11
6M 3.60 1.70 -5.50 -20.04 -43.33 -76.10 -118.78 -171.52
1Y 3.32 210 -2.73 -12.74 -29.21 -52.35 -82.97 -121.09
Table 4.9: \: Error for Put 10 implied volatilities in basis points
A 02 03 04 0.5 0.6 0.7 0.8 0.9
IM 356 391 340 090  -4.73 -14.36 -28.73 -48.09
3M 4.04 3.06 -2.19 -13.96 -33.74 -62.50 -100.87 -148.80
6M 3.84 206 -491 -19.30 -42.33 -74.85 -117.27 -169.57
1y 3.71 278 -1.70 -11.29 -26.99 -49.50 -79.77 -117.51
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Varying p
We vary p over the values {—0.7,—0.6, —0.5, —0.4, —0.3, —0.2, —0.1,0}.

Table 4.10: p: Error for ATM implied volatilities in basis points

p -0.7  -06 -05 -04 -03 -0.2 -0.1 0

IM 5252 24.09 993 259 -1.25 -3.20 -4.08 -4.28

3M 53.60 21.85 484 -489 -10.63 -13.97 -15.71 -16.17
6M 52.02 20.13 284 -724 -13.33 -17.01 -18.99 -19.55
1Y 48.20 19.17 4.09 -433 -9.24 -12.11 -13.60 -13.91

Table 4.11: p: Error for Put 25 implied volatilities in basis points

p -0.7  -06 -05 -04 -0.3 -0.2 -0.1 0

IM 5543 26.08 11.36 3.66 -042 -254 -3.55 -3.85

3M 5758 2455 6.73 -3.55 -9.66 -13.29 -15.24 -15.89
6M 54.73 2162 3.61 -6.90 -13.27 -17.11 -19.19 -19.83
1Y 4997 19.92 4.28 -447 -9.55 -12.50 -14.02 -14.34

Table 4.12: p: Error for Put 10 implied volatilities in basis points

p -0.7  -06 -05 -04 -0.3 -0.2 -0.1 0

IM 56.28 26.32 11.26 3.37 -0.79 -2.92 -3.91 -4.17

3M  60.03 26.03 7.61 -3.05 -9.42 -13.20 -15.28 -16.01
6M 58.74 2443 563 -545 -12.23 -16.40 -18.75 -19.61
1Y 54.35 2314 6.70 -2.62 -8.14 -11.45 -13.27 -13.87

The above sensitivity analysis is consistent with what we expect. For example, for large
maturity 7', large vol-vol A or large correlation |p|, the component-wise variance of the
difference in the expansion and evaluation point increases. Thus, when these parameters
are large, we expect the approximation to break down. As we can see, this indeed occurs.
For realistic parameter values we see that the magnitude of error is around 10-50bps, which
is reasonable for application purposes.
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4.2.2 GARCH sensitivity analysis

We start from the same ‘safe’ parameter set from Section 4.2.1, albeit with p = 0 always.

Varying «

We vary k over the values {1,2,3,4,5,6,7,8}.

Table 4.13: k: Error for ATM implied volatilities in basis points

K 1 2 3 4 ) 6 7 8

1M 0.044 0.090 0.122 0.146 0.163 0.174 0.182 0.186
3M 0.003 0.019 0.026 0.028 0.027 0.025 0.022 0.019
6M 0.020 0.027 0.027 0.024 0.021 0.019 0.016 0.015
1Y -0.047 -0.015 -0.004 0.000 0.002 0.002 0.003 0.003

Table 4.14: k: Error for Put 25 implied volatilities in basis points

K 1 2 3 4 5 6 7 8

1M 0.044 0.092 0.127 0.152 0.171 0.183 0.192 0.197
3M 0.045 0.056 0.060 0.059 0.056 0.052 0.048 0.043
6M -0.031 -0.013 -0.006 -0.003 -0.003 -0.002 -0.002 -0.002
1Y -0.064 -0.029 -0.016 -0.010 -0.006 -0.004 -0.002 -0.002

Table 4.15: k: Error for Put 10 implied volatilities in basis points

K 1 2 3 4 5 6 7 8

1M 0.072 0.118 0.151 0.175 0.192 0.204 0.212 0.216
3M  -0.074 -0.052 -0.040 -0.034 -0.032 -0.031 -0.031 -0.031
6M -0.004 0.004 0.005 0.003 0.001 0.000 -0.001 -0.002
1Y -0.044 -0.013 -0.003 0.001 0.003 0.003 0.003 0.003
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Varying 6

We vary 6 over the values
{7e-03,10e-03, 13e-03, 16e-03, 19e-03, 22e-03, 25e-03, 28e-03}.

Table 4.16: 0: Error for ATM implied volatilities in basis points

0 7e-03  10e-03 13e-03 16e-03 19e-03 22e-03 25e-03 28e-03
1M 0.039 0.077 0.112 0.143 0.171 0.198 0.223  0.246
3M 0.046 0.061 0.073 0.085 0.095 0.104 0.113 0.121
6M 0.012 0.019 0.024 0.029 0.033 0.036 0.040 0.043
1Y -0.040 -0.045 -0.050 -0.054 -0.058 -0.062 -0.066 -0.069

Table 4.17: 0: Error for Put 25 implied volatilities in

basis points

0 7e-03  10e-03 13e-03 16e-03 19e-03 22e-03 25e-03 28e-03
IM 0.051 0.089 0.124 0.156 0.185 0.212 0.237 0.261
3M 0.019 0.031 0.042 0.051 0.059 0.066 0.072 0.079
6M 0.013 0.017 0.020 0.023 0.026 0.029 0.031 0.033
1Y -0.047 -0.055 -0.063 -0.069 -0.075 -0.081 -0.086 -0.091

Table 4.18: §: Error for Put 10 implied volatilities in

basis points

7e-03

10e-03

13e-03

16e-03

19e-03

22e-03

25e-03  28e-03

1M
3M
6M
1Y

0.043
0.024
-0.010
-0.034

0.081
0.038
-0.009
-0.038

0.116
0.049
-0.008
-0.042

0.147
0.059
-0.008
-0.045

0.176
0.067
-0.007
-0.049

0.203
0.075
-0.007
-0.052

0.228  0.252
0.082  0.089
-0.007  -0.007
-0.055 -0.058
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4.2. NUMERICAL TESTS AND SENSITIVITY ANALYSIS

Varying A

We vary A over the values {0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}.

Table 4.19: A: Error for ATM implied volatilities in basis points

A 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

IM -0.184 -0.182 -0.179 -0.176 -0.173 -0.168 -0.161 -0.153
3M -0.030 -0.026 -0.020 -0.012 0.000 0.016 0.040 0.073
6M -0.015 -0.017 -0.018 -0.015 -0.007 0.010 0.039 0.083
1Y 0.004 0.008 0.013 0.021 0.034 0.055 0.088 0.135

Table 4.20: A: Error for Put 25 implied volatilities in basis points

A 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1M -0.194 -0.197 -0.200 -0.203 -0.204 -0.205 -0.204 -0.201
3M -0.032 -0.028 -0.023 -0.015 -0.004 0.013 0.036 0.070
6M -0.019 -0.024 -0.026 -0.025 -0.017 -0.002 0.026 0.069
1Y 0.008 0.014 0.021 0.032 0.048 0.073 0.109 0.160

Table 4.21: A: Error for Put 10 implied volatilities in basis points

A 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1M -0.18 -0.184 -0.183 -0.180 -0.177 -0.173 -0.167 -0.159
3M  -0.036 -0.033 -0.029 -0.023 -0.012 0.003 0.026 0.059
6M -0.010 -0.010 -0.007 -0.001 0.011 0.031 0.063 0.112
1Y -0.008 -0.011 -0.012 -0.009 -0.002 0.014 0.040 0.082

The GARCH error behaves well, with most errors being less than 1bp in magnitude.
In contrast to the Heston analysis, this is most likely due to the case that the correlation
p is assumed to be 0 always. Otherwise, the approximation behaves as we expect, with
errors being larger for large maturity 7" and vol-vol A, as the variance of the difference in
the expansion and evaluation point will grow with these parameters.
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Chapter 5

Malliavin calculus methodology

5.1 Introduction

In this chapter, we explore how a second-order expansion of the mixing solution, coupled
with Malliavin calculus machinery can give a closed-form approximation for the price of a
European put option. The reader who is not familiar with Malliavin calculus should not
worry; we give a brief overview of the tools we will need in Section 5.4.1. Our method
extends that of both Benhamou et al. [9] and Langrené et al. [44], where the Heston
and Inverse-Gamma models with time-dependent parameters are considered respectively.!
Specifically:

1. For the Heston model

dS, = Sy((rd — r])dt 4 /o dW,),
dO’t = H(Qt — Ut)dt + At\/FtdBta
d<VV7 B>t - ptdt7

this has been studied by Benhamou et al. [9].

2. For the Inverse-Gamma model

ds, = S,((rd — v )dt + V,aw,),
dVi = k(0 — Vi)dt + N\ Vid By,
d<VI/, B>t = ptdta

this has been tackled by Langrené et al. [44].

The purpose of this chapter is to extend the methodology used in these aforementioned
papers to a framework where the volatility process is driven by an arbitrary drift and
diffusion which satisfy the regularity conditions given in Assumption 5.2.1. The sections
are structured as follows:

e Section 5.2 details some preliminary calculations. First, we reparametrise the volatil-
ity process in terms of a small perturbation parameter, obtaining the process (Vt(€)>.

Additionally, we rewrite the expression for the price of a put option via the mixing
solution.

'For the time-dependent Heston model in [9], the mean reversion speed & is assumed to be constant.
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5.2. PRELIMINARY CALCULATIONS

e Section 5.3 investigates our expansion procedure, where we combine a Taylor expan-
sion of a Black-Scholes formula with a small vol-vol expansion of the function € — V,;(E)
and its variants. This gives a second-order approximation to the price of a put option.

e Section 5.4 is dedicated to the explicit calculation of terms induced by our expansion
procedure from Section 5.3. In particular, we use Malliavin calculus techniques in
order to reduce the corresponding terms down into expressions which are explicit.

e In Section 5.5 we give an explicit form for the error in our expansion methodology. In
particular, we comment on the feasibility of bounding this error term in the stochastic
Verhulst model.

5.2 Preliminary calculations
Consider the following general stochastic volatility model with volatility process V'

ds, = (rd — r))S,dt + V,S,dW,,  Sp,
dV, = a(t, Vy)dt + B(t, V;)dB,, Vo = v, (5.1)
(W, B), = pidt,

where W and B are Brownian motions with instantaneous correlation (p:)o<t<r, defined on
the filtered probability space (2, F, (Ft)o<t<r, Q). Here T is a finite time horizon, where
(rd)o<i<r and (rf Jo<t<r are the deterministic time-dependent domestic and foreign inter-
est rates respectively. Furthermore, (F;)o<;<7 is the filtration generated by (W, B) which
satisfies the usual assumptions.? In the following, E(-) denotes the expectation under @Q,
where Q is a risk-neutral measure which we assume to be chosen.

Notice that the drift and diffusion coefficients for V' in eq. (5.1) are currently arbitrary.
We will only need to restrict the regularity of the drift and diffusion coefficients if the expan-
sion procedure demands it. In anticipation of this, we will make the following assumptions
on the regularity of the drift and diffusion coefficients of V' in eq. (5.1).

Assumption 5.2.1. For ¢t € [0, T]
1. « is Lipschitz continuous in z, uniformly in t.
2. [ is Holder continuous of order > 1/2 in z, uniformly in ¢.
3. There exists a weak solution of V.
4. « is twice differentiable a.e. in z.
5. [ is differentiable a.e. in x.

Notice that by items 1 and 2 in Assumption 5.2.1, if a solution for V in eq. (5.1) exists, it
will be pathwise unique, see Theorem 1.2.1. Coupled with item 3, this guarantees a pathwise
unique strong solution for V', see Theorem 1.2.2. We will comment on the reasoning behind
items 4 and 5 in full detail in Remark 5.3.2.

“Meaning that (F;)o<t<r is right continuous and augmented by Q null-sets.
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5.2. PRELIMINARY CALCULATIONS

5.2.1 Pricing a put option

Denote the price of a put option on S in the general model eq. (5.1) by Putg, so that
Putg = e~ fOT’"fldt]E(ek —S7)4-

Let the process X denote the log-spot. That is, X; := In S;. Now perturb X in the following

way: for e € [0, 1],

1
X = (v} =rf = SOVt + VO, X =Sy = m,

aV,® = a(t, V) dt + B, V,)dB,, VS =,
(W, B); = pdt.

(5.2)

We can recover the original diffusion from eq. (5.2) by noticing (S, V) = (exp(X®), V1),

Denote the filtration generated by B as (F8)g<<r and let X2 = X© — [t = rl)du.

By writing W; = fg pudB, + f(f /1 —p2dZ,, where Z is a Brownian motion 1ndependent
of B, it can be seen that
€ d ~ A
X7 |1FE £ N(e(T), 62(T)).

rY e

with
1@ T
) =0 [ SVOPars [ pvas,
0 0

20 = [ - dvya
0
Let
gle):==e" Jo ridu (b — eX”EFE>)+.
Then g(1) is the price of a put option in the general model eq. (5.1). That is, g(1) = Putg.

Proposition 5.2.1. The function g can be written as

o(c) = B {e W Rk — ), 58} = B[ Ros ((7) + 56%(T),62(T)) .

where explicitly
Tl T
eT) 4 502 T) =~ [ 5RO [ pviOas,
0 0

62(T) = / (1 ) (V)ar,

and
Pos(,y) = ebe™ b HUN(—d) — eme o TIAON(— ),
r—k+ fT(rd —rhdt 1 (5.3)
¥ = d¥(x,y) = VY
= d(ry) N Vi
Proof. This is a consequence of the mixing solution methodology. A derivation can be
found in Appendix C.2. O
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5.3. EXPANSION PROCEDURE

5.3 Expansion procedure

In this section, we detail our expansion procedure. The notation is similar to that in
Benhamou et al. [9], however there are some differences. The expansion procedure can be
briefly summarised by two main steps:

1. First, we expand the function Pgg up to second-order. This step is given in Sec-
tion 5.3.2.

()

2
2. Then, we expand the functions ¢ — V" and ¢ — (‘/;(6) ) up to second-order. This

step is given in Section 5.3.1 and Section 5.3.3.

We then combine both these expansions in order to obtain a second-order approximation
for the put option price, which is given in Theorem 5.3.1. However, this approximation is
not explicit. We will obtain the explicit second-order approximation in Theorem 5.4.1.

Remark 5.3.1. Suppose (t, ) — §t8) is a C([0,7T] x [0, 1]; R) function smooth in €. Denote
by fl(i) = % its i-th derivative in €, and let §;; := fz(at) |e=0. Then by a second-order Taylor
expansion around € = (0, we have the representation

1
65 = o5+ €1y + §§2¢ + 6(52 (€),

where © is the error term given by Taylor’s theorem. Specifically, for ¢+ > 0

c 1 i o (u
01 (€) == / Lie — e du.

i

2
5.3.1 Expanding processes ¢ —» Vt(a) and ¢ — <Vt(5)>

Using the notation from Remark 5.3.1, we can now represent the functions ¢ — Vt(s) and

2
€ (Vt(s)) via a Taylor expansion around ¢ = 0 to second-order.

1
Vt(a) =vot +eVig+ 582‘/% + @éfZ(V)a

4
(V)P = u + 200, Vis + € (Vi) + w0, Vi) + O3] (V2), o
where v, = Vi ;.
Lemma 5.3.1. The processes (Vi) and (V5,) satisfy the SDEs
dViy = au(t,v04) Vi dt + B(t,v04)dBy,  Vip =0, (5.5)

AV = (et 00,0 (Vi)? + alty o) Vag )dE + 28,(t 00,0 Viyd By, Voo =0, (5.6)

with explicit solutions
t t s
Vi = elo a””(z”’o*Z)dZ/ B(s,vg,s)e Jo aelzro=)dzqp (5.7)
0

t t
‘/2,7& _ ef(f az(z,0,2)dz {/ axm(sjvo’s>(‘/l7s)ze, f(f az(z,vo,z)dzds +/ Qﬁz(sﬂjo,s)‘/l,seifos az(z,vo,z)ddes} .
0 0
(5.8)
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5.3. EXPANSION PROCEDURE

Proof. We give a sketch of the proof for (V1;). First, we write
v = a(0.9) = o.(av,),
The SDE for Vt(e) is given in eq. (5.2). By differentiating, we obtain
Vi = au(t, VOWdt + [e8.(6, VO + 8V, aB., Vi =0,

Letting € = 0 gives the SDE eq. (5.5). Since the SDE is linear, it can be solved explicitly
(see for example Klebaner [41]). This gives the result eq. (5.7). The calculations for (V54)
are similar. 0

Remark 5.3.2. We now comment on the extra clauses given in Assumption 5.2.1.

1. As explained before, items 1 to 3 guarantee a pathwise unique strong solution for V.

2. For Lemma 5.3.1 to be valid, it is clear that we will require the existence of «,, and
Be. This is assumed via items 4 and 5.

5.3.2 Expanding Pgs

Let
T

T

H(e 1 5 2 5

P}) = g —/ —p? (Vt( )> dt —i—/ Ptv;s( )dBt,
0 0

- T 2
P [a-m) (Vo) a
0

Immediately we have P\Y = j.(T) + 162(T) and Q) = 62(T). Hence from Proposi-
tion 5.2.1,

g(e) =E (PBS (P}E), (T>>> . (5.9)

As ¢(1) corresponds to the price of a put option, we are interested in approximating the

expression Pgg at (]5}1), ~(Tl )>. To do this, we will expand Pgg around the point

5(0) A(0) 1 g g
(PT ,Qr ) = (fvo — / §p?v§,tdt+ / prvod By, / (1 —p?)vg,tdt>
0 0 0

and evaluate at <]5%1), Qg} )>. Additionally, introduce the functions

and the shorthand
Pps = Pps <15é0), ~§9)> ;
9+ Prg 0™ Pgg (p}o)’ Q(TO))
oxidyl Ozt Oy
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5.3. EXPANSION PROCEDURE

Proposition 5.3.1. By a second-order Taylor expansion, the expression Pgg <]5}1), Q(Tl))

can be approximated to second-order as
Pgs (P}U, Q(Tl)> ~ f)Bs + <axPBS> P}U + <ayPBS> (Tl)

+% (836931535) (PS))Z + % (anyBS) (QQ)Q n (azy pBS) PO,

5.3.3 Expanding functions ¢ — Pz(f), £ Qg‘f) and its variants

The next step in our expansion procedure is to approximate the functions ¢ — P}e), €

2 2
(PT(,€)> e QY e < 5?)) and £ — PYQY). By Remark 5.3.1, we can write

A 1 e
P}) =FPor+ePir+ §€2P2,T + @é,)T(P)’

1
(P)? = Pyg +2ePorPrr +¢* (Pig + PorPar) + @és»)T(Pz)’ o
v = Qo +eQir + %EQQQ,T + @S)T(Q)’ (5.11)
(ng))z = Q(Q),T +26Qo Q11 + € (Q%,T + QO,TQZT) + @S’HQQ)’
and
PEQY = PyrQor + ¢ (QorPrir + PorQur) (5.12)

1 c
+ 552 (QorPer + PorQar + 3 (QurPor + PirQar)) + @g,)T(PQ)-

This gives the following lemma.

Lemma 5.3.2. Equations (5.10) to (5.12) can be rewritten as
3 ]‘ 3
P =cPy+ 5 Par + o5 ) (P), 5.13)
(Pr)? = &Py + 053(P),

1
QY =cQir + 552Q2,T +051(Q).

(5.14)
(QF)? = Q3 105(@Y),
and
PYQY = 2P rQir + 051 (PQ), (5.15)

respectively, where

T T
Pl,T :/ ,Otvl,tdBt —/ vao,tvl,tdt,
0T 0T
Pyr = / peVo d By — / Pf (Vft + Uo,tV2,t) dt,
0 . 0
Qur=2 [ (1= A)uViget,
0T
Qo7 = 2/0 (1—p7) (V12t + Uo,tVQ,t) dt.
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5.3. EXPANSION PROCEDURE

Proof. First, notice that by their definitions, Py = P}O) = p}O) - P}O) = 0, and similarly
Qor = 0. We will show how to obtain the form of P, 7, the rest being similar. By definition

T 1 2 T
P =0.(PP) = o. (xo— / 5ot (V) ar+ / ptVt(s)dBt)
0 0
T T
= / PV dB, — / pVOvar.
0 0

By putting € = 0 we obtain P, 7, that is

T T
Pr= / peV1,dBy — / PP V1 4dt.
0 0

]

Theorem 5.3.1 (Second-order put option price approximation). Denote by Putg) the
second-order approximation to the price of a put option in eq. (5.1). Then

Putg) = EPBS

- T 1
(Cy =) + E0, Ps (/ P (Vl,t + §V2t) dB;
0
1 T 2 2
) Pt (QUo,tVLt + (Vu + Uo,tVZt) )dt
0
) T
(Cy =) + E0, Pps (/ (1= p) (2v0.4Vie + (Vi + vo4Vay) )dt)
0
1 = r ’ :
(Cz =) + §EaxxPBS </ peV1dB, — / P?Uo,tvl,tdt)
0 0
1 - g ’
(Cyy =) + §anyPBS (/ (1- p?)(2U0,t‘/17t)dt)
0
~ T T
(Coy =) + Ed,, Pss (/ peV1,d By — / P?UO,tVl,tdt>
0 0

(/ - ) ).

Additionally, Putg = Putg) + E(&), where € denotes the error in the expansion.

Proof. From Proposition 5.3.1, consider the two-dimensional Taylor expansion of Pgg around

(P.0p)
evaluated at

(0.0f).

2 2
Then, substitute in the second-order expansions of Pj(}), (P}1)> : grl ), ( (Tl )> and P}UQ% )

from Lemma 5.3.2. As this is a second-order expression, the remainder terms © are ne-

glected. Taking expectation yields Putg ), O
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5.4. EXPLICIT PRICE

The explicit expression for € and the analysis of it is left for Section 5.5.

The goal now is to make the terms C,, C,, Cy, Cyy, Cyy explicit, which is the purpose of
Section 5.4. This will then yield Theorem 5.4.1, the explicit second-order put option price.
Thus, one can think of Section 5.4 as the proof for Theorem 5.4.1.

5.4 Explicit price

In order to make the second-order approximation Putg ) explicit, we will make use of some

machinery from Malliavin calculus. In the following subsection we give a short excerpt on
Malliavin calculus. We point the reader towards the lecture notes by Nualart [52] for a
complete and accessible source on Malliavin calculus.

5.4.1 Malliavin calculus machinery

The underlying framework of Malliavin calculus involves a zero-mean Gaussian process
W induced by an underlying separable Hilbert space H. Specifically, we have that W =
{W(h) : h € H} is a zero-mean Gaussian process such that E(W (k)W (g)) = (h,¢)n

We need only make use of Malliavin calculus when the underlying Hilbert space is
H = LQ([()? T]) = LQ([Ov TL B([()? T])’ )‘*)’

where \* is the one-dimensional Lebesgue measure. Thus, the inner product on H is

T T
(h,9)m :/ hege A" (dt) :/ higydt.
0 0

Our Gaussian process W will be explicitly given as W(h) := fOT hdBy, for any h €
L*([0,T]). By use of the zero-mean and It6 isometry properties of the Ito integral, it
can be seen that such a Hilbert space H and Gaussian process W satisfy the framework for
Malliavin calculus.

Definition 5.4.1 (Malliavin derivative). Let

T T
Sn = {F = f (/ thdBt, R ,/ hn,tdBt> : f c Cpoo(Rn,R>,hz, S H}
0 0

and 8 := J,5, 8. Here C°(R™R) is the space of smooth Borel measurable functions
f : R*/B(R") — R/B(R) Wthh have at most polynomial growth. Thus, the elements

of §,, are random variables. For F' € §,,, the Malliavin derivative D is an operator from
8§ — L°([0,T] x Q) and is given by

n T T
(DF), =Y _0if < / hydBy, ..., / hn,tdBt) hiy.
i=1 0 0

Proposition 5.4.1 (Extending domain of D). Define the space D' as the completion of
8 with respect to the norm

1/p

71 = (mer +8 [ [ orral )

where I € 8§ and p > 1. Then the operator D is closable to D', and D : D' —
LP(]0,T] x ).
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5.4. EXPLICIT PRICE

Proof. See Nualart [52]. O
The Malliavin derivative satisfies a duality relationship.

Proposition 5.4.2 (Malliavin duality relationship). Let G' € D% and o € L*([0,T] x )
such that « is adapted to the filtration (FP)o<i<7. Then

E < /O t as(DG)sds) ~E (G /O t asst)

Another way of phrasing the above proposition is as follows. Let (J, K) 2o 11x0) :=
E (fOT Jthdt> and (U, V)2 := E(UV) denote the inner products on L*([0,7] x Q)

and L?(2) respectively. Let G and « satisfy the assumptions in Proposition 5.4.2. Then
Proposition 5.4.2 can be restated as

for any t < T.

(DG, o) 2o 11x0) = (G, I(a)) 12(0),

where [(«) := fOT oydB,. Essentially, when H = L*([0,T]), W(h) = fOT hidB; and u is
adapted to (F2)o<;<r, then the adjoint of the Malliavin derivative corresponds to the Ito
integral.

Proof. See Nualart [52]. O
This results in the following lemma.

Lemma 5.4.1 (Malliavin integration by parts). Let T<TandT <T.IfG =1 (fOT hudBu>,

then G € 8; C D2 and DG = IV ( s hudBu> h1gozy. In addition, let a € L2([0,T] x )
such that « is adapted to (F2)o<;<7. Consequently, by Proposition 5.4.2

[ ( /0 ' hudBu) ( /0 ' audBu) W ( /O ' hudBu> ( /O " huaudu>] :

In particular, for T = T and T=t< T, we obtain

E [z ( /0 ' hudBu> ( /0 t audBu” =E [l(l) ( /0 ' hudBu) < /0 t huaudu)} .

Furthermore, we will make use of the following relationship between partial derivatives.

E =K

Proposition 5.4.3 (Pgg partial derivative relationship).

1
ayPBS(:E; y) == 5 (8w:vPBS(x7 y) - 8xPBS(x7y)) :

Proof. Simply rearranging the relevant partial derivatives from Appendix A.2 gives the
result. O]

In addition, we will make extensive use of the stochastic integration by parts formula,
which we will list here for convenience.

o4



5.4. EXPLICIT PRICE

Remark 5.4.1 (Stochastic integration by parts). Let X and Y be semimartingales with
respect to a filtration (F;). Then we have

T T T
X7rYr Z/ X, dY; +/ Y dX, +/ (X, Y),,
0 0 0

given that the above It6 integrals exist. In particular, if X, = fot 2,dX, and Y; = fot yudY,,,
where X and Y are semimartingales and x and y are stochastic processes adapted to the
underlying filtration (&) such that X and Y exist, then the stochastic integration by parts
formula reads as

T T 3 T ¢ . ~ T ¢ ~ ~ T o
/ fEtht/ ydY; = / (/ xuqu) ydY; ‘|'/ (/ yudYu) 2 d Xy +/ i d(X,Y),.
0 0 0 0 0 0 0

We now have all the machinery necessary in order to calculate the terms in Theorem 5.3.1
explicitly.

5.4.2 FEPgg

Notice that EPgs = g(0) = E(e* — GX;O))JF. Since the perturbed volatility process V) is
deterministic when & = 0, then ¢(0) will just be a Black-Scholes formula. Thus we have

T
EPgs = Pss <x0, / vatdt> :
0

5.4.3 (),
Using Lemma 5.4.1 (Malliavin integration by parts)
. (T 1 - 1
]EaxPBS/ Pt (Vl,t + §V2t) dB; = IEamPBS/ P Vo, (Vl,t + 5‘/27&) dt.
0 0

Furthermore, using Proposition 5.4.3 (Pgg partial derivative relationship)

- T 1 ~ T 1
Eamsz/ P04 (Vl,t + §V2,t> dt = E(20, + a:c)PBS/ P70 ¢ <V1,t + §V2,t> dt.
0 0
Thus

~ T 1 1 5 T
C, = 2EJ, Pgs / P20 (vm5 + 5vu) dt — §E8xPBS / p; Vit
0 0

95



5.4. EXPLICIT PRICE

544 C,,

For C,, we first use Remark 5.4.1 (stochastic integration by parts) to reduce this expression.

2

1 5 T T
Copw = §EamPBS (/ ptvl,tdBt - / p?vo,t‘/l,tdt)
0 0

1 ~ T 2 ~ T T
= §EamPBS (/ Ptvl,tdBt) — E0, Pps (/ vao,tvl,tdt) (/ Ptvl,tdBt)
0 0 0

Using Lemma 5.4.1 (Malliavin integration by parts),

T t t
Chw = —Ed,, Pps ( / {( / psV1«dBs — / pzvo,slﬁsds) pfvaLtdt})
0 0 0
5 T t t 1 _ T
# B0t ([ ([ Vi = [t Vioas)stiisdt) + 580w s ([ piviat)
0 0 0 0

T t t
- E(azz:vPBS - 8x:cPBS) (/ (/ ps‘/l,sst - / p§U0,5%,5d3> p?vo,t‘/l,tdt)
0 0 0

1 ~ T
0

Then using Proposition 5.4.3 (Pgg partial derivative relationship)

T t t
me = 21EaﬂcyPBS (/ (/ ps‘/l,sst - / szO,s‘/l,st) p?vo,t‘/l,tdt)
0 0 0

1 5 T
+ §]E8M3PBS (/ pf‘/l%tdt) .
0

Adding the terms C,, Cy, and (), one gets

T
CJ: + Oac;t + Cy = anPBS (/ 2fUO,t‘/l,t + ‘/12,1& + vO,t‘/Q,tdt)
0

T t t
+ 2EaacyPBS (/ (/ ps‘/l,sst - / ngQs‘/l,st) p?vo,t‘/l,tdt> .
0 0 0
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5.4.5 C,,

For C,, we use Remark 5.4.1 (stochastic integration by parts) to obtain

T T T
Ed,, Pss (/ p:VidB; — / ptZUO,t‘/l,tdt> (/ (1— P?)(Qvo,tvl,t)dt)
0 0 0

T t
- 2]EfaxyPBS (/ </ (1 - pg)UO,s‘/l,sds) (pt‘/l,tdBt - p?UO,t‘/l,tdt)>
0 0
5 T t t
+ 2]E'aacyPBS/ (/ ps‘/l,sst - / pgvo,s‘/l,sd3> (1 - p?)vo,t‘/l,tdt
0 0 0

T t
= QEamyPBS (/ (/ (1 - p?)vo,svl,sd5> (PtVl,tdBt - p?vo,tvl,tdt)>
0 0

T t
- 2EaxyPBS/ (/ ngO,s‘/I,sds) UO,t‘/I,tdt
0 0
5 T t
+ 2]Eaxy-PBS (/ (/ ps‘/l,sst) UO,t‘/l,tdt)
0 0
_ T t t
- 2EazypBS (/ (/ ps‘/i,sst - / pzvo,s‘/l,sds) p?UO,t‘/l,tdt) .
0 0 0

Furthermore, using Proposition 5.4.2 (Malliavin duality relationship)

T t T t
Gy = 20, P ( / v0sVi < / psvl,sst> dt) —o / Ed,, Posto Vi ( / psvl,sst) at
0 0 0 0
T t B
=2 / E ( / p%stB(azyPsto,vl,.)ds) dt.
0 0

Using the definition of the Malliavin derivative, we obtain

DSB(amyPBSUO,-‘/l,-) - aamy-ﬁBSUO,if‘/l,tpsUO,s]-{SST} + amypBSDsB(UO,-‘/L-)
= axxy-PBSUO,tVvl,tpsvo,s]-{SST}

~ t E}
+ 8J:yPBSUO,t <6f0 Oéx(U,’UO,u)dU/B(S7 Uo,s)e_ Io ocx(z,vo,z)dzl{sgt}> ’

where we have used the explicit form for V;; from eq. (5.7). Thus using Proposition 5.4.2
(Malliavin duality relationship)

T ¢
2/ E (/ pSVLSDf(@xy]-z’gsvo,.%7.)ds> dt
0 0

T t
= 2/ EammyPBS (/ pgvo,s‘/l,sds) UO,t‘/I,tdt
0 0

T t
* 2/ Edyy Pas (/ psVi,sB(s,v0,s)€” fo aw(ZWOyz)dzds) Uo,tefot a(zv0.2)dz 4
0 0
Tyt
= 2H‘—?:’aaczyIDBS/‘ </ ngo,svl,sd?) UO,t‘/i,tdt
0 0
~ T t t s
+ 2EJ, Pas / elo w02 )dzy, ( / VB (s, v0.)Vise D W’”O’z)dZst) dt.
0 0

Assumption 5.4.1. Let §(t,x) = \a* for p € [1/2, 1], where A is bounded on [0, T7.
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5.4. EXPLICIT PRICE

There are a couple of reasons behind Assumption 5.4.1:

1. B is Hoélder continuous of order > 1/2 in z, uniformly in ¢ € [0, 7). In addition, it is
differentiable a.e. in x, so Assumption 5.2.1 is satisfied.

2. Such a diffusion coefficient is common in application, see for example the SABR model
[35] and CEV model [20].

Truthfully, we could leave (8 as an arbitrary diffusion coefficient that obeys the clauses in As-
sumption 5.2.1. However, in terms of application purposes and also for our fast calibration
scheme in Section 6.1, it will be more insightful to have this form for 3. For the interested
reader, all the following calculations still remain valid solely under Assumption 5.2.1.

In view of Assumption 5.4.1, we can rewrite V7, and V5, from Lemma 5.3.1 as

t
‘/l,t — efo az(Z,’Uo,z)dZ/ )\Sv(lise_ fos az(zv'UO,z)dZst’ (516)
0

t t
%,tzeféaww,z)dz{ / (5, 10.6) (Vi,o) e~ o o022 o / 2uxsvsiglvl,se—f(faw(z’voqz)ddes}.
0 0
(5.17)

Then we obtain

T t
Cpy = 2B, Pas / ( / pivo,svl,sds> v Vi pdt
0 0

T t ‘
+ 2E0, Pps / Vg ped0 @ (v0.2)d2 ( / Aty Ve lo %<Zvvovz>dZst) dt.
0

0
Hence
~ T t
ny = 21Ea:vyIDBS (/ (/ (1 - pg)v(},s‘/l,sds) (,Ot‘/l,tdBt - p?UO,t‘/l,tdt))
0 0
~ T t
— 2R, Pus / ( / pivo,svl,sds) v Viedt
0 0
R T t
+ 2Ea:m:yPBS/ (/ pEUO,S‘/I,st) UO,t‘/I,tdt
0 0
~ T t t s
+ QanPBS/ UO,tefo az(z,00,2)dz (/ )\SU(;)L;leLse_ Jo ozz(z,vo,z)ddes) dt
0 0
~ T t t
— 2R, Pus ( / ( / paViudB, — / pivo,svl,sds> pfvo,tvl,tdt) |
0 0 0
5.4.6 C,,

Cyy is given by Remark 5.4.1 (stochastic integration by parts) as

T t
1E0,, Prs ( / { [a- p§>vo,sv1,sds} (1- p?>vovtv1,tdt) -
0 0
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5.4. EXPLICIT PRICE

5.4.7 Adding C,,C,,C,,,C,, and Cy,

Now we add up all the terms after manipulation from Sections 5.4.2 to 5.4.6.
(Co + Cy + Can) + Cay + Cyy

T
= anPBS (/ 2U07t‘/1,t + ‘/12,t + UO,t%,tdt)
0
~ T t t s
_|_ 2E8yPBS / UO’tefo Oéz(Z,’UOyz)dZ (/ )\Svg’glx/'l’se— fO aI(Z7(UO'Z)dZdBS) dt
0 0

T t
+ Q]EaxyPBS (/ (/ (1 - pi)UO,s‘/I,sds) (Ptvl,tdBt - P?UO,tVLtdt))
0 0

T t
- 2EaxyPBS/ (/ pzvﬂ,s‘/l,sds) UO,t‘/l,tdt
0 0

T t
4 2B, Pis / ( / pzvo,svl,sds) vo Vi adlt
0 0

T t
+ 4E0,, Pgs (/ {/ (1-— pg)voysVLsds} (1— pf)vo,tVl’tdt> )
0 0
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5.4. EXPLICIT PRICE

Then
C, + Cy + Chpy + ny + ny

T
= anPBS (/ QUO,t‘/l,t + Vft + 'UO,t‘/Q,tdt)
0

T t
+ 2]anPBS / ’U07t€f0 oz (z,00,2)dz (/ )\S'Ug;l‘/lﬁgei I az(z,vmz)ddes) dt
0 0

T t
+ 2]E&pyPBs </ (/ (1 - Pi)Uo,sVLst) (/)tvl,tdBt - p?UO,t‘/I,tdt))
0 0
~ T t
+ 4E@nyBS/ (/ P?UO,sVLst) Uo,tvl,tdt
0 0

T t
+ 4Ed,, Pgs (/ {/ (1- p?)vo,sVl,st} (1- P?)Uo,tvl,tdt)
0 0

T
= anPBS (/ 2U07t‘/1’t + ‘/12,t + /UO,t‘/Q,tdt)
0

T t ‘
_|_ 2E8yPBS / ontefg Oém(Z,’UO,z)dZ (/ )\svg,glx/'l’se— f; Otg;(Z,’UO’z)dZst) dt
0 0

T t
+ 4E0,, Pgs (/ </ (1— pi)voﬁVLsds) p?vovtVLtdt)
0 0

T ot
+ 4]E5nyBs/ (/ pivo,sVl,sds) Vo,tV1,dt
0 0

T t
+ 4anyPBS (/ {/ (1 — p?)vQSVl,sds} (1 — p?)vo,t‘/l,tdt>
0 0

T
= E0, Pps (/ 200, V14 + V12,t + UO,tV?Jdt)
0

T t
+ Q]anPBS / U07t€f0t az(z,v0,2)dz (/ )\SU57;1‘/1756_ Is (Xa;(Z7UO,Z)dZdBS) dt
0 0

T t
+ 4]anypBS (/ (/ UO,S‘/l,SdS) /UO,t‘/Ltdt) )
0 0

where we have used the partial derivative relationship Proposition 5.4.3 (Pgg partial deriva-
tive relationship), Proposition 5.4.2 (Malliavin duality relationship) and partial derivative
relationship Proposition 5.4.3 (Pgg partial derivative relationship), then simplification for
the first, second and third equalities respectively. Lastly, notice by Remark 5.4.1 (stochastic
integration by parts)

2

T ot T
2 (/ (/ Uo,sVLst) UO,tvl,tdt> = </ UO,tVl,tdt) :
0 0 0

Proposition 5.4.4. In view of the calculations from Sections 5.4.2 to 5.4.7, and under

Assumption 5.4.1, we obtain the simpler form of the second-order approximation Putg)
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5.4. EXPLICIT PRICE

from Theorem 5.3.1 as

T
Putg) = PBS (l’o,/ U(Z),tdt)
0

T
+ K9, Pgs </ 2004V1 4 + V12t + UO,tV2,tdt>
0
~ T t t s
+ 2anPBS (/ UO,tefo aq(z,0,2)dz </ )\svéﬁgl‘ﬁ,s( Jo az(z,vo,z)ddes> dt)
0

0
5 T
+ QanyPBS (/ UO,t‘/l,tdt)
0

5.4.8 Eliminating the processes (V1,) and (V2,)

(5.18)

2

The next step is to reduce these remaining expectations in Proposition 5.4.4 down by
eliminating the processes (V1) and (Va,). To this end, define the following integral operator

T
(k1) ._ ¥ kodz
Wy 1= Lyelo du.
t

In addition, we define the n-fold integral operator using the following recurrence.

n—1 n—1 1
k(n) l(n) k("_l) l(n_l) k(l) l(l) k(n)J(n)w(k( ),l( )),’(k( )7[(1))
( ’ )1( B )a 7( s ) T
Wy = W ’ , neN

3

Lemma 5.4.2. Let Z be a semimartingale such that Z; = 0 and let f be a Lebesgue
integrable deterministic function. Then

T T
0 0

Proof. A simple application of Remark 5.4.1 (stochastic integration by parts) gives the
desired result. O

Using Lemma 5.4.2 we can obtain the following lemma.

Lemma 5.4.3. The following equalities hold:

’ ‘ (e, (0.6) ’
E (l (/ pt”U()’tdBt> / gt‘/l,tdt> = WO,T ’ 0 T E (l(l) </ thO,tdBt>> s (519)
0 0 0

T T —az,pAt T (—aw,p Mo T, (20, T
E (l </ thO,tdBt> / gt‘/l%tdt> = 2(,4)(()’T @PAVG ) (—aw,pAug ), (2 f)E (l(2) </ thO,tdBt>>
0 0 0
—20@,)\211% ,(2ag, T
+ Wé,T o0t g)E (l (/ ptvO,tdBt)) )
0

(5.20)

3For example

T T T
(K 0@), (k@) (1) 3) [ k3 d 2) 2 k4 1) i1 kM
Wy = lgg)efﬂ = 9% lfu)efo = 4% lv(“)efo = ““duy | dug | dus.
t

us u2
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T T T
E (l < / ptvo,tdBt> / gtvz,tdz) = e o) (2 O (l ( / ptvo,tdt>)
0 0 0

— g, p AT (—a, oMY (0w ) (e az v‘”rl 1;2“ D (ax T
+ {QW(()’T :p)‘ 0,- )»( ,P)\ 0, )’( ) )7( 75) + QMW(()T ,P)\ ) (0 P)\ ) ( 75)}E <l(2) </ thO’tdBt>) ,
0

(5.21)

g g ’ (~200 A202%),(010,8). (010, €) g
E(! (/ th()’tdBt) {/ gt‘/l,tdt} = QWOT “ 0 e E (l (/ th()’tdBt))
0 0 0
—« oY (a 2 r
+ (W(g,T =200, ) 175)) E (l(z) (/ pt'UO,tdBt)> )
0

(5.22)

Here we write oy = a,(+,vp,.) and oy, = aye(+, vo,.) for readability purposes.

Proof. We will only show how to obtain eq. (5.19). Equations (5.20) to (5.22) can be
obtained in a similar way. First, we replace Vi; with its explicit form from eq. (5.16).

Thus, we can write the left hand side of eq. (5.19) as

T
E(l (/ thOtdBt>/ ftef()azZ'UOz (/ )‘UO e foaz(zv()zdde>dt).
0 0

Using Lemma 5.4.2 with f, = ftefo aw(zv0.2)d2 and 7, = fg )\sv(’{se—fos aw(2v0:)d2q B we get

T T t
E (l (/ thO,tdBt) / gtefo Oéz(Zﬂ)O,z)dZ (/ )\sv(’ise* f()g az(Z,UO,z)ddes> dt)
0 0 0
T T .
=K (l (/ thO,tdBt) / wi?‘]f?g))\tvg’te_ fo Olz(Z,UO,z)ddet> )
0 0

Lastly, appealing to the Malliavin integration by parts Lemma 5.4.1 we obtain

T
E (l(l) (/ thO,tdBt) / Wt(Tg“5 Pt)\tU“H ~b af(z’”“”‘“dt)
0 0
T
= < / WO pAly e o az(z’”‘)’z)dzdt> E (z<1> ( / ptvo,tdBt»
0 0
-« vh Qg T
_ W&Tx,m (RS RCIN (z“) (/ ptvo,tdBt)> ‘
0

In addition, to obtain eq. (5.22), notice the following integral property holds:

(k(2),l(2)),(k<1),l<1)) 2 _9 (k(Q),l(Q)),(k(l),l(l)),(k(2),1(2)),(k<1),l<1))
Wo, = 2y

1w (k(2> l(2>) (k(2>,l(2>),(k<1),l<1)),(k(1),l(1))
0 T .

Then, using Lemma 5.4.1 (Mallavin integration by parts) and eq. (5.19) we get

T t
QanPBS (/ ’Uo,tefot az(z,v0,2)dz (/ )\svgglese, I az(z,vO,z)ddes) dt)
0 0

(_azvp)‘vgfl)r(ovp)‘vg ,)7(0517'00,‘) D
— 2y Ed,ay, Pos.

Finally, using Lemma 5.4.3 we obtain the explicit second-order put option price.
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5.4. EXPLICIT PRICE

Theorem 5.4.1 (Explicit second-order put option price). Under Assumption 5.4.1, the
explicit second-order price of a put option in the general model eq. (5.1) is given by

T
Putg) = Pgg (xo,/ Uatdt)
0

—ap,p T (o ,vo . T
+ Qw((]’T P, (@ o, )axyPBS (:1:0,/ vgtdt>

(—20z,\2 vo ") (2a,1)

+ 0 T ayPBS <I0, UO tdt)
(— aupkvo_" ),(— Oél,pAUI'H—l) (20z,1)

+ 2wy 7 5MyPBS (xo, Uy tdt)

20@,)\ ’U Qg,Qzy ), Qg ,V
+ (()T o Ko (9 , Pas ($0a/0 Uo,tdt)

n {Qw(az,pAvg‘fl)xaz,pAvsi.“>,(az,am),(az,vo,.)
0,7

—auz,p2 T (0,0002* Y, (000 T
N QMME(),T AT, (0,003 ) (o, )}8myPBs (xo/ vﬁ,tdt>
0
(—az,pAv? T (0,0A08 ), (azv0..) r
+ 2CL)OT o 0 0, /0, (9myPBS (]70,/ Ug}tdt)
0

T
20y, 202 Qz,00,.),(Qz,v0,
) 2), (0t v0,.)( 0’)8nyBs(xo,/ Ugjtdt)
0

. » +1 o 2 T
N 2(< ) o >) Orey Pos (x | ”gvtdt)’
0

where the partial derivatives of Pgg are given in Appendix A.2.
Proof. As stated before, Section 5.4 is devoted to the proof of this theorem. O

Remark 5.4.2 (Greeks). The explicit second-order approximation of the put option Delta
and Gamma can be obtained via partial differentiation of the second-order pricing formula
in Theorem 5.4.1 with respect to Sy = €™. One will notice that

8i+j T ) 8”3 T ,
s, (&'Eiayj Pgg (xm/o U(]’tdt)) = 0s, (6 3y S BS <ln SO,/O Uo,tdt>>
oititi T ,
— —Z0
- (0$z+1(‘3 J (IO’/O UO,tdt))

for i,j € NU{0}. The partial derivatives of Pgg are given in Appendix A.2.

In this derivation, the only assumption made was on the diffusion coefficient from As-
sumption 5.4.1. Specifically, 5(t,z) = A" for p € [1/2,1]. This means we can obtain the
second-order pricing formula for different models by choosing a specific «(t, x) that adheres
to Assumption 5.2.1 and a p € [1/2,1], then appealing to Theorem 5.4.1. For instance,
if we choose a(t,z) = ki (0; — x), then this drift satisfies Assumption 5.2.1. By choosing
some g € [1/2,1], we will obtain the explicit second-order price of a put option where the
volatility obeys the dynamics

dV; = k(0 — Vi)dt + M V/AAB,,  Vy = .
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5.4. EXPLICIT PRICE

In particular, to obtain the explicit second-order put option price in the Inverse-Gamma
model, choose «(t,z) = k(0 — ) and p = 1, so that a,(t,x) = —k; and a,,(t,z) = 0.
Indeed, this gives the desired result for the second-order price of a put option in the Inverse-
Gamma model as seen in Langrené et al. [14].

5.4.9 Stochastic Verhulst model explicit price

We now assume the so-called stochastic Verhulst model, here on in known as the Verhulst
model. Specifically, the framework is given by

ds, = (rd — r)S,dt + V,S,dW,,  Sp,
dV; = k(0 — Vi) Vidt + M Vid By, Vo = v, (5.23)
(W, B); = pdt.

The time-dependent, deterministic parameters (k¢)o<i<r, (0¢)o<t<r and (A)o<i<r are all
assumed to be strictly positive and bounded for all ¢ € [0, T7.

Remark 5.4.3 (Verhulst model heuristics). The process V' occurring in the SDE for the
volatility we call the stochastic Verhulst process, here on in known as the Verhulst pro-
cess. This process is reminiscent of the deterministic Verhulst/Logistic model which most
famously arises in population growth models, but also in many other areas of sciences, see
Tuckwell and Koziol [61]. The process behaves intuitively in the following way. Focusing
on the drift term of the volatility V' in eq. (5.23), specifically (6 — V)V, we notice that
there is a quadratic term. The interpretation here is that V mean reverts to level 6 at
a speed of kKV. That is, the mean reversion speed of V' depends on V itself, and is thus
stochastic. Let us compare this with the regular linear type mean reversion drifts seen in
stochastic volatility models, k(6 — V). Here, the mean reversion level is still 8, however the
mean reversion speed is k, and is not directly influenced by V. For an in depth discussion
of the Verhulst model for option pricing, we refer the reader to Lewis [46] and Carr and
Willems [16].

Notice that the drift term for V' is quadratic and thus does not adhere to Assump-
tion 5.2.1; the drift is non-Lipschitz. However, the next proposition shows that this is not
a problem.

Proposition 5.4.5. Let Y be a Verhulst process. That is, Y solves the SDE
dY; = ay(by — Y3)Yidt + ¢, Yid By, Yy = yo,

where (ay)o<i<7, (b)o<t<r and (¢;)o<i<7 are deterministic, strictly positive and bounded for
all £ € [0,T]. The explicit pathwise unique strong solution of Y is given by

tg -1
Y, = (Ft (yal+/o fdu» ,
t 1 t
F, =exp (—/ (aubu — —ci) du — / cudBu> :
0 2 0

Proof. Notice the SDE for the process (Y, !) solves a linear SDE. Specifically, by use of
[to’s formula we obtain

dY, " = [ar = (b — )Y dt — e MdBy Yy =y

where

Thus the SDE for (Y,™!) is linear and can be solved explicitly, see for example Klebaner
[41]. O
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Lemma 5.4.4 (Verhulst model explicit second-order put option price). Under the Verhulst
model eq. (5.23), the explicit second-order price of a put option is given by

T
PUtge)rhulst - PBS (ZL’(),/ Uatdt)
0
T
—(kO—2Kvy . v2 kO—2Kv0 .,v0..
o 20 R ) 20,00 (560/ vgtdt)
K 0 K
T
—2(k0—2kKv0..),A202 ), (2(k6—2kK10..),
0
T
—(k0—2kKv0..),p202 ),(—(kO—2kKv0..),pA02 ),(2(KO—2kK10 ),
+2wé,T( 20, AR ) (K020, B ) Q20 Dy (mo/ vS,tdt)
0

T
(—2(59—251}0,),)\21)8 ),(k0—2kKvo,.,—2K),(K0—2Kv0,.,v0,.) 2
+ wo 0y Pss | o, vp 4t
0

n { 2w(—(n9—2m)of),p)\vg"),(—(RO—anof),p)\va‘),(NG—Qm;of,—25),(&9—2&1}0”1)0,‘)
0,T

T
—(K0—2kKv0..),p202 ),(0,pAv0..),(KO0—2Kv0.. V0.
o 2up G ”°’)}amPBs (mo, / vé,tdt)
0

T
(7(n972m)0,.),p/\v(2]7‘),(O,p)\vo,.),(n972m)0,. ,00,.) 2
+ 2w0,T ax:cyIDBS Zo, UO,tdt
0

T
(—2(k0—2kv0,.),A202 ), (kO—2Kv0,.,v0,.),(KO—2KV0,.,v0,.) 2
+ 4wy 7 OyyPrs | o, vy dt
0

—(K0—2kK0..),p02 ), (KO—2Kv0..,v0.. 2 T
ol (o [ )
0

Proof. Under Assumption 5.4.1, the approximation formula in the general model eq. (5.1)
is given in Theorem 5.4.1. Notice that

a(t,x) = k(0 — ).
In addition,

a,(t, ) = Kby — 2K,

(T, ) = —25;.

Substituting these expressions into the formula from Theorem 5.4.1 gives the result. n

5.5 Error analysis
This section is dedicated to the explicit representation and analysis of the error induced by
our expansion procedure in Section 5.3. The section is divided into three parts.

1. Section 5.5.1 is devoted to the explicit representation of the error term induced by
the expansion procedure.

2. Section 5.5.2 details how one would approach bounding the error term induced by the
expansion procedure in terms of the remainder terms generated by the approximation
of the underlying volatility /variance process.

3. Section 5.5.3 explores obtaining an explicit bound on the error term in the Verhulst
model.
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5.5.1 Explicit expression for error term

Recall from Theorem 5.3.1 that the price of a put option in the general model eq. (5.1) is

Putg = Putg ) +E(&), where Put(G2 ) is the second-order closed-form price. As our expansion
methodology was contingent on the use of Taylor polynomials, the term € evidently appears
due to the truncation of Taylor series. To represent €, we will need explicit expressions for
the error terms. These are given by Taylor’s theorem, which is presented in Section 1.2.4.
As the expansion is second-order, we will only consider results up to second-order. Recall
from Section 5.3 the functions

5(e) 1 ©)? T
PT€ ::L'O—/ épf (‘/,;€> dt+/ pt‘/;EdBt,
0 0

- T 2
& = [ - () a
0
Pj(js) _ pj(f) _ P}O)

H— e )2
=/ pe(Vi* _UO,t)dBt_é/ p?((‘/f) —vﬁ,t> dt,
0 0

A ~(0
=G - ap

= [a=a (W) k)t

Furthermore, recall the shorthand
Pps = Pps (P( ) N(TO)) ;
6i+j]533 az—l—jPB (p( ) g?))
oxidys ozt oyl

Theorem 5.5.1 (Explicit error term). The error term € induced from the expansion pro-
cedure in Theorem 5.3.1 can be decomposed as

E=Cp+ &y

and

where € p corresponds to error in the approximation of the function Pgg, and &y, corresponds

2
to the error in the approximation of the functions € — V;(E) and € — <V;(a)> . Additionally,

Ep and €y can be written explicitly as

|| 5(1) A1 D\ 1)) *?
er = Z allag!Ea (P})’Q(T)) <P})> (Q%)> ’

|a|=3

B (P.GP) = | - WP (1= ) Pr(0) + uPr (1), (1= w)Qr(0) +uQr (1) o

and

0 Pgs 1 o] 9*Pss )
E pParo2 - E &) P12
o &Balayaz ( Q%)+ 2 et 2,T( Q*),

where @gi)p(PUQI) = @gl)T(QI) and @ (PyQO) : @é})T(Py), for z,y € {1,2}. Here
a:= (o, ) and |a| = a1 + ao.

Proof. The decomposition &€ = €p + €y is a clear consequence of Taylor’s theorem. The
next two subsections are devoted to representing €p and &€y explicitly.
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Explicit €p

First we will derive €p explicitly, the error term corresponding to the second-order approx-
imation of Pgg. In our expansion procedure, we expand Pgg up to second-order around the

point
T T T
~ ) ~ 1
(P}O)a (TO)> = (mo _/ §P§Ug,tdt "’/ thO,tdBta/ (1— P?)U(Q),tdt>
0 0 0

and evaluate at (]5}1), ~(Tl )>. Hence, in the Taylor expansion of Pgg, the terms will be of

0Pas (L) ()
Qw1 9y <PT > (QT )
for |a| = 0,1,2. By Theorem 1.2.6 (Taylor’s theorem) we can write the second-order Taylor

polynomial of Pgg (]57(,1), N(Tl )> with error term as

the form

Pgs (15}1), ~(Tl)> — Pps + (3:1:15135) P;E}) + <5y15Bs> Q%”
1 R ] 5 2 .
) () ) (02 + (1) 0
|| 51 A1) O\ [ HD)*
* |Z 041!0./2!Ea (PT T ) <PT > (QT )

al|=3
N - 7

Error term

(5.24)

with

B 5 1 83P 5 _
Eo (P.QF) = /0 (1= e (Pr(0) +wPr(1), Qr(0) + u@r(1)) du

= [ 0= 0P (= PO + uPr(1). (1 = @ (0) + u@r(1)) du

Taking expectation gives Putg. Thus the explicit form for the error term Ep is

’Oé\ =) A1 D\ 1)\ *2
ep = Z allag!Ea (P})’Q(T)> <P§)> <Q(T)> '

|af=3

Explicit &y
Now we derive €y explicitly, the error corresponding to the second-order approximation

2
of the functions ¢ — V,& and £ — (Vt(g)> . Recall from Lemma 5.3.2, since Pyr =

Pf(po) — }3}0) = 0 and similarly Qo7 = 0, we could write

1
PF}E) =Pr+ §€2P2,T + @S)TOD),

(P)? = £*Pip + O3 (P,

1
ng) =1+ §€2Q2,T + @gf)F(Q)’

(Q)? = Q2 1 + ©51(QY),
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and

Pq(ﬂg)Q(TE) =e*PirQur + @;?r(PQ),

where

T T
Pl,T = / Ptvl,tdBt - / vao,tvl,tdt,
0 0
T T
Pyr = / peVa A By — / P? (‘/1275 + UO,tV27t) dt,
0 0

T
Qir = 2/ (1 — pi)vosVa,dt,
0
T
Qo = 2/ (1= p}) (V2 + 004 Vay) dt.
0
The idea then was to approximate the functions € — P}s), € > ng) and their variants by
their second-order expansions. For example, in the expansion of Pgg in eq. (5.24), if we

focus on the term corresponding to the first derivative of Pgg in its second argument, we
have

(0, Pos)Q) = (0, Pos) (@ur + 5@ + OYH(Q)

= (0, Pos) (Qur + 5 Qo) + (0, Prs) (OUH(Q)).

.

—~~
Error term

For the term corresponding to the second derivative of Pgg in its second argument, we have
LT o\’ _ L, 5 2 M) (2
§(anyBS> <QT ) = 5(8nyBS) (Q1,T + 92,T(Q ))

1 ~ 1 N
= 50y Ps) (@ir) + 5Oy Ps) (@S}(QQD :

)
~

v
Error term

Following this pattern, we can see that the error term &y can be written explicitly as

As the second-order price of a put option is the expectation of our expansion, the goal
is to bound & in L' for a specific volatility process V.

5.5.2 Bounding error term

Our objective is to appeal to the explicit representation of the error term € as seen in
Theorem 5.5.1 and bound it in L' under the general model eq. (5.1), where the volatility
process V adheres to Assumption 5.2.1. Afterwards, in Section 5.5.3, we will comment on
obtaining an explicit error bound under the Verhulst model. In order to obtain an L' bound
on the error term €&, it is sufficient to obtain ingredients given in the following proposition.

Proposition 5.5.1. In order to obtain an L' bound on the error term &, it is sufficient to
obtain:
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1. Bounds on ||®$)T(P°‘1Q"2)||, where |a| =1, 2.

2. Bounds on ||P}1)||p and ||Q§11)||p for p > 2.

The purpose of the next part of this section is to validate Proposition 5.5.1.

Lemma 5.5.1. Consider the third-order partial derivatives of Pgg, 8355%% , where a;+ag =

3 as well as the linear functions hy, he : [0, 1] — R, such that hy(u) = u(dy — ¢1) + ¢; and
ho(u) = u(ds — c9) + 2. Assume there exists no point a € (0,1) such that

hy(u) —k+ [ (rf —rD)dt
g M) =R =)t lim hs(u) = 0. (5.25)

u—a hQ(U,) u—a
Then there exists functions B, bounded on R, x R such that

sup |=ZE85 ). how))| = BT B)
uE(OI,)l) 8xa18ya2 1 ) al\d, K).

Furthermore, the behaviour of B, for fixed k and T is characterised by the functions { and

v respectively, where
C(T) = Ae™ Ir r{dte—Ezfz(T)e—Eﬁ(T) Z Cifi(T),
=0
with 7(T) := foT(T? —r{)dt and B, > 0, B, e R,Ae R, n e Nand ¢y, ..., ¢, are constants,
and

N
v(k) = Ae PPN " Oy (—1) K
=0

with Dy > 0,D; e R,Ac R, N € N and Cy, ...,Cy are constants.

Proof. Lemma 5.5.1 is very similar to Lemma 3.5.2, where the latter is the equivalent lemma
for the function Putgg. In fact, we will show that Lemma 3.5.2 implies Lemma 5.5.1. In
the following, we will repeatedly denote by F' or GG to be an arbitrary polynomial of some
degree, as well as A to be an arbitrary constant. That is, they may be different on each
use.

First, as a function of x and y, notice from Appendix A.2 that the third-order partial

derivatives 85;%, where a1 + ap = 3 can be written as
e*G(dY) i n
A ym/; G(d},d™, \/y), meN (5.26)
except for when o = (3,0), in which case the partial derivative can be written as
4SO g g Ae”p(d™) (N(d™) — 1 N 5.27
ym/g (+7 77\/§)+ €¢< +>( (Jr)_ )7 m € N. ( )

Furthermore, from Appendix A.1, it can seen that as a function of x and y, the third-order
partial derivatives of Putgg can be written as

L9

xnym/Z

F(dy,d_,\y), neZmeN (5.28)

69



5.5. ERROR ANALYSIS

Recall

In(z/K) + [ (rf —r{) dt .,

VY

a:—k:—l—fOT <T§l—7“{> dt
VY

1 2
o —z4/2
x) = e .
Let us consider the cases for which a # (3,0). Without loss of generality, set k£ = In(K).
Notice that d?(z,y) = di(e®,y). Take n = —1 in eq. (5.28). Roughly speaking, we
will say that two functions f and g are ‘of the same form’ if they are equal up to constant

1
dy Zdi(l",y) = 5\/@

<

df = di(z,y) =

1
+ 5\/@

values.* Furthermore, we will denote this relation by f L g. Then comparing eq. (5.26) and
eq. (5.28), the form of the partial derivatives of Pgg are the same as the partial derivatives
of Putgs composed with the function e in its first argument. Specifically, we can write
83PBS ($ ) C (93PutBs (ex )
D1 Oy W g oye2 Y-

Now, consider arbitrary functions f,b: R — R such that

sup |f(x)] = L < oc.
TeR

Then it is true that

sup | f(b(x))| = L < L < oo.

reR
Thus

c
~ sup

u€(0,1)

0? Pag
Su - v h ) ,h w
ue(oI,)1) 391:“183/&2( 1(u), ha(u))

83PutBS

hi(u)
gegyes )]

Under the assumption in eq. (5.25), and then using Lemma 3.5.2, this supremum will not

blow up. Clearly, sup,¢( ) aii?g;gg (M hy(u)) is a function of T and K. By substituting

k = In(K) in the result of Lemma 3.5.2, we obtain the form of ¢ and v.

Now for the case of a = (3,0), we have that

03P, C O3Put . . N N
(@) © TR (e y) AN - 1)
=:HTw,y)
Now
|H(x,y)| = |e*(d2) (N(@D) — 1)] < e*o(d2).
Thus

sup |H (z, y)| = sup |e"¢(d) (N(d}) — 1)] < sup e®¢(d) < oo
z€R z€R z€R

41t is possible to give a formal mathematical definition of ‘is of the form’, however this is actually much
more involved that one would initially think. For this reason, we will not define this notion rigorously, and
it should be clear to the reader what is meant.
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and also

sup | H (z,y)| = sup [p(d)(N(d) — 1)| < sup ¢(d}) < oo.

yERy yER L yERy

Hence

sup H(h(u), ha(u) < sup e (d(hy(u), ha(u))) = (T, k),

ue(0,1) ue(0,1)

where m is a bounded function on R, x R. By direct computation, it is clear that for fixed
T the form of m is given by

Ae— Dok’ ef)lk
where Dy > 0 and D; € R. For fixed k, it is given by

Ae—EQFQ(T)eﬁlf(T)

where E2 > 0 and El € R. Thus

03P O3Put
sup |~ (), ha(u))| & sup | =5 5B, ha(w)) + AH (B (w), ha(w))
ue(0,1) | O ue0) | 0T
O*Put
< sup | S ()| + A sup [H(h(u), ha(u))
ue(0,1) x u€(0,1)

g B(3,0) (T7 k) + Am(T7 k)

But the form of m is exactly that of B, without the polynomial expression. Thus, the sum
of them is again of the form of B,. O

Bounding €y

We first consider bounding the term &€y from Theorem 5.5.1 in L'. The terms of interest
to bound are

8‘0‘|sz 1 6% (%
W@é}(P 1Q%?), la|=1,2.

Now the second argument of Pgg is Qgg)), which is strictly positive. By considering the

trivial linear function u +— (1 — u)Qé? ) +uQ¥) ). then by Lemma 5.5.1 this implies 62‘51‘5552 <
B, (T, k). Thus

alalpBS (1) ( poa o2 (1) ( pai oo

G yar O (PUQ™) | < Bu(Tb) €43 (P Q)| (5.20)

Equation (5.29) suggests that obtaining an L' bound on the remainder term @g%(PO“Qa?)
for |a| = 1,2 is sufficient. This validates item 1 in Proposition 5.5.1.
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Bounding Ep

The terms of interest are
~(1) A1 1)\ 1)) *2
B (P, 00) (P)™ (@)™ ol =

We now write

so that
s () K () = 5P (1= wPr(0) + uPr(1), (1= 1)Qe(0) + uQr(D).

Proposition 5.5.2. There exists functions B, with a; + as = 3 as in Lemma 5.5.1 such
that

angS

Sup Ox™1 Qy2

u€(0,1)

(J(u),K(u))‘ < BJ(T,k) Qas.

Proof. Since J and K are linear functions, then from Lemma 5.5.1, this claim is immediately
true if we can show that K is bounded away from 0. Recall

K == ([ 1= i)+ [ 0= v

K corresponds to the linear interpolation of fOT(l — p})vg,dt and fOT(l — pH)VAdL. Tt is
clear sup;e(o 7y(1 — p2) > 0. As V2 corresponds to the variance process, in application this
is always chosen to be a non-negative process such that the set {t € [0,7] : V}* > 0}
has non-zero Lebesgue measure. Thus these integrals are strictly positive and hence K is
bounded away from 0 Q a.s.. O]

By Proposition 5.5.2

(P00 = | [ = 2t o, ) o
S%BQ(T,/C)
Thus
[ (P12, Q) ()" (@) || < gatmin | () [ (@), (o0

Looking at the second and third term on the RHS of eq. (5.30), it is clear one of our objec-
tives is to bound P%l) and Qg) in LP for p > 2. This validates item 2 in Proposition 5.5.1.

Lemma 5.5.2. The terms from Proposition 5.5.1 can be bounded if the following quantities
can be bounded:

1. |05} (V)], and |05} (V?)]|, for p > 2.
2. |6)(V)]l, and [|©")(V?)||, for p > 2.
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3. 657 (V)], and [|6F) (V2)]|, for p > 2.

Proof. We will make extensive use of the following integral inequality:

(/0T|f(u)|du)p STp_1/0T|f(“)|pdu’ b1, (5.31)

For the rest of this proof, assume that p > 2. We will denote by C), and D,, generic constants
that solely depend on p. They may be different on each use. Notice

T T
1
PO = / PO (V)dB: — 5 / PP (V?)dt,
0 0

T
QY = [ - el

0

Applying the Minkowski and Burkholder-Davis-Gundy inequalities, as well as the integral
inequality eq. (5.31), we obtain

(1) SN PTG o (T o w
1P, < et ([ aiefwigar) -+ go,r ([ el i)
0 0

and
1/p

T
00, < ' ([ - sriello i)
2 2 2
Now also (1/;(1)) = (Uo,t + @oi:) (V)) =g, + 21}0,1‘/@82(1/) + (@é?(V)) , 8o that
oW (12 M) D)
0% = 200,000(v) + (0)(1)) .

This suggests that finding an L? bound on the remainder term @82 (V) is sufficient in order
to bound P}l) and Q(Tl )in LP. This validates item 1.

We can write the following remainder terms of P and () as

T 1 T
=( / O (V)dB; — 5 / p?@§12<v2>dt> (5.32)
0 0

T 1 T
( | ey - efwnas - [ p?<2@é%2<v2>—@§fz<v2>>dt>,

0

Epl) - QLT)(Q(TI) +Q1r)
_ (/0T<1 ~ pg)@g}g(w)dt) (/OT(1 — o) [2000(v%) — e} (v2)] dt> .
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Furthermore, notice

O (V) = 05)(V2) + 20, (O1)(V) - 61(V)).,
2

0L} (V) = O)(1?) — 205, (611(V) = ©5)(V) ) — (61 (V) — 6} (1)) .

)

Then, by application of the Minkowski, Burkholder-Davis-Gundy and Cauchy-Schwarz in-
equalities, it is sufficient to obtain LP bounds on @9,2 (V) and @glt) (V) in order to obtain L?
bounds on the remainders of P and @ from eq. (5.32). For the cross remainder term, we
have

1 1 1 1 1
1057 (PQ) [y < 1P |2l Q2 12 + 1PCA12p[| Q7 2-

We just need to check how to obtain L” bounds on Pl(lr} and lef)p Notice
51 ’ (1) (1) i
Pl < G743 ([ et - eizar)

Lo it (1 g (1) v
+50 ([ aietio) - el

and

) T 1/p
|Qurlly < DT ( / <1—p3>pu@é%2<v2>—@§%2<v2>||£dt) -

Again, all we need to obtain LP bounds on the cross remainder term are LP bounds on
@l%t) (V) and @élt)(\/) This validates item 2 and item 3. O

5.5.3 Verhulst model error analysis remarks

In this section, we consider obtaining an explicit bound on the error induced by our expan-
sion procedure under the Verhulst model eq. (5.23). Recall that the volatility process for
the Verhulst model is the Verhulst process, which is given as the solution to the SDE

dV; = k(0 — V))Vidt + N\ VidB,,, Vo = wo. (5.33)
Furthermore, recall that the perturbed volatility process is given as the solution to the SDE
AV = k(0 = VW dt + NV, V) = w,

where ¢ € [0, 1]. In view of Lemma 5.5.2; to obtain an L' bound on the error term resulting
from the approximation procedure, it is sufficient to obtain L” bounds on the remainder
terms of the approximated volatility process. For example, analysing the SDE for the
remainder term @St) (V), we get

d6g,) (V) = A" — duy,
— 4,080 (V)dt + \VidB,,  ©)(V) =0,

where A; := k40, — K (V; + vo4). Thus, an expression for @82 (V') can be obtained as

t
01 (V) = elo A4 /0 A Ve Jo 4424 B,. (5.34)
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Although eq. (5.34) is not really an explicit expression for @82(‘/), it is easily obtained
by use of the linear relationship of the SDE. By inspecting eq. (5.34), it is evident that
obtaining an L? bound on @((ft) (V) will at least require bounds on the moments of the
Verhulst process V. A similar situation occurs when exploring the higher order remainder
terms. Unfortunately, to our knowledge, there has been little research done on the Ver-
hulst process. In fact, from scouring the literature, the only results that can currently be
obtained are the explicit solution and stationary distribution of the process. The explicit
solution was obtained in Proposition 5.4.5. The stationary distribution can be shown to be
Gamma. That is, as t — 0o, V; ~ Gamma, see Mackevicius [48]. However, there does not
exist explicit expressions for its moments nor an explicit distribution for any fixed time ¢.
These however, can be approximated, see again Mackevic¢ius [48]. The lack of results on
this process is mostly due to the quadratic nature of the drift term.

A crude bound on the p-th moment can be obtained in the following way. From Proposi-
tion 5.4.5, the explicit solution to the Verhulst process is

t -1
e (7 [ o))
t 1 t
F, = exp (—/ </1u0u — —AZ) du — / )\udBu> )
0 2 0

Let Z; .= Vt_l = F; <v0_1 + fot ;—Zdu> Then for p > 0,

where we have used Jensen’s inequality with the concave function x +— z7P. Notice for

u < t,
t 1 t
F,/F, ~ LN (—/ (mZQZ — 5)@) dz,/ Xﬁdz) .
Hence we obtain

t t N
E(Z,) = ¢ Jo (xeb:m22)cz (Uo_l N / oo o (et -2 )z du)-
0

where

Thus
pfg(nZQZ—)\z)dz
E(V7) < - .
(vo_l + fot Kue Jo (“zez_Ag)dzdu>
Notice
oJo (r=0:-22)d= oJo (r=0:—22)dz

-~ erfg(/{zﬂzf)\g)dz'

— t [y )2 - _ [t )2
U01+f0 K€ fo (k202 )\z)dzdu Uol‘i_ﬁte f0|5202 )\z\dzt
Thus, we obtain the bound
epfg(nzaz—kz)dz

¢ 2
t o~ vgepfo (/{ZezfAz)dz.
(%—1 + e f0|5292—>\§|dzt>

E(VY) <
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This bound on the p-th moment of the Verhulst process is asymptotically exponentially
increasing in t. Clearly, this is not an ideal bound.

To summarise the properties of the Verhulst process:
1. An explicit strong solution exists, which is given in Proposition 5.4.5.
2. The stationary distribution is known explicitly and is Gamma.
3. The explicit distribution is not known for any fixed time t.

4. An explicit expression for moments of any order do not exist. However, if we define
M, (t) := E(X}"), then an ODE in ¢ for M,, can be derived which depends on M, ;.
Thus a backwards recurrence exists.

In contrast, if one considers the Heston model, we notice that the variance process is
modelled by a CIR process. The CIR process has been researched extensively and there
exists a plethora of results in the literature, see for example Dufresne [26], Going-Jaeschke
et al. [34], Maghsoodi [49] or essentially any book on stochastic calculus/financial modelling.
This is mainly due to the fact that the CIR process is an affine process. These results
were largely exploited in Benhamou et al. [9] for the expansion methodology on the time-
dependent Heston model, and thus a theoretical error analysis was achievable. For example,
the use of the explicit form of the Laplace transform of the integrated CIR process is
exploited in their error analysis, which fortunately is known explicitly in the literature,
see again Dufresne [26]. In addition, there exists a well known correspondence between
squared Bessel processes and the CIR process, which can be further exploited. But in the
case of the Verhulst model (or any stochastic volatility model with an unexplored process
for the volatility /variance), such a mathematical analysis on the error term is difficult, if
not infeasible. We leave this analysis for future work. We refer the reader to Chapter 6,
where we include a robust numerical error and sensitivity analysis for our approximation
procedure.
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Chapter 6

Malliavin calculus methodology:
numerical implementation

In this chapter, we develop a fast calibration scheme for our second-order approximation
formula from Chapter 5 in the stochastic Verhulst model. Furthermore, we present a
numerical error and sensitivity analysis for the approximation formula in the stochastic
Verhulst model.

1. Section 6.1 details our fast calibration scheme, where we exploit a convenient recursive
property of our integral operators when parameters are assumed to be piecewise-
constant.

2. Section 6.2 is dedicated to a numerical sensitivity analysis of the second order approxi-
mation of the put option price in the stochastic Verhulst model given by Lemma 5.4.4.

6.1 Fast calibration

Recall from Section 5.4.8 the integral operator

T
k.l u
e [ ke o
t
and its n-fold extension
(n=1) J(n—1)y .. x(1) (1)
_ _ (n) 1(n) 4, (F )L )TN CASE A
(k) 1)) (k=1 j(n=D)y (k1) gDy (k M w
Wi =Wy , neN. (6.2)

Let T = {0 =Ty, T1,...,Ty_1,Tn = T} be a collection of maturity dates on [0, 7], with
AT; :=T;.1 —T; and ATy = 1. When the dummy functions are piecewise-constant, that is,
l,g") = lz(") on t € [T}, Ti41) and similarly for &, ‘we can recursively calculate the integral
operators eq. (6.1) and eq. (6.2). Furthermore, let T = {0, 71, . .. ,TN_I, T} such that T O 7.
Let AT, := T,y — T; with ATy = 1. Then, consider the ODE for (vo) in the Verhulst
model eq. (5.23).

dUQ’t = Iﬂ?t(et — Uo’t>’007tdt. (63)
We have the following Euler approximation to the ODE eq. (6.3):
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where %(t) := (t —T};)/AT,. Tt is true that an explicit solution exists for the ODE eq. (6.3).
However, the solution is non-linear, which is problematic as we will need to utilise the
linearity of the Euler approximation for our calibration scheme. Define

(n) (1) t —n 3
egk yeesk ):: efo i k2 dz’

(A0, R D) oo vo.z n hdz
* )

v,t
Tit1
k,h, Y ko+hovg .dz
80( p) ::/ fyzp<u)ele z 200,z du,
t

t, i1

where 7;(u) := (u — T;)/AT; and p € NU{0}. In addition, define recursively

Tit1 “
(KM R py)eey (RO R py) Pn J k™ Moo odz (KD A= b (63 R po) (KD R py) d
t,Ti+1 T Vi (u)e ’ u,Ti41 u,
t

where p, € NU {0}.! We now assume that the dummy functions are piecewise-constant
on J. However, to make this recursion simpler, we will assume that we are working on the

finer grid T rather than 7, since if the dummy functions are piecewise-constant on T, then
there exists an equivalent parameterisation on T. For example, let k; be the constant value
of k on [T}, T;41). Then there exists 1%, Tgﬂ, o ,T; such that T3 = T} and T; =T,+1. Then
let ky, := k; for m = i,...,7. Thus, without loss of generality, we can assume that we are
working on T and we will suppress the tilde from now on.

With the assumption that the dummy functions are piecewise-constant on 7, we can obtain

IFor example

(6 p3,q3), (@ ,p2,¢2), (k™" p1,q1)
t,Tit1

Tit1 uz (3 Tita uy g (2 Tt w1 (1

_ D3 gz [ kP dz p2 R kP dz D1 a [t EMdz

= / v (Ug)UO’USG Ty Vi (uz)vo’uze T; Vi (ul)vo’ule T; du; | dusg | dus.
t us U2
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the integral operator at time 7}, expressed by terms at time 7;.

(k(l)th(l)UD,«,l(l)Ug},)
wO,Ti+1
1 1 1),
_w(k( ) r(Wayg 1 >v071.) +l(1)vq1 (k(l)) (h(l)) (61 n(1) 0y
= Wo, Ty, i Yo,T; ¢ €, 1; " PT;,Tigr )

(k(2)+h(2)vo).,Z(Q)UgZ_),(k(l)Jrh(l)vO,.,l(l)vgl_)
w07Ti+1
(k(2)+h(2)vo).,l(Q)Ug?_),(k(l)Jrh(l)UO’.,l(l)vgl_)
= Wo,T;
l(l) a (k(l)) (h(l)) SRR (@ 4rPyg 1)y q2)
+vorer, ey P T, 0,T;

QNS viztn <k<2> B (b RO (6 h,0), (kM) 2 D),0)
+ €v, T Ty, Tit1

(k@) +hPwg 13083y, (kD hWyg 1D a1
wO,Ti+1
(@) +hBug 13083y, (kD hDyg 1D a1
= Wo,T;
+l(1)v‘“ (k(1>) L) (kD) 2D 0) (k<3)+h<3)v0,,l<3>vg?_),(k<2)+h<2)v0,.,l<2)vg?_>
i Yo, T, € Co,1; PT\Tig “o, T

(2) (1) qg+q1 <k<2> K1) (3 R D) w3 a3 0), kDR D0) (B3 4r B g 133 )

T; €, 1 T;,Tig1 wo,T;
+ 12D s paztar <k<3> kKW (h;” RERD) LD R E,0), (63,8 E),0), (6,1 D,0)
€y T;,Tit1

(k@ 4r® g 1081y, (kD $rWag 1D adL)

w07Ti+1
W prM®ag 1B eft) (WMo 1Ml
= Wo,T;
+l(1) (k(1>) (h(1>> (k(l) R 0, (@ +r B g 182y (6B LR ug 1383 ), (6D 4R D g 1D 82
Yo, T Co,1; PT;\Tip “o,T;
ICHOM st (k<2> KD) (@D A D) 5D 2@ 0), (kD hD 0) (D 4r By 1@ 0ty (k3 4Py 13403
€, Ty T, Tit1 Wo,T;
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where whenever the index goes outside of {1,...,n}, then that term is equal to 1.
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In addition, for n > 2,
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To implement our fast calibration scheme, one executes the following algorithm. Let p, =
po= (O, u® . pM™) be an arbitrary set of parameters and denote by w, an arbitrary
integral operator.

e Calibrate u over [0,7}) to obtain p. This involves computing wr, .

e Calibrate p over [T1,T3) to obtain p;. This involves computing wr, which is in terms
of wy,, the latter already being computed in the previous step.

e Repeat until time Ty .

Remark 6.1.1. In the general model eq. (5.1), it is clear that as long as a unique solution
for (vo.) exists, then the same procedure outlined above will result in a fast calibration
scheme. This is due to the fact that the Euler approximation to the ODE for (vy;) gives a
linear equation, which is all that is necessary to obtain the fast calibration scheme. Thus,
this fast calibration scheme can be adapted to the general model eq. (5.1) immediately. This
extends the fast calibration scheme presented in Langrené et al. [44], where they require
the ODE for (vg+) to be linear.

6.2 Numerical tests and sensitivity analysis

We test our approximation method by considering the sensitivity of the approximation
formula with respect to one parameter at a time. Specifically, for an arbitrary parameter
set (W, u®, ..., ™), we vary only one of the (9 at a time and keep the rest fixed. Then,
we compute implied volatilities via our approximation method as well as the Monte Carlo

for strikes corresponding to Put 10, 25 and ATM deltas. Specifically,

Error(u) = orm—appros (4, 1) — 0 1n—monte(ft, K)

for K corresponding to Put 10, Put 25 and ATM.

For all our simulations, we use 2,000,000 Monte Carlo paths, and 24 time steps per day.
This is to reduce the Monte Carlo and discretisation errors sufficiently well.
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6.2. NUMERICAL TESTS AND SENSITIVITY ANALYSIS

The parameter set we start from is (Sp, vo, 74, 7¢) = (100.00, 0.18,0.02, 0) with

8.00,0.15,0.92, —0.63), T = IM,
8.00,0.15,0.92, —0.63), T = 3M,
8.00,0.15,0.92, —0.63), T = 6M,
)

(
(I{/7 07 A? p) = E
(8.00,0.15,0.92, —0.63), T = 1Y.

In our analysis, we vary one of the (k,0, A, p) and keep the rest fixed.

Varying «
We vary k over {6,7,8,9,10, 11,12, 13}.

Table 6.1: x: Error for ATM implied volatilities in basis points

K 6 7 8 9 10 11 12 13

IM 799 783 766 750 734 718 7.03 6.87

3M 16.48 15.650 14.85 14.06 13.30 12.56 11.85 11.16
6M 30.10 27.35 24.84 2255 2047 18.57 16.83 15.24
1Y 37.23 31.34 26.52 2257 19.29 16.56 14.25 12.30

Table 6.2: x: Error for Put 25 implied volatilities in basis points

K 6 7 8 9 10 11 12 13

IM 703 6.8 675 660 646 633 6.19 6.05
3M  20.33 19.37 18.45 17.57 16.72 1590 15.12 14.37
6M 33.47 30.58 27.90 25.44 23.16 21.07 19.15 17.38
1Y 41.45 34.15 28.06 2297 18.69 15.08 12.01 9.40

Table 6.3: x: Error for Put 10 implied volatilities in basis points

K 6 7 8 9 10 11 12 13

IM -0.03 -0.07 -0.12 -0.16 -0.21 -0.26 -0.31 -0.37
3M 916 887 855 821 78 750 713 6.75

6M 27.16 25.28 2344 21.66 19.96 1835 16.81 15.37
1Y 53.69 46.54 40.34 34.96 30.28 26.21 22.64 19.52
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Varying 6
We vary 6 over the set {0.10,0.13,0.16,0.19,0.22,0.25,0.28,0.31}.

Table 6.4: 6: Error for ATM implied volatilities in basis points

0 0.10 0.13 016 0.19 022 025 028 0.31

IM 598 6.62 726 790 854 919 9.84 1049
3M  14.23 16.32 18.44 20.58 22.73 24.89 27.06 29.23
6M 18.36 22.26 26.18 30.07 33.91 37.69 41.38 44.96
1Y 1499 20.16 25.10 29.81 34.33 38.71 43.00 47.26

Table 6.5: 6: Error for Put 25 implied volatilities in basis points

0 0.10 0.13 016 0.19 022 025 028 0.31

IM 485 552 6.18 6.86 7.53 821 889 9.57

3M 1255 14.84 17.15 1948 21.82 24.17 26.52 2887
6M 20.41 24.69 2891 33.04 37.07 40.96 44.69 48.26
1Y 22.03 2691 31.16 34.86 38.14 41.14 44.04 46.96

Table 6.6: 6: Error for Put 10 implied volatilities in basis points

0 0.10 0.13 016 0.19 022 025 028 0.31

IM -0.62 0.12 085 159 234 3.09 384 4.59

3M 265 530 797 10.64 13.32 16.00 18.68 21.36
6M 17.42 22.63 27.63 3243 37.00 41.33 45.41 49.24
1Y 31.98 37.57 41.45 44.00 45.63 46.72 47.60 48.57

Varying A
We vary A over the set {0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2}.
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Table 6.7: A: Error for ATM implied volatilities in basis points

A 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
IM -1.60 -0.68 043 1.72 3.19 484 6.68 8.71
3M 3.6 6.07 894 1226 16.05 20.30 25.03 30.24
6M 559 9.23 1351 1841 23.93 30.05 36.76 44.04
1Y 531 917 1346 18.06 2287 27.79 32.71 37.53

Table 6.8: A: Error for Put 25 implied volatilities in basis points

A 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
IM 096 1.69 259 365 490 633 796 9.78
3M 4.06 6.30 9.05 1237 16.27 20.80 25.97 31.81
6M 535 9.10 13.74 19.31 25.84 33.36 41.89 51.46
1Y 6.53 11.20 16.75 23.15 30.36 38.33 47.00 56.31

Table 6.9: A: Error for Put 10 implied volatilities in basis points

A

0.5

0.6

0.7

0.8

0.9

1.0

1.1 1.2

1M
3M
6M
1Y

-1.22
-1.44
-0.36
1.83

-1.25
-0.37
2.79
7.40

-1.17
1.28
7.24
14.85

-0.99
3.61

13.12
24.26

-0.65
6.69

20.53
35.66

-0.16
10.60
29.56
49.06

0.52 141

15.39 21.12
40.25 52.65
64.45 81.77

Varying p

We vary p over the set {—0.7, —0.6,—0.5, —0.4, —0.3, —0.2, —0.1, 0}.

Table 6.10: p: Error for ATM implied volatilities in basis points

p -0.v  -06 -05 -04 -03 -02 -01 O

IM 793 567 375 218 097 0.10 -0.41 -0.56
3M 19.34 1381 9.17 541 254 054 -0.59 -0.83
6M 30.76 22.13 14.87 897 440 1.17 -0.73 -1.30
1Y 29.67 19.23 10.51 3.49 -1.84 -549 -747 -7.77
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Table 6.11: p: Error for Put 25 implied volatilities in basis points

p -0 -06 -05 -04 -03 -02 -0.1 O

IM 679 527 392 273 171 087 021 -0.26
3M 17.74 1428 11.09 818 559 3.34 148 0.04
6M 31.23 2586 20.76 1597 11.55 7.54 4.02 1.07
1Y 35.19 2844 2191 1568 981 439 -049 -4.72

Table 6.12: p: Error for Put 10 implied volatilities in basis points

p -7 -06 -05 -04 -03 -02 -01 O

IM -0.36 038 090 123 134 124 092 0.38
3M 557 709 805 843 822 738 588 3.65
6M 2195 2390 24.78 24.58 23.27 20.77 17.01 11.85
1Y 37.53 40.42 41.55 40.86 38.30 33.72 26.97 17.75

The numerical analysis displays errors that are on average around 10-50bps out, with
small errors being exhibited for reasonable parameter values, and large errors for more
unreasonable parameter values. The errors also behave as we expect. For example, large
vol-vol intuitively should result in an error which is high, since the expansion procedure
was contingent on vol-vol being small. This behaviour is exhibited in the above numerical
results. A high mean reversion speed should intuitively result in an error which is lower,
which is also seen in the x numerical sensitivity analysis.
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Chapter 7

Conclusion

In this thesis, we explored the potential of obtaining closed-form approximations for option
prices in a variety of stochastic volatility models with time-dependent parameters. This
was executed through two different methodologies. Common to both methodologies is the
mixing solution. This involves writing the put option price as an expectation of a functional
of the integrated variance, where this functional is similar to a Black-Scholes formula.

In Chapter 3, we started from the mixing solution, and then performed a second-order Tay-
lor expansion around the mean of the argument of the put Black-Scholes formula. Using
change of measure techniques, we were able to express the closed-form approximation as a
sum of terms involving moments of the variance process under some artificial probability
measures. We found that it was only possible to compute these moments in a closed-form
fashion under the Heston framework. This is due to the change of measure technique result-
ing in variance processes driven by SDEs that are not well understood in the literature. By
assuming a correlation of 0 a.e., it is then possible to obtain the closed-form expression. We
also bound the error induced by the expansion by higher order moments of the underlying
variance process.

In Chapter 4, we devise a fast calibration scheme for the approximation formula derived
in Chapter 3. To do so, we exploit the recursive properties of the integral operators in
which the closed-form approximation is written in terms of. We also perform a numerical
error analysis under the Heston and GARCH models (the latter with correlation 0 every-
where), and find that the numerical error is well within the range for application purposes.
Furthermore, we numerically investigate the sensitivity of the approximation formula by
varying parameters one at a time. We establish that the approximation formula behaves as
we expect it to. For example, we observe that the approximation breaks down as maturity
increases. This aligns with our intuition, as the variance of the expansion point increases
with respect to this parameter.

Our framework in Chapter 5 involves a volatility process being driven by arbitrary drift
and diffusion coefficients which are restricted by some regularity conditions. Starting from
the mixing solution, we use a small vol-vol expansion of the underlying volatility process
combined with a Taylor expansion of the put Black-Scholes formula in order to obtain an
expression for the second-order approximation. Using Malliavin calculus machinery, we are
able to write the put option price in terms of our integral operators. We attempt to bound
the error term in the stochastic Verhulst model, which exhibits a quadratic drift. We find
that such a task is currently unachievable, as the mathematical properties of the Verhulst
process are not well understood in the literature.

Similar to Chapter 4, we devise a fast calibration scheme in Chapter 6 for the approx-
imation formula derived in Chapter 5. This involves exploiting recursive properties of the
integral operators that the approximation formula is written in terms of. This fast calibra-
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tion scheme is also quite general as opposed to that in Langrené et al. [44], which requires
linearity of the ODE governing the volatility process without its diffusion coefficient. To
do so, we implement an Euler scheme to approximate this ODE. We also perform a nu-
merical error and sensitivity analysis in the stochastic Verhulst model. We find that the
approximation error is well within in the range for application purposes. Furthermore, the
approximation formula behaves as we expect. For example, when vol-vol becomes large, the
error in the approximation rises. This aligns with our expectations; clearly a small vol-vol
expansion procedure should result in an approximation formula that performs poorer as
vol-vol becomes large.

7.1 Further work

The use of the mixing solution to obtain closed-form approximations for option prices is
clearly dependent on Taylor expansion techniques: as the mixing solution involves writing
the price as an expectation of a Black-Scholes like formula, the most reasonable way forward
is to perform Taylor expansions on this function. There are most likely a plethora of
procedures one could concoct in order to make the approximation explicit. These procedures
would either be model dependent, or depend on approximating the underlying volatility
or variance process. In the author’s opinion, we feel that the capabilities of the mixing
solution methodology (in one-factor stochastic volatility models) have been pushed to its
limit. Indeed, the approximation formula derived in Chapter 5 is very general, and could
be used in almost any popular stochastic volatility model. Further work that would need
to be done is a concise error analysis for individual models. An obvious extension to the
expansion methodologies implemented in this thesis would be performing an expansion of an
order higher than two, with the hopes that the closed-form attribute of the approximation
is preserved. Although this is not necessarily infeasible, the calculations would most likely
become increasingly complicated. Furthermore, there is no guarantee that a higher order
expansion would result in a significantly better approximation. In addition, even if a higher
order expansion could be made explicit, it is not clear how these extra terms would influence
the implementation of the approximation.

It is plausible that the mixing solution methodology could be adapted to multifactor
stochastic volatility models of dimension d > 2, see for example Duffie and Kan [25], Da Fon-
seca et al. [22]. For instance, a stochastic volatility model with vol-vol itself stochastic would
be such an example. It would be quite interesting to explore the possibility of extending the
Malliavin calculus methodology from Chapter 5 to a general multifactor stochastic volatility
model setting.

If we consider pricing derivatives which are not European options, one can no longer rely
on the mixing solution. In this case, the payoff is a functional of the underlying asset price
process, and one essentially needs to consider the approximation of its expectation. This
usually involves approximating the SDE (possibly multidimensional) governing the asset
price process and any auxiliary processes (volatility, etc) in some sense. For example, ap-
proximating the SDE directly via perturbation techniques or the process’ finite-dimensional
distributions, see for example Takahashi et al. [60] and Bompis and Gobet [13]. In addition,
one must be careful with the regularity of the payoff function. In such a general setup, it is
reasonable to believe that one could devise a myriad of approximation techniques to obtain
closed-form expressions.
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Appendix A

Black-Scholes formula partial
derivatives

This appendix contains some partial derivatives for the Black-Scholes put option formulas
Putgs and Pgs. One can think of these partial derivatives as being analogous to Black-
Scholes Greeks. However, they are slightly different since our Black-Scholes formulas are
parametrised with respect to integrated variance, rather than a constant volatility.

A.1 Putgs partial derivatives

Some of the partial derivatives of Putgg are:

A.1.1 First-order Putgg

d.Putps = e~ Jo v (N(d) — 1),

ffT ridu d
8yPutBs = re ” ¢( +).

27

A.1.2 Second-order Putgg

e~ Jo ridvg(d,)

8meut S = )
B x\/@
e~ Jo g (d, )
anyutBS = 4y3/2 (d*d‘i’ - 1)7
—fT rdu
Oy, Pt — (_1)6 0 25(d+)d‘
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A.2. Pps PARTIAL DERIVATIVES

A.1.3 Third-order Putgg

e Jo ridug(d, )
2

OrzaPutps = (—1) = (dy + V),
—fT rldu d

ax:cyputBS = S 2y ¢( +) (d*dJr - 1)7

_fTT"J:dugﬁ(d d?d

e o +) “dy  dy
BxnyutBS = (—1) 2y2 ( 5 — 7 — _) s
—fT ridu d
re Jo

8,y Putps = 8y5/2¢( +) ((d-dy —1)* = (d_+d;)> +2).

A.1.4 Fourth-order Putgg

e~ rhdug(d, )

8:(:J:a:1:PU~tBS - $3y3/2 (di + 3d+\/§ + 2’y + 1),
—fr r{:du¢(d
€ +)
OzaayPutps = Qa3 (d-(1 - di));

ffTrﬂdugb(d
e Jo +) (1 ) d_d.\ 3
axxnyUtBS = <_1) 21’y5/2 <§(d_ -+ d+) —+ d_d+ (1 — 5 _ 5 ,

_fOT'r{:du d
OupPutns = A (5 ) [(d-d — 17— (0 + .+ 2]

FAd(d —d) —d—dy]),

—Jr r{:duqb d 1
xe
OyyyyPutps = 8y7/2 @) <§(d—d+ —1)*(d-dy —5) = (d-dy — 1)(d- +dy)

_ %(d_ +d)*(d-dy —7) 4 (d_dy — 1))-

A.2 Pgs partial derivatives

A.2.1 First-order Pgg

— [Trfdu n
9, Pag = e®e™ Jo mud (N(dp) — 1),
eTe~ fOTnidugb(dl_ir_l)

2V

Oy Pps =
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A.2. Pps PARTIAL DERIVATIVES

A.2.2 Second-order Pgs

eve=Jo Tﬂd“qﬁ(dlfg)

axxPBS = \/g + amPBS
x —fOT Tﬁd“qﬁ(dln
ee +) x ffTrfdu In
= + e Jo T (N(dY) — 1),
x —fOT ridu dln dln
e’e _
8$yPBS _ (_1) 2y¢( +) ’
exeffOTn{du¢<dln) .
Oyy Pas = W 2 (dmd - 1).
A.2.3 Third-order Pgs
x 7fTr£du dln
e'e Jo
axxacPBS - y ¢( +) (\/ﬂ - dT) + aa:xPBS
z —fOTr{jdu dln T
= SR T o i) e B ()~ 1),
Yy

x —fTrf:duqs(dln)
Oray s = (~1) = o (A2 o+ (1 — a2 ),

ete=Jo T[Ld“gb(dlf)

x —fTT{idu(b(dln)
ee o n jln n n
aynyBS = 8y5/2 + ((dl,ler - 1)2 - (dI, + ler)2 + 2) .
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A.2. Pps PARTIAL DERIVATIVES

A.2.4 Fourth-order Pgg

eve=Jo Tﬂd“qﬁ(dlfr‘)

aa:a:ma:PBS - (_1) y3/2 (]- - (dl_sr_l - \/@)2) + 8xxxPBS
x 7fTr£du dln
- S E LA (e vy — 1) e E i) <)
T —fTrf:du dln
e’e 0
Orary Pos = ——— 3 AB N (g — dyna —2) 4 (5 + ) — dy — i1~ )|

eve=Jo Tﬂd“qﬁ(dlfr‘)
2y5/2

O = (1) i+ i Yy

1 1 In In _§
+§y—§\/§(2d_+d+) 2],

x 7fT r{idugb Jdn
e'e Jo
OupoPos = “ B |oypinanaty — vyiey - ) - vt + )

+ V(T — d™) ((dlfdlf — 12— (d" 4 d)? 2) ,

ere Jo ridug(din)
8y7/2

1
Dy Piss = (§(dlfdlf — X(d"dE — 5) — (dd¥ — 1)(d™ + dP)

1
— §(dlf +d™)?(dmd —7) + (dmd™ — 1)) .
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Appendix B

Explicit moments for some processes

In this appendix, we derive expressions for some of the moments, mixed moments and
covariances of the CIR and IGa processes used in this thesis. Although the results for the
CIR process are well known, one could deem the calculation of such terms for the IGa
process as non-trivial. In fact, according to our knowledge, we have not seen a derivation
of IGa moments with time-dependent parameters in the literature. In the following, we will
use notation introduced in Chapter 3.

B.1 Moments of the CIR process

Let V be a CIR(vo; K¢, ¢, ). It satisfies the SDE
AV, = k(0 — Vi)dt + A/ Vid By, Vp = vy,

where we assume k, 0 and A are time-dependent and deterministic and satisfy some regu-
larity conditions. For s < ¢, it can be integrated to obtain

t t
V= Ve Jor=dz 4 / e~ Jur=dzi 0, du + / e~ Jur=dz) \/V,dB,. (B.1)
In particular, for s = 0,
t t
V; = vpe o r=dz +/ e Jur=9%c 0 du + / e~ Jur=dz) V. AB,. (B.2)
0 0

V' has the following moments:

t t u 1
E(V;") = e~ Jomh=d2 <v{f + / elo me=dz (nmﬁu + §n(n — 1))\3) E(Vu"_l)du)
0

t u
Var(V;) = / A2 g2 wadz {voe_ Jo' r=dz —i—/ e “Zdz/ip@,dp} du.
0

0

Cov(Vi, V;) = e Je e / Aieﬂiﬁz“{voefo“zdw / el “Zd%pepdp} du
0

0
t t u ]_
E(VVR) = e Jo meedz <E(Vsm+”) - / eJo rizdz (nﬁuﬁu + §n(n — 1))\3) ]E(VSmVunl)du)
Cov(V"™, V") = B(V"V") — E(VM)E(V"),

all for m,n > 1 and s < t.

We give an outline for obtaining Var(V;) and Cov(V;, V;). The other terms follow a similar
methodology.
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B.2. MOMENTS OF THE IGA PROCESS

Proof. Notice that Var(V;) = E(V; — E(V;))? Then using eq. (B.2) and E(V}),

t 2 t
var(v;):E( / e‘fu“ZdZAu\/VudBu) = / e~ 2L =42\ 2R (V) du.
0

0

Assume s < t. Using the representation of V; in terms of V; eq. (B.1), we have

t t
Cov(V,, V;) = Cov (vs, Ve Jsredz 4 / e~ Jur=® e 0,du + / e “deAu\/vudBu>
—e s FuduVar(V,),

where we have used that V; is independent of the It integral fst e~ Ju rzdz ) V. dB,. O

B.2 Moments of the I1Ga process

Let V be an 1Ga(vo; k¢, 0y, Ar). It satisfies the SDE
d‘/;f = I{t(et - ‘/t)dt + )\t‘/tdBt) ‘/0 = Yo,

where we assume k, 0 and A\ are time-dependent and deterministic and satisfy some regu-
larity conditions. Let Y be a GBM(1; —k¢, Ar). Then for s < t, V has the explicit pathwise
unique strong solution

V—VE vo+f(f/<ou0u/Yudu
LTy, vo + [ Kubu/Yudu )

In particular, for s = 0,

t

KuOu
Vt:Y;e(Uo—i- Y, du>.

V" has the following moments:

t
t n(n—1)y2 _ (un(n=1)y2 _
E(V}*) = elo T Ai-nkadz (U6L+n/ Ky O,e 0 TN nezdzg (7 1)du)
0

t Y
Var(V;) = e 2Jor=dz / N2E(V;2)e? Jo == du
0
Cov(Vi, Vi) = Var(V;)e™ J; nedz

n(n—1) n(n—1)

E(Vsm‘/tn) — @fot 5 )\gfn/izdz <E<‘/;m+n)€, fos s )\g—nnzdz

t
o / Fulue 1o %A%WdzE(VsmVu"*l)dU)
Cov(V™, V") = E(V"V") — E(V,")E(V),

all for m,n > 1 and s < t. We show how to obtain E(V*V;™). The other terms follow a
similar methodology.

Proof. We consider the differential of V™.
1
d(vr) = (nﬁtQtth_l + (in(n — 1)\ — nﬁt> V;”) dt +n\V,"dB;

t 1 t
=Vr=V"+ / Nk 0,V + (En(n — 1A — nmu> V' du +/ nA,V,'dB,.
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B.2. MOMENTS OF THE IGA PROCESS

Multiplying both sides by V" and taking expectation yields
t 1
E(V"V]) = E(V™) + / nk O,EVVH) 4 (§n(n —1)A2 — nmu) E(V,"V.)dw.

Differentiating both sides in ¢ and letting M"(t) := E(V"V}"), then

d 1
EMSm"(t) = nk O, M (t) + <§n(n — A - nmt) M ().

This is a first order ODE, which can be solved with the integrating factor method by
integrating from s to t. O]
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Appendix C

Mixing solution

In this appendix, we give a derivation of the result referred to as the mixing solution by
Hull and White [38]. This result is crucial for the two expansion methodologies seen in
this thesis. Hull and White first established the expression for the case of independent
Brownian motions W and B. Later on, this was extended by Willard for the correlated
Brownian motions case [64]. We give the derivations for when the model is parameterised
by either spot or log-spot. However, the derivations for either are essentially the same.

C.1 Mixing solution for the spot

Under the risk-neutral measure QQ, suppose that the spot S and variance process o follow
the dynamics

dSt = St(<7“f — T’Z)dt + \/U_tth>7 SO;
doy = a(taat)dt+6(t70t)d3ta 00,
(W, B); = pydt.

We give an outline of the result

Put = e~ o "UE(K — Sp), = E{e— Jo R [(K — Sp), |FE] }

T
=E <PutBs <SO€T7/ oy (1 — P?)dt>) ;
0

Putps(z,y) = Ke™ Iy 7”gdtj\f(—d_) —xe” fOT’"{dtN(—dJr),
In(z/K)+ [} (rd —r])dt
_Ia/K) + f0f a1
VY 2

Proof. By writing the driving Brownian motion of the spot as W, = f(f pudBu+f()t V1 —p2dZ,,
where Z is a Brownian motion under Q which is independent of B, this gives the explicit
strong solution of S as

T 1 /T T
St = Soérexp {/0 (rf — T{)dt — 5/0 o (1 — p?)dt —I—/O \/ o (1 — p?)dZt} ,
t 1 t
& = exp {/ Pur/0ud By, — 5/ piaudu} .
0 0
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C.2. MIXING SOLUTION FOR THE LOG-SPOT

First, notice that both o and ¢ are adapted to the filtration (F7)o<;<7. Thus, it is evident
that S7p|F2 will have a log-normal distribution

St|FE ~ LN (W(T),6*(T)) ,
A(T) = In(Sobr) + / (rd —rf)at ¢ / 01— p)dt,
52(T) ;:/O ool — p2)dt.

Hence, the calculation of e~ /o PE((K — S7)4|FB) will result in a Black-Scholes like for-
mula.

(T) (T)
_ Ko Iy <IH(K) - ’2(?) ), %&(T))
— SobpeJo ity (IH(K) - [;((TT))_ 0 ;~(T)>
= Ke o iy <IH(K/So€T)&<Tf3T(T§’ —ri)dt %&(T))
— Spbpedo riaty (m K/5otr) 5(% it =)t %6(T)>
It is immediate that e=Jo UE((K — S7)4|FB) = Putps (Solr, 52(T)). O

C.2 Mixing solution for the log-spot

Under the risk-neutral measure Q, suppose that the spot S and volatility V follow the
dynamics

dS; = Sy((rd — r1)dt + ViAW), S,
dV; = a(t, V;)dt + (¢, Vi)dB;, Vo,

Let X denote the log-spot and k the log-strike. That is, X; =1InS; and k = In K. We give
an outline of the result

Put = e~ fOTngtIE(elC T E{e‘ Iy T?th[(ek — eXT)+|9’ﬂ}

T 1 T T
=E(PBS (a:o— / P Vidt+ / pVid By, / W(l—ﬁ)dt)),
0 0 0

Pos(x,y) = ebe™ o TN (—d™) — e ho TN (—dl),

—k+ (Frt—phHar 1
X +f0 (Tt rt) j:_\/g
NG 2
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where

di(z,y) = df =




C.2. MIXING SOLUTION FOR THE LOG-SPOT

Proof. By writing the driving Brownian motion of the spot as W, = fo pudBu+fO V1 —p2dZ,,
where Z is a Brownian motion under Q which is independent of B, this gives the strong

solution of X as
T 1 T T
Xr= x0+/ (rf —rf — 5\/3) dt+/ ptthBt—i—/ Vi1 — p?dZ,.
0 0 0

First, notice that V is adapted to the filtration (F2)o<;<7. Thus, it is evident that X7 |FZ
will have a normal distribution. Then

Xp|F8 ~ N ((T), 64(T))
T 1 T T

i) imaot [ (=il )ae-5 [ Veas [ pvias,
0 2 0 0

ATy = [ v =g

Also, let @(T) := a(T) — fOT(rf — r/)dt. The calculation of e~ Jo "UE((ek — X1), |FB) will
result in a Black-Scholes like formula.
e I rfth«ek - XT) ‘ffB)

— ke Jo riding k—p(T) _ o Jo ridt D)+ 55T k—p(T) —6%(T)
a(T)

T k—a(T) — t6%(T
— ehe o Tidty ( i ~) 20 D + 1ET(T))
a(T 2
~ 1~ T l 2 T) ]_
_ (T)+562 e—Jor dt 2 ( _ =
e ( 6 2U<T))
r k— + 15T ) Pard —rHat 1
_ k= [y ridt +30 0\t t =
ee N( (1) + 20(T)
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