Saint-Petersburg State University Research Park

Institute

www.spbu.ru

St. Petersburg State

University

Gregory Pozhvanov¹, Alexey Shavarda^{2,3}

Enhancing the Analysis of Plant Tissue using Pegasus 4D Comprehensive Gas Chromatography – Time of Flight Mass Spectrometry

LECO workshop: metabolomics Berlin, 27–28.11

 ¹ Department of Plant Physiology and Biochemistry, Faculty of Biology, St. Petersburg State University
² Centre for Molecular and Cell Technologies, Research Park, St. Petersburg State University
³ Analytical Phytochemistry Laboratory, Komarov Botanical Institute gregory@pozhvanov.com

St. Petersburg State University Research Park Centre for Molecular and Cell Technologies

Metabolome Profiling of Ovarian Cancer Ascites

Shender et al., Molecular and Cellular Proteomics, 2014

Metabolic activities of *Bacteroides fragilis* OMVs

St. Petersburg State

University www.spbu.ru

Image: CDC/Dr. V.R. Dowell, Jr. (PHIL #3087), 1972.

Zakharzhevskaya et al., Scientific Reports, 2017

St. Petersburg State

University www.spbu.ru

Plant cell polarity and gravitational biology group

Oxoproline

Pyruvic acid

Prof. Sergei Medvedev Control Ethephon Ethephon Control St. Petersburg State University transverse 1.0 -2.0 0.0 2.0 Nicotinic acid 0.8 Leucine Serine 0.6 Valine 0.4 G Glycine 0.2 Oxalic acid Arabinose 0.0 Fructose Glucose -0.2 Inositol RI = 1130.5 -0.4 RI = 1801 Mannose -0.6 Lactic acid Urea Glyceric acid -0.8 Glycerol -1.0 Palmitic acid

0.0

0.2 0.4

0.6 0.8

1.

-0.2

Pozhvanov et al., 2016; Pozhvanov et al., 2017.

St. Petersburg State University www.spbu.ru

Microgravity modelling and gravitropism

μg

Earth

Space

Earth

St. Petersburg State University www.spbu.ru

Microgravity modelling by 3D-clinorotation affects plant growth and development

St. Petersburg State University www.spbu.ru

Cytoskeleton rearrangement in hypocotyls under 3Dclinorotation

Actin microfilaments Pozhvanov et al., in press

Microtubules

Metabolite profiles in seedlings are adjusted by microgravity modelling

hypocotyls

Metabolite profiles in seedlings are adjusted by microgravity modelling

roots

Plant organisms consist of three enclosed domains

Plant organisms consist of three enclosed domains

St. Petersburg State

University www.spbu.ru

Plant metabolite profile is stable

Image credit: Roland Tsandekidis, <u>plantarium.ru</u> Shavarda, Ozerov, unpublished data

Plant metabolite profile is stable

Image credit: Roland Tsandekidis, <u>plantarium.ru</u> Shavarda, Ozerov, unpublished data

St. Petersburg State

University www.spbu.ru

St. Petersburg State

University www.spbu.ru

Metabolite profile adjustment in onthogenesis

Shavarda et al., 2015

Metabolite profile adjustment in onthogenesis

Shavarda et al., 2015

Metabolite profile adjustment in onthogenesis

Shavarda et al., 2015

LECO Pegasus 4D GC×GC TOFMS

GC×GC mode overview

8:00.00

GC×GC mode overview

Image credit: LECO Europe

24:40.00

Primary: Zorbax zb-5ms 30m \times 0.25mm \times 250 μm Secondary: Restek RXI17 1.5m \times 0.15mm \times 250 μm

GC×GC mode overview

Primary: Zorbax zb-5ms 30m \times 0.25mm \times 250 μm Secondary: Restek RXI17 1.5m \times 0.15mm \times 250 μm

GC×GC mode advantages

Primary: Zorbax zb-5ms 30m × 0.25mm × 250 µm Secondary: Restek RXI17 1.5m × 0.15mm × 250 µm

GC×GC mode advantages

Primary: Zorbax zb-5ms 30m \times 0.25mm \times 250 μm Secondary: Restek RXI17 1.5m \times 0.15mm \times 250 μm

GC×GC mode advantages

Primary: Zorbax zb-5ms 30m \times 0.25mm \times 250 μ m Secondary: Restek RXI17 1.5m \times 0.15mm \times 250 μ m

Conclusions

- 1. GC-TOFMS is essential to identification of osmotically active metabolites involved into regulation of gravity response.
- 2. GC×GC TOFMS benefits for analysis of complex metabolite profiles composed of similar metabolites.
- 3. GC×GC TOFMS increased sensitivity in addition to 2D separation allows to identify minor metabolites otherwise masked by more abundant compounds with same or similar Rt.

Acknowledgements

Dr. Dmitry V. Suslov Dr. Sergei S. Medvedev Dr. Vladimir Soldatov Dmitri Shakhno

Dr. **Alexey L. Shavarda** Botanical Institute RAS, St. Petersburg State, VIR

Prof. Sergei Medvedev St. Petersburg State University

Dr. **Dmitry Suslov** St. Petersburg State University

RFBR Grant # 17-04-00862a to S.M., # 19-04-00424 to D.S. RC MICT of SPbSU 109-8088.