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Anisotropic elastic materials capable of a three-dimensional deformation
(static or dynamic) with only one displacement component and uncoupling of
all three displacement components

T.C.T. Ting!?

Abstract

It is shown that there are anisotropic elastic materials that are capable of a non-
uniform three-dimensional deformation with only one displacement component.
For wave propagation the equation of motion can be cast in the form of the
differential equation for acoustic waves. For elastostatics the equation of
equilibrium reduces to Laplace’s equation. The material can be monoclinic,
orthotropic, tetragonal, hexagonal or cubic. There are also anisotropic elastic
materials that uncouple all three displacement components. = The governing
equation for each of the uncoupled displacement can be cast in the form of the
differential equation for acoustic waves in the case of dynamic or Laplace’s equation

in the case of static. The material can be orthotropic, tetragonal, hexagonal or cubic.
1. Introduction

For a two-dimensional deformation in which the displacement u depends on X;
and X, only, it is shown in [1] that there are anisotropic elastic materials that can
have only one displacement component other than the anti-plane displacement us.
There are also anisotropic elastic materials for which all three displacement
components are uncoupled. The purpose of this paper is to show that there are
anisotropic materials that can have one displacement component that depends on
X1, Xp and Xz. Without loss of generality we take u; as the one component
displacement. The equation of motion for u; can be cast in the form of the

differential equation for acoustic waves. For elastocstatics the equation of
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equilibrium reduces to Laplace’s equation. The material can be any of the nine
symmetry groups except triclinic, trigonal and isotropic. There are also anisotropic
elastic materials that uncouple all three displacement components in three-
dimensional deformation, static or dynamic. The equation of motion for each
uncoupled displacement can be cast in the form of the differential equation for
acoustic waves. For elastostatics each equation is Laplace’s equation. The material
can be any of the nine symmetry groups except triclinic, monoclinic, trigonal and

isotropic.
2. Basic equations
We consider wave propagation in a homogeneous linear anisotropic elastic

medium. In a fixed rectangular coordinate system X; (i=1,2,3), the equation of

motion is
gij,j = PU, (2.1)
where oj; is the stress, u; is the displacement, p is mass density, the dot denotes

differentiation with time ¢ and a comma denotes differentiation with X;. The stress-

strain relation is
ij = CijksUk,s » (2.2)
Cijks = Ciiks = Crsij = Cijsk » (2.3)
in which Cy, is the elastic stiffness. The Cjjs is positive definite and possesses the

full symmetry shown in (2.3). The third equality in (2.3) is redundant because the
first two imply the third [2]. Substitution of (2.2) into (2.1) leads to

CijksUk.sj = 2. (2.4)

Consider a deformation that consists of only one displacement component.

Without loss of generality let
U1=U2 =O, U3=W(X,t). (25)

The equations of motion (2.4) for i=1,2 are trivially satisfied if



Cyq =C15=Cp =Cp5 =Cg4 =Cg5 =Cyg = C56 =0, (2.6a)
Cap +Cy5 =C13+Cs5 =Cp3+Cyy =0, (2.6b)

where C_ is the contracted notation for Cjys. We will set
C5=0. (2.6¢)

If C45 #0, we rotate the coordinate system about the x3-axis an angle y given by

2Cys

tan2y =——2>—,
Css —Cas

(2.7)

The C,5 referred to the rotated coordinate system vanishes. The equations of

motion (2.4) for i=3 reduces to
CsW 111 +CaaW 125 +C3gW ;33= W (2.8)

The 6x6 elastic stiffness matrix C,; that satisfies (2.6a,b,c) has the expression

Ci1 Cp Cs5 0 0 Cyp
Ca2 Cas 0 0 Cye
C 0 0 O
C= 3 (2.9)
Cu 0 O
Cgs O
L Cee.

Only the upper triangle is shown because the matrix C is symmetric.
3. Positive definiteness of the matrix C

For the strain energy density to be positive, it is necessary and sufficient that the

6x6 matrix C shown in (2.9) be positive definite. If we let
Cyy >0, Cg>0, (3.1a)

all we need is that the 4x4 matrix

Cll C12 _C55 C16

c=| Ce _CC;;“ 056 (3.2b)
C66



be positive definite. A matrix is positive definite if all its leading principal minors
are positive and non-zero. It is not difficult to show that one can choose C;;, C,,,
Cs3 and Cgg, in that order, such that the leading principal minors of the 4x4 matrix

in (3.2b) are positive and non-zero [3].

The material represented by (2.9) is monoclinic with the symmetry plane at

X3=0. Itis orthotropic when
Cy5 =Cpg =0. (3-3)
If (3.3) and
C11=Cpp Cyq =Coss (3.4)

hold, the material is tetragonal. When (3.3), (3.4) and
1
Ce =5 (C11—-Cro) (3.5)
hold, it is hexagonal. The material is cubic if (3.3) and
Cy1=Cp =Cg3 Cyg =Cs5 =Cq =—Cpp (3.6)

hold. Equation (2.9) cannot represent an isotropic material because the matrix C

would be positive semi-definite.
4. The stresses and strains

With the displacement given by (2.5), the strains g; are

&1 =&x =& =0,

(4.1)
263=W,, 263=W,, &33=Wg3.
The stresses obtained from (2.2) and (2.9) are
011=CosW 3 020 =-CgqW .3, 033=Cg3W 3,
(4.2)

019 =0, 013=CsaW,, 03=CyqW .



It is clear from the differential equation (2.5) and the stresses given in (4.2) that the
solution depends on Cs3, C44 and Cgg only. They do not depend on C;q, Cyy, Cy),
Cis, Coe and Cgg. Thus the solutions for any two materials are identical when the
elastic constants Cjz3, C4 and Cgg in the two materials are the same. If

C33=Cy4=Cgg, the solution depends on one elastic constant.

5. One-displacement motion
Let

a=nX, & =Xy & =Xz (5.1)
where
Cas Cas

1=~ 0 V2T (5.2)
Css Cas

The equation of motion (2.8) simplifies to

AW W WL, (5.3)
ag  d&y d3 ¢
In the above,
C2 :C33/p. (54‘)

Equation (5.3) is a differential equation for acoustic waves whose solution has been

extensively studied in the literature (see [4], for example).

6. Elastostatic with one displacement component

For elastostatics, the displacement W does not depend on time t. Equation (5.3)
reduces to

AW AW AW
+ + =0

=0. 6.1
N (64)

This is Laplace’s equation. Again, its solution has been extensively studied in the

literature (see [5], for example).

7. Uncoupling of all three displacement components



It is not difficult to show that if the 6x6 elastic stiffness matrix C,; has the

structure
Ci1Ce Cs5 0 0 O
CpyCayy O 0 O
C 0 0 O
C= % , (7.1)
Cau 0 O
Cgs O
L Cé6.]
the equation of motion (2.4) for u1=U, u2=V and u3=W reduces to
C11U11+CeU,22 +CsU.33= pU, (7.2a)
Ce6V 111 1C20V 122 +CaaV 33= PV, (7.2b)
CseW 41 +CgqW 55 +CagW ;33= oW (7.2c)

They are completely uncoupled. The equations for U and V are similar to the
equation for W. Hence they can be reduced to the equation for acoustic waves. For

elastostatics, they can be reduced to Laplace’s equation.

Chadwick and Norris [6] discovered the materials listed in (7.1) through their
study of anisotropic elastic materials whose slowness surface is the union of aligned
ellipsoids. The acoustic tensor is a diagonal matrix so that the three polarization
vectors are along the xi-axis, xz-axis and x3-axis. They did not mention that the three
equations of motion are uncoupled, nor the fact that each uncoupled equation of

motion can be cast in the form of the differential equation for acoustic waves.
8. Remarks

The materials described in (2.9) and (7.1) may not exist in real materials. With
the advancement in technology on manufacturing composites, it maybe possible in

the future to produce the material specified in (2.9) and (7.1).

It should be noted that, for a one-displacement solution to exist the initial and

boundary values cannot be prescribed arbitrarily.
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