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ABSTRACT!

The!need!for!clean!and!cheap!renewable!energy!is!on!the!rise.!Solar!energy!is!one!of!the!most!clean!and!

readily! available! technology!with! almost! zero! carbon! emissions.!Optimizing! the! resources! to! produce!

efficient!power!at! low!costs! is! the!need!of! the!day.! In! this! thesis,!we!present!a! systematic!method! to!

optimize! levelized! cost! of! energy! for! 100!MW! and! 500!MW! power! plants.! We! use! SAM,! which! is! a!

simulation! software! to! study! the! parabolic! trough! solar! technology! in! detail! and! define! the! decision!

variables!and!uncertain!variables!for!the!problem.!Then!we!use!BONUS!which!is!an!optimization!algorithm!

to!optimize!the!cost!using!the!samples!of!these!variables.!This!thesis!analyzes!the!differences!between!

the!optimal!and!base!solutions!and!shows!the!effect!of!uncertainty!on!the!results.!We!present!the!optimal!

values!for!the!various!technical!parameters!which!gives!us!the!least!cost!of!energy.!

!

Keywords:!optimization!under!uncertainty,!SAM,!BONUS,!parabolic!trough!solar!technology,!levelized!

cost!of!energy!
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1! Introduction 

 
Energy crisis and climate change are two different terms but closely related. The need for energy 

is rising by the day due to the increase in demand of developing countries like India and China. At 

the same time, the effects of using fossil fuels for producing energy are increasingly evident. The 

global average temperature has increased by 0.76°C (0.57°C to 0.95°C) between 1850 to 1899 and 

2001 to 2005, and the warming trend has increased significantly over the last 50 years (IPCC, 

2007b). Sea-levels are rising at an alarming rate and deserts are expanding in the subtropics. These 

are just some of the glaringly obvious consequences of increase in greenhouse gas emissions over 

the years. And the main contributors to this increase are fossil fuels. The solution to this is using 

alternative, less harmful and sustainable energy sources. The use of renewable energy sources like 

solar, biomass, wind, geothermal has been on the rise in the last decade.  

Although efforts are being made to increase use of these sources, renewable energy still accounted 

for 11.1% of total energy generation in the United States in 2015. Hydropower contributed to about 

6.14% of the total U.S electricity generation in 2015, whereas wind power was the source of almost 

4.67% of U.S electricity generation in 2015. Biomass and geothermal power provided about 1.57% 

and 0.41% of U.S electricity generation in 2015, respectively. Solar power accounts for less than 

1% of the electricity generated in the United States in 2015. Projections vary, but scientists have 

advanced a plan to power 100% of the world's energy with wind, hydroelectric, and solar power by 

the year 2030. (Wikipedia,  2013) 

In my thesis, I have been working on how to optimize cost in a solar energy power plant, hence, I 

will be further discussing solar technologies in detail. 
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Figure'1.'Distribution'of'energy'consumption'in'United'States'in'2015'by'source'

!

 

Figure'2.'Solar'energy'contributed'to'only'0.4%'of'the'total'electricity'generation'in'U.S.'in'2015'

!

(EIA,'MER,'March'2015)'

(EIA,'MER,'March'2015)'
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1.1! Solar Technologies 
!

Solar energy is the cleanest, most abundant renewable energy source available. The U.S. has some 

of the world’s richest solar resources. Today's technology allows us to harness this resource in 

several ways, giving the public and commercial entities flexible ways to employ both the light and 

heat of the sun. 

There are three primary technologies by which solar energy is commonly harnessed: photovoltaics 

(PV), which directly convert light to electricity; concentrating solar power (CSP), which uses heat 

from the sun (thermal energy) to drive utility-scale, electric turbines; and heating and cooling 

systems, which collect thermal energy to provide hot water and air conditioning. 

Solar energy can be deployed through distributed generation (DG), whereby the equipment is 

located on rooftops or ground-mounted arrays close to where the energy is used. Some solar 

technologies can also be built at utility-scale to produce energy as a central power plant. 

 
Photovoltaic (PV) - These solar technologies directly produce electricity which can be used, 

stored, or converted for long-distance transmission. PV panels can be manufactured using a variety 

of materials and processes and are widely-used for solar projects around the world. 

Solar Heating and Cooling (SHC) - These technologies generate thermal (heat) energy for water 

& pool heating and space heating. Solar heating technologies are cost-effective for customers in a 

variety of climates. 

Concentrating Solar Power (CSP) - Using reflective materials like mirrors and lenses, these 

systems concentrate sunlight to generate thermal energy, which is in turn used to generate 

electricity. Similar to traditional power plants, many CSP plants are hundreds of megawatts (MW) 

in size and some can continue to provide power after sunset. 
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Since we are looking to optimize cost in a large scale power plant, we will be focusing more on 

concentrating solar power technologies further. 

1.2! Different types of Concentrating Solar Power Technologies 
!

CSP technologies include parabolic trough, linear Fresnel reflector, power tower, and dish/engine 

systems. 

1.2.1! Parabolic Trough  
!

A parabolic trough system is a type of concentrating solar power (CSP) system that collects direct 

normal solar radiation and converts it to thermal energy that runs a power block to generate 

electricity. The components of a parabolic trough system are the solar field, power block, and in 

some cases, thermal energy storage and fossil backup systems. The solar field collects heat from 

the sun and consists of parabolic, trough-shaped solar collectors that focus direct normal solar 

radiation onto tubular receivers. Each collector assembly consists of mirrors and a structure that 

supports the mirrors and receivers, allows it to track the sun on one axis, and can withstand wind-

induced forces. Each receiver consists of a metal tube with a solar radiation absorbing surface in a 

vacuum inside a coated glass tube. A heat transfer fluid (HTF) transports heat from the solar field 

to the power block (also called power cycle) and other components of the system. The power block 

is based on conventional power cycle technology, using a turbine to convert thermal energy from 

the solar field to electric energy. The optional fossil-fuel backup system delivers supplemental heat 

to the HTF during times when there is insufficient solar energy to drive the power block at its rated 

capacity. 
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!

Figure'3.'Working'principle'of'a'parabolic'trough'power'plant 

 

1.2.2! Power Tower Technology 
!

A power tower system (also called a central receiver system) is a type of concentrating solar power 

(CSP) system that consists of a heliostat field, tower and receiver, power block, and optional 

storage system. The field of flat, sun-tracking mirrors called heliostats focus direct normal solar 

radiation onto a receiver at the top of the tower, where a heat-transfer fluid is heated and pumped 

to the power block. The power block generates steam that drives a conventional steam turbine and 

generator to convert the thermal energy to electricity. (SAM Manual, 2014) 
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!

Figure'4.'Working'principle'of'power'tower'technology 

 

1.2.3! Linear Fresnel  
!

Linear Fresnel reflectors use long, thin segments of mirrors to focus sunlight onto a fixed absorber 

located at a common focal point of the reflectors. These mirrors are capable of concentrating the 

sun’s energy to approximately 30 times its normal intensity. This concentrated energy is 

transferred through the absorber into some thermal fluid (this is typically oil capable of 

maintaining liquid state at very high temperatures). The fluid then goes through a heat exchanger to 

power a steam generator. 
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!

Figure'5.'Linear'Fresnel'Reflector 

 

1.2.4! Dish Stirling 
!

A dish-Stirling system is a type of concentrating solar power (CSP) system that consists of a 

parabolic dish-shaped collector, receiver and Stirling engine. The collector focuses direct normal 

solar radiation on the receiver, which transfers heat to the engine's working fluid. The engine in 

turn drives an electric generator. A dish-Stirling power plant can consist of a single dish or a field 

of dishes. (SAM Manual, 2014) 
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!

Figure'6.'Working'principle'of'dish/stirling'engine'powered'technology 

1.3! Optimization and the role of uncertainty 
!

Optimization plays a new role in new solar technologies. The thing that has been holding back 

solar thermal technologies from really dominating the renewable energy sector is the cost of the 

technology. The cost of equipment, land, labor sometimes makes it infeasible for these solar 

thermal power plants to function for a longer period of time. Since CSP plants depend on solar 

radiation, they require large areas of land and amicable weather conditions for efficient electricity 

output. These are some of the drawbacks of the CSP technology and that is where optimization 

comes in. Optimizing the resources to get the most optimal and efficient output within the lowest 

cost is the need of the day.  

An optimization algorithm for the calculation of electricity unit cost from various power generation 

technologies was developed by Andreas Poullikkas (Poullikkas, 2001). The algorithm takes into 

account the capital cost, fuel cost, operation and maintenance requirements of each candidate 

scheme and calculates the least cost configuration and ranking order of candidate power 
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technologies. This algorithm was then used to conduct an economic analysis to investigate whether 

it is feasible to install a parabolic trough solar thermal plant in Cyprus (Poullikkas, 2009). The 

analysis includes varying few parameters of the plant to carry out a parametric cost-benefit analysis 

to identify the least cost feasible option. 

China’s solar thermal power development was studied by Zhifeng Wang (Wang, 2010). The study 

describes a roadmap for development between 2006 and 2025 by identifying the key factors for 

the successful commercialization of solar thermal technologies. India, another fast developing 

country, is yet to gain experience in setting up large-scale commercially viable solar thermal power 

plants (Pidaparthi and Prasad, 2013).  The problems faced in setting up the first parabolic trough 

power plant (1 MW) developed by IIT Mumbai were studied and this helped in identifying the 

critical components of the plant. 

As we know, a parabolic trough plant is made up of a lot of components. By breaking down the 

plant into the vital elements, and optimizing the efficiency of each element individually, we can 

optimize the overall efficiency of the plant. For example, collectors are a significant constituent of 

the parabolic trough technology, and recognizing a way to optimize the output of the collectors 

can help in improving the plant’s efficiency. The development of Ultimate Trough collector aided 

in reducing the levelized cost of electricity of CSP plants (Riffelmann et al., 2014). Parabolic 

trough collectors (PTC) are also often employed for solar steam generation (Kalogirou et al., 

1997). This steam generated is used in stead of the the heat transfer fluid, to drive the turbine in 

the power block to generate electricity. Kalogirou et al. optimized the PTC steam generation 

system to minimize the system startup energy requirement using the PTCDES modelling program. 

The need for lower investment and energy costs leads to a demand for higher operating 

temperatures in plant cycle (Ruegamer et al., 2014). Use of molten salts withstanding up to 550 



10!
!

degrees Celsius are considered for use in CSP plants. Due to different thermodynamic boundary 

conditions between salts and thermal oil, other plant parameters change such as storage, collector 

and receiver design which impacts energy output. In various simulation steps, different scenarios 

of solar power plant design are discussed taking into consideration, parameters like solar field size, 

site conditions, type of heat transfer fluid, dimensioning of parabolic trough collector, absorber-

tube coating and diameters as well as storage tank sizes to show effects on levelized cost of 

electricity. Goal of simulation work is to show effect of a major technology step by introducing 

improved solar field components resulting in higher operation temperatures at adapted thermal 

losses. 

The size of the solar field is pivotal to the electricity production and cost of a CSP plant. Too big 

a field can unnecessarily increase the cost and too small a field might just suffice the part-load 

conditions for the power block. (Montes et al., 2009) Hence, optimizing the size of the solar field 

can ease the cost of energy in solar thermal plants. Montes et al. present a methodology for 

economic optimization of the solar multiple in parabolic trough plants. Solar multiple is the ratio 

between thermal power produced by the solar field at design point and thermal power required by 

the power block at nominal conditions. That is, it represents solar field size related to the power 

block in terms of nominal thermal power. Five plants are considered (no thermal storage), and by 

keeping the parameters for power block consistent, they vary the solar field size to calculate the 

solar multiple for which the levelized cost of energy is minimum. It is concluded that the optimum 

solar multiple depends on plant location, design point and power cycle parameters at nominal 

conditions, besides the solar field size. 
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1.4! Problem formulation and motivation 
!

The motivation behind the thesis is, despite many efforts at using optimization models to improve 

the efficiency of different concentrated solar power plants, people haven’t looked into including 

uncertainties involved in using these technologies. Using the algorithmic framework (BONUS 

algorithm) developed by Dr. Diwekar and Amy David and using the System Advisor Model 

(SAM) simulation software developed by National Renewable Energy Laboratory (NREL) we 

present a systematic stochastic optimization methodology to reduce the levelized cost of energy 

under power constraints in parabolic trough solar power plants. The problem statement can be 

defined as: 

Minimize E(LCOE) 

subject to 

Power = constant 

We use SAM to simulate the technical and financial parameters of the power plant which helps us 

in identifying the decision variables and uncertain variables involved in our problem. Then we use 

the BONUS algorithm framework to optimize these decision variables including the uncertainties 

to get our lowest cost objective function. We have selected San Diego, California as the test 

location for the parabolic trough plant to be situated. San Diego is a prime location to set up a 

power plant because of the ideal climate conditions. We test the methodology on 2 different power 

plant capacities so as to compare our results efficiently. 

The problem function, SAM software and the BONUS algorithm all will be elaborated in the 

chapters ahead. 
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2! Introduction to System Advisor Model 

!

2.1! Overview of SAM 
!

The System Advisor Model (SAM) is a simulation model designed to perform financial and 

performance related calculations using various design and cost parameters for grid-connected 

power projects based on different types of renewable sources of energy. This is a highly resourceful 

tool for people working in the renewable energy sector. SAM was developed by the National 

Renewable Energy Laboratory (NREL) in collaboration with Sandia National Laboratories.  

The basic concept behind SAM is it uses various technical parameters such as type of equipment, 

design of equipment, configuration of the system as inputs to make performance predictions which 

then enable it to make cost of energy estimates using financial variables such as installation costs, 

labor costs, operation and maintenance costs. It gives you an idea of what, which and how much 

of the resources are exactly required to set up a successful and economically viable power plant 

based on a renewable source of energy. 

SAM represents the cost and performance of renewable energy projects using computer models 

developed at NREL, Sandia National Laboratories, the University of Wisconsin, and other 

organizations. Each performance model represents a part of the system and each financial model 

represents a project’s financial structure. The models require input data to describe the 

performance characteristics of physical equipment in the system and project costs. (SAM Manual, 

2014) 

SAM also requires a weather data file describing the renewable energy source and weather 

conditions at the project location. 
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2.2! Performance Models 
!

SAM’s performance models run hourly simulations to calculate the power system’s electrical 

output. The sum of these values is the total annual output that the financial models uses to calculate 

the project annual cash flow and financial metrics. 

It includes the following performance models based on different renewable sources of energy: 

•! Photovoltaic Systems 

•! Concentrating Solar Power 

•! Generic System 

•! Solar Water Heating 

•! Wind Power 

•! Geothermal 

•! Biomass Power 
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!

Figure'7.'Input'tab'for'the'CSP'Parabolic'Trough'performance'model'

!

2.3! Financial Models 
!

SAM’s financial models calculate a project’s cash flow over an analysis period that you specify. 

The cash flow determines the value of electricity generated by the system and incentives, and the 

cost of installation, operation and maintenance, taxes, and debt. (SAM Manual, 2014) 

The financial models can represent two main types of projects: 

•! Residential and commercial projects that buy and sell electricity at retail rates and displace 

purchases of power from the grid 

•! Power Purchase Agreement (PPA) projects that sell electricity at a wholesale rate to meet 

internal rate of return requirements 
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2.4! Weather Data 
!

SAM uses weather data to describe the location, the characteristics of the renewable energy source. 

The data is used from SAM’s database library which is installed automatically with the software 

itself. The performance models use this data to represent the resource and the ambient weather 

conditions which affect the system’s output. Location information such as the area coordinates, 

wind speed, average temperature and elevation about sea level are stored in these weather files.  

!

Figure'8.'Wind'Resource'tab'on'the'input'screen'showing'a'list'of'different'locations'and'their'weather'characteristics 

 

The weather data elements differ for each performance model. For example, for the solar 

technologies, the weather file consists of data elements such as global horizontal, direct normal 

and diffuse horizontal irradiance to calculate incident irradiance. Whereas, the wind power 
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performance model requires wind speed and temperature data at three different heights above the 

ground along with wind direction and atmospheric pressure data. The biomass power model uses 

information from many databases of feedstock data for the United States. The geothermal model, 

accesses a database of temperature and depth data for the geothermal resource. 

The SAM weather file is a text file which contains one year of hourly data. A weather file may 

contain typical-year data that represents long-term historical data or single-year data for a 

particular year. Typical-year data is data consisting of 12 months out of a multi-year period which 

best represents the renewable source and weather conditions for that location. For example, a 

typical year file developed from a data set for the years 2000-2010, could use data from 2003 for 

January, 2006 for February, 2001 for March etc. It can be thought of as an average of the original 

year over a historical period, but it is much more accurate to say that the data is typical because 

the methods involve more than just calculating average values. For long-term economic analysis, 

it is more suitable to use the annual simulation results using typical year weather data. Single-year 

data depicts the weather conditions of the location for a single particular year. It is more 

appropriate to use this weather file when you are not using the results to predict the economic 

value over many years.  

The sources for the data in the weather files in SAM’s solar resource library are NREL’s National 

Solar Resource Database, Solar and Wind Energy Resource Assessment Programme, The 

ASHRAE International Weather for Energy Calculations Version 1,1 and Canadian Weather for 

Energy Calculations. For Wind Resources, the wind data files are developed for NREL by AWS 

Truepower. SAM also allows the user to download weather data files for a particular zip code, 

latitude and longitude, address from its NREL Solar Power Prospector database and NREL Wind 

Integration datasets. Also, there is an option to create your own weather file with your own data. 
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It can read weather data from any file from any source as long as it is in one of the recognizable 

formats without any formatting errors, gaps in the data, or invalid values.  

 

2.5! Results 
!

SAM displays simulation results using tables and graphs. The metrics table displays the project’s 

net present value, annual energy production, internal rate of return and other single-value metrics. 

There is also the detailed annual cash flow and hourly performance data that can be viewed in 

tabular or graphical form. 

!

Figure'9.'Results'page'displaying'performance'and'financial'metrics'for'a'Photovoltaic'power'plant'using'a'PPA'partnership'with'
debt'financial'mode 
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!

Figure'10.'Cash'flow'of'a'solar'water'heating'project'using'a'commercial'financial'model 

A built-in graphing tool showcases a set of default graphs and allows for creation of custom graphs. 

All graphs and tables can be exported in various formats for inclusion in reports and presentations, 

and also for further analysis with spreadsheet or other software. 

 

2.6! Analysis Options 
!

In addition to simulating a system’s performance over a single year and calculating a project cash 

flow over a multi-year period, SAM’s analysis options make it possible to conduct studies 

involving multiple simulations, linking SAM inputs to a Microsoft Excel workbook, and working 

with custom simulation modules. The following options are for analyses that investigate impacts 
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of variations and uncertainty in assumptions about weather, performance, cost, and financial 

parameters on model results: 

•! Parametric Analysis: Assign multiple values to input variables to create graphs and tables 

showing the value of output metrics for each value of the input variable. Useful for 

optimization and exploring relationships between input variables and results. 

•! Stochastic Simulation: Assign multiple values to input variables using statistical 

distributions to study the effect of uncertainty on output metrics. 

!

Figure'11.'Stochastic'optimization'using'the'stochastic'analysis'feature'for'a'Biomass'combustion'model'showing'the'effect'of'
few'decision'variables'on'different'output'metrics 
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•! P50/P90: The probability exceedance analysis involves running a set of single-year 

simulations to calculate annual output values, and then from those values determining the 

output value that was exceeded 50% of the time (P50 value) and the value that was 

exceeded 90% of the time (P90 value). 

•! Macros: SAM’s scripting language LK allows you to write your own scripts within the 

SAM user interface to control simulations, change values of input variables, and write data 

to text files. (SAM, 2014) 

•! Excel Exchange: External models developed in Excel can be accesses using this feature 

which allows Excel to calculate the value of input variables, and automatically pass values 

of input variables between SAM and Excel. (SAM, 2014) 

 

2.7! Model Structure 
!

SAM’s model consists of a user interface, a simulation engine and a programming interface. User 

interface is the screen which we see. It lets you choose the input variables for the performance and 

financial models. It also allows you to choose advanced analysis options such as the parametric 

analysis and stochastic analysis. And it displays the final results of the simulation in tabular and 

graphical forms. The simulation or calculation engine is the core processor. It uses all the input 

values to perform time-step-by-time-step simulation of a power system’s performance, and a set 

of annual financial calculations to generate the project’s cash flow over multiple years and other 

financial metrics. The programming interface lets other external programs to interact with SAM. 

(SAM Manual, 2014) 
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2.8! Problem formulation 
!

In the previous chapter, the problem statement was defined as: 

Minimize E(LCOE) 

subject to 

Power = constant 

From this definition, the objective function and constraint are known. Since SAM is a black box 

model, the objective function cannot be defined using an algebraic expression.  Hence, we cannot 

identify the decision variables in the problem statement itself. Also, since this is a stochastic 

optimization problem, the problem statement also consists of uncertain variables. Both the decision 

variables and uncertain variables are defined using the parameters provided by SAM for their ‘CSP 

Parabolic Trough (Physical)’ performance model and the ‘Commercial’ financial model. The 

constraint value for the power capacity of the plant is also fixed at 100 MW. 

Thus, the problem can be re-formulated as: 

Minimize E(LCOE) 

subject to 

Power = 100 MW 

A further analysis is carried out for setting-up a bigger power plant with a bigger capacity of 500 

MW where the constraint value for the power capacity is fixed at 500. 

 



22!
!

 

2.8.1! Decision Variables 
!

The parameters for Parabolic Trough physical model in SAM are divided into different pages as 

per their classification. (SAM Manual, 2014) 

A)! Solar Field - The Solar Field page displays variables and options that describe the size and 

properties of the solar field, properties of the heat transfer fluid. It also displays reference 

design specifications of the solar field.  

B)! Collectors - A collector (SCA, solar collector assembly) is an individually tracking 

component of the solar field that includes mirrors, a supporting structure, and receivers. 

On the Collectors page, you can define the characteristics of up to four collector types.  

C)! Receivers - A receiver (HCE, heat collection element) is a metal pipe contained in a 

vacuum within glass tube that runs through the focal line of the trough-shaped parabolic 

collector. Seals and bellows ensure that a vacuum is maintained in each tube. Anti-

reflective coatings on the glass tube maximize the amount of solar radiation that enters the 

tube. Solar-selective radiation absorbing coatings on the metal tube maximize the transfer 

of energy from the solar radiation to the pipe. On the Receivers page, you define the 

characteristics of up to four receiver types.  

D)!Power Cycle - The power cycle model represents a power block that converts thermal 

energy delivered by the solar field and optional thermal energy system to electric energy 

using a conventional steam Rankine cycle power plant. The power cycle can use either an 

evaporative cooling system for wet cooling, or an air-cooled system for dry cooling. The 

power cycle may include a fossil-fired backup boiler that heats the heat transfer fluid before 
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it enters the power cycle during times when there is insufficient solar energy to drive the 

power cycle at its design load.  

E)! Thermal Storage - A thermal energy storage system (TES) stores heat from the solar field 

in a liquid medium. Heat from the storage system can drive the power block turbine during 

periods of low or no sunlight. A thermal storage system is beneficial in many locations 

where the peak demand for power occurs after the sun has set. Adding thermal storage to 

a parabolic trough system allows the collection of solar energy to be separated from the 

operation of the power block. For example, a system might be able to collect energy in the 

morning and use it to generate electricity late into the evening. 

F)! Parasitics - The variables on the Parasitics page define electrical loads in the system. For 

each hour of the simulation, SAM calculates the parasitic load and subtracts it from the 

power cycle's gross electrical output to calculate the net electrical output. 

We target the Solar Field parameters for choosing the decision variables for our problem. To 

determine the decision variables from all the solar field parameters, we performed a sensitivity 

analysis to see the effect of these parameters on the annual energy calculated by the model. The 

results of the sensitivity analysis are shown below: 

 Annual Energy (kWh) 

Default Value 251,600,544 

Parameters Varied  

Solar Multiple 3 364,801,440 

1 119,886,016 

Row Spacing 5 meters 160,022,736 

30 meters 252,690,096 
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Stow Angle 140 degree 196,597,888 

180 degree 255,226,672 

Deploy Angle 0 degree 255,529,168 

30 degree 233,280,784 

No. of field subsections 4 255,900,912 

8 252,085,568 

Header pipe roughness 4.57e-0.6m 255,408,624 

4.57e-0.4m 254,458,531 

HTF pump efficiency 0.25 242,410,192 

0.75 254,698,123 

Freeze protection temperature 250 degree Celsius 121,678,136 

120 degree Celsius 298,428,152 

Irradiation at design 1500 W/m2 151,818,640 

700 W/m2 311,865,344 

Design loop inlet temperature 193 degree Celsius 277,526,528 

250 degree Celsius 265,036,630 

Design loop outlet temperature 350 degree Celsius 226,445,179 

491 degree Celsius 241,098,336 

Minimum single loop flow rate 3 kg/s 250,610,944 

5 kg/s 255,563,438 

Maximum single loop flow rate 7 kg/s 228,587,728 

16 kg/s 224,093,184 

Header design minimum flow velocity 1 m/s 253,604,000 
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3 m/s 254,126,000 

Header design maximum flow velocity 5 m/s 255,565,000 

12 m/s 257,342,000 

Collector tilt 0 deg. 251,600,544 

10 deg. 91,179,560 

Collector azimuth 0 deg. 251,600,544 

10 deg. 243,758,192 

Water usage per wash 0.7 L/m2,aper. 251,600,544 

4 L/m2,aper. 251,600,544 

Washes per year 63 251,600,544 

100 251,600,544 

Hot piping thermal inertia 0.2 kWht/K-MWt 251,600,544 

1.2 kWht/K-MWt 251,600,544 

Cold piping thermal inertia 0.2 kWht/K-MWt 251,600,544 

1.2 kWht/K-MWt 251,600,544 

Field loop piping thermal inertia 3 Wht/K-m 251,600,544 

9 Wht/K-m 251,600,544 

Table'1.'Sensitivity'Analysis 

So as we can see which variables have the maximum effect on annual energy, we select those as 

our decision variables. (SAM Manual, 2014) These are the decision variables: 

Solar multiple: The field aperture area expressed as a multiple of the aperture area required to 

operate the power cycle at its design capacity. A solar multiple value of one represents the solar 

field aperture area that, when exposed to solar radiation equal to the design radiation value, 
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generates the quantity of thermal energy required to drive the power block at its rated capacity, 

accounting for thermal and optical losses. 

Row spacing: The centerline-to-centerline distance in meters between rows of collectors, 

assuming that rows are laid out uniformly throughout the solar field. 

Stow angle: The collector angle during the hour of stow. A stow angle of zero for a northern 

latitude is vertical facing east, and 180 degrees is vertical facing west. 

Freeze protection temperature: The minimum temperature that the heat transfer fluid is allowed 

to reach in the field. The temperature ate which the freeze protection equipment is activated. SAM 

assumes that electric heat trace equipment maintains the fluid at the freeze protection temperature 

during the hours that freeze protection is operating. 

Irradiation at design: The design point direct normal radiation value, used in solar multiple mode 

to calculate the aperture area required to drive the power cycle at its design capacity. Also used to 

calculate the design mass flow rate of the hear transfer fluid for header piping size. 

Collector tilt: The angle of all collectors in the field in degrees from horizontal, where zero 

degrees is horizontal. A positive value tilts up the end of the array closest to the equator, a negative 

value tilts down the southern end. SAM assumes that the collectors are fixed at the tilt angle. 

2.8.2! Uncertain variables 
!

The financial parameters of the plant provide the model with the uncertainty factor and they are 

given below as per SAM. (SAM Manual, 2014) 

Direct Capital Costs 

•! Site Improvements ($/m2) - A cost per square meter of solar field area to account for 
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expenses related to site preparation and other equipment not included in the solar field cost 

category. 

•! Solar Field ($/m2) - A cost per square meter of solar field area to account for expenses 

related to installation of the solar field, including labor and equipment. 

•! HTF System ($/m2) - A cost per square meter of solar field area to account for expenses 

related to installation of the heat transfer fluid pumps and piping, including labor and 

equipment. 

•! Storage ($/kWht) - Cost per thermal megawatt-hour of storage capacity to account for 

expenses related to installation of the thermal storage system, including equipment and 

labor. 

•! Power Plant ($/kWe) - Cost per electric megawatt of power block gross capacity to 

account for the installation of the power block, including equipment and labor. 

Indirect Capital Costs 

•! EPC and Owner Costs - EPC (engineer-procure-construct) and owner costs are associated 

with the design and construction of the project. Typical costs that may be appropriate to 

include in the EPC and Owner category are: Permitting, royalty payments, consulting, 

management or legal fees, geotechnical and environmental surveys, interconnection costs, 

spare parts inventories, commissioning costs, and the owner's engineering and project 

development activities. 

•! Total Land Costs - Costs associated with land purchases 

Tax and Insurance Rates 

•! Federal income tax rate 

•! State income tax rate 
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•! Sales tax 

•! Insurance rate 

 

Analysis Parameters 

•! Inflation Rate – Annual rate of change of costs, typically based on a price index 

•! Real Discount Rate – A measure of the time value of money expressed as an annual rate.  

 

2.9! Conclusion 
!

SAM is a simulation software which allows users to simulate various technical and financial 

parameters for various renewable energy dependent power projects, for a particular location using 

specific weather data files from its own library, to make performance predictions and estimate the 

financial factors involved. It also has other features which enable the user to perform advanced 

analysis using optimization and sensitivity analysis. It is a simple and user-friendly software which 

helps facilitate decision making for people involved in the renewable energy industry. The decision 

variables and uncertain variables are decided using the parameters from SAM.  

!

!

!

!

!

!

!

!

!
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!

!

!

3! Introduction to BONUS algorithm 

!

3.1! Stochastic optimization 
!

The aim of an optimization problem is to calculate the value of the decision variable that optimizes 

the objective function within the given constraints. Stochastic optimization is a type of an 

optimization which deals with uncertainties. The objective function in a stochastic optimization 

problem is expressed in terms of some probabilistic representation (eg., expected value, variance, 

fractiles, most likely values). Along with the decision variables, it also has uncertain variables or 

parameters. A generalized stochastic optimization problem where the decision variables and 

uncertain parameters are separated, can then be viewed as: 

Optimize!Z!=!P1(j!(x,!u))!

                                                                     x 

subject to  

P2(h (x, u)) = 0 

P3(g(x, u) ≥ 0) ≥ α 

 

where u is the vector of uncertain parameters and P represents the cumulative distribution 

functional such as the expected value, mode, variance or fractiles. 

Stochastic optimization problems can be further classified as stochastic linear programming, 

stochastic nonlinear programming and stochastic mixed integer linear and nonlinear programming 
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problems. Our problem is a stochastic nonlinear programming problem; hence we will focus on 

that. 

 

!

Figure'12.'Pictorial'representation'of'the'stochastic'programming'framework 

 

A generalized way of solving stochastic nonlinear programming problems is to use sampling based 

methods. A sampling loop can be embedded within the optimization model to capture the 

uncertainty for the decision variables. This can be computationally expensive as the model will 

have to re-run for each sampling point. Therefore, we consider efficient sampling techniques in 

the next section. 

3.2! Sampling techniques 
!

Sampling is a statistical procedure which involves selecting a limited number of observations, 

states or individuals from a population of interest. A sample is assumed to be the representative of 

the population to which it belongs to save time on evaluating the entire populations. It helps in 
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inferring some knowledge about the population. The different types of sampling techniques are 

described below. The description of these techniques is derived from the sampling chapter by 

Diwekar and Ulas (2007). 

 

3.2.1! Monte Carlo Sampling 
!

This sampling technique was developed in 1949 by two scientists N. Metropolis and S. Ulam. 

Monte Carlo methods are numerical methods which provide approximate solutions by random 

sampling. In a crude Monte Carlo approach, a random value is drawn from the distribution 

provided by each input, and the corresponding output value is computed. (Metropolis and Ulam, 

1949) The entire process is repeated a number of times to generate the number of output values 

wanted. These output values constitute a random sample from the probability distribution over the 

output induced by the probability distributions over the inputs.  

!

Figure'13.'100'twoYdimensional'sample'points'generated'by'Monte'Carlo'simulation 
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The disadvantage of Monte Carlo methods is that the samples generated are non-uniform in nature. 

As figure 3.2 shows, the samples are not uniformly distributed. Some regions have a cluster of 

samples and some regions are blank. Therefore, in order to reach higher accuracy, larger number 

of samples are required which affects the efficiency of this method. 

 

3.2.2! Latin Hypercube Sampling 
!

For increasing the efficiency of Monte Carlo simulations and overcome the disadvantages, 

variance reduction techniques have been developed (James, 1985). One of the most frequently 

used sampling approaches for variance reduction is Latin Hypercube Sampling (LHS). LHS can 

yield more precise estimates of the distribution function (McCay et al., 1979) and therefore reduce 

the number of samples required to improve computational efficiency. In this sampling the given 

distribution is divided in equiprobable zones and samples are drawn randomly from each 

equiprobable zone. The values drawn are paired randomly with other values of each uncertain 

parameter to complete the sampling. The main drawback of this stratification scheme in LHS is 

that it is uniform in one dimension and does not provide uniformity properties in multi-dimensions. 

3.2.3! Hammersley Sequence Sampling 
!

Hammersley Sequence Sampling (HSS) is an efficient sampling technique developed by Diwekar 

and coworkers (Diwekar and Kalagnanam, 1997; Kalagnanam and Diwekar, 1997; Subramanyan 

and Diwekar, 2006) based on quasi-random numbers. HSS uses Hammersley points to uniformly 

sample a unit hypercube and inverts these points over the joint cumulative probability distribution 

to provide a sample set for the variables of interest. This scheme ensures that the samples are more 

representative of the population showing uniformity properties in multi dimensions, unlike Monte 
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Carlo and Latin Hypercube Sampling. 

!

Figure'14.'Generation'of'100'Hammersley'points'in'2'dimension 

!

3.3! Basics of BONUS 
!

Better Optimization of Nonlinear Uncertain System (BONUS) algorithm was developed by Sahin 

and Diwekar in 2004. General techniques for these types of optimization problems (Figure 3.1) 

determine a statistical representation of the objective, such as maximum expected value or 

minimum variance. Once embedded in an optimization framework, the iterative loop structure 

emerges where decision variables are determined, a sample set based on these decision variables 

is generated, the model is evaluated for each of these sample points, and the value of the 

probabilistic objective and constraints are evaluated. The sheer number of model evaluations rises 

significantly causing this method ineffective for even moderately complex models. In the 

stochastic optimization iterations (Figure 3.1), decision variables values can vary between upper 

and lower bounds, and in sampling loop various probability distributions are assigned to uncertain 

variables. In the BONUS approach, initial uniform distributions (between upper and lower bounds) 

are assumed for decision variables. These uniform distributions together with specified probability 
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distributions of uncertain variables form the base distributions for analysis. BONUS samples the 

solution space of the objective function at the beginning of the analysis by using the base 

distributions. As decision variables change, the underlying distributions for the objective function 

and constraints change, and the proposed algorithm estimates the objective function and 

constraints values based on the ratios of the probabilities for the current and the base distributions 

(a reweighting scheme), which are approximated using kernel density estimation techniques. Thus, 

BONUS avoids sample model runs in subsequent iterations. (Sahin and Diwekar, 2014) 

3.4! Using BONUS for optimization 
!

For using BONUS, the first step is to generate our base sample set. We have identified the 6 

decision variables and 13 uncertain variables using SAM’s physical parabolic trough model in the 

previous chapter. 2000 samples of these 19 variables are generated using HSS. Decision variables 

are assigned a uniform distribution with their upper and lower bounds specified. Normal 

distribution is assigned to the uncertain variables. The tables below show this information: 

Parameter Lower Bound Upper Bound 

Collector Tilt 0 7 

Freeze Protection Temp. 120 180 

Irradiation at Design 900 1200 

Row Spacing 11 19 

Solar Multiple 1 3 
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Stow Angle 150 170 

Table'2.'Decision'variables'and'their'bounds 

Parameter Mean (µ) Std. dev. (σ) 

Lower value  

(µ-3σ) 

Upper value 

(µ+3σ) 

HTF System 

Cost per metre 

square 

50 1.65 45.05 54.95 

Land Cost per 

acre 
10,000 330 9010 10990 

Power plant cost 

per Kwe 
880 29.04 792.88 967.12 

Site 

Improvement 

cost per metre 

square 

20 0.66 18.02 21.98 

Solar field cost 

per metre square 
350 11.55 315.35 384.65 

Storage system 

cost per kWht 
70 2.31 63.07 76.93 

EPC Costs % 

direct 
15 0.495 13.515 16.485 

Inflation Rate 2.5 0.0825 2.2525 2.7475 
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Real Discount 

Rate 
5.5 0.1815 4.9555 6.0445 

Federal income 

tax rate 
28 0.924 25.228 30.772 

Insurance rate 0.5 0.0165 0.4505 0.5495 

Sales tax 5 0.165 4.505 5.495 

State income tax 

rate 
7 0.231 6.307 7.693 

Table'3.'Uncertain'variables'with'mean,'std.'dev.'and'bounds 

After generating the 2000 samples, we feed the samples in the BONUS interface. The results of 

using BONUS are discussed in the next chapter. 

!

!

!

!

!

!

!

!

!

!

!

!

!
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4! Results and Analysis 

 

4.1! LCOE vs Iteration 

Since, this is a non-convex problem, we have multiple local optimum solutions. From figure 15 

we can see the optimums of 10 different solutions and how many iterations it took to achieve the 

optimal solution.  

!

Figure'15.'Graph'showing'no.'of'iterations'required'to'achieve'optimal'solution'for'100MW'plant 
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Figure'16.'Zoomed'in'image'of'figure'15 

 

Figure 16 gives us a clearer view of the graph. From both the charts we can see that the 7th solution 

gives us the least value for LCOE out of all other optimums. That optimum is at 14.025 cents/kWh. 

It takes 7 iterations to get that optimum value. From BONUS, the values for the decision variables 

for that optimum are: 

Collector tilt – 3.9171 

Freeze protection temp - 155 

Irradiation at design - 1025 

Row spacing - 16.421 
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Solar multiple - 3 

Stow angle – 165.03 

To analyze our results more effectively we perform optimization for one more value of power 

capacity. We consider a larger capacity of 500 MW in our next optimization.  

 

!

Figure'17.'Graph'showing'no.'of'iterations'required'to'achieve'optimal'solution'for'500'MW'plant 

 

The graph again compares the number of iterations required to achieve the different optimums. 

The 5th solution gives us the lowest LCOE value of 12.623 cents/kWh taking 18 iterations to 

achieve that optimum value. The decision variable values for this optimum are: 
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Collector tilt – 5.5767  

Freeze protection temp – 134.89 

Irradiation at design - 1135 

Row spacing – 13.155 

Solar multiple – 2.6890 

Stow angle – 162.99 

To analyze the values of the decision variables, we compare them with the default or the base value 

of the decision variables 

Decision 

variable 

Collector 

tilt 

(degrees) 

Freeze 

protection 

temp 

(Celsius) 

Irradiation 

at design 

(Watts/m2) 

Row 

spacing 

(m) 

Solar 

multiple 

Stow angle 

(degrees) 

Base 0 150 950 15 2 170 

Optimal for 

100 MW 

3.9171 155 1025 16.421 3 165.03 

 

Optimal for 

500 MW 

5.5767 134.89 1135 13.155 2.6890 162.99 

Table'4.'Analysis'of'decision'variable'values'
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4.2! CDF 

To understand the effect of uncertainty further, we will compare the LCOE for the optimal and 

base values of decision variables using the parametric simulation feature on SAM.  

We sample the uncertain variables using HSS again to generate 500 sample values for each 

variable. The samples have an underlying normal distribution. We simulate these 500 sample 

values for both sets of decision variables – base and optimal and then plot a CDF to compare the 

results. It is shown in figure 18. 

 

!

Figure'18.'CDF'plot'of'optimal'values'vs'base'values'for'100MW'plant 

 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

10 12 14 16 18 20
LCOE

CDF$– 100$MW

Optimal

Base



42!
!

The mean for the optimal CDF is at 16.14 cents/kWh and the values range from 14.4712 cents/kWh 

to 17.7382 cents/kWh. The mean for the base CDF plot is at 17.245 cents/kWh and the values 

range from 15.531 cents/kWh to 18.8978 cents/kWh. 

We repeat the same procedure for the 500 MW plant as well. The results are in figure 19. 

 

!

Figure'19.'CDF'plot'of'optimal'values'vs'base'values'for'500MW'plant 

 

The mean for the optimal CDF is at 14.39 cents/kWh and the values range from 12.94 cents/kWh 

to 15.7845 cents/kWh. The mean for the base CDF is at 15.431 cents/kWh and the values range 

from 13.898 cents/kWh to 16.91 cents/kWh. 

Both the CDFs show that there is a higher probability of getting a lower LCOE value using the 

optimal decision variables instead of the base decision variables. 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

10 12 14 16 18
LCOE

CDF$– 500$MW

Optimal

Base



43!
!

We can also see the effect of uncertainty by comparing the deterministic and stochastic simulation 

values. Using both the sets of decision variables we simulate the model using SAM, to study the 

difference. As we can see, the stochastic results give us a lower value of LCOE compared to the 

deterministic results. 

 

LCOE (cents/kWh) 

Base Optimal 

Deterministic Stochastic Deterministic Stochastic 

17.25 17.2453634 16.15 16.142286 

15.44 15.4316604 14.4 14.3910124 

Table'5.'Deterministic'vs'Stochastic'simulation'

!

4.3! Computational Efficiency 

With BONUS, we also save on computational time since it requires less number of iterations to 

achieve the optimal solution. We can compute the reduction in computational time using the 

formula: 

 

Reduction in computational time = !"##$%$&'$("&(&).)#("+$%,+")&-(%$./"%$01%"2"&,3(&).)#("+$%,+")&-  x 100 
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The total number of iterations required for optimizing the 100 MW plant is 68. Since there are 6 

decision variables and 500 sample points, the original number of iterations required would be (6+1) 

x 500 x 68 = 238000. We simulated 2000 calculations using SAM. Hence, the difference in no. of 

iterations is 238000 – 2000 = 236000. Therefore, the reduction in computational time is 

Reduction in computational time = 456777458777 x 100  = 99.15966 % 

Performing the same calculation for the 500 MW plant. The total number of iterations required for 

optimization in the 500 MW plant is 52. 

Reduction in computational time = 9:(;77:(;4 <4777
(9>;77>;4)  x 100 

                                                                                     = 98.9011 % 

4.4! Future Estimates 

The U.S Energy Information Administration (EIA) have predicted the levelized cost of energy for 

different energy sources in 2020 (Annual Energy Outlook, 2015). The estimated LCOE for solar 

thermal technology in 2020 is 23.97 cents/kWh and for advanced coal technology is 11.57 

cents/kWh. Our LCOE estimated for the 100 and 500 MW plants are 16.14 and 14.39 cents/kWh 

respectively. These estimates are calculated without including subsidies and tax incentives. If we 

include 30% federal tax credit in our simulations, we get 6.855 cents/kWh average LCOE for the 

100 MW plant and 6.33 cents/kWh average LCOE for the 500 MW plant. 
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Note: The values for the other parameters in the simulation are given in the table below. 

Parameter Value 

Deploy angle 10 deg. 

No. of field subsections 12 

Header pipe roughness 4.57e-005 m 

HTF pump efficiency 0.85 

Allow partial defocusing Simultaneous 

Field HTF fluid  Therminol VP-1 

Design loop inlet temp. 293 degree Celsius 

Design loop outlet temp. 391 degree Celsius 

Min. single loop flow rate 1 kg/s 

Max. single loop flow rate 12 kg/s 

Header design min. flow velocity 12 m/s 

Header design max. flow velocity 15 m/s 

Collector azimuth 0 deg. 

Water usage per wash 0.7 L/m2,aper. 

Washes per year 63 

Hot piping thermal inertia 0.2 kWht/K-MWt 

Cold piping thermal inertia 0.2 kWht/K-MWt 

Field loop piping thermal inertia 4.5 Wht/K-m 

Non-solar field land area multiplier 1.4 

No. of SCA/HCE assemblies per loop 8 
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Collector name from library Solargenix SGX-1 

Reflective aperture area 470.3 m2 

Aperture width, total structure 5m 

Length of collector assembly 100m 

No. of modules per assembly 12 

Average surface-to-focus path length 1.8m 

Piping distance between assemblies 1m 

Tracking error 0.994 

General optical error 0.99 

Geometry effects 0.98 

Mirror reflectance 0.935 

Dirt on mirror 0.95 

Same values for all 4 collectors  

Receiver name from library Schott PTR70 2008 

Absorber tube inner diameter 0.066m 

Absorber tube outer diameter 0.07m 

Glass envelope inner diameter 0.115m 

Glass envelope outer diameter 0.12m 

Absorber flow plug diameter 0m 

Internal surface roughness 4.5e-005 

Absorber flow patter Tube flow 

Absorber material type 304L 

Design gross output 111 MWe 
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Estimated gross to net conversion 0.9 

Estimated net output at design (nameplate) 100 MWe 

Rated cycle conversion efficiency 0.3774 

Fossil backup boiler LHV efficiency 0.9 

Aux heater outlet set temp. 391 degree Celsius 

Fossil dispatch mode Minimum backup level 

Low resource standby period 2 hrs 

Fraction of thermal power needed for standby 0.2 

Power block startup time 0.5hr 

Fraction of thermal power needed for startup 0.2 

Minimum required startup temp. 300 degree Celsius 

Max. turbine over design operation 1.05 

Min turbine operation 0.25 

Boiler operating pressure 100 bar 

Steam cycle blowdown fraction 0.02 

Turbine inlet pressure control Fixed pressure 

Condenser type Evaporative 

Ambient temp. at design 20 degree Celsius 

ITD at design point 16 degree Celsius 

Reference condenser water dT 10 degree Celsius 

Approach temp. 5 degree Celsius 

Min. condenser pressure 1.25 inHg 

Cooling system part load levels 2 
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Full load hours of TES 6 hrs 

Parallel tank pairs 1 

Tank height 20m 

Tank fluid min. height 1m 

Tank loss coeff. 0.4 W/m2-K 

Cold tank heater set point 250 degree Celsius 

Hot tank heater set point 365 degree Celsius 

Tank heater capacity 25 MWht 

Tank heater efficiency 0.98 

Hot side HX approach temp. 5 degree Celsius 

Initial TES fluid temp. 300 degree Celsius 

Storage HTF fluid Hitec Solar Salt 

Piping thermal loss coeff. 0.45 W/m2-K 

Tracking power 125 W/sca 

Required pumping power for HTF through power block 0.55 kJ/kg 

Required pumping power for HTF through storage 0.15 kJ/kg 

Fraction of rated gross power consumed at all times 0.0055 

BOP parasitic value 0 

Aux heater parasitic value 0.02273 MWe/MWcap 

Fossil backup 0 

Balance of plant 0 

Contingency 10% 

Sales tax basis 80 
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Fixed cost by capacity (O&M Costs) 20$/kW-yr 

Degradation rate 0 

Debt percent 100 % 

Loan term 25 years 

Loan rate 5% / year 

Analysis period 25 years 

Property tax assessed percentage 100% of installed cost 

Annual decline 0 

Property tax rate 0 

Net salvage value 0 

Depreciation – federal 5 yr MACRS 

Depreciation – state 5 yr MACRS 

Incentives 0 

Metering Single meter with monthly 

rollover credits in kWh 

Year-end sell rate for net metering with kWh credits 0.02789 $/kWh 

Fixed monthly charge 39.72$ 

Monthly minimum charge 0 

Annual minimum charge 0 

Electricity cost escalation rate 0% / yr 

Demand minimum (Applicability) 400 kW 

Table'6.'Default'values'for'SAM 
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5! Summary and Future Work 

5.1! Summary 

The parabolic trough technology was studied in detail. A better understanding of the various 

technical parameters related to the solar field, collectors, receivers involved in this technology, 

was developed. The major advantage of using the parabolic trough technology is that it is the most 

widely used and researched concentrating solar power technology compared to the other types. 

Using SAM, the performance characteristics as well as the financial variables of the power plant 

were modeled. SAM helps in analyzing the decision variables and uncertain variables which have 

the maximum impact on the energy generated and the levelized cost of energy. The final results 

for the CDF plots were generated using the SAM Parametric simulation feature. 

BONUS is an optimization algorithm which helped in reducing the levelized cost and saving on 

computational efficiency. It uses the concept of reweighting for estimating derivative information 

needed during optimization of nonlinear stochastic problems. Further, by selecting an efficient 

sampling technique like HSS, allowed for reduction in computational time as the repetitive nature 

of model evaluations is avoided. 

Analyzing the results, we can see the reduction in LCOE values. The optimal values for the 

technical parameters were determined for a 100 MW plant as well as a 500 MW plant. Comparing 

the two different power capacities, we found out that 500 MW plant has a lower levelized cost 

than the 100 MW plant. Also, the difference between the deterministic and stochastic solutions 

showed the effect of uncertainty on optimization. 
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The reduction in computational time for this method of optimization was also calculated. Using 

the U.S. Energy department estimates, we compared our cost to the estimated cost of solar thermal 

and advanced coal technology in 2020.  

 

5.2! Future work 

Our model was based on San Diego, California. This same model can be replicated for studying 

different locations as the requirements and conditions for different cities will vary. Also the 

uncertainty associated with the weather data can be studied further and taken into consideration 

for this method of optimization.  

The objective function for this optimization problem was to reduced the expected value of the 

levelized cost of energy. In the future, we could change the objective function to optimize the 

water requirements of the plant. 

Using this same systematic method of optimization, we can use other concentrating solar power 

technologies to study the difference in savings. 

 

!

!

!

!

!

!

!

!
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