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SUMMARY 

The study presented in this thesis focuses on creating a disaggregate evacuation demand 

model for analyzing evacuation behavior in the case of no-notice emergency events. The proposed 

framework is designed to be compatible with the Agent-based Dynamic Activity Planning and 

Travel Scheduling (ADAPTS) model for the Chicago Metropolitan Area. The study develops 

series of statistical and machine learning models designed specifically for each part of the 

evacuation decision-making process. Incorporation into an activity-based model allows for 

pinpointing persons and resources’ location in the network, which is of most importance in the 

case of no-notice emergency events due to the dispersity of family members in the transportation 

network (which may result in additional trips to pick up family members). The models developed 

in this study are based on a stated preference survey that was conducted in 2012 from residents of 

Chicago metropolitan area. 

The proposed evacuation demand model starts with identifying people’s decision to 

evacuate (they can choose to ignore the event, shelter at their current location, or evacuate). If an 

individual decides to evacuate, a new activity is generated in his/her schedule whose attributes 

(destination, departure time, and travel mode) are determined using the models specifically 

developed for evacuation decisions during no-notice emergencies. Once the attributes are 

determined, the next phase of the model is run to form the complete evacuation tour of the 

individuals in two steps. In the first step, the framework simultaneously determines the total 

number of intermediate stops, travel time, and travel distance of the evacuation tour; next, the 

framework utilizes different types of models estimated based on the estimated number of 

intermediate stops to identify the type and order of the stops.  
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The last part of the model updates the activity schedule of the population; the previous 

activity schedule (determined by the ADAPTS model for normal conditions) is kept for those who 

are determined to ignore the event whereas for those who shelter in their current location, the 

schedule is replaced with an indoor activity until the safe situation will be announced. For those 

who decide to evacuate, the new evacuation activity whose attributes are determined by the models 

presented in this study replaces the previous activity schedule.  

The framework provides a decision-support platform to help planners and emergency 

responders to first assess potential hazards, locating affected area and population, and investigate 

probable operability of transit systems for transit-dependent population. The framework is also 

suitable to investigate policies and strategies to re-deploying resources and understand evacuees’ 

behavior at the time of an event to direct individuals’ decision in favor of the most useful decision 

in order to prevent economic damages and loss of life.   
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1. INTRODUCTION 

1.1 Background 

A disaster is an event naturally or artificially caused, which can lead to infrastructure 

damage and loss of life. It can be in the form of natural events such as tornados, hurricanes, floods, 

forest fires, and earthquakes, or artificial events such as nuclear seepages and terrorist attacks. 

These disasters can result in sizable economic losses and fatalities and have been increasing in 

recent years. Only in 2016, 315 disastrous events occurred around the world, which resulted in 

more than 210 billion dollars of economic loss. The increased hazard becomes more evident when 

these values are compared to the 16-year average of 271 events per year that resulted in annual 

average of 174 billion dollars of economic loss (Benfield 2016). In order to reduce the damages 

caused by these tragedies, government agencies have been launching and supporting research 

projects to develop proper evacuation plans. 

Generally, disasters can be categorized into two groups considering their predictability; 

first group comprises the predictable emergencies such as hurricanes in which treatments and 

possible evacuation procedures can be planned from the moment that they are predicted. In the 

case of these events, people in the affected areas are informed in advance by the officials and if 

required, are guided to safe places. These events are mostly referred to as advance-notice 

emergency events in the literature. The second group consists of disasters that are not predictable 

such as terrorist attacks, chemical spills, or earthquakes, where notifying the public prior to its 

occurrence is not feasible. In these situations, referred to as no-notice emergency events, it is 
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generally considered that evacuation procedure starts immediately after the occurrence of the event 

when there is no time to develop comprehensive evacuation plans. Therefore, developing 

preconceived evacuation plans to mitigate potential damages from such events is of immense 

importance. 

One of the major differences between the two emergency events is the dispersity of 

household members in the case of no-notice emergency events whereas, in advanced-notice 

emergencies household members are likely to plan for the event and gather in the same location. 

The dispersity may result in additional trips for the purpose of picking up family members 

(specially children) in the network, which can conflict with the evacuation procedure by adding 

extra trips (additional trips may even be in the opposite direction of the expected route) (S. Liu, 

Murray-Tuite, and Schweitzer 2012). Failing to account for these additional trips may result in 

underestimation of travel time that can ultimately lead to higher number of fatalities during 

emergencies. Therefore, it is important to observe individuals’ decision-making behavior during 

both past emergency situations and their expected behavior in future events. 

1.2 Research Gap 

Evacuation behavior during advanced-notice events has been extensively studied in the 

literature (see, for example, (Drabek and Boggs 1968; Baker 1991; Drabek 1999; Hasan et al. 

2011)). However, no-notice emergency events have not been adequately investigated mainly due 

to the scarcity of data. As one of the few studies focusing on evacuation behavior of people during 

no-notice emergency events, S. Liu, Murray-Tuite, and Schweitzer (2012) utilized a stated 

preference data collected in Chicago, IL and developed a logistic regression model to investigate 
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households’ child-pick up behavior during such events. Later, S. Liu, Murray-Tuite, and 

Schweitzer (2014) used the same source of data and incorporated household gathering, trip 

chaining, and mode choice models in a simulation framework to assess the network performance 

through different policies. Although these studies attempt to model and simulate evacuation 

behavior in the case of no-notice emergency events, the methods proposed cannot investigate 

evacuees’ complex decision behavior at a disaggregated level. 

On the same note, activity-based models (ABMs) aim to simulate individuals’ activity-

travel patterns by modeling all travel behavior aspects such as travel mode and route choices, 

activity location choice, and trip timing choice at disaggregated level. These models also have the 

ability to locate persons and resources in the transportation network which is specifically suitable 

for simulating people’s evacuation trips in the case of no-notice events because they can determine 

the location of all the family members at any time. The proposed evacuation demand framework 

is designed to be compatible with a large-scale microsimulation activity-based model. 

1.3 Research Scope 

The results in this study are based on an internet-based stated preference (SP) survey 

conducted in Chicago metropolitan area by Argonne National Lab in 2012. In the survey, 

respondents were faced with multiple scenarios, each representing a no-notice emergency event 

that vary in terms of severity, location, type, radius of affected area, time-of-day, and government 

recommendation/order and were asked to state their complete evacuation tours. 

The main objective of this study is to develop a comprehensive evacuation behavioral 

model that can be used in the Agent-based Dynamic Activity Planning and Travel Scheduling 
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(ADAPTS) activity-based framework (Auld and Mohammadian 2012) by adding an evacuation 

demand module prior to the activity execution phase. The proposed framework comprises of four 

steps: (i) evacuation decision, (ii) evacuation planning, (iii) tour formation, and (iv) scheduling, 

which are discussed extensively in the following chapters. Therefore, the specific goals of this 

study can be summarized as follows: 

• Evacuation decision: presents a multivariate ordered probit model to estimate individuals’ 

evacuation decision behavior. To do so, this study first applies a two-step clustering 

algorithm to group the evacuees into three distinct clusters in order to capture the 

heterogeneity in their decision behavior followed by estimating separate model in each 

cluster. 

• Evacuation planning:  

o Destination and timing: presents a joint discrete-continuous model of evacuation 

destination and departure time choices. These two critical decisions can directly 

influence spatial and temporal traffic distributions in the network in case of emergency 

events. The joint structure is proposed to explore the interdependencies between these 

evacuation attributes that stem from the shared factors influencing them. The proposed 

joint model comprises a multinomial logit model as the discrete component to estimate 

evacuation destination and an accelerated hazard model as the continuous component 

to estimate the departure time. 

o Mode choice: presents a variation of one-versus-all support vector machine that is able 

to account for imbalanced nature of the alternatives in the dataset, which happens 
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because most individuals who have access to their private vehicle stated that choose 

this mode for their evacuation trip.  

• Tour formation:  

o Number of stops, total distance and travel time: estimates a joint ordered-continuous-

continuous model of number of stops, total distance, and total travel time choices to 

capture the endogenous effect of the number of stops on other tour attributes.  

o Type of stop: estimates a multinomial logit model for those with only one intermediate 

stop, and a variation of rank ordered logit model for those with more stops in their 

evacuation tours.  
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2. LITERATURE REVIEW 

2.1 Introduction 

This chapter presents a comprehensive review of evacuation-related studies. First, the most 

important evacuation attributes are identified and discussed in terms their type, various possible 

modeling procedures, and factors that influence them. This is followed by a comprehensive review 

of different types of modeling and platforms used in the past studies to investigate the potential 

effects of a disaster on the transportation network. 

2.2 Evacuation Behavior 

Generally, two distinct lines of research can be recognized in the literature of evacuation 

participation decision. In the first line, researchers focus on analyzing the characteristics of 

evacuees through descriptive analysis and statistical tests (see, for example, (Fischer et al. 1995; 

Dow and Cutter 1998; Baker 1979; Drabek 1999; Baker 1991; Lindell, Lu, and Prater 2005)). As 

one of the first studies on hurricane evacuation, Baker (1979) analyzed data collected after 

hurricanes Carla in Louisiana and Texas, Camille in Mississippi, and Eloise in Florida to impute 

the most important variables that can be used to predict whether individuals evacuate after 

receiving warnings. The analysis comprised of conducting 𝜒2 test to discern the significant 

variables followed by computing Goodman and Kruskal’s measure of association strength and 

checking if the predictors are significant across all hurricanes. The author found that the likelihood 
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of evacuation is associated with receiving warnings, neighbors’ evacuation decision, risk 

perception, and severity of the previously experienced hurricanes.  

Six months after hurricane Lili in Louisiana and Texas, Lindell, Lu, and Prater (2005) 

conducted a survey in which respondents’ perception toward the reliability of different information 

sources (such as authorities, news media, internet, and friends/family) was inquired. In addition to 

the usual demographic characteristics (e.g., age, gender, household income), they collected 

information regarding the key factors that played a pivotal role in respondents’ evacuation 

decision. Using correlation analysis, they assessed the role of each factor and concluded that the 

variables such as proximity to coastlines, government evacuation recommendation, evacuation of 

social peers, and a collection of demographic characteristics such as age, gender, and number of 

children in the household are strongly correlated with the evacuation decision. Interestingly, as 

opposed to Baker (1979), they did not find any significant correlation between respondents’ 

experience of past hurricanes and evacuation decision.  

The second group of studies consider the evacuation decision from a behavioral perspective 

to find the direct influence of the latter characteristics on the decision to evacuate via statistical 

and econometrics models. For instance, Whitehead et al. (2000) conducted a phone survey 

following the Hurricane Bonnie from those who were affected in North Carolina and estimated a 

binary logit model to predict the probability of individuals’ evacuation. The respondents were first 

questioned about their decisions during the hurricane (whether they evacuated, distance travelled, 

and destination of their evacuation). Following that, they were presented with hypothetical 

hurricanes with different severity levels and were asked to indicate whether they evacuate in each 
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scenario. They specifically aimed to investigate the effect of hurricane severity on people’s 

evacuation decision.  

Using data collected after Hurricane Andrew in Louisiana, Fu and Wilmot (2004) 

developed a “sequential binary logit model” to estimate individuals’ evacuation decision at 

different time periods prior to hurricane landfall. Later, they used a more detailed data from 

Hurricane Floyd in South Carolina and divided the time periods into smaller intervals (two-hour 

intervals) in their framework to better capture the dynamics of evacuation decision (Fu, Wilmot, 

and Baker 2006). Their model estimates the likelihood of evacuation within each time interval 

prior the storm as a function of hurricane characteristics and evacuation order from the authorities. 

They reached a better prediction accuracy compared to their previous study. They also checked 

the transferability of their proposed model to other hurricanes and found that the model can be 

applied on the dataset from Hurricane Andrew. 

Moreover, Dash and Gladwin (2007) stated that although the severity of the emergency 

event per se affects the evacuation decision, individuals’ perception of the intensity has greater 

influence on their decision. To capture this heterogeneous perception, Hasan et al. (2011) used the 

data that was collected after Hurricane Ivan and developed a random parameters binary logit model 

for estimating households’ evacuation decision. Their model is able to capture unobserved 

heterogeneity in the population by allowing coefficients to vary across observations. Murray-Tuite 

et al. (2012) used a panel survey for Hurricanes Ivan and Katrina, which were consecutive storms 

following the same path, and developed a binary logit model of evacuation decision. They aimed 

to investigate whether past experiences with the same type of emergency events affect the 

evacuation decision. Their model captures the effect of previous decisions on evacuation 
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participation, evacuation timing and destination, households’ vehicle, and route selection strategy. 

They concluded that decision on evacuation participation and routing strategy stayed the same, 

whereas some households started their evacuation trip sooner during the Hurricane Katrina. 

Turning to evacuation departure time, Sorensen (1991) used regression to uncover the 

factors that affect evacuation departure time. He found out that the time of warning receipt and the 

amount of time that the evacuee needs to prepare to leave (mobilization time) are the most 

significant factors in departure time decision. By using data collected in Louisiana after Hurricane 

Andrew,  developed a “sequential binary logit” model to estimate the probability that people will 

evacuate at each time period before hurricane landfall. In a later study, (Fu and Wilmot 2006) 

estimated and compared two survival analysis models, the Cox proportional model and the 

piecewise exponential model. Similar to the previous study, they considered discrete time intervals 

and derived the evacuation probability within each time interval based on the household’s 

demographic characteristics, event characteristics, and variables that represent decisions made by 

authorities. 

Using the same dataset, Dixit, Wilmot, and Wolshon (2012) presented an evacuation 

departure time choice model while controlling for risk attitudes. They found that factors such as 

duration of residence in a region, time of day, and issuance of a mandatory evacuation order have 

significant effects on the risk attitudes. In another study, Dixit et al. (2008) showed how the 

psychological impact of a previous hurricane can affect the evacuation decisions in a subsequent 

hurricane. They used the data collected from the evacuees of Hurricane Frances and Charley in 

2005, which both made landfall during a three-week period. In this study, the authors investigated 

the effects of the first hurricane on the second one by including an endogenous variable of 
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evacuation participation during the first hurricane in the departure time model of the second 

hurricane. 

Arguing that the risk responses are heterogeneous across the hurricane-affected 

individuals, Sadri, Ukkusuri, and Murray-Tuite (2013a) proposed a random parameters ordered 

probit model to capture unobserved heterogeneity in the decision about evacuation departure time. 

They estimated the evacuation mobilization time (time elapsed from the evacuation decision to the 

actual evacuation) using data from Hurricane Ivan collected from households located in Alabama, 

Louisiana, Florida, and Mississippi. They reported that the variables related to built-environment, 

characteristics of the event, and demographic characteristics are key determinants of the 

mobilization time. They also found that the effects of previous hurricane experience, source and 

time of evacuation notice received, work constraints, race, and income vary across the 

observations.  

Using the same dataset, (Hasan, Mesa-Arango, and Ukkusuri 2013) proposed a continuous 

time approach for modeling the evacuation timing decision to overcome the limitations associated 

with the coarse discrete time intervals considered in the prior studies. They proposed a random-

parameter hazard-based duration model to explore households’ evacuation timing behavior. It is 

found that the hazard-based model can reasonably estimate the end of the duration from the 

moment of receiving a hurricane warning to the moment of actual evacuation. They could also 

capture the heterogeneous risk responses in the context of departure time decision by incorporating 

the random parameters approach in their model. As they reported, factors such as household’s 

geographic location, type of the shelter, location and time to reach the destination in normal time, 

time between decision and actual evacuation, living in a mobile house, education status, income 
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level, and the type of evacuation notice (mandatory or optional) have significant effect on 

departure time decision. 

From a different perspective, Ng, Diaz, and Behr (2015) investigated the departure time 

choice behavior in hurricane evacuations of people with special needs (i.e., medically fragile 

population) in their study. Using data from a large-scale phone survey conducted after hurricane 

Irene, they applied an ordered logit model to investigate the differences between evacuation 

behavior of people with special needs and other population groups. They identified key variables 

that influence the evacuation departure time of these two population groups and found that 

fundamental differences exist between their evacuation behavior. 

Moving to evacuation destination choice models, earlier studies showed that if people 

decide to leave the affected area, they mostly go to public facilities or friends and relative homes. 

These studies have used a variety of methodological approaches that generally focus on aggregated 

(or zone-based) data. These methods range from trip distribution gravity models (Wilmot, Modali, 

and Chen 2006) to zone-based discrete choice models (Cheng, Wilmot, and Baker 2008). In this 

line of research, Charnkol, Hanaoka, and Tanaboriboon (2007) developed an emergency trip 

destination model using the binary logistic regression and neural network models. They estimated 

the probability of selecting evacuation destinations between public and private shelters. Two 

separate sets of models for permanent residents and transients are presented. They found that 

variables such as safety and security, medical support, comfort and convenience, and availability 

of food and beverage attribute significantly affect the shelter choice behavior of evacuees. 

Cheng, Wilmot, and Baker (2008) presented two separate zonal-level multinomial logit 

models for friends/relatives and hotel/motel choices. They aggregated destination zones based on 



12 

 

 

 

 

 

the risk due to hurricane and natural geographic features, and considered twenty-eight destination 

alternatives in their study. They found that the choice of evacuation destination is significantly 

affected by the distance of the corresponding trip and the attributes of the destination zone 

including risk, white population, total population, presence of a major metropolitan area, number 

of hotels, and presence of an interstate highway. Later, Mesa-arango et al. (2013) developed a 

household-level nested logit model to identify the variables influencing destination type choice 

among four alternatives of: “houses of friends and relatives”, “hotels”, “public shelters and 

churches”, and “others”. They used data from Hurricane Ivan in 2004 to calibrate the model. More 

recently, Parady and Hato (2016) estimated a spatially correlated logit model of evacuation 

destination choice in the context of tsunami evacuation. They found that land-use and built-

environment factors such number of buildings and designated shelters significantly affect 

evacuation destination choice. A summary of the reviewed studies is presented in Table 2.1. 
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Table 2.1. Summary of Studies on Evacuation Departure Time and Destination Choice 

Author Spatial context & data Model Choice set description 

(Sorensen 1991) 
Hazardous materials incident (March 1987):  

578 respondents in Naticoke, Atlatna 
Ordinary least square regression Continuous time 

(Fu and Wilmot 2004) 
Hurricane Andrew (Aug 1992):  

156 households in southwest Louisiana 
Sequential logit model 

Discrete time intervals: 12:00 am-6:00 am, 

6:00 am-12:00 pm, 12:00 pm-6:00 pm, and 

6:00 pm-12:00 am (for 3 consecutive days) 

(Fu and Wilmot 2006) 
Hurricane Andrew (Aug 1992):  

156 households in southwest Louisiana 

Cox proportional hazard & 

piecewise exponential model 

Discrete time intervals: 12:00 am-6:00 am, 

6:00 am-12:00 pm, 12:00 pm-6:00 pm, and 

6:00 pm-12:00 am (for 3 consecutive days) 

(Dixit et al. 2008) 
Hurricane Frances (Aug 2004):  

454 respondents in Florida 
Ordered probit model 

Discrete time intervals: 1 h or less, 2-3 h, 4-

6 h, 7-24 h, and more than 24 h 

(Dixit, Wilmot, and 

Wolshon 2012) 
Hurricane Andrew (Aug 1992):  

157 households in southwest Louisiana 
Regression model 

Discrete time intervals: 12:00 am-6 am, 6 

am-12 pm to noon, noon to 6 p.m., 6 p.m. to 

12 am. 

(Sadri, Ukkusuri, and 

Murray-Tuite 2013a) 

Hurricane Ivan (Sep 2004):  

457 randomly selected households in Florida, 

Alabama, Mississippi and Louisiana 

Random parameters ordered probit 

model 

Discrete time intervals: 1 h or less, 2-3 h, 4-

6 h, 7-12 h, 12-24 h, and more than 24  

(Hasan, Mesa-Arango, 

and Ukkusuri 2013) 

Hurricane Ivan (Sep 2004): 

3200 households in Florida, Alabama, 

Mississippi, and Louisiana 

Random-parameter hazard-based 

model 
Continuous time 

(Ng, Diaz, and Behr 2015) 
Hurricane Irene (Aug 2011): 

539 HH in Virginia and North Carolina 
Ordered logit model 

Discrete time intervals: after landfall, up to 

24 h prior to landfall, 24-48 h prior to 

landfall, and more than 48 h prior to landfall 

(Charnkol, Hanaoka, and 

Tanaboriboon 2007) 
Indian Ocean earthquake & tsunami (Dec 2004): 

633 individuals in Phuket Thailand 

Binary logistic regression model & 

Neural Network model 

Public shelter vs. private shelter (two 

separate models for permanent residents and 

transients) 

(Cheng, Wilmot, and 

Baker 2008) 
hurricane Floyd (1999): 

1040 HH in South Carolina 
Multinomial logit model 

28 TAZ options (two separate models for 

friends/relatives & hotel/motel)  

(Mesa-arango et al. 2013) 
Hurricane Ivan (Sep 2004):  

1,419 HH in Florida, Alabama, Mississippi, and 

Louisiana 

Nested logit  
4 options: Public shelters and churches, 

Hotels, Friends and Relatives, Other 

(Parady and Hato 2016) 
Great East Japan tsunami (March 2011):  

10,603 individuals in Kesennuma city, Japan 
Spatially correlated logit model 

The study area is tessellated into a 1-km-

square zone mesh, which is used as the 

spatial unit of analysis and constitutes the 

universal choice set 
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Review of literature focusing on the evacuation mode choice behavior highlights the dearth 

of research in this area; that is largely because evacuees tend to use their own vehicle for leaving 

the unsafe place (Lindell and Prater 2007; Wilmot and Gudishala 2013; Wu, Lindell, and Prater 

2012), which is not always the optimal choice (Murray-Tuite et al., 2012a). As one of the few 

studies on evacuation mode choice behavior, Kang et al. (2007) investigated the difference 

between peoples’ stated evacuation mode and their actual decision and concluded that their 

behavior mostly aligns with their stated preferences. In a more recent study, Sadri et al. (2014b) 

developed a nested logit model for the transit-dependent sector of the population and analyzed 

their mode choice decision during a hypothetical major hurricane. With regards to the no-notice 

emergencies, Liu et al. (2014) estimated a decision tree for the evacuation mode choice decision 

in their simulation framework. They found that vehicle access and decision to pick-up another 

family member are the most influential factors in evacuees’ mode choice decision. 

2.3 Modeling Techniques 

This chapter presents a detailed review of different methodological approaches used to 

model and investigate evacuees’ behavior and the resulting network conditions during emergency 

events. To develop the most efficient emergency plans, past studies introduced several types of 

models, which can be classified into three groups; namely simulation-based models, optimization, 

and statistical models. Table 2.2 provides a brief list of a representative sample of these 

approaches. The following sub-chapters provide examples of their relevance to emergency 

evacuation modeling. 
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Table 2.2. Summary of Previous Research in Evacuation Modeling 

Methodological approaches Previous research 

Statistical Models 

(Baker 1991; Lindell, Lu, and Prater 2005; Fu and Wilmot 2004, 2006; 

Fu, Wilmot, and Baker 2006; Cheng, Wilmot, and Baker 2008; Henson, 

Goulias, and Golledge 2009; Robinson and Khattak 2010; Auld et al. 

2012; S. Liu, Murray-Tuite, and Schweitzer 2012; Mesa-arango et al. 

2013; Hasan, Mesa-Arango, and Ukkusuri 2013; Sadri, Ukkusuri, and 

Murray-Tuite 2013a, 2014) 

Optimization Models 

(Hobeika and Kim 1998; Ziliaskopoulos 2000; Barrett, Ran, and Pillai 

2000; Peeta and Ziliaskopoulos 2001; Kwon and Pitt 2005; Lin 2001; 

Ying Liu, Lai, and Chang 2006; Tuydes and Ziliaskopoulos 2006; Y.-C. 

Chiu et al. 2007; Yue Liu et al. 2008; Zheng et al. 2010; Sayyady and 

Eksioglu 2010; Xie, Lin, and Travis Waller 2010; Bish and Sherali 

2013) 

Simulation-based Models 

(Moeller, Urbanik, and Desrosiers 1982; Sheffi, Mahmassani, and 

Powell 1982; Stone 1983; Stern and Sinuany-Stern 1989; Southworth, 

Janson, and Venigalla 1992; Hobeika and Kim 1998; Algers et al. 1998; 

Brachman and Church 2009; Cova and Johnson 2002; Zou et al. 2005; 

Dixit, Ramasamy, and Radwan 2008; Henson, Goulias, and Golledge 

2009) 

2.3.1 Statistical models 

One of the key elements of evacuation models is to determine the adequacy level of 

informing the public about the disaster and expecting their behavior in response. Before the 

emergence of behavioral models, studies usually assumed some underlying presumptions about 

individual behavior that were anticipated to be true; but they often produced imprecise results. For 

example, although it is generally assumed that tenants tend to evacuate the building in the case of 

fire emergency, some recent research showed that approximately two third of the injuries and half 

of the fatalities resulting from fires are due to people’s decisions and actions that they perform 

instead of evacuating the building (e.g., trying to put out the fire or collecting their belongings).  

To capture the effect of individuals’ decision-making during emergencies, it is important 

to observe how individuals have behaved during previous emergencies so that we can predict how 
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they are likely to act during future events. Indeed, exploration of these factors can lead to 

preventing occurrence of gridlocks in the network and ultimately reducing economic damage and 

loss of life. Considering the behavioural aspects of evacuees’ decision behaviour toward these 

parameters is imperative to identify the most influential factors in their evacuation planning 

process. 

The literature on emergency evacuation consists of multiple research streams focusing on 

various aspects of evacuation decision including the evacuation participation decision (see, for 

example, (Baker 1979; Lindell, Lu, and Prater 2005; Fu, Wilmot, and Baker 2006; Fu and Wilmot 

2004; Baker 1991; S. Liu, Murray-Tuite, and Schweitzer 2012; Hasan et al. 2011)), evacuation 

timing decision (see, for example, (Dixit, Wilmot, and Wolshon 2012; Sadri, Ukkusuri, and 

Murray-Tuite 2013a; Hasan, Mesa-Arango, and Ukkusuri 2013; Ng, Diaz, and Behr 2015; Fu, 

Wilmot, and Baker 2006; Fu and Wilmot 2004), evacuation destination choice (see, for example, 

(Charnkol, Hanaoka, and Tanaboriboon 2007; Yue Liu et al. 2008; Mesa-arango et al. 2013; 

Parady and Hato 2016), and evacuation route choice (see, for example, (Carnegie and Deka 2010; 

Robinson and Khattak 2010; Wu, Lindell, and Prater 2012; Sadri, Ukkusuri, and Murray-Tuite 

2014)). However, the majority of the studies do not focus on no-notice emergency events due to 

lack of available data. 

2.3.2 Optimization Models 

Optimization-based models provide the best possible solution for any given problem. 

Generally, two types of optimization models have been used for evacuation modeling. First group 

corresponds to static optimization models that assume network’s level of service remains steady 



17 

 

 

 

 

 

over the examination period. However, traffic conditions constantly change due to the dynamic 

nature of disasters (Zhang et al. 2010). Therefore, these models cannot correctly consider 

congestion or traffic propagation occurrence in a network and thereby they result in evacuation 

plans that may significantly differ from the best. This restriction holds back the application of static 

models in evacuation procedure. 

On the other hand, dynamic optimization models use Dynamic Traffic Assignment (DTA) 

approach, which formulate the problem in separate time-settings. These models can account for 

the dynamic nature of traffic flow during evacuation and therefore, they have been widely utilized 

in evacuation studies. Barrett et al. (2000) proposed a dynamic evacuation framework, which can 

model both long and short-term plans during hurricane evacuation. Further, the Cell Transmission 

Model (CTM), developed by Daganzo (1995, 1994), was used to form a DTA model by 

Ziliaskopoulos (2000). The basic idea of this model is to change links into homogeneous segments 

able to be crossed in a unit of time by free flow speed. As one of the few studies looking into no-

notice events, Kermanshah and Derrible (2016) combined a GIS and network science to propose 

a new method which can measure the vulnerability of transportation network after earthquakes. 

2.3.3 Simulation-based Models 

Simulation-based models are designed to examine the evacuation plans by replicating the 

traffic conditions in the transportation network over time by using previously estimated traffic 

operation models. These models are in fact the same ones that are generally used for traffic 

simulation with minor adjustments to simulate traffic during emergency situations. A few studies 

developed software packages that were specifically designed for evacuation process of nuclear 
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plant emergencies. As one of the earliest studies on this topic, Sheffi, Mahmassani, and Powell 

(1982) developed a model called NETVAC1 to simulate nuclear evacuation procedure. NETVAC1 

is a macrosimulation model with continuous time domain that utilizes traffic condition models to 

simulate the evacuation process; thus, approximates evacuation measures such as total evacuation 

time1 and clearance time2.  

NETVAC1 assumes that drivers decide the route based on their earlier knowledge of the 

network and limited understanding of current traffic conditions. This model can manage large 

networks at low computational expenses, and is capable of assessing a wide range of evacuation 

plans to provide a range of outputs such as flows, queues, speeds and travel time during the course 

of the evacuation process. The disadvantage of this model is that it has pre-specified evacuation 

plans with some general assumptions about individuals regardless of evacuees’ decision behavior. 

Later, several major hurricanes hit the United States coasts that resulted in a shift of the 

focus of emergency evacuation simulation models to hurricanes. For example, MASSVAC is a 

simulation model designed by Hobeika and Kim (1998), only for hurricane evacuation. The model 

has two levels of examination, a macroscopic and a microscopic level. The macroscopic level 

simulates the evacuation process on a network of only major roads. This level offers the maximum 

evacuation time estimation under various hurricane severity and traffic circumstances. The 

microscopic level focuses on a small network in detail, which is most suitable for analyzing 

congestion at intersections and lane obstructions due to accidents. The MASSVAC is able to use 

both all-or-nothing and user equilibrium (UE) traffic assignment techniques. Other simulation 

                                                 
1 Elapsed time between the time that evacuees receive become aware of an emergency and the time that 

they start their evacuation procedure. 
2 Time necessary for all people to evacuate and reach their final destination. 
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models have also been designed for evacuation procedures such as OREMS, CLEAR, DYMOD, 

EVACD, SNEM, and ETIS (Moeller, Urbanik, and Desrosiers 1982; Stone 1983; Stern and 

Sinuany-Stern 1989; Southworth, Janson, and Venigalla 1992). 

Finally, general traffic simulation software packages such as NETSIM, PARAMICS, 

DYNASMART-P, CORSIM, VISSIM may be used to simulate evacuation procedures. Chrurch 

and Sexton (2002) used PARAMICS simulation package to estimate the clearance time under 

different evacuation scenarios considering multiple arrangements of travel demand and traffic 

conditions. Cova and Johnson (2002) investigated a case study using PARAMICS for a wild fire 

emergency in Utah but concluded that this software is unable to account for traffic operation 

models (i.e., route-choice, car-following etc.). One of the major problem in evacuation models is 

that drivers’ logic for route selection is assumed to be either (i) choosing the shortest path or (ii) 

limited understanding of the network. Unless tied to more general route selection models, which 

are able to capture the evacuees’ complete decision behavior, these simulation packages may not 

be suitable for evaluating emergency evacuation procedures in large urban areas (Zhang et al. 

2010). 
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3. PROPOSED FRAMEWORK 

This section elaborates on the proposed evacuation demand model which aims to simulate 

individuals’ evacuation behavior during no-notice emergency events. Since the proposed 

evacuation demand model is designed to be compatible with the structure of the ADAPTS activity-

based framework, this section briefly presents its overall modelling structure. ADAPTS is an 

agent-based microsimulation travel demand model, which simulates individuals’ activity-travel 

decisions in three distinct steps, as illustrated in Figure 3.1. 

The simulation process starts by identifying the individual’s need for generating a new 

activity of a certain type. This step is called activity generation in which competing hazard models 

derive the probability of each activity type based on the time spent since that specific activity type 

was previously performed. After generating an activity, the planning horizons of activity attributes 

(i.e., start time, duration, location, party composition, and travel mode) are determined by the 

attribute planning order model. This model which is a multivariate ordered probit model estimates 

the time in which each activity attribute will be decided (Auld and Mohammadian 2012). 

Therefore, as a unique feature of the ADAPTS model, various activity attributes can be determined 

in different time horizons. 

The second step, called activity planning, corresponds to estimating the actual values of 

activity attributes. As the simulation time reaches an attribute’s decision-making time (which is 

previously determined by the attribute planning order model), the corresponding model is called 

to estimate the value of that specific attribute (Auld and Mohammadian 2012). Therefore, 

depending on the order of attribute plan horizons, outcome of some attributes’ decisions can affect 
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the decisions on the undecided attributes (Shabanpour, Golshani, Auld, et al. 2017; Golshani et al. 

2017).  

 

Figure 3.1. Overall Framework of the ADAPTS Activity-based Model 

The last step of the ADAPTS framework, refer to as activity scheduling, updates the 

activity schedule of each agent by adding the completely planned activities and resolves the 

potential conflicts between the new activities and those that are already scheduled. The resolution 
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strategies that are used in the conflict resolution module include shortening, shifting, and splitting 

either of the new or previously scheduled activities, with the overall aim of minimizing the total 

changes in start time and duration of involved activities in the conflict instance. Detailed 

information about different steps of the ADAPTS framework can be found in (Shabanpour, 

Javanmardi, et al. 2017; Shabanpour et al. 2018; Shabanpour, Golshani, Auld, et al. 2017; Auld 

and Mohammadian 2012). 

Consistent with the ADAPTS structure, the proposed evacuation demand model is 

designed to be placed prior the activity execution step and is called only if a disaster has happened 

in the corresponding time step, as illustrated in Figure 3.1. Once the evacuation model is called, it 

estimates the new travel demand and updates individuals’ activity schedule. An overview of the 

proposed evacuation behavior framework is presented in Figure 3.2. The framework comprises of 

four main steps: (1) evacuation decision, (2) evacuation planning, (3) tour formation, and (4) 

schedule update. 

The first step deals with the decision to evacuate; individuals may decide to either ignore 

the emergency situation, shelter in their place, or evacuate. To do so, clustered-based multivariate 

ordered probit models estimate individuals’ evacuation decision behavior in the context of no-

notice emergency events. In the analysis, first, a two-step clustering algorithm was applied to group 

the evacuees into three distinct clusters in order to capture the heterogeneity in their decision 

behavior. Second, a multivariate ordered probit model was estimated within each cluster to 

determine the probability of selecting each of the three options of ignoring the situation, seeking 

shelter at the place, and evacuating to a safe place. In the first case, individuals ignore the event 

and follow their previously determined activity schedules (i.e., the activity schedule determined 
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by the ADAPTS model for a typical day). In the second case, they will stay in the same place that 

they were at the time of the event and an indoor activity will replace their formerly scheduled 

activities until the safe situation will be announced. In the last case, individuals decide to evacuate 

to safe place. In this case, a new evacuation activity will replace the routine activity schedules of 

evacuees. The attributes of the evacuation activity will be determined in the next steps of the 

framework. 

 

Figure 3.2. Overall Framework of the Proposed Behavioral Evacuation Model 

The second step, named as the evacuation planning detailed in Chapter 6, identifies some 

of the main attributes of the newly generated evacuation activity. In this step, first, a joint discrete-
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continuous model estimates the evacuation destination and departure time choices. These two 

critical decisions can directly influence spatial and temporal traffic distributions in the network in 

case of the emergency events. The joint structure is proposed to explore the interdependencies 

between these attributes that stem from the shared factors influencing them and/or the causal 

effects that they might have on each other. The proposed joint model comprises a multinomial 

logit model as the discrete component to estimate evacuation destination and an accelerated hazard 

model as the continuous component to estimate the departure time. Next, a support vector machine 

is estimated to model evacuees’ mode choice decision. 

The third phase, named as tour formation, corresponds to identifying the total number of 

intermediate stops, type of these stops, total travel distance, and travel time of individuals’ 

evacuation tours. This is presented in Chapter 7, where firstly a joint ordered-continuous-

continuous model estimates the total number of stops, total distance, and total travel time of the 

evacuation tours. The joint structure is proposed to capture the endogenous effect of number of 

intermediate stops in total travel time and distance, as well as the interrelations between the three 

variables. Secondly, the type of the intermediate stops (e.g., pick-up family members, shop for 

supplies, etc.) is determined using a multinomial logit model for those with only one intermediate 

stop, and a rank ordered logit model for those with more stops in their evacuation tours. 

Finally, in the schedule update phase of the proposed framework, evacuees’ routine activity 

schedules (that were formed by the activity-based model for a typical day) are updated. Indeed, 

the new evacuation activity whose all attributes (i.e., departure time, destination, and evacuation 

mode, etc.) are determined will replace the previous schedule.  
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4. DATA 

4.1 Introduction 

The data used in this study is derived from an internet-based stated preference (SP) survey 

for the case of no-notice emergency events (Auld et al. 2012), which is conducted by the Argonne 

National Laboratory in 2012 from Chicago metropolitan area. The data is collected through an 

online platform with access to Google Maps API that allows for collecting detailed information 

regarding the location of respondents and their family members in a typical day.  

The survey is conducted in three phases. First, detailed demographic and vehicle-use 

information of 521 respondents and their household members is collected. The dataset consists of 

45% male and 55% female respondents who live in Chicago metropolitan area. As for the 

occupation status, the data contains 60% full-time workers, 10% part-time workers, 8% 

unemployed, 13% retired, 5% students, and 4% other categories. With respect to household income 

level, 30% of respondents’ households have annual income below $50k, 40% have annual income 

between $50k and $100k, and the remaining 30% earn more than $100k per year. A full description 

of the survey, descriptive statistics, and validation of the data can be found in Auld et al. (2012). 

In the second part of the survey, participants were presented with two random emergency 

scenarios. The designed scenarios vary in terms of timing, severity, risk, location, radius of the 

event, and government recommendation. The time of the event is randomly selected from three 

options of 9:00 am, 2:00 pm and 7:00 pm. The location of each household member was also asked 

at each time option. Considering the locations of the household members, an emergency scenario 

was designed in a proximity of one of the household members at the randomly chosen time-of-
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day. There were also three levels considered for describing the impact radius of the event (i.e., 5, 

10, and 20 miles) and the risk level (i.e., low, moderate, and high), which were randomly assigned 

to each scenario. Finally, two types of government recommendations (i.e., evacuate or shelter in 

place) were considered in the emergency scenario design. Figure 4.1 illustrates the location of a 

random respondent and his/her family members at the time of an emergency event. 

 

Figure 4.1. Example of Collected Locations Information with Impact Radii of 5, 10, and 15 Miles 

4.2 Evacuation Decision 

As the response variable for evacuation decision, respondents were asked to indicate how 

likely (in a five-point scale ranging from very unlikely to very likely) they make these three 

decisions: 

1) Go about your day as usual and ignore the situation (hereinafter ignore) 

2) Stay where you are and seek shelter at the place (hereinafter seek shelter) 

3) Evacuate to a safe place (hereinafter evacuate)  
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Participants’ responses in multiple scenarios are the basis for estimating their decision to 

evacuate during no-notice emergency events. Using Likert scale questions that offer a complete 

spectrum of options allows the respondents to give their true opinions toward evacuation decision 

in a hypothetical situation. Figure 4.2(a) presents the general distribution of respondents’ 

evacuation decision. For example, it indicates that 75% of respondents are “very unlikely” to 

ignore the emergency event whereas about 5% are “very likely” to ignore the situation.  

 

(a) General Evacuation Decision 

  

      (b) Access to a Vehicle                                           (c) No Access to a Vehicle 

Figure 4.2. Participants’ Responses to Hypothetical No-notice Scenarios 
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Furthermore, analysis of the data reveals that out of those who are very unlikely to ignore 

the emergency event, 54% and 22% are very likely to evacuate and seek shelter, respectively. This 

heterogeneous behavior can arise from either observed factors (e.g., event severity, vehicle 

ownership) or unobserved factors (e.g., risk perception) that affect evacuation participation 

decision. For instance, Figure 4.2(b) and Figure 4.2(c) compare respondents’ evacuation decision 

when they have access and they do not have access to a vehicle at the time of emergency event. 

These figures indicate that access to vehicle increases the tendency for evacuation while those who 

do not have access to vehicle are more willing to seek shelter at the place. Intuitively, vehicle 

accessibility makes trivial changes in the likelihood of ignoring the event. 

4.3 Evacuation Attributes 

Respondents were also asked about their potential trips after the occurrence of the 

emergency event. The collected trip information includes number of stops, the reason for each stop 

(e.g., pick up children from their school), and the type and location of final evacuation destinations. 

Destination types that are considered in this study are evacuation shelter, hotel/motel, stay/return 

home, and stay with family and friends, hereafter referred to as shelter, hotel, home, and family, 

respectively. Figure 4.3 presents the distribution of destination choices in the dataset, which 

indicates that 53.54% of the respondents would travel to shelters whereas only 4.17% would select 

hotel as their destination. Figure 4.3 also shows that 30.42% of respondents would return home 

and 11.88% prefer to stay with their family. 
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Figure 4.3. Destination Choice Distribution 

As for the evacuation departure time, Figure 4.4 presents the distribution of departure times 

in the dataset, which reveals that 48% of respondents start their tours within the first 30 minutes 

after the emergency event occurrence; that is expected in the case of no-notice evacuation. Further, 

more than 90% of the respondents stated that they would evacuate within 180 minutes after the 

event occurrence. Furthermore, to investigate the dependence of departure time and destination 

choice decisions, Figure 4.5 illustrates the distribution of evacuation departure time conditioned 

on the destination. Different patterns of departure time distributions reveal that this variable highly 

depends on the selected destination, which reflects the need for a modeling approach that can 

account for the interdependence between the two variables.  
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Figure 4.4. Evacuation Departure Time Distribution 

 
Figure 4.5. Distribution of Departure Times Across Destination Choices 
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Moreover, respondents were asked to indicate their choice of travel mode when faced with 

the hypothetical scenarios events. Analysis of the data reveals that 89.36% of the participants 

intend to drive their own vehicle during no-notice emergencies whereas 3.64%, 3.64%, and 3.36% 

will rely on CTA, Metra, and friends and family to evacuate, as illustrated in Figure 4.6. 

 

Figure 4.6. Mode choice distribution 

4.4 Evacuation Tour 

Respondents’ stated tours were formed (as illustrated in Figure 4.7(right)) and the 

corresponding tour- and trip-related variables such as total number of trips, trip travel time and 

distance, and total tour travel time and distance were extracted from Google Maps API. Figure 4.7 

depicts the formed tours with red dots showing the final evacuation destinations. Moreover, Figure 

4.8 presents the distribution of total distance of evacuation tours for each type of destination. The 
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figure shows that most respondents tend to evacuate to a nearby safe place as the number of 

respondents who stated that they would travel for less than 100 miles is higher than other distances 

in nearly all destination types. The figure also reveals that respondents who prefer to stay with 

family/friends are willing to commute longer distances compared to those who select other 

destination alternatives. 

 

Figure 4.7. Evacuation Destination Type (left) and Tour Formation (right) 
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Figure 4.8. Total Distances for Each Destination Type 

After collecting general information with regards to the evacuation decision and the 

corresponding evacuation attributes, respondents were asked to indicate any possible intermediate 

stop in their evacuation tour. They were asked to first select the stop type and then enter the 

location on the interactive map provided for them. Regarding the stop type, respondents were able 

to select an option among meet with family and friends, shop for supplies, pick-up child, and pick-

up other family members. With respect to the number of intermediate stops, data analysis reveals 

that 48.4% of the respondents stated that they would make no intermediate stops. From the 

remaining 51.6%, 73% had only one intermediate stop, 19.4% had two intermediate stops, and 

7.6% had three intermediate stops in their evacuation tours. The total travel time and travel distance 

of the stated evacuation tours are illustrated in Figure 4.9.   
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(a) Distance 

 
(b) Travel time 

Figure 4.9. Distribution of Travel Time and Distance of the Evacuation Tours 
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Following that, Figure 4.10 presents the distribution of stops types for (a) respondents with 

one intermediate stop in their tour and (b) respondents with two intermediate stops in their tour. 

According to this figure, most of the respondents selected meet with family and friends as their 

first stop whereas the most probable type for the second stop is shop for supplies. Furthermore, 

32% of respondents stated they would pick-up either children or other family members in the first 

stop whereas this rate increases to 40% for the second stop in the evacuation tour. 

  
(a) First Stop           (b) Second Stop 

Figure 4.10. Distribution of Type of Intermediate Stop 
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5. EVACUATION DECISION 

5.1 Introduction 

This chapter focuses on developing a modeling framework to estimate individuals’ 

evacuation decision behavior in the context of no-notice emergency events. In the survey, 

respondents were asked to indicate the likelihood of making three potential decisions in Likert 

scales, namely ignoring the event, seeking shelter at the place, and evacuating when faced with 

hypothetical scenarios representing no-notice emergency events. the three dependent variables are 

collected in the Likert-scale format, which offers a complete spectrum of options and allows the 

respondents to give their true opinions toward the evacuation decision in the designed hypothetical 

situation. 

Furthermore, one critical issue in regards with the modeling procedure is that the dependent 

variables are clearly interrelated because of the shared unobserved factors that influence them. 

Considering the ordinal nature of the variables and the interrelation between them, this study 

proposes a multivariate ordered response model to analyze evacuees’ decision behavior. Another 

critical issue in modeling these variables is the heterogeneous behavior of evacuees in terms of 

their decision-making criteria, which, if captured, offers substantial improvements towards 

reliability of results for policy assessments. Therefore, two-step clustering algorithm is conducted 

to assign respondents to certain clusters in a way that each cluster includes relatively homogenous 

members—in terms of their lifestyle specifications (Shabanpour, Golshani, Derrible, et al. 2017). 

This is followed by estimating a multivariate ordered probit model within each cluster to 

investigate respondents’ evacuation decision behavior. The model estimation results indicate that 
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a variety of factors affect the evacuation decision including socio-economic attributes of evacuees, 

disaster characteristics, built-environment factors, and government evacuation order. Furthermore, 

variations of estimated coefficients across clusters highlight the significant behavioral differences 

among members of various clusters.  

5.2 Modeling Approach 

5.2.1 Cluster Analysis 

This study applies the clustering algorithm to capture participants’ heterogeneous behavior 

toward the evacuation decision. Cluster analysis is one of the most widely used methods in 

behavioral science to classify observations into relatively homogenous subsets by minimizing the 

variance of the key attributes within clusters and maximizing the variance between clusters. From 

the available clustering methods, the two-step clustering algorithm is selected for capturing the 

heterogeneous evacuation behaviour due to its high accuracy. Furthermore, this algorithm has a 

low convergence time even when dealing with large datasets. From another perspective, the two-

step clustering is able to get both discrete and continuous variables as input as well as estimating 

the optimal number of clusters on its own (T. Chiu et al. 2001) rather than using other methods 

such as Gap Statistics. 

In the first step, the dataset is divided into a number of sub-clusters (mostly an 

overestimation of the true numbers) based on the density of the data points. It calculates Bayesian 

Information Criterion (BIC) to decide whether the data point should merge with one of the 

previously-formed clusters. This is followed by changing the criterion to a distance-based measure 
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to determine whether the sub-clusters should be merged; this only happens if the change is greater 

than a specified threshold. The distance between any pair of clusters (𝑑𝑖𝑠𝑡𝑎𝑏) is formulated as 

follows (Mohammadian and Zhang 2007; T. Chiu et al. 2001; Shabanpour et al. 2019): 

𝑑𝑖𝑠𝑡<𝑎,𝑏> = 휂𝑎 + 휂𝑏 − 휂<𝑎,𝑏> (5.1) 

where: 

휂𝜐 = −𝐼 [∑
1

2
𝑙𝑜𝑔(�̂�𝑐

2 + �̂�𝜐𝑐
2 ) + ∑ �̂�𝜐𝑑

𝐷

𝑑=1

𝐶

𝑐=1

] (5.2) 

�̂�𝜐𝑑 = −∑
𝐼𝜐𝑑𝑙

𝐼𝜐

𝐿𝑑

𝑙=1

𝑙𝑜𝑔
𝐼𝜐𝑑𝑙

𝐼𝜐
 

(5.3) 

here, 𝐶 (𝐷) is the number of continuous (discrete) variables with corresponding variances of �̂�𝑐
2 

and �̂�𝜐𝑐
2  for the 𝑐th continuous variable in cluster 𝜐, 𝐿𝑑 is the number of categories for a discrete 

variable, 𝐼 is the number of observations in the sample, 𝐼𝜐 is the number of observations in cluster 

𝜐, and < 𝑎, 𝑏 > represents an index for a new cluster that is formed as a result of combining 

clusters 𝑎 and 𝑏. 

5.2.2 Statistical Model 

As mentioned earlier, we consider the three response variables that represent the likelihood 

of evacuation, seeking shelter, and ignoring the event to estimate participants’ evacuation decision. 

The likelihood of each decision in the survey was collected according to a five-point Likert-scale 

ranging from very unlikely to very likely. As the likelihood of each dependent variable is in an 
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ordinal scale, they can be suitably modeled using ordered probit model. The formulation for such 

model can be written as (Greene and Hensher 2010): 

𝑍𝑖 = 𝛽𝑋𝑖 + 휀𝑖, 𝑦𝑖 = 𝑗          if        𝜇𝑗−1 < 𝑍𝑖 < 𝜇𝑗 (5.4) 

where, 𝑍𝑖 is an unobserved continuous latent utility for observation 𝑖, 𝛽 is the vector of estimable 

coefficients corresponding to the vector of exploratory variables (𝑋𝑖), 휀𝑖 is the error term, 𝑗 is the 

integer order choice corresponding to 𝑦𝑖, which is the likelihood of decisions (i.e., observed 

discrete outcome ranging from very unlikely to very likely), and 𝜇𝑗 is the threshold that separates 

categories 𝑗 and 𝑗 + 1. The probability of outcome 𝑗 and the likelihood function 𝐿 for ordered 

models can be formulated as follows (Greene and Hensher 2010): 

𝑃(𝑦𝑖 = 𝑗) = [Φ(𝜇𝑗 − 𝛽𝑋𝑖) − Φ(𝜇𝑗−1 − 𝛽𝑋𝑖)] (5.5) 

𝐿 = ∏∏[Φ(𝜇𝑗 − 𝛽𝑋𝑖) − Φ(𝜇𝑗−1 − 𝛽𝑋𝑖)]
𝑚𝑖𝑗

𝐽

𝑗=1

𝐼

𝑖=1

 (5.6) 

where 𝐼 and 𝐽 are the total number of observations and categories, respectively, 𝑚𝑖𝑗 is a binary 

indicator, which is equal to one if observation 𝑖 belongs to category 𝑗 and zero otherwise, and Φ(. ) 

is the cumulative normal distribution function. 

Moreover, the three dependent variables may be correlated because they are responses of 

the same participant to a single event. This correlation may arise from shared unobserved factors 

that influence the dependent variables. Multivariate ordered models are capable of accounting for 

this potential correlation and can be formulated as follows: 
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 {

𝑍𝑖1 = 𝛽1𝑋𝑖1 + 휀𝑖1,       𝑦𝑖1 = 𝑗1        if       𝜇𝑗1−1 < 𝑍𝑖1 < 𝜇𝑗1

𝑍𝑖2 = 𝛽2𝑋𝑖2 + 휀𝑖2,       𝑦𝑖2 = 𝑗2        if       𝜇𝑗2−1 < 𝑍𝑖1 < 𝜇𝑗2

𝑍𝑖3 = 𝛽3𝑋𝑖3 + 휀𝑖3,       𝑦𝑖3 = 𝑗3        if       𝜇𝑗3−1 < 𝑍𝑖1 < 𝜇𝑗3

 (5.7) 

here, 𝑍𝑖1, 𝑍𝑖2, and 𝑍𝑖3 are unobserved continuous latent utilities for observation 𝑖 for the dependent 

variables, 𝛽1, 𝛽2, and 𝛽3 are the vectors of estimable coefficients corresponding to the vectors of 

exploratory variables (𝑋𝑖1, 𝑋𝑖2, and 𝑋𝑖3), 휀𝑖1, 휀𝑖2, and 휀𝑖3 are the error terms of the dependent 

variables, 𝑗1, 𝑗2, and 𝑗3 are the integer order choice corresponding to the observed outcomes 𝑦𝑖1, 

𝑦𝑖2, and 𝑦𝑖3, respectively, and 𝜇𝑗1, 𝜇𝑗2, and 𝜇𝑗3 are the threshold values. This model accounts for 

the correlation among the three dependent variables assuming their error terms follow a 

multivariate normal distribution, which can be formulated as follows (Greene and Hensher 2010): 

(

휀𝑖1

휀𝑖2

휀𝑖3

)~𝑁 [(
0
0
0
) , (

1 𝜌12 𝜌13

𝜌21 1 𝜌23

𝜌31 𝜌32 1
)] (5.8) 

It should be noted that the off-diagonal correlation terms represent the shared unobserved 

factors between any two dependent variables. Therefore, the positive sign of these terms indicates 

that participants with higher likelihood to select one of the dependent variables are also likely to 

select the other one. On the other hand, if these coefficients become zero, the joint structure 

changes into a set of independent models. The joint probability and the likelihood function can be 

formulated as (Greene and Hensher 2010):  
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𝑃(𝑦𝑖1 = 𝑗1, 𝑦𝑖2 = 𝑗2, 𝑦𝑖3 = 𝑗3)

= [Φ3[(𝜇𝑗1 − 𝛽1𝑋𝑖1), (𝜇𝑗2 − 𝛽2𝑋𝑖2), (𝜇𝑗3 − 𝛽3𝑋𝑖3), 𝜌12, 𝜌13, 𝜌23]

− Φ3[(𝜇𝑗1−1 − 𝛽1𝑋𝑖1), (𝜇𝑗2 − 𝛽2𝑋𝑖2), (𝜇𝑗3 − 𝛽3𝑋𝑖3), 𝜌12, 𝜌13, 𝜌23]]

− [Φ3[(𝜇𝑗1 − 𝛽1𝑋𝑖1), (𝜇𝑗2−1 − 𝛽2𝑋𝑖2), (𝜇𝑗3 − 𝛽3𝑋𝑖3), 𝜌12, 𝜌13, 𝜌23]

− Φ3[(𝜇𝑗1−1 − 𝛽1𝑋𝑖1), (𝜇𝑗2−1 − 𝛽2𝑋𝑖2), (𝜇𝑗3 − 𝛽3𝑋𝑖3), 𝜌12, 𝜌13, 𝜌23]]

− [Φ3[(𝜇𝑗1 − 𝛽1𝑋𝑖1), (𝜇𝑗2 − 𝛽2𝑋𝑖2), (𝜇𝑗3−1 − 𝛽3𝑋𝑖3), 𝜌12, 𝜌13, 𝜌23]

− Φ3[(𝜇𝑗1−1 − 𝛽1𝑋𝑖1), (𝜇𝑗2 − 𝛽2𝑋𝑖2), (𝜇𝑗3−1 − 𝛽3𝑋𝑖3), 𝜌12, 𝜌13, 𝜌23]]

− [Φ3[(𝜇𝑗1 − 𝛽1𝑋𝑖1), (𝜇𝑗2−1 − 𝛽2𝑋𝑖2), (𝜇𝑗3−1 − 𝛽3𝑋𝑖3), 𝜌12, 𝜌13, 𝜌23]

− Φ3[(𝜇𝑗1−1 − 𝛽1𝑋𝑖1), (𝜇𝑗2−1 − 𝛽2𝑋𝑖2), (𝜇𝑗3−1 − 𝛽3𝑋𝑖3), 𝜌12, 𝜌13, 𝜌23]] 

 

(5.9) 

𝐿 = ∏∏𝑃(𝑦𝑖1 = 𝑗1, 𝑦𝑖2 = 𝑗2, 𝑦𝑖3 = 𝑗3)
𝑚𝑖𝑗

𝐽

𝑗=1

𝐼

𝑖=1

 (5.10) 

5.3 Results and Sensitivity Analysis 

This section starts with presenting the results of the applied clustering algorithm followed 

by a detailed discussion on the estimation results of the evacuation decision model. As previously 

highlighted, a two-step clustering algorithm is applied to capture participants’ heterogeneous 

behavior towards the evacuation decision by grouping them into homogeneous clusters in terms 

of their key demographic characteristics. The two-step clustering is applied using 10% noise 

allowance and three clusters are obtained from the analysis. The optimal number of clusters are 
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determined by the algorithm using Bayesian Information Criterion (T. Chiu et al. 2001). Table 5.1 

presents the summary statistics and centroids of the clusters.  

Table 5.1. Summary statistics of the clusters (mean for continuous and mode for categorical variables) 

Cluster 

ID 
Size % 

Variables 

Household 

income 

No. of  

kids in HH 

No. of  

adults in HH 
Age 

Education 

level 

Employment 

status 

1 97 25.52 < 25k 0.35 1.70 56-65 College Retired 

2 144 37.89 50k-75k 0.54 2.32 46-55 College Full-time 

3 139 36.58 100k-150k 0.78 2.09 36-45 
Graduate/ 

Professional 
Full-time 

Total 380 100       

For each of these three clusters, a multivariate ordered model of evacuation decision is 

estimated. A full set of possible variables and variable interactions is tested, and the statistically 

significant variables are presented in Table 5.3 to Table 5.5, and a brief summary statistics of the 

key variables is presented in Table 5.2. With respect to the interpretation of the estimated 

parameters, a positive sign of coefficients indicates that increasing the corresponding exploratory 

variable raises the probability of the last category (i.e., very likely) and lowers the probability of 

the first category (i.e., very unlikely). We found that conducting the clustering step leads to 

variations in the sign, magnitude, and significance level of the estimable parameters, which 

confirms existence of heterogeneity in people’s decision behavior across clusters. For instance, 

indicator of low-income level (less than $50k) in Table 5 has a negative effect on the likelihood of 

evacuation in cluster 2 whereas it increases the likelihood of evacuation in cluster 3. This 

heterogenous behavior can be attributed to dissimilarities in the lifestyle specifications of 

participants in different clusters.  
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Table 5.2. Descriptive statistics of the key variables 

Variable Definition Mean St. dev. 

Age: 18 – 25   1: if participant is between 18 and 25 years old; 0: o/w 0.07 0.25 

Gender: male 1: if participant is male; 0: o/w 0.45 0.50 

Race: white 1: if participant is white; 0: o/w 0.50 0.50 

HH income: low 1: if household income is less than $50,000; 0: o/w 0.26 0.44 

HH income: high 1: if household income is greater than $100,000; 0: o/w 0.27 0.45 

Disabled 1: if participant has a disability; 0: o/w 0.07 0.25 

Employment: retired 1: if participant is retired; 0: o/w 0.13 0.34 

Employment: full-time 1: if participant is full-time worker; 0: o/w 0.59 0.49 

Employment: part-time 1: if participant is part-time worker; 0: o/w 0.10 0.29 

Residence: apartment 1: if participant lives in an apartment; 0: o/w 0.17 0.37 

Residence: house 1: if participant lives in a house; 0: o/w 0.49 0.50 

HH adult  Number of adults in the household 2.08 0.96 

HH child Number of children in the household 0.58 1.04 

HH child: low 1: if number of children in the household is greater than 1; 0 o/w 0.18 0.39 

HH child: high 1: if number of children in the household is greater than 2; 0 o/w 0.05 0.22 

HH size ≥ 3 1: if household size is greater than 3; 0 o/w 0.26 0.44 

HH size ≥ 4 1: if household size is greater than 4; 0 o/w 0.09 0.29 

Severity level: low 1: if event has a low severity; 0: o/w 0.32 0.47 

Severity level: high 1: if event has a high severity; 0: o/w 0.33 0.47 

Order to evacuate 1: if government has issued an evacuation order; 0: o/w 0.65 0.48 

Population Density Population density (thousand persons per square mile) 4.62 6.10 

Population Density_3000 1: if population density is less than 3000; 0: o/w 0.57 0.49 

Vehicle access 1: if participant has access to a vehicle when event occurs; 0: o/w 0.88 0.32 

No vehicle access & midday 1: if event happens in midday and participant does not have access to  

    a vehicle; 0: o/w 
0.06 0.23 

Proximity: less than 5 miles 1: if event happens within a 5-mile radius of the participant; 0: o/w 0.19 0.39 

Proximity: 10 – 20 miles 1: if distance between event and participant’s location is greater than  

    10 miles and less than 20 miles; 0: o/w 
0.20 0.40 

The results of the ordered model for ignoring the emergency events are presented in Table 

5.3. Per results, those with high income levels (greater than $100k per year) are less likely to ignore 

the evacuation order compared to others as it significantly increases the probability of the “very 

unlikely” outcome. This finding is in line with Peacock et al. (1997) where they found that higher-

income individuals are more likely to evacuate. Table 3 also reveals that low-educated people 
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(defined as high school diploma or less) are more likely to ignore the situation or seek shelter 

compared to high-educated people, which supports the results of Murray-Tuite et al. (2012).  

Table 5.3. Estimation Results of Multivariate Ordered Model (Decision: Ignore) 

Variable 
Cluster 1 Cluster 2 Cluster 3 Aggregate 

Param. t-stat Param. t-stat Param. t-stat Param. t-stat 

Constant  0.59*  1.51 -0.63*** -4.05 -0.51*** -1.98 -0.13 -0.85 

Race: white    ‒ ‒      ‒ ‒      ‒ ‒  0.58***  2.35 

HH income: high    ‒ ‒      ‒ ‒      ‒ ‒ -0.35*** -2.24 

Degree: high school  1.04**  1.95      ‒ ‒      ‒ ‒  1.00***  1.98 

Employment: retired    ‒ ‒      ‒ ‒      ‒ ‒ -0.52*** -2.11 

Employment: full-time  1.01***  2.88      ‒ ‒      ‒ ‒      ‒ ‒ 

Residence: apartment -1.67*** -2.99      ‒  -0.95** -1.90 -1.20*** -4.19 

Residence: house    ‒ ‒      ‒ ‒ -0.52*** -2.04 -0.86*** -3.41 

HH size ≥ 4    ‒ ‒      ‒ ‒  0.70**  1.93      ‒ ‒ 

Severity level: low    ‒ ‒  0.64***  3.09  0.92***   3.58  0.55***  4.03 

Order to evacuate -0.87*** -2.70      ‒ ‒ -0.47** -1.79 -0.51*** -3.53 

Population Density    ‒ ‒ -0.07*** -2.03      ‒ ‒      ‒ ‒ 

Vehicle access -1.10*** -3.24      ‒ ‒      ‒ ‒      ‒ ‒ 

Proximity: less than 5    ‒ ‒      ‒ ‒ -0.88*** -1.96 -0.28* -1.52 

μ1  0.46***  3.00  0.28***  3.50  0.42***  3.85  0.35***  5.99 

μ2  0.94***  4.12  0.66***   5.31  0.81***  5.16  0.73***  8.44 

μ3  1.04***  4.28  0.91***  5.98  1.05***  5.55  0.94***  9.20 

We also found that employment status significantly affects participants’ evacuation 

decision; that is retired people are less likely to ignore the event while full-time workers are more 

likely to ignore. Further, in accordance with Peacock et al. (1997) that reported those who live in 

multi-unit buildings have a higher tendency towards evacuation compared to those living in single 

houses, we found that participants who live in multi-unit buildings are less likely to ignore the 

disastrous event. Overall, such variables capture the heterogeneous response to the emergency 

event as a result of difference in lifestyles arising from variations in age, income level, social status, 

and other demographic attributes. 
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Moving to the variables representing characteristics of the emergency event, the results 

show that people who are in low-risk areas at the time of the event are more likely to ignore the 

situation. We also found that proximity of the event to participants’ location significantly affect 

the evacuation decision. According to Table 5.3, participants who are within a 5-mile radius of the 

event are less likely to ignore the event. Another critical parameter that affects all the response 

variables is the type of the order issued by authorities. The results indicate that issuance of an 

evacuation order significantly decreases the likelihood of ignoring the emergency events. This 

finding is in line with those from the previous studies (see, for example, Dash (2002), Fu et al. 

(2006), Whitehead et al. (2000)). 

Table 5.4 presents the results of the ordered model for the seek shelter choice. According 

to the table, people with disability are more willing to seek shelter in place, which may be due to 

their mobility restrictions. Such people, intuitively, rely on friends and family for evacuation. We 

also found that having a child in the household significantly decreases the likelihood of seeking 

shelter; this is possibly because as parents would be concerned about their children’s safety, they 

most probably decide to pick them up instead of seeking shelter in place. Moreover, the results 

indicate that having access to a vehicle significantly decreases the chance of seeking shelter. 

Moving to the characteristics of the emergency event, the results show that respondents’ 

location significantly affect the evacuation decision. Per results, participants who are within a 5-

mile radius of the event are less likely to seek shelter. On the other hand, those who are farther 

from the event location (i.e., between 10 and 20 miles) are more likely to seek shelter at their place. 

Interestingly, we found that issuance an evacuation order has no significant effect on the decision 

to seek shelter as oppose to the decisions on ignoring the event or evacuating the place. 
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Table 5.4. Estimation Results of Multivariate Ordered Model (Decision: Seek Shelter) 

Variable 
Cluster 1 Cluster 2 Cluster 3 Aggregate 

Param. t-stat Param. t-stat Param. t-stat Param. t-stat 

Constant  1.05***  2.96  0.82***  4.29  0.78***  3.66  0.65***  5.34 

Gender: male    ‒ ‒      ‒ ‒  0.25*  1.50      ‒ ‒ 

HH income: high    ‒ ‒  0.60***  2.82      ‒ ‒      ‒ ‒ 

Degree: high school    ‒ ‒      ‒ ‒      ‒ ‒  1.01**  1.92 

Degree: low    ‒ ‒ -0.83*** -2.01      ‒ ‒      ‒ ‒ 

Disabled  0.96***  3.38  1.28**  1.94  0.77**  1.71  0.91***  4.34 

HH child    ‒ ‒      ‒ ‒      ‒ ‒ -0.12*** -2.25 

HH child: low    ‒ ‒      ‒ ‒ -0.33 -1.61      ‒ ‒ 

HH child: high    ‒ ‒ -0.64* -1.46      ‒ ‒      ‒ ‒ 

Order to evacuate -0.58*** -2.41 -1.06*** -5.19 -0.88*** -4.25 -0.84*** -6.88 

Population Density  0.02**  1.76      ‒ ‒      ‒ ‒  0.02***  2.23 

No veh access & midday    ‒ ‒  0.74***  1.99      ‒ ‒  0.47***  2.14 

Vehicle access -0.57*** -2.01      ‒ ‒      ‒ ‒      ‒ ‒ 

Proximity: less than 5    ‒ ‒      ‒ ‒ -0.67*** -2.35      ‒ ‒ 

Proximity: 10 — 20    ‒ ‒      ‒ ‒      ‒ ‒  0.24**  1.93 

μ1  0.34***  3.37  0.28***  3.79  0.42***  4.83  0.33***  6.99 

μ2  0.66***  5.11  0.82***  6.95  0.78***  6.85  0.71***   10.95 

μ3  1.01***  6.64  1.30***  8.84  1.24***  8.55  1.14***   13.75 

Table 5.5 presents the results of the multivariate ordered model for the likelihood of 

evacuation in the case of no-notice emergency event. We found that young adults (defined as 18 

to 25 years old) are more likely to evacuate during a no-notice emergency event in cluster 1 

whereas this variable has no significant effect on evacuation decision of the participants in other 

clusters. Further, employment status is found to significantly affect participants’ evacuation 

decision; that is both full-time and part-time workers are less likely to evacuate compared to 

unemployed individuals. The results also indicate that male respondents are less likely to evaluate. 

It should be noted that although Huang et al. (2016) found no consistent effect the gender indicator 

throughout the hurricane evacuation literature, the significance of this variable in our study can be 

supported by the higher tendency of females for childcare in the case of no-notice emergencies as 

stated by Liu et al. (2012). 
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Moving to the built-environment factors and variables representing characteristics of the 

event, Table 5.5 indicates that higher population density corresponds to higher chances of 

evacuation, this can be attributed to the higher number of shelters in such areas that generally 

associate with availability of basic medical care (Smitherman and Soloway-Simon 2002; Sadri, 

Ukkusuri, and Murray-Tuite 2013b). We also found that respondents who are located in the 

vicinity of the event’s location (i.e., less than 5 miles) and experience events with higher severities 

are more likely to evacuate. As expected, issuance of a mandatory evacuation order also increases 

the likelihood of evacuation. 

Table 5.5. Estimation Results of Multivariate Ordered Model (Decision: Evacuate) 

Variable 
Cluster 1 Cluster 2 Cluster 3 Aggregate 

Param. t-stat Param. t-stat Param. t-stat Param. t-stat 

Constant 0.21 0.80  0.66***  1.98  0.37**  1.74  0.22**  1.68 

Age: 18 – 25   0.48** 1.76      ‒ ‒      ‒ ‒  0.69***  3.22 

Gender: male -0.37** -1.70      ‒ ‒      ‒ ‒      ‒ ‒ 

Race: white 0.39** 1.70  0.39***  2.11      ‒ ‒  0.25***  2.38 

HH income: low ‒ ‒  0.62***  2.76 -0.76*** -2.62      ‒ ‒ 

Degree: low ‒ ‒  0.78**  1.85      ‒ ‒      ‒ ‒ 

Employment: part-time -1.22*** -3.23 -1.49*** -3.17      ‒ ‒ -0.49*** -2.96 

Employment: full-time ‒ ‒ -0.46* -1.59      ‒ ‒      ‒ ‒ 

HH size ≥ 3 ‒ ‒ -0.42*** -2.15      ‒ ‒      ‒ ‒ 

Severity level: high ‒ ‒      ‒ ‒  0.43***  2.27      ‒ ‒ 

Order to evacuate 0.55*** 2.23  0.44***  2.29  0.78***  3.80  0.63***  5.29 

Population Density_3 ‒ ‒  0.38**  1.89  0.31**  1.94  0.28***  2.66 

Vehicle access ‒ ‒      ‒ ‒      ‒ ‒  0.31***  2.22 

Proximity: less than 5 ‒ ‒  0.49**  1.77  0.87***  2.88      ‒ ‒ 

Proximity: 10 – 20 0.50** 1.89      ‒ ‒      ‒ ‒      ‒ ‒ 

μ1 0.13** 1.91  0.43***  4.41  0.47***  4.39  0.30***  6.11 

μ2 0.34*** 3.51  0.85***  6.79  0.77***  6.06  0.62***  9.58 

μ3 0.71*** 5.44  1.32***  8.89  1.35***  8.79  1.08***   13.53 

The rest of this section is devoted to analyzing the marginal effects to better interpret the 

results and understand the effect of the estimated parameters on all categories of the evacuation 
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decision. Marginal effects are estimated as (Washington, Karlaftis, and Mannering 2010; Greene 

and Hensher 2010):  

𝜕𝑃(𝑦 = 𝑗)

𝜕𝑋𝑖
= [𝜙(𝜇𝑗−1 − 𝛽𝑋𝑖) − 𝜙(𝜇𝑗𝑘 − 𝛽𝑋1)]𝛽 (5.11) 

Δ𝑗(𝐷) = [Φ(𝜇𝑗 − 𝛽𝑋𝑖 + 𝛼) − Φ(𝜇𝑗−1 − 𝛽𝑋𝑖 + 𝛼)] 

              −[Φ(𝜇𝑗 − 𝛽𝑋𝑖) − Φ(𝜇𝑗−1 − 𝛽𝑋𝑖)] 

(5.12) 

here, Δ𝑗(𝐷) is the marginal effects for dummy variable 𝐷, which represents the change in the 

probability of an outcome with respect to changing 𝐷 from 0 to 1 and 𝛼 is its corresponding 

coefficient. Equation (11) represents the marginal effects for continuous variables, which 

calculates the change in probability of an outcome with respect to a unit change in the exploratory 

variable. Table 5.6, Table 5.7, and Table 5.8 presents the marginal effects of the estimated 

parameters on the evacuation decision for all clusters.   

As providing the marginal effects of all variables in the models would not be of much 

benefit, we only focus on the most important and policy-sensitive variables. As an example, Figure 

5.1 presents the marginal effects of the proximity variable (dummy indicator specifying those who 

are in a 5-mile radius of the emergency event) for members of cluster 3. The figure shows that 

when the dummy indicator changes from zero to one for such people, the probability of “very 

likely” ignoring or seeking shelter at the place decreases by 7.63% and 15.34%, respectively. This 

variable can capture participants’ risk perception where those who are closer to the event location 

perceive a higher risk and thus they are more likely to evacuate the affected area. These findings 

are in line with previous studies (Dash 2002; Whitehead et al. 2000; Fu, Wilmot G, and Baker Jay 

2006). 
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Table 5.6. Marginal Effects of Variables for Cluster 1 (%) 

Variable 
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Age: 18 — 25 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ -13.7 -0.3 -2.1 -1.0 17.1 

Race: white ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ -11.7 -0.2 -1.8 -0.9 14.5 

Gender: male ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 10.6 0.2 1.6 0.8 -13.1 

Degree: high school -22.3 6.0 6.1 1.1 9.2 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

Disabled ‒ ‒ ‒ ‒ ‒ -30.7 -2.8 0.0 2.8 30.6 ‒ ‒ ‒ ‒ ‒ 

Employment: part-time ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 35.5 0.7 5.3 2.7 -44.2 

Employment: full-time -21.9 5.9 5.9 1.1 9.0 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

Vehicle Access 23.9 -6.4 -6.5 -1.2 -9.9 18.2 1.6 -0.1 -1.7 -18.0 ‒ ‒ ‒ ‒ ‒ 

Residence: apartment 36.1 -9.6 -9.8 -1.8 -14.9 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

Order to evacuate 18.5 -5.0 -5.0 -0.9 -7.6 18.6 1.6 -0.1 -1.7 -18.4 -15.0 -0.3 -2.3 -1.1 18.7 

Population Density ‒ ‒ ‒ ‒ ‒ -0.8 -0.1 0.0 0.1 0.8 ‒ ‒ ‒ ‒ ‒ 

Proximity: 10 — 20 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ -14.7 -0.3 -2.2 -1.1 18.3 
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Table 5.7. Marginal Effects of Variables for Cluster 2 (%) 

Variable 
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Race: white ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ -8.6 -2.4 -1.4 0.1 12.3 

Degree: low ‒ ‒ ‒ ‒ ‒ 27.7 0.4 -3.0 -5.6 -19.5 -17.9 -5.0 -2.9 0.2 25.7 

Disabled ‒ ‒ ‒ ‒ ‒ -41.4 -0.6 4.5 8.4 29.1 ‒ ‒ ‒ ‒ ‒ 

HH income: low ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ -14.0 -3.9 -2.3 0.1 20.0 

HH income: high ‒ ‒ ‒ ‒ ‒ -19.0 -0.3 2.1 3.9 13.4 ‒ ‒ ‒ ‒ ‒ 

HH size: low ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 9.5 2.7 1.6 -0.1 -13.6 

HH child: high ‒ ‒ ‒ ‒ ‒ 20.9 0.3 -2.3 -4.3 -14.7 ‒ ‒ ‒ ‒ ‒ 

Employment: part-time ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 33.5 9.3 5.5 -0.3 -48.0 

Employment: full-time ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 9.9 2.8 1.6 -0.1 -14.2 

No veh access & midday ‒ ‒ ‒ ‒ ‒ -23.0 -0.3 2.5 4.7 16.1 ‒ ‒ ‒ ‒ ‒ 

Severity level: low -19.3 3.4 4.9 3.0 8.0 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

Order to evacuate ‒ ‒ ‒ ‒ ‒ 34.5 0.5 -3.7 -7.0 -24.3 -10.3 -2.9 -1.7 0.1 14.8 

Population Density 2.1 -0.4 -0.5 -0.3 -0.9 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

Population Density_3 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ -8.4 -2.4 -1.4 0.1 12.1 

Proximity: less than 5 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ -11.8 -3.3 -1.9 0.1 17.0 
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Table 5.8. Marginal Effects of Variables for Cluster 3 (%) 

Variable 

Ignore Seek Shelter Evacuate 
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Gender: male ‒ ‒ ‒ ‒ ‒ -8.7 0.1 1.0 1.9 5.7 ‒ ‒ ‒ ‒ ‒ 

Disabled ‒ ‒ ‒ ‒ ‒ -26.0 0.4 2.9 5.8 17.0 ‒ ‒ ‒ ‒ ‒ 

Residence: apartment 24.9 -7.0 -6.1 -3.2 -8.6 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

Residence: house 13.5 -3.8 -3.3 -1.7 -4.7 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

HH income: low ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 14.2 6.0 3.1 2.4 -25.8 

HH size: high -17.7 5.0 4.3 2.2 6.1 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

HH child: low ‒ ‒ ‒ ‒ ‒ 11.1 -0.2 -1.2 -2.5 -7.2 ‒ ‒ ‒ ‒ ‒ 

Severity level: low -23.5 6.6 5.8 3.0 8.2 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

Severity level: high ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ -7.7 -3.3 -1.7 -1.3 14.0 

Order to evacuate 12.1 -3.4 -3.0 -1.5 -4.2 30.3 -0.5 -3.3 -6.7 -19.8 -14.7 -6.3 -3.3 -2.5 26.8 

Population Density_3 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ -5.6 -2.4 -1.2 -0.9 10.1 

Proximity: less than 5 22.0 -6.2 -5.4 -2.8 -7.6 23.5 -0.4 -2.6 -5.2 -15.3 -16.4 -7.0 -3.6 -2.8 29.8 
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Figure 5.1. Marginal effect of proximity indicator on the evacuation decision for cluster 3 

Another critical parameter that affects all the response variables is the type of the order 

issued by authorities. Figure 5.2 presents the marginal effects of “issuance of an evacuation order” 

on the likelihood of evacuation decision in each cluster. It provides a clear vision that the likelihood 

of evacuation increases if participants are aware of issuing an evacuation order, while the 

likelihood of ignoring the event or seeking shelter at place significantly drops. According to Figure 

5.2, the extent of changes in the likelihood of decision variables alters across clusters, which 

indicates the unalike response of participants to the evacuation order in different clusters. 

Moreover, all correlation coefficients between error terms are significantly different from 

zero (as presented in Table 5.9), which confirms the existence of shared unobserved factors that 

should be considered in the modeling procedure. The positive sign of the correlation coefficients 

indicates that unobserved factors that increase the probability of the last category (i.e., very likely) 

in a decision (i.e., ignore, seek shelter, and evacuate) also increases the probability of the last 

category in another decision and vice versa. Per results, ignore and seek shelter have a positive 
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correlation among their error terms whereas both have a negative correlation with the evacuation 

decision likelihood. 
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Figure 5.2. Marginal effects of government recommendation on evacuation decision 
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Finally, to compare the cluster-based multivariate ordered probit models with the aggregate 

model, likelihood ratio is calculated as 𝐿𝑅 = −2[𝐿𝐿(𝛽𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒) − ∑ 𝐿𝐿(𝛽𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑖)
3
𝑖=1 ] and is 

compared with the corresponding critical chi-square value with 99% confidence level and 56 

degrees of freedom. The 𝐿𝑅 value (234.02) is found to be greater than the critical chi-square value 

(83.51), which shows the superiority of the proposed cluster-based approach over the aggregate 

model.  

Table 5.9. Estimation Results of Multivariate Ordered Model (Decision: Evacuate) 

Variable 
Cluster 1 Cluster 2 Cluster 3 Aggregate 

Param. t-stat Param. t-stat Param. t-stat Param. t-stat 

Correlation coefficients         

Ignore/seek shelter  0.53*** 3.50  0.45***  4.14  0.38***  3.17  0.45***  6.58 

Ignore/evacuate -0.58*** -4.15 -0.48*** -4.81 -0.39*** -3.12 -0.45*** -6.49 

Seek shelter/evacuate -0.50*** -4.42 -0.43*** -4.19 -0.67*** -10.04 -0.55***  -10.78 

Restricted log-likelihood -368.69 -589.34 -553.50 -1530 

log-likelihood at convergence -268.33 -471.41 -423.25 -1280 

 Note: *significant at 85%, **significant at 90%, ***significant at 95% 

5.4 Conclusions 

This study presents a cluster-based multivariate ordered probit analysis of individuals’ 

evacuation decision during no-notice emergency events using an internet-based stated preference 

survey conducted in Chicago, US. In the survey, respondents were presented with hypothetical 

emergency scenarios and were asked to indicate the likelihood of making each of the three 

potential decisions of: (1) ignoring the event, (2) seeking shelter at the place, and (3) evacuating 

the place. The responses were collected according to a five-point Likert-scale, ranging from very 

unlikely to very likely. 
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The modeling process starts by applying a two-step clustering algorithm to assign 

participants into homogenous clusters based on their demographic information. This is followed 

by estimating a multivariate ordered response model for each cluster. The results indicate that a 

wide range of demographic (e.g., disability, education level, housing type, and employment status), 

land-use (e.g., population density), and characteristics of the event (e.g., government order and 

event severity level) affects individuals’ evacuation decision behavior during no-notice emergency 

events. Further, the variations in signs and magnitudes of the estimated coefficients across clusters 

confirm the existence of the heterogeneity in the dataset that if ignored, leads to inconsistent 

estimates. Furthermore, the significance of the correlation coefficients between error terms of the 

estimated models confirms the existence of shared unobserved factors that should be considered 

in the modeling procedure.  
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6. EVACUATION PLANNING 

6.1 Introduction 

This chapter presents the estimation process and models developed for the planning phase 

of the proposed evacuation demand framework. First, a joint discrete-continuous model of 

evacuation destination and departure time choices is estimated in the context of no-notice 

emergency events. These two travel dimensions of evacuation behavior are of great importance 

because they directly affect the spatial and temporal distributions of traffic in the transportation 

network. Exploration of these attributes can specifically lead to preventing occurrence of gridlocks 

in the network and ultimately reducing economic damage and loss of life. Considering the 

behavioral aspects of evacuees’ decision behavior toward these parameters is imperative to 

identify the most influential factors in their evacuation planning process. From the methodological 

perspective, these two attributes have traditionally been modeled independently via a variety of 

modeling approaches. However, these decisions are closely intertwined due to the shared factors 

affecting them and/or the causal effects that they have on each other. Hence, it is necessary to 

investigate these two decisions in a joint structure to be able to capture the unrestricted correlation 

between their unobserved influencing factors. 

This study contributes to the emergency evacuation literature by presenting a discrete-

continuous joint structure to explore the relationship between decisions on evacuation destination 

choice and departure time. To achieve that goal, a copula-based joint model is proposed, which 

comprises a multinomial logit model as the discrete component to estimate destination choice and 

an accelerated hazard model as the continuous component to estimate departure time decision. The 
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main motivation to adopt the copula approach is that it links the stochastic error terms without 

imposing restrictive distribution assumptions on the dependency structures of the discrete and 

continuous components (Bhat and Eluru 2009). Other examples of this modeling method can be 

found in (Golshani, Shabanpour, Auld, et al. 2018; Golshani, Shabanpour, Mahmoudifard, et al. 

2018; Shabanpour, Golshani, Derrible, et al. 2017; Shabanpour et al. 2018). The results indicate 

that socio-economic attributes of evacuees, disaster characteristics, built-environment factors, and 

issuance of evacuation order by government are key determinants of the two decisions. The 

significance of the estimated copula parameters confirms the existence of unobserved shared 

effects between the two evacuation decisions, which entails the use of joint modeling scheme. 

In the next step, the study focuses on analyzing evaluation mode choice. Analysis of 

evacuation mode choice decision is challenging due to the overwhelming number of evacuees who 

would rather travel with their own vehicle. From the modeling perspective, this excessive number 

of observations in one mode (i.e., auto) can result in estimation bias and underestimating the 

probability of rarely selected alternatives (King and Zeng 2001). To avoid such issues in modeling 

of the evacuation mode choice behavior, the few studies in this area limit the scope of their analysis 

by focusing on transit-dependent populations and modeling the non-auto evacuation options (e.g., 

(Sadri et al. 2014)). 

There are quite a few methods introduced in the statistical modeling literature to account 

for such instances including weighting the sample as well as correcting the probability and/or 

estimated coefficients. Besides adding complexity to the overall modeling structure, these methods 

cannot generally lead to acceptable prediction accuracy. In contrast, machine learning (ML) 

techniques which are able to determine highly non-linear patterns in the data without any 



 58 

 

 

 

 

assumption of their functional forms, can significantly increase the prediction accuracy in these 

instances.  

From all the available machine learning algorithms, this study applies a variation of the 

Support vector machine (SVM), which is originally developed from learning theory (Boser, 

Guyon, and Vapnik 1992). SVM defines a criterion for identifying a hyperplane that has the 

maximum distance from any two nearest data points of different classes. Compared to other 

machine learning models such as neural networks, SVM does not require a large amount of data 

for training, the global optima are always guaranteed, and it outperforms other ML models when 

dealing with multidimensional datasets. This method has been extensively used in various fields 

such as pattern recognition in handwriting identification (Cortes and Vapnik 1995; Mozer, Jordan, 

and Petsche 1997), sound recognition (Wan and Campbell 2000), text mining (Joachims 1998), 

and face recognition in surveillance videos (Osuna, Freund, and Girosit 1997). 

More recently, researchers in other fields such as transportation and travel behavior have 

set to use SVM approach. For example, Moons, Wets, and Aerts (2007) used SVM as a nonlinear 

estimator of individual’s mode choice behavior. They concluded that although this approach 

results in prediction with high level of accuracy, it is not suitable for applying on skewed datasets 

due to over fitting the data. Yang et al. (2010) applied support vector machine to predict 

individual’s daily activity patterns. They used spatial information provided by GPS data to 

determine the trip chain specifications such as travel routes and stop locations. Then, based on the 

derived spatial information, they used a SVM classifier to determine the most likely activity type 

from the activity options. In an interesting study, Allahviranloo and Recker (2013) used SVM for 

activity pattern recognition and found that incorporating the effects of socio-demographic 
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attributes and characteristics of previous activities of individuals on the same day can improve the 

model prediction accuracy. 

6.2 Evacuation Destination and Departure Time 

6.2.1 Modeling Approach 

As discussed earlier, this study aims to jointly model the evacuation destination and 

departure time choices in case of no-notice emergency events. To achieve this goal, this research 

study adopts the copula-based modelling approach which is able to simultaneously estimate these 

interrelated decisions and capture the underlying correlation between them. In the proposed joint 

structure, destination choice is estimated using a multinomial logit model and departure time is 

estimated using accelerated hazard formulation. 

As the first component, evacuation destination choice is estimated using a multinomial 

logit model. The utility function of the choices can be written as: 

𝑈𝑑𝑖 = 𝛽𝑑𝑋𝑑𝑖 + 휀𝑑𝑖 
(6.1) 

where 𝑈𝑑𝑖 is the person-specific utility of destination 𝑑 for individual 𝑖, 𝑋𝑑𝑖 is the set of explanatory 

variables, 𝛽𝑑 corresponds to the estimable parameters, and 휀𝑑𝑖 is the random error term of the 

utility corresponding to unobserved factors, which is assumed to have standard type-I extreme 

value distribution. 

As the second component of this joint structure, continuous departure time can be suitably 

modeled using hazard duration approach. Hazard models focus on the elapsed time until 

occurrence of an event, which would be equal to the “time until one evacuates” in this study. In 

fact, hazard models estimate the conditional probability of event occurrence (i.e., evacuation 
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action) between 𝑡 and 𝑡 + 𝑑𝑡 given that it has not happened up to 𝑡. This conditional probability 

can be formulated as follows: 

𝜆(𝑡) =
𝑓(𝑡)

1 − 𝐹(𝑡)
 (6.2) 

here, 𝜆(𝑡) is the hazard rate, 𝑓(𝑡) is the probability density function of the elapsed time, and 𝐹(𝑡) 

is the corresponding cumulative density function that represents the probability of event 

occurrence until 𝑡. 

From the available hazard models, accelerated hazard formulation allows the covariates to 

directly influence the length of the elapsed time until the event occurrence. Therefore, the effects 

of the estimated parameters on the elapsed time can be easily interpreted. In addition, this model 

assumes that the hazard rate can be accelerated/decelerated over time in direct response to changes 

in covariates. The accelerated time hazard model can be expressed as: 

𝜆(𝑡|𝑍) = 𝜆0[𝑡. exp(𝛼𝑍)]exp(𝛼𝑍) (6.3) 

where 𝑍 is the set of explanatory variables affecting elapsed time, 𝛼 is the vector of estimable 

parameters, and 𝜆0 represents the baseline hazard function.  

As Kiefer (1988) stated, assuming that the covariates exponentially influence the duration, 

this formulation is mathematically equivalent to the log-linear regression model as (for each 

individual 𝑖 and destination 𝑑): 

ln(𝑡𝑑𝑖) = 𝛼𝑑𝑍𝑑𝑖 + 𝜈𝑑𝑖 
(6.4) 

here, ln(𝑡𝑑𝑖) represents the natural logarithm of elapsed time for person 𝑖 and destination choice 

𝑑, only if choice 𝑑 is selected as the evacuation destination, 𝛼 is the vector of estimable parameters, 
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𝑍 is the vector of explanatory variables, and 𝜈 is the error term corresponding to unobserved 

factors. 

The linkage between the two decisions depends on the type and the extent of the 

dependency between the stochastic terms 𝜈𝑑𝑖 and 휀𝑑𝑖. To capture the dependency between these 

two decisions, this study applies the copula approach, which presents the joint probability 

distribution of random variables with pre-defined marginal distributions as follows (Sklar 1973): 

𝐹𝜈𝑑𝑖, 𝑑𝑖
(𝑋1, 𝑋2) = 𝐶𝜃 (𝑢1 = 𝐹𝜈𝑑𝑖

(𝑋1), 𝑢2 = 𝐹
𝑑𝑖
(𝑋2)) (6.5) 

here, 𝐹𝜈𝑑𝑖, 𝑑𝑖
(. , . ) is the multivariate joint distribution, 𝐶𝜃(. , . ) is the copula function with 휃 as its 

corresponding copula parameter, 𝐹𝜈𝑑𝑖
(. ) and 𝐹

𝑑𝑖
(. ) are marginal distributions. 

Several copula functions have been formulated in the literature including FGM, Gaussian, 

and the Archimedean class of copulas. The Archimedean class of copula has been widely used in 

the literature because of their closed-form functions and their ability to cover a wide range of 

dependency structures (Bhat and Eluru 2009). This study adopts the Frank copula (Frank 1979) to 

jointly estimate the evacuation destination and departure time choices because it is the only copula 

function that allows for both positive and negative dependence and has no limitations in 

parametrizing the complete range of dependence between the two dependent variables (Bhat and 

Eluru 2009).  

The copula function for Frank model with 𝑢1 and 𝑢2 as marginal distributions of the 

stochastic error terms and 휃 as the copula parameter is as follows (Bhat and Eluru 2009): 

𝐶𝜃(𝑢1, 𝑢2) = −
1

휃
ln [1 +

(exp(−휃𝑢1) − 1)(exp(−휃𝑢2) − 1)

exp(−휃) − 1
] (6.6) 
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Using the equations (6.4) to (6.6) for estimating the joint distribution, the likelihood 

function of the joint model can be formulated as (Spissu et al. 2009): 

𝐿 = ∏[{∏
1

𝜎𝜈𝑑𝑖

×
𝜕𝐶𝜃𝑑(𝑢𝑖1

𝑑 , 𝑢𝑖2
𝑑 )

𝜕𝑢𝑖2
𝑑 𝑓𝜈𝑑𝑖

(
𝑙𝑛 (𝑡𝑑𝑖) − 𝛼𝑑𝑍𝑑𝑖

𝜎𝜈𝑑𝑖

)

𝐷

𝑑=1

}

𝑅𝑑𝑖

]

𝑁

𝑖=1

 (6.7) 

here, 𝑅𝑑𝑖 is the binary variable indicating whether destination 𝑑 is selected by individual 𝑖 , 𝑓𝜈𝑑𝑖
 is 

the probability density function of 𝜈, 𝜎𝜈𝑑𝑖
 is the scale parameter of 𝜈, 𝐶𝜃𝑑 is the copula 

corresponding to the joint distribution (𝐹𝜈𝑑𝑖, 𝑑𝑖
(𝑢𝑖1

𝑑 , 𝑢𝑖2
𝑑 )) where: 

𝑢𝑖1
𝑑 = 𝐹𝜈𝑑𝑖

(
𝑙𝑛 (𝑡𝑑𝑖) − 𝛼𝑑𝑍𝑑𝑖

𝜎𝜈𝑑𝑖

) (6.8) 

𝑢𝑖2
𝑑 = 𝐹

𝑑𝑖
(𝛽𝑑𝑥𝑑𝑖) (6.9) 

6.2.2 Results and Sensitivity Analysis 

Table 6.1 presents a summary of key variables used in the model and Table 6.2 outlines 

the estimation results of the joint discrete-continuous destination and departure time model. A full 

set of possible variables and variable interactions was tested, and the statistically significant 

variables are presented in this table. The results show that a wide range of socio-demographic and 

land-use variables, event characteristics, and travel-related parameters affects evacuees’ 

destination and timing decisions during no-notice emergency events. 

The results indicate that disability significantly increases the probability of selecting home 

shelter during emergency events possibly because of evacuee’s mobility restrictions. Furthermore, 

retired respondents tend to stay with their family whereas they are less likely to choose home, 
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which is not surprising because seniors typically rely on their family members for emergency 

evacuation. The results also suggest that housing type plays an important role in evacuation 

destination choice. That is respondents who live in single houses tend to return home or shelter in 

their place whereas those who live in multi-unit buildings are more likely to opt for shelters or 

hotels as their destination. 

In an interesting study, Huang et al. (2016) present a statistical meta-analysis on more than 

30 studies on hurricane evacuation to find the most common influential variables on evacuation 

decision. In contrast to the literature on advanced-notice emergency events where no significant 

effect of gender and education level on the evacuation decision has been reported (Huang et al., 

2016), we found that these variables play important roles in the evacuation destination and timing 

decisions in the case of no-notice disasters. More specifically, we found that male respondents 

generally tend to evacuate later, which can be attributed to the fact that females are more likely to 

evacuate sooner to pick-up their children during no-notice emergency events (S. Liu, Murray-

Tuite, and Schweitzer 2012, 2014). Similar to the study by Liu, Murray-Tuite, and Schweitzer 

(2014), where the authors reported that education level significantly affects different dimensions 

of the evacuation decision at the time of no-notice emergency events, we found a significant effect 

of this variable on both destination and timing decisions.  

Further, Positive sign of population density in utility functions of shelter and family 

indicates that these destinations in areas with higher population densities (e.g., metropolitan areas) 

are more attractive to evacuees. Similar findings can be found in Cheng, Wilmot, and Baker (2008) 

for selecting to stay with family as evacuation destination.  
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Table 6.1. Key Variables in the Joint Destination and Departure Time Model 

Variable Description Mean St. dev. 

Gender_male 1: if respondent is male; 0: o/w 0.45 0.50 

Degree_low 1: if respondent has a high school degree or less; 0: o/w 0.07 0.25 

Degree_graduate 1: if respondent has a graduate or professional degree; 0: o/w 0.45 0.50 

Disability 1: if respondent has a disability; 0: o/w 0.07 0.25 

Housing_townhouse 1: if respondent lives in a town house; 0: o/w 0.06 0.23 

Housing_apartment 1: if respondent lives in an apartment; 0: o/w 0.12 0.33 

Housing_condo 1: if respondent lives in a condo; 0: o/w 0.04 0.20 

Job_retired 1: if respondent is retired; 0: o/w 0.13 0.34 

Job_homemaker 1: if respondent is a homemaker; 0: o/w 0.04 0.19 

HH_size Number of adults in the household 2.65 1.48 

Government_evacuate 1: if government has issued an evacuation order; 0: o/w 0.65 0.48 

Risk_high 1: if risk of the event is high; 0: o/w 0.33 0.47 

Risk_low 1: if risk of the event is low; 0: o/w 0.31 0.47 

PopulationDensity Population density of the census tract (in thousand people) 4.59 6.09 

PopulationDensity_log 
Log of the population density of the census tract (in thousand 

people) 
0.84 1.19 

PopulationDensity _10 
1: if population density of respondents’ location during the 

event is greater than 10,000; 0: o/w 
0.11 0.32 

PopulationDensity _3 
1: if population density of respondents’ location during the 

event is less than 3,000; 0: o/w 
0.57 0.50 

Distance Total distance of the tour (miles) 133.07 267.80 

Distance_log Log of the total distance of the tour 4.07 1.27 

Distance_10 1: total distance of the tour is greater than 10 miles; 0: o/w 0.95 0.22 

Distance_30 1: total distance of the tour is greater than 30 miles; 0: o/w 0.74 0.44 

Distance_50 1: total distance of the tour is greater than 50 miles; 0: o/w 0.54 0.50 

TT_40 
1: if the total travel time of the tour is greater than 40 minutes; 

0: o/w 
0.58 0.49 

Stops_high 1: if there are more than 1 stops in respondents’ tour; 0: o/w 0.23 0.42 

Stop_pickup 1: if respondent’s first trip is to pick up their child; 0: o/w 0.05 0.22 

Mode_family 1: if respondent’s first trip is to meet up with family; 0: o/w 0.97 0.17 
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Table 6.2. Estimation Results of Joint Destination and Departure Time Choice Model 

Variable 
Shelter  Hotel  Home  Family 

Param. t-stat  Param. t-stat  Param. t-stat  Param. t-stat 

Destination Choice:            

Constant  6.33***  7.54      – –   3.90***  7.84   5.11***  4.44 

Disability     – –      – –   1.22**  2.02      – – 

Degree_graduate  0.89**  2.48      – –  -0.70* -1.80      – – 

Housing_townHouse     – –      – –   6.38***  7.62      – – 

Housing_apartment  5.33***  9.74      – –      – –      – – 

Housing_condo     – –   4.82***  8.94      – –      – – 

Job_retired     – –      – –  -2.17** -2.34   1.63***  3.84 

Government_evacuate  0.61**  2.15      – –  -1.39*** -3.19      – – 

Risk_high  1.22**   2.35   0.93*  1.72      – –      – – 

PopulationDensity_log  0.38***  2.63      – –      – –   0.21***  4.19 

PopulationDensity_10     – –  -4.79*** -8.56      – –      – – 

Distance_50     – –      – –      – –   1.71***  5.35 

Distance_log -0.27** -1.99      – –  -0.56*** -3.18      – – 

Timing:            

Constant  4.38**  2.09   3.85*  1.82   5.18***  3.65   3.71***  2.79 

Disability  2.71**  2.30      – –      – –   4.43***  6.21 

Gender_male     – –   1.99**  2.39      – –   2.52**  2.05 

Degree_low  2.55***  5.19      – –      – –      – – 

Job_retired     – –      – –      – –   4.33***  4.42 

HH_size  0.73**  2.03   0.64***  2.71      – –      – – 

Government_evacuate -0.95** -2.26  -0.53* -1.88      – –      – – 

Risk_low     – –      – –   1.49***  2.93   1.65*  1.84 

Distance_30 -1.97** -2.39  -1.28* -1.89      – –  -2.42* -1.92 

TT_40     – –      – –  -2.61*** -2.64      – – 

Stops_high -2.78*** -3.32      – –      – –      – – 

Stop_pickup -4.01*** -3.59  -3.45*** -2.73      – –      – – 

Mode_family     – –      – –      – –   2.17**  2.08 

Copula parameter: θ -1.86*** -3.80  -6.35** -2.07  -6.14** -2.40  -4.97*** -2.98 

Scale parameter: σ  5.34***   20.87   4.28**  2.25   2.71***  4.91   5.58***   16.91 

Kendall’s τ -0.20  -0.53  -0.52  -0.46 

Restricted LL -1804.87          

LL at convergence -1485.67          

Note: *Significant at 90%, **significant at 95%, ***significant at 99% 

Other collected demographic information was found to have no significant effect on the 

destination choice model. For instance, the non-significant effect of respondents’ age is in line 

with what Huang, Lindell, and Prater (2016) found in about 60% of studies on hurricane 
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evacuation. Similar to Huang, Lindell, and Prater (2016) that found consistent insignificant effect 

of race in the evacuation literature, we found this variable to have no significant effect on both 

studied evacuation dimensions. Furthermore, household income was tested both as a continuous 

variable and multiple dummy indicators, but no significant effect was found in the final model. 

This is in line with findings of 69% of studies on hurricane evacuation according to Huang, Lindell, 

and Prater (2016). On the other hand, Huang, Lindell, and Prater (2016) found that housing tenure 

has a significant effect on evacuation decision in the case of advanced-notice disasters, whereas 

we found no significant effect of this variable on the departure time and destination decisions of 

no-notice emergencies. 

Moreover, variables representing the characteristics of the emergency event significantly 

affect the evacuation destination choice. Per results, respondents are less likely to return home if 

an evacuation order has been issued by the government while they are more willing to opt for 

shelters. On the same note, respondents who are experiencing events associated with high risks 

tend to take refuge in hotels and shelters where medical assistance is usually provided. This finding 

is in line with previous studies, suggesting that public perceptions towards shelters are associated 

with the availability of food, water, and basic medical facilities (Smitherman and Soloway-Simon 

2002; Sadri, Ukkusuri, and Murray-Tuite 2013a). 

Finally, it was found that distance significantly affects the evacuation destination choice. 

The results indicate that long distance evacuation tours (greater than 50 miles) are more likely to 

associate with selecting family as evacuation destination. Further, increasing the distance leads to 

reducing the probability of selecting home and shelters. Similar results are found in Mesa-arango 

et al. (2013) in the context of hurricane evacuation. Also, Liu, Murray-Tuite, and Schweitzer 
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(2012) showed that distance significantly affects the decision to pick-up children during no-notice 

emergency events. 

Turing to the departure time decision, the results show that participants with high school 

degree or less tend to evacuate in later times which in line with findings of previous studies on 

evacuation timing (see, for example, Hasan et al. 2013). Positive sign of the variable representing 

participants with disability suggests that they are associated with later evacuation departure times. 

This can be because of their need for more preparation time, mobility restrictions, and reliance on 

others to evacuate, which is specifically important during no-notice events. We also found that the 

higher the household size of the evacuees, the longer it takes for them to evacuate as opposed to 

the findings in advanced-notice emergency events where this variable generally has no significant 

effect on the evacuation decision (Huang, Lindell, and Prater 2016).  

As expected, participants who have received the government evacuation order tend to 

depart sooner to take refuge in shelters or hotels compared to those who have received a non-

mandatory seek shelter order. These findings are similar to those from Hasan et al. (2013) in the 

context of hurricane evacuation where they stated that this variable may capture the severity of the 

event. On the same note, low risk of an emergency event leads to later departure times for trips 

destined to home or family. The level of risk of the event is also found to be a significant factor in 

evacuation decision during advanced-notice emergencies (Huang, Lindell, and Prater 2016). 

We also found that trip- and tour-related variables significantly influence the timing of 

evacuation. According to Table 3, participants tend to depart sooner if their final destinations are 

associated with travel distances longer than 30 miles and travel times greater than 40 minutes. The 

results also suggest that increasing the number of stops in the evacuation tour advances the 

departure time. Trip purpose is also confirmed to be influential. As expected, respondents who 
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stated that they would first pick up their child and then evacuate to a shelter or a hotel tend to 

depart very soon. Participants who prefer to wait to be picked up by their family members tend to 

evacuate in later times. These variables are of great importance in the case of no-notice emergency 

events since household members are possibly dispersed throughout the network in daytime. The 

dispersity of household members may result in additional trips (e.g., picking up family members) 

in the network, which can conflict with the evacuation procedure by adding extra trips in either 

the direction or the opposite direction of the expected routes (S. Liu, Murray-Tuite, and Schweitzer 

2012; Zimmerman, Brodesky, and Karp 2007). Failing to consider these additional trips may result 

in underestimation of travel time that can ultimately lead to higher number of fatalities during 

emergencies. 

Moving to the parameters of the joint modelling structure, the significance of the copula 

parameters confirms the existence of unobserved common factors in destination and departure time 

choices which, if ignored, can lead to inconsistent estimates. Furthermore, the significance of the 

scale parameters, which represent the variance of the error terms in continuous departure times, 

indicates the considerable effect of unobserved factors on departure time for each destination. To 

better show the dependency structure of destination and departure time choices, the Kendall’s 𝜏 

measure of dependency is calculated and presented in Table 3. This measure (𝜏) converts the 

copula parameter (휃) into a number between −1 and 1 (Bhat and Eluru 2009) and can be derived 

as follows: 

𝜏 = 1 −
4

휃
[1 −

1

휃
∫

𝑡

𝑒𝑡 − 1
𝑑𝑡

𝜃

𝑡=0

] , −1 ≤ 𝜏 ≤ 1 
(6.10) 
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The negative sign of the resulted Kendall’s 𝜏 indicates that the unobserved factors that 

increase the propensity to choose a destination tend to increase the departure time. Furthermore, 

the magnitude of the estimated Kendall’s 𝜏 for shelter is less than those for other destinations, 

which demonstrates that evacuees who decide to take refuge in a shelter, are more likely to start 

their trips sooner compared to other destinations. Moreover, to evaluate the model in terms of the 

predictive ability, we calculate the out-of-sample prediction accuracy measure for the discrete 

component. This measure which shows the estimated mean probability of the selected alternative 

(Chorus 2010) is calculated as 0.54 for the evacuation destination type model. With respect to the 

departure time component, Mean Absolute Percentage Error (MAPE) index is calculated as 

follows: 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑂𝑖 − 𝑃𝑖|

𝑂𝑖

𝑁

𝑖=1

 
(6.11) 

where 𝑂𝑖 is the observed departure time, 𝑃𝑖 is the predicted departure time, and 𝑁 is the total 

number of observations in the sample. The overall MAPE index is calculated as 17.93%. 

6.3 Evacuation Mode 

6.3.1 Model Structure 

As previously mentioned, the mode choice decision in the evacuation planning phase is 

estimated via a variation of SVM technique. The basic notion in SVM algorithm is to find the 

hyperplane (also known as decision surface) with maximum distance from any two nearest data 

points of different classes. These points that define the position of the separator are referred to as 

the support vectors. Support vectors are the only data points that are involved in estimating the 



 70 

 

 

 

 

decision surface and other data points play no role in this process. Decision surface can be defined 

as follows: 

�⃗⃗� 𝑇𝑥 + 𝑏 = 0 (6.12) 

where �⃗⃗�  is the weight vector that is perpendicular to the decision surface, 𝑥𝑖 is the vector of input 

variables, and 𝑏 is an intercept term. For a set of training data points with the vector of independent 

variables (𝑥𝑖) and the binary target variable defined as 𝑦𝑖 ∈ {+1,−1}, the linear classifier can be 

written as: 

𝑓(𝑥 ) = 𝑠𝑖𝑔𝑛(�⃗⃗� 𝑇𝑥 + 𝑏) (6.13) 

here, a positive sign (negative) resulted from Eq. (6.13) indicates that the data point belongs to the 

category +1(-1). Another important parameter in SVM is the margin function (𝑀) which is the 

distance between support vectors of classes and thus, will be maximized in the best condition. The 

margin function is defined as the perpendicular distance to the hyperplane and based on the 

Euclidean distance (the shortest distance (r) from a point to the hyperplane �⃗⃗� 𝑇𝑥 + 𝑏) can be 

formulated as: 

𝑟 =
|�⃗⃗� 𝑇𝑥 + 𝑏|

|�⃗⃗� |
=

1

|�⃗⃗� |
 

(6.14) 

Referring to the definition of the margin function, it can be derived that margin function is 

twice the minimum possible distance (𝑟). Also, as previously mentioned, the margin function is 

best to be maximized (so that plenty of room remains for the estimation error). Therefore, to 

determine the margin function, the following maximization problem needs to be solved: 

𝑀=𝑎𝑟𝑔𝑚𝑎𝑥
𝑤, 𝑏

 𝑚𝑖𝑛
𝑥𝑖

2

|�⃗⃗� |
 

(6.15) 
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For the sake of calculation convenience, it is assumed that |�⃗⃗� 𝑇𝑥 + 𝑏| ≥ 1; therefore, the 

maximization problem can be rewritten as: 

𝑀

2
= 𝑎𝑟𝑔𝑚𝑖𝑛 ∑𝑤𝑖

2

𝐼

𝑖=1

 

𝑠. 𝑡.  𝑦𝑖(𝑤𝑥𝑖 + 𝑏) ≥ 1 

(6.16) 

Solving the latter optimization problem results in 𝑤 and 𝑏, which are then used to estimate 

the separator hyperplane. There are instances that data points cannot be classified with linear 

classifier in the current dimensional space. Therefore, the original input variables should be 

transformed into a higher-dimensional space where separating them by a linear classifier is 

feasible. Assuming that the linear classifier is 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗, and the transformation function 

is 𝐹(. ), we can form the classifier as: 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝐹(𝑥𝑖)
𝑇𝐹(𝑥𝑗) (6.17) 

The following formulations are among the most popular transformation functions in SVM 

algorithms: 

Polynomial of power: 𝐾(𝑥𝑖 , 𝑥𝑗) = (1 + 𝑥𝑖
𝑇𝑥𝑗)

𝑝
 (6.18) 

Radial-basis function: 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (−
‖𝑥𝑖−𝑥𝑗‖

2

2𝜎2
) (6.19) 

Polynomial of power: 𝐾(𝑥𝑖 , 𝑥𝑗) = tanh(𝛽0𝑥𝑖
𝑇𝑥𝑗 + 𝛽1) (6.20) 

6.3.2 Results and Sensitivity Analysis 

SVM is a binary classification technique whereas evacuation mode in this analysis is a 

categorical variable with four modes of auto, Metra, CTA, and get picked up by family/friends. To 



 72 

 

 

 

 

model the evacuation mode choice with SVM, this study utilizes the one-vs-all technique where 

the target variable is treated as a series of binary choices. In this approach, for each mode of travel, 

we form a binary indicator of whether the alternative is selected and then classify the binary 

indicator using SVM algorithm. The SVM models are estimated with the open-source Scikit-learn 

package (Pedregosa et al. 2011) in Python. 

To assess the prediction accuracy of the models, k-fold cross validation technique is 

applied. In this technique, we first split the data into 𝑘 equally-sized partitions – one is held out 

for testing the accuracy of the model and the other 𝑘 − 1 partitions are used to train the model. 

The procedure is repeated 𝑘 times and the overall prediction accuracy is calculated by taking the 

average of the prediction accuracy measures of all the models. The prediction accuracy measure 

of binary outcomes can be illustrated through the Receiver Operating Characteristic (ROC) curves 

which plot the true positive rate (𝑇𝑃𝑅) versus the false positive rate (𝐹𝑃𝑅) for various decision 

thresholds (Hanley and McNeil 1982): 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6.21) 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (6.22) 

here, 𝑇𝑃 is the true positive fraction (number of +1 that are correctly predicted as +1), 𝐹𝑁 is the 

false negative fraction (number of +1 that are incorrectly predicted as -1), 𝐹𝑃 is the false positive 

fraction (number of -1 that are incorrectly predicted as +1), and 𝑇𝑁 is the true negative fraction 

(number of -1 that are correctly predicted as -1). Figure 6.1 presents the ROC curves of the four 

evacuation modes for 5-fold cross validation. The dashed red line represents the ROC curve of 

random guess. Any curve below this line implies that the model performs worse than the random 

guess and any curve above this line indicates that the classifier outperforms the random guess. 
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Also, the larger the area under the ROC curve (AUC), the higher will be the prediction accuracy 

of the model. Figure 6.1 shows that, as expected, auto has the best prediction accuracy among all 

evacuation modes, possibly due to its high number of observations. 

  

(a) Auto (b) Metra 

  

(c) CTA (d) Get picked up by family/friends 

Figure 6.1. ROC Curves for Travel Modes 

With respect to the imbalanced frequency of target variable in the dataset, several methods 

have been proposed to prevent bias in the estimated coefficients and probabilities. One solution is 

naive over-sampling the rare events. In this approach, we replicate the observations that selected 

the rare alternative by sampling with replacement or under-sample the highly selected alternative 

by removing the observations corresponding to that alternative by sampling without replacement. 
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Another popular solution is to use penalization algorithms in which a penalty term is added to the 

classification function to avoid errors in classification of the rare alternative.  

Although the previous methods could address the issue of rarely selected alternatives in 

SVMs, they still cannot lead to very high levels of prediction accuracy such as in normal data. To 

increase the prediction accuracy of rarely selected alternatives, (Chawla et al. 2002) introduced the 

Synthetic Minority Over-sampling Technique (SMOTE) that over-samples the rare alternative by 

generating synthetic observations based on k-nearest neighbor algorithm. SMOTE takes the k-

nearest neighbors of a data point in the rarely selected alternative and synthesizes new data points 

between them by either averaging or linear interpolation. Figure 6.2 presents the ROC curves for 

different travel modes after implementing the SMOTE algorithm on the dataset. 

  
(a) Auto (b) Metra 

  
(c) CTA (d) Get picked up by family/friends 

Figure 6.2. ROC Curves for Travel Modes After Implementing SMOTE Algorithm 
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For comparison, Figure 6.3 illustrates mean ROC curves of the mode choice models before 

and after implementation of the SMOTE algorithm. According to the figure, applying the SMOTE 

algorithm and increasing the number of observations that opt for the rarely selected alternatives 

significantly improve the prediction accuracy for all evacuation modes. To investigate the effect 

of explanatory variables on evacuees’ mode choice decision and address the black-box nature of 

the SVM algorithm, we conduct sensitivity analysis on important variables which is presented in 

what follows. This is done by simulating the estimated model and calculating the change in the 

mode share with respect to changing the values of continuous variables by a certain percent and 

changing the binary indicators from 0 to 1 (Golshani, Shabanpour, Mahmoudifard, et al. 2018). 

  
(a) Before (b) After 

Figure 6.3. Comparison of Mean ROC Curves Before and After Implementing SMOTE Algorithm 

The results indicate that disaster characteristics and issuance of evacuation order by 

government are among the most influential parameters on the evacuation mode decision. Figure 

6.4 illustrates the change in the probability of each mode with respect to a change in the latter 

variables. According to the figure, issuance of a mandatory evacuation order and higher severity 

of the events decrease the probability of using CTA and getting picked up by relatives, while 
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increase the probability of using other modes of travel. The increase in the probability of Metra 

could be due to the fact that respondents usually associate the issuance of an evacuation order with 

higher severity levels and risks; therefore, they tend to evacuate to farther locations such as 

suburban areas which can be relatively accessible by Metra services. On the other hand, proximity 

of the respondent to the event location significantly decreases the probability of using Metra. 

Interestingly, we found that if respondent is in a close proximity of the event location, the 

probability of selecting private car decreases whereas the probability of getting picked up by 

family/friends increases. This is possibly because, those who are located in the impacted area face 

greater danger and prefer to shelter in place until the help arrives.  

 

Figure 6.4. Percentage Change in the Probability of Each Mode Due to Characteristics of the Event 

The general assumption in the evacuation mode choice literature is that a high majority of 

people who have access to a private vehicle tend to use it as their mode. To test this hypothesis, 

we simulated the model based on various percentages of vehicle accessibility in the data as 

illustrated in Figure 6.5. According to the figure, only a few of those who have access to a vehicle 

-10% -8% -6% -4% -2% 0% 2% 4% 6% 8%

Auto

Metra

CTA

Get Picked up

Proximity: 5 miles Severity level: high Evacuation order



 77 

 

 

 

 

choose to use other travel modes for evacuation. As presented, by increasing the vehicle 

accessibility from 50% to 100%, the probability of evacuating with auto increases by 55.7%, which 

is mostly associated with the reduction in the probability of getting picked up by relatives. Indeed, 

the probability of getting picked up by relatives decreases by 30.5% as a result of providing access 

to a vehicle for all respondents. We also found that the rate of reduction of the probability for those 

who would wait to be picked up is higher than transit users. This trend can be attributed to the fact 

that if access to a private vehicle is provided for those who have decided to wait for their relatives 

to pick them up, they most probably will evacuate themselves in order to keep their relatives out 

of the impacted area.  

 

Figure 6.5. Percentage Change in the Probability of Each Mode for Different Vehicle Accessibility 
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6.4 Conclusions 

This chapter presents the estimation process and models developed for the planning phase 

of the proposed evacuation demand framework. In this phase, all the attributes of the newly 

generated evacuation activity including final destination, departure time, and travel mode are 

estimated using an internet-based stated preference survey conducted in Chicago, US. The results 

indicate that a wide range of demographic (e.g., disability, education level, housing type, and 

employment status), land-use (e.g., population density), and characteristics of the event (e.g., 

government order and event severity level) affects evacuees’ decision mechanism during no-notice 

emergency events. 

First, the study focuses on modeling evacuation destination and departure time as a joint 

decision in order to capture the interrelation between the two decisions. This issue arises because 

of some shared unobserved factors that affects the two evacuation attributes simultaneously, and 

it has been largely ignored in the evacuation literature. To tackle these issues, this study presents 

a joint discrete-continuous model of destination and departure time choices during no-notice 

emergency events. These two decisions are of great importance because they directly impact the 

spatial and temporal distribution of traffic in the network in case of emergency events. The 

proposed joint model consists of a multinomial logit model to estimate the destination choice and 

an accelerated hazard formulation to estimate the departure time of the evacuation.  

The significance of copula and scale parameters in the proposed joint structure confirms 

that there exist unobserved factors between the two attributes which, if ignored, lead to inconsistent 

estimates. Furthermore, the least estimated dependence measure is obtained for the shelter 
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alternative, which indicates those respondents who select this alternative as their final destination 

tend to start their trip sooner than others. 

The second part of this chapter focuses on investigating individuals’ decision behavior 

towards evacuation mode. In this section, we address the estimation bias that is introduced due to 

unbalanced nature of the dependent variable. To do so, this study takes advantage of a powerful 

machine learning algorithms called SMOTE, which reshapes the sample by creating new data 

points from the under representative alternatives (i.e., Metra, CTA, and getting picked up by 

family/friends) using the k-nearest neighbor approach. After balancing the data, we utilized one-

versus-all SVM technique to model evacuees’ mode choice. The results showed high prediction 

accuracy and significant improvements compared to other types of models. 
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7. EVACUATION TOUR FORMATION 

7.1 Introduction 

This chapter focuses on the third phase of the proposed framework, which is called tour 

formation. In this bi-level phase, we first determine the components of the evacuation tours 

including number of intermediate stops, travel time, and travel distance. Because of the 

interrelations of these components or causal effects that they may have on each other, it would be 

of great significance to consider them as a joint structure. Another critical issue that can be 

addressed by utilizing joint modeling structure is the endogenous effect of the number of stops on 

the total travel time and distance of the evacuation tours. 

Therefore, using the method outlined by Lee (1983), a joint discrete-continuous-continuous 

model that contains the ordered probit formulation for the discrete component (number of stops) 

and log-linear regression for the continuous components (travel time and distance) is developed. 

Ordered probit is chosen for modeling the number of intermediate stops because it specifically 

accounts for the ordinal nature of the variable, and the log-linear regression is selected to ensure 

the non-negativity of outcomes for the continuous components (Farber et al. 2014). 

Once the total number of intermediate stops in the evacuation tour is estimated, the second 

part of this phase determines the type of each stop. There are four types of intermediate stops 

available in the data, namely meet with family and friends, shop for supplies, pick-up children, 

and pick-up other family members. For the case of having only one intermediate stop, a 

multinomial logit model is incorporated to estimate the probability of each stop type. For those 
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who have more than one stop in their tour, a variation of rank ordered logit model is utilized to 

determine the type and order of the intermediate stops in the evacuation tour. 

7.2 Modeling Approach 

7.2.1 Tour Components 

In this section, we elaborate on the structure of the joint ordinal-continuous-continuous 

model that will be used to simultaneously estimate number of intermediate stops, travel time, and 

travel distance, respectively. As previously shown in the data section, the number of intermediate 

stops in people’s evacuation tours vary from 0 to 2. Due to the ordinal nature of this variable, we 

apply the ordered probit model to estimate the first component of the joint structure as: 

𝑈𝑖 = 𝛽𝑋𝑖 + 휀𝑖   
(7.1) 

𝑆𝑖 = 𝑗   𝑖𝑓   𝜇𝑗−1 < 𝑈𝑖 ≤ 𝜇𝑗 

In Eq. (7.1), 𝑈𝑖 is the unobserved utility function of the number of intermediate stops for 

observation 𝑖, 𝑋𝑖 is a vector of explanatory variables, 𝛽 is the vector of estimable parameters, and 

휀𝑖 is the random error term assumed to have a normal distribution with mean zero and variance 

𝜎2. In Eq. (7.1), 𝑗 is the number of intermediate stops (here ranges from 0 to 2), 𝜇𝑗 is the threshold 

that separates 𝑗 and 𝑗 + 1 categories, and 𝐽 is the total number of categories. 

Assuming the cumulative density function of the error term as Φ(. ), the probability of each 

outcome in observation 𝑖 can be written as: 

𝑃(𝑆𝑖 = 0) = 𝛷(𝜇0 − 𝛽𝑋𝑖) = 𝛷(−𝛽𝑋𝑖) (7.2) 

𝑃(𝑆𝑖 = 1) = 𝛷(𝜇1 − 𝛽𝑋𝑖) − 𝛷(−𝛽𝑋𝑖) (7.3) 
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𝑃(𝑆𝑖 = 2) = 1 − 𝛷(𝜇1 − 𝛽𝑋𝑖) = 𝛷(𝛽𝑋𝑖 − 𝜇1) (7.4) 

With regards to the second and third components of the joint model, travel time and travel 

distance are considered as continuous variables with a log-normal distribution (to ensure their non-

negativity), which can be formulated as: 

𝑙𝑛 (𝑇𝑖) = 𝛼𝑍𝑖 + 𝜈𝑖 (7.5) 

𝑙𝑛 (𝐷𝑖) = 𝛾𝑄𝑖 + 𝜔𝑖 (7.6) 

here, 𝑇𝑖 and 𝐷𝑖 are respectively the total travel time and distance traveled by an evacuee, 𝑍𝑖 and 𝑄𝑖 

are vectors of explanatory variables that affect the travel time and distance, respectively, with 𝛼 

and 𝛾 as their vectors of estimable parameters. 𝜈𝑖 and 𝜔𝑖 correspond to the stochastic error terms 

of the evacuation travel time and distance, which are assumed to be normally distributed with 

probability density functions as (Johnson, Kotz, and Balakrishnan 1994; Habib, Day, and Miller 

2009): 

𝑓(𝜈𝑖) =
1

𝜎𝜈𝑇𝑖
𝜙 (

𝑙𝑛(𝑇𝑖) − 𝛼𝑍𝑖

𝜎𝜈
) 

𝑓(𝜔𝑖) =
1

𝜎𝜔𝐷𝑖
𝜙 (

𝑙𝑛(𝐷𝑖) − 𝛾𝑄𝑖

𝜎𝜔
) 

(7.7) 

(7.8) 

where 𝑓(. ) Is the probability density function of the error terms, 𝜎𝜈 and 𝜎𝜔 are the standard 

deviations of the normal distributions corresponding to 𝜈 and 𝜔, respectively. 

In order to capture the effects of the shared unobserved factors on the three dependent 

variables, a multivariate normal distribution can be imposed on the error terms of Eq. (7.1), Eq. 

(7.5), and Eq. (7.6) as follows: 
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(

휀𝑖

𝜈𝑖

𝜔𝑖

)~𝑁 [(
0
0
0
) , (

 𝜎2 𝜌 𝜈𝜎 𝜎𝜈 𝜌 𝜔𝜎 𝜎𝜔

𝜌𝜈 𝜎𝜈𝜎  𝜎𝜈
2 𝜌𝜈𝜔𝜎𝜈𝜎𝜔

𝜌𝜔 𝜎𝜔𝜎 𝜌𝜔𝜈𝜎𝜔𝜎𝜈  𝜎𝜔
2

)] (7.9) 

where 𝜌𝑚𝑛 is the correlation coefficient between any two random error terms 𝑚 and 𝑛. To avoid 

unnecessary complex analysis, we can normalize one of the standard deviations to 1. Therefore, 

the multivariate normal distribution can be rewritten as (Greene 2012): 

(

휀𝑖

𝜈𝑖

𝜔𝑖

)~𝑁 [(
0
0
0
) , (

 1 𝜌 𝜈𝜎𝜈 𝜌 𝜔𝜎𝜔

𝜌𝜈 𝜎𝜈  𝜎𝜈
2 𝜌𝜈𝜔𝜎𝜈𝜎𝜔

𝜌𝜔 𝜎𝜔 𝜌𝜔𝜈𝜎𝜔𝜎𝜈  𝜎𝜔
2

)] (7.10) 

We can consider the multivariate normal distribution as a union of multiple bivariate 

normal distributions (Nurul Habib 2012). Therefore, considering the correlation between the three 

dependent variables (as presented in Eq. (7.10)) and assuming the total travel time as the base (as 

in Eq. (7.7)), we can employ the approach presented by (Lee 1982) to transform the probability 

density functions of the error terms of the total travel distance from Eq. (7.8) to Eq. (7.11) as 

follows: 

𝑓(𝜔𝑖) =
1

(𝜎𝜔√1 − 𝜌𝜔𝜈
2 )𝐷𝑖

𝜙 (
𝑙𝑛(𝐷𝑖) − 𝛾𝑄𝑖 − 𝜌𝜔𝜈𝜎𝜔 (

𝑙𝑛(𝑇𝑖) − 𝛼𝑍𝑖

𝜎𝜈
)

𝜎𝜔√1 − 𝜌𝜔𝜈
2

) (7.11) 

Therefore, the probability of each outcome for observation 𝑖 can be written as: 

𝑃(𝑆𝑖 = 0) =

[
 
 
 
 
 

𝑓(𝜈𝑖)𝑓(𝜔𝑖)Φ

(

  
 

−𝛽𝑋𝑖−𝜌𝜈𝜀(
ln(𝑇𝑖)−𝛼𝑍𝑖

𝜎
)−𝜌𝜔𝜀√1−𝜌𝜈𝜀

2 (
ln(𝐷𝑖)−𝛾𝑄𝑖−𝜌𝜔𝜈𝜎𝜔(

ln(𝑇𝑖)−𝛼𝑍𝑖
𝜎𝜈

)

𝜎𝜔√1−𝜌𝜔𝜈
2

)

√(1−𝜌𝜈𝜀
2 )(1−𝜌𝜔𝜀

2 )

)

  
 

]
 
 
 
 
 

  (7.12) 
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𝑃(𝑆𝑖 = 1) =

[
 
 
 
 
 

𝑓(𝜈𝑖)𝑓(𝜔𝑖)Φ

(

  
 

𝜇1−𝛽𝑋𝑖−𝜌𝜈𝜀(
ln(𝑇𝑖)−𝛼𝑍𝑖

𝜎
)−𝜌𝜔𝜀√1−𝜌𝜈𝜀

2 (
ln(𝐷𝑖)−𝛾𝑄𝑖−𝜌𝜔𝜈𝜎𝜔(

ln(𝑇𝑖)−𝛼𝑍𝑖
𝜎𝜈

)

𝜎𝜔√1−𝜌𝜔𝜈
2

)

√(1−𝜌𝜈𝜀
2 )(1−𝜌𝜔𝜀

2 )

)

  
 

]
 
 
 
 
 

  

                     −

[
 
 
 
 
 

𝑓(𝜈𝑖)𝑓(𝜔𝑖)Φ

(

  
 

−𝛽𝑋𝑖−𝜌𝜈𝜀(
ln(𝑇𝑖)−𝛼𝑍𝑖

𝜎
)−𝜌𝜔𝜀√1−𝜌𝜈𝜀

2 (
ln(𝐷𝑖)−𝛾𝑄𝑖−𝜌𝜔𝜈𝜎𝜔(

ln(𝑇𝑖)−𝛼𝑍𝑖
𝜎𝜈

)

𝜎𝜔√1−𝜌𝜔𝜈
2

)

√(1−𝜌𝜈𝜀
2 )(1−𝜌𝜔𝜀

2 )

)

  
 

]
 
 
 
 
 

  

(7.13) 

 

𝑃(𝑆𝑖 = 2) = 1 −

[
 
 
 
 
 

𝑓(𝜈𝑖)𝑓(𝜔𝑖)Φ

(

  
 

𝜇1−𝛽𝑋𝑖−𝜌𝜈𝜀(
ln(𝑇𝑖)−𝛼𝑍𝑖

𝜎
)−𝜌𝜔𝜀√1−𝜌𝜈𝜀

2 (
ln(𝐷𝑖)−𝛾𝑄𝑖−𝜌𝜔𝜈𝜎𝜔(

ln(𝑇𝑖)−𝛼𝑍𝑖
𝜎𝜈

)

𝜎𝜔√1−𝜌𝜔𝜈
2

)

√(1−𝜌𝜈𝜀
2 )(1−𝜌𝜔𝜀

2 )

)

  
 

]
 
 
 
 
 

   (7.14) 

Finally, the likelihood function of the joint ordered-continuous-continuous model can be 

formulated as: 

𝐿 = ∏∏𝑃(𝑆𝑖 = 𝑗)𝑚𝑖𝑗

2

𝑗=0

𝐼

𝑖=1

 (7.15) 

7.2.2 Type and Order of Intermediate Stop 

As previously discussed, once the number of the intermediate stops is determined (the 

output of the latter model), we will determine the type of each stop. In the survey, four types of 

intermediate stops are identified in respondents’ evacuation tours, namely meeting with family & 

friends, pick-up children, pick-up other family members, and shop for supplies. Descriptive 

analysis of the data indicates that the number of intermediate stops ranges from 0 to 2. In case of 

zero stops, intuitively, there is no need for identifying the stop type. In the case of one intermediate 

stop, we employ a multinomial logit model to determine the type of the stop. In this model, the 

utility of alternative 𝑎 (𝑎 from {1, 2, … , 𝐴}) for individual 𝑖, and probability that individual 𝑖 selects 

alternative 𝑎 are as follows: 
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𝑈𝐼𝑆𝑖𝑎 = 휃𝑎𝑁𝑖𝑎 + 휁𝑖𝑎  (7.16) 

𝑃[𝑦𝑖 = 𝑎] =
𝑒𝑥𝑝(휃𝑎𝑁𝑖𝑎)

∑ 𝑒𝑥𝑝(휃𝑘𝑁𝑖𝑘)
𝐴
𝑘=1

 (7.17) 

here, 𝑈𝐼𝑆𝑖𝑎 denotes the utility of intermediate stop 𝑎 for individual 𝑖, 휃𝑎 is the vector of estimable 

parameters that corresponds to the vector of independent variables (𝑁𝑖𝑎), and 휁𝑖𝑎 is the stochastic 

error term assumed to follow an extreme value type I distribution.  

In the case that the evacuee has two intermediate stops, we use a variation of the rank 

ordered logit model (Beggs, Cardell, and Hausman 1981) to determine the type and order of the 

two stops. In this model, we consider the ordering of the stops as 𝑦𝑖
𝑅 = (𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑅), where 

𝑎𝑖𝑟 denotes the alternative which is ranked as the 𝑟th alternative by individual 𝑖, and 𝑅 denotes the 

total number of alternatives which are ranked. This model assumes that the decision maker selects 

the alternative with the highest utility as the most preferred alternative, the alternative with the 

second highest utility as the second most preferred alternative, and so forth. Therefore, the 

probability of observing ranking 𝑦𝑖
𝑅 for respondent 𝑖 equals (Beggs, Cardell, and Hausman 1981): 

𝑃[𝑦𝑖
𝑅 = (𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑅)] = ∏

𝑒𝑥𝑝(휃𝑎𝑟
𝑁𝑎𝑖𝑟

)

∑ 𝑒𝑥𝑝(휃𝑎𝑘
𝑁𝑎𝑖𝑘

)𝐴
𝑘=𝑟

𝑅

𝑟=1

 (7.18) 

More specifically, in the context of our analysis where evacuees have two intermediate 

stops (𝑅 = 2), Eq. (7.18) can be simplified as follows:   

𝑃[𝑦𝑖
2 = (𝑎𝑖1, 𝑎𝑖2)] =

𝑒𝑥𝑝(휃𝑎1
𝑁𝑎𝑖1

)

∑ 𝑒𝑥𝑝(휃𝑎𝑘
𝑁𝑎𝑖𝑘

)𝐴
𝑘=1

×
𝑒𝑥𝑝(휃𝑎2

𝑁𝑎𝑖2
)

∑ 𝑒𝑥𝑝(휃𝑎𝑘
𝑁𝑎𝑖𝑘

)𝐴
𝑘=2

 (7.19) 

Assuming that 𝛿𝑖,(𝑎1,𝑎2) is a binary indicator which equals 1 if ranking of (𝑎1, 𝑎2) is 

observed for individual 𝑖 and equals 0 otherwise, the likelihood function of the model can be 

formulated as follows:  
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𝐿 = ∏ ∏ (
𝑒𝑥𝑝(휃𝑎1

𝑁𝑎𝑖1
)

∑ 𝑒𝑥𝑝(휃𝑎𝑘
𝑁𝑎𝑖𝑘

)𝐴
𝑘=1

×
𝑒𝑥𝑝(휃𝑎2

𝑁𝑎𝑖2
)

∑ 𝑒𝑥𝑝(휃𝑎𝑘
𝑁𝑎𝑖𝑘

)𝐴
𝑘=2

)

𝛿𝑖,(𝑎1,𝑎2)

(𝑎1,𝑎2)𝑖

 (7.20) 

7.3 Results and Sensitivity Analysis 

Table 7.1 presents a brief summary statistics of the key variables used in the models. The 

results of the tour components model (including number of intermediate stops, total distance, and 

total travel time) and the results of the models on the type of intermediate stops are respectively 

presented in Table 7.2 and Table 7.3. This section starts with discussing the tour components model 

in terms of effects of the estimated parameters (their sign and magnitude), followed by elaborations 

on parameters of the joint structure and model elasticities. Following that, results of the models on 

the type of intermediate stops are discussed. 

The estimation results confirm that a confluence of factors including individuals’ and 

households’ socio-demographics, characteristics of the emergency event, and built-environment 

indicators influence the evacuation tour components. To facilitate the interpretation of the 

estimated parameters of the number of intermediate stops component, mean marginal effects of 

the binary variables used in the model are presented in Figure 7.1. According to this figure, 

receiving the evacuation order by government has the highest effect on the number of intermediate 

stops in the evacuation tour. On the other hand, whether the residence type is single-family 

detached house has the lowest impact on the number of intermediate stops in respondents’ 

evacuation tour. It should also be noted that since comparing the marginal effects of binary 

variables with continuous covariates is unreasonable, they are not presented in this figure.  
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Table 7.1. Key Variables Used in the Estimated Models 

Variable Definition Mean 
St. 

dev. 

Age: 19-25 1: if participant is between 19 and 25 years old; 0: o/w 0.07 0.25 

Age: 26-35 1: if participant is between 26 and 35 years old; 0: o/w 0.13 0.34 

Employment: full time 1: if participant is full time worker; 0: o/w 0.59 0.49 

Employment: retired 1: if participant is retired; 0: o/w 0.13 0.34 

Employment: 

unemployed 
1: if participant is unemployed; 0: o/w 0.08 0.27 

Residence: multi-unit 

residential building 

1: if participant lives in a multi-unit residential building; 0: 

o/w 
0.17 0.37 

Residence: house 1: if participant lives in a house; 0: o/w 0.49 0.50 

HH income: low 1: if household income is less than $50,000; 0: o/w 0.26 0.44 

Vehicle access 
1: if participant has access to a vehicle when event occurs; 0: 

o/w 
0.88 0.32 

HH size: greater than 2 1: if household size is greater than 2; 0 o/w 0.44 0.50 

HH size: greater than 3 1: if household size is greater than 3; 0 o/w 0.26 0.44 

HH child Number of children in the household 0.58 1.04 

Having a child 1: if respondent has a child; 0: o/w 0.30 0.46 

Proximity to respondent: 

less than 5 

1: if event happens within a 5-mile radius of the respondent; 

0: o/w 
0.19 0.39 

Proximity to child: less 

than 5 

1: if event happens within a 5-mile radius of the respondent’s 

child; 0: o/w 
0.07 0.25 

Proximity to other 

family members: less 

than 5 

1: if event happens within a 5-mile radius of the respondent’s 

other family members; 0: o/w 
0.09 0.28 

Proximity to family 

members: less than 5 

1: if event happens within a 5-mile radius of any family 

member of the respondent; 0: o/w 
0.16 0.37 

Order to evacuate 1: if government has issued an evacuation order; 0: o/w 0.65 0.48 

Severity level: high 1: if event has a high severity; 0: o/w 0.33 0.47 

Destination: shelter 
1: if shelter is selected as respondent’s final destination; 0: 

o/w 
0.58 0.50 

Population Density 
Population density of respondent’s location at the time of an 

event (in thousand) 
4.62 6.10 

Population Density (log) 
Log of population density of respondent’s location at the time 

of an event (in thousand) 
0.84 1.19 
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Table 7.2. Estimation Results of the Tour Components Model 

Variable Parameter t-stat 

Number of Intermediate Stops   

Constant -1.41*** -5.59 

Residence: house  1.91***  7.36 

Order to evacuate  0.39**  2.21 

HH child  0.11***  3.46 

Employment: retired -0.43* -1.65 

Proximity to child: less than 5  0.55**  1.98 

Proximity to other family members: less than 5  0.41**  2.53 

Population Density (log) -0.45** -1.97 

𝜇1  1.16***  8.38 

Total Distance   

Constant  3.55***  25.73 

Order to evacuate  0.26*  1.93 

Proximity to respondent: less than 5 -0.55*** -3.41 

HH income: low -0.32** -2.27 

Age: 26-35  0.54**  2.19 

Vehicle access  0.63***  8.69 

Proximity to other family members: less than 5  0.76*** -3.45 

Number of Intermediate Stops  0.07**  2.52 

𝜎𝜔  1.20***  26.79 

Total Travel Time   

Constant  3.94***  40.12 

Order to evacuate  0.21**  1.98 

Proximity to respondent: less than 5 -0.34*** -2.66 

HH income: low -0.36*** -3.16 

Age: 26-35  0.49**  2.49 

Proximity to other family members: less than 5  0.53*** -3.02 

Population Density  0.01***  2.95 

Number of Intermediate Stops  0.09***  3.81 

𝜎𝜈  0.96***  26.58 

Correlation Coefficients   

𝜌𝜈𝜔  -0.74***  -14.22 

𝜌 𝜔  -0.21*  -1.83 

𝜌 𝜈  -0.25**  -2.22 

Model Specification   

Log-likelihood at convergence -924.46 

Restricted log-likelihood  -1376.00 

Note: *Significant at 90%, **significant at 95%, ***significant at 99% 
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Figure 7.1. Marginal Effects of the Categorical Variables 

The estimation results also indicate that several socio-demographic indicators affect all the 

dependent variables. For example, retired evacuees are more likely to travel to their final 

evacuation destination without any intermediate stops as the probability of no-intermediate-stop 

tours on average increases by 13.2% for such individuals. This is possibly because retired (and 

more generally, older) individuals are more likely to wait to be picked up by their family members 

in case the emergency event. 

Furthermore, Table 7.2 reveals that number of children in the household has a strong 

impact on the number of intermediate stops in the evacuation tour. Figure 7.2 presents the 

probability of each outcome (i.e., number of intermediate stops) with respect to the number of 

children in the household. The overall trends are intuitive in that as the number of children in the 

family increase the probability of having no intermediate stop decreases; the trend is opposite for 
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the case of two intermediate stops. On the other hand, the curve of one-intermediate-stop tours 

peaks in the case of having one or two children.  

More specifically, the average probability that a member of a childless family evacuates 

without an intermediate stop is 60.9% whereas this probability reduces by 14.3% for families with 

one child. The probability of non-intermediate-stop tours dramatically decreases to 12.7% for the 

members of families with four or more children. On the other hand, the probability of having two 

intermediate stops escalates in the families with more than three children. This is intuitive because, 

in a typical day, children are probably located in different places (e.g., school, daycare, home, etc.) 

and parents need to pick them up during emergencies, which increase the number of intermediate 

stops in their evacuation tour.  

 

Figure 7.2. Effect of the Number of Children on the Probability of Outcomes 
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Furthermore, it is found that evacuees who have access to a personal vehicle at the time of 

the emergency event have longer travel distances, perhaps to pursue other activities such as 

shopping or picking up family members in their evacuation tour. On the same note, the results 

indicate that members of low-income families have shorter travel distances, which might be 

because they mostly rely on transit services for their evacuation (as a result of their lower vehicle 

ownership) and thereby cannot pursue other types of activities in their evacuation tour. We also 

found that young individuals who are between the age of 25 and 35 have higher travel distance 

and travel time. 

Moving to the variables representing the characteristics of the emergency event, the results 

reveal that receiving evacuation order from responsible government agencies significantly 

increases all dependent variables. Past studies showed that people generally tend to associate the 

issuance of evacuation orders with higher risks and thereby, they are more likely to evacuate (see, 

for example, Whitehead et al. (2000); Dash (2002); Fu, Wilmot, and Baker (2006)). Therefore, it 

is expected that in such situations people plan for intermediate stops in their evacuation tours 

(possibly for picking up family members or preparing for a severe hazard), which ultimately 

increases the total travel time and distance. On the same note, occurrence of the event in a 

proximity of a family member increases the chance that the evacuee will have intermediate stops 

in his/her evacuation tour, and ultimately increases total travel time and distance; this is expected 

because people tend to pick up (or better to say, save) their family members who are in high risk 

areas in no time. 

Built-environment factors are also found to be influential in the formation of the evacuation 

tour. Figure 7.3 indicates that those who are in areas with high population density at the time of 

the emergency event will experience higher travel time, and at the same time, will have fewer 
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intermediate stops in their evacuation tours. Figure 7.3 also illustrates how variation of population 

density affects the probability of different alternatives of number of intermediate stops for an 

average respondent in the sample. As presented in the figure, keeping all other variables 

unchanged, increasing the population density from 1,000 persons per square mile (areas of sparse 

population) to 10,000 persons per square mile (densely populated areas) raises the probability of 

non-intermediate-stop evacuation tours by approximately 13%. This is intuitive as locations with 

higher population densities will probably become congested during emergency events and thereby 

evacuation travel time increases. Consequently, people may avoid unnecessary intermediate stops 

in order to save time and reach their evacuation destination at the earliest possible time. 

 

Figure 7.3. Effect of Population Density of Respondents’ Location on the Probability of Outcomes 

Another important finding is the positive sign of the number of intermediate stops in the 

travel time and distance models, which indicates that evacuees with higher number of stops have 
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longer travel time and distance. The statistical significance of this factor in the travel time and 

distance models confirms the initial assumption of the endogenous effects of number of stops on 

the latter two dependent variables. Furthermore, the negative sign of the correlation coefficients 

of the joint structure indicates that the unobserved factors which increase the chance of higher 

number of intermediate stops will consequently increase the total travel time and duration of the 

evacuation tour.  

To assess the prediction performance of the proposed joint framework, we first calculate 

the match rate for the ordered model. This measure estimates the percentage of correctly-predicted 

alternatives in the held-out sample. The match rate equals 76.32% in this analysis which is a fairly 

decent value for such model. With regards to the prediction accuracy of the travel time and travel 

distance models, the mean absolute percentage error (MAPE) index is calculated as 

1

𝑛
∑ [|𝑂𝑖 − 𝑃𝑖| 𝑂𝑖⁄ ]𝑛

𝑖=1 , where 𝑂𝑖  is the observed value and 𝑃𝑖 is the predicted value for observation 

𝑖. The MAPE measure for the travel time and distance models are 24.1% and 23.9%, respectively. 

In sum, the proposed joint discrete-continuous-continuous model of tour components offers a 

reasonably good prediction accuracy. 

The rest of this section is devoted to analyzing the type of intermediate stops in the 

evacuation tours. As previously mentioned, two separate models (a multinomial logit model and a 

rank ordered logit model) are developed for the cases when evacuees plan for one or two 

intermediate stops in their evacuation tour. Indeed, once the number of intermediate stops is 

estimated via the joint model discussed above, the corresponding outcome determines which 

model should be called in the simulation framework to determine the type of those stops.  

The results of the models on the type of intermediate stops are presented in Table 7.3. With 

respect to the interpretation of the estimated results, it should be noted that a coefficient positive 



 94 

 

 

 

 

sign in the multinomial logit model indicates that increasing the corresponding variable raises the 

probability of selecting that alternative (among the four types of intermediate stops in the dataset: 

meeting with family & friends, shop for supplies, pick-up children, and pick-up other family 

members). However, a positive sign in the rank ordered model indicates that increasing the 

variable raises the probability of ranking the corresponding alternative higher than others. 

Furthermore, to better understand the effect of explanatory variables on the stop type, Table 7.4 is 

added to present the average change in probability of selecting an alternative in the case of having 

one intermediate stop, and Figure 7.4 is added to illustrate the average change in the ranking order 

of the alternatives in the case of having two intermediate stops (All possible ranking orders are 

defined in Table 7.5).  

With respect to the socio-demographic characteristics, Table 7.3 reveals that in case of 

having one intermediate stop, full-time workers are more likely to pick up a family member and 

less likely to shop for supplies. This could be because full-time workers (such as parents) have 

probably more responsibility in the household and tend to take care of more critical tasks if they 

only have one intermediate stop in their evacuation tour. In case of having two intermediate stops, 

however, this variable is found to have no significant effect on the ordering of stops in the tour. 

We also found that respondents who are between the ages of 19 and 25 are more likely to rank 

meet with family and friends and shop for supplies above other alternatives. This is consistent with 

the results of Figure 7.4(a) where this variable increases the probability of ranking order 1 (meet 

with family/friends and shop for supplies) by 24.3%. This can be inferred as less responsibility of 

such individuals in the household.  
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Table 7.3. Estimation Results of the Stop Type Models 

Variables 
One stop Two stops 

Param. t-stat Param. t-stat 

Meet with family & friends     

Constant 2.69*** 3.25 1.20** 1.97 

Age: 19-25 ‒ ‒ 3.70** 2.38 

Residence: multi-unit residential building ‒ ‒ -4.78*** -4.28 

Population density (log) 1.32*** 3.01 ‒ ‒ 

Shop for supplies     

Age: 19-25 ‒ ‒ 2.65* 1.84 

Employment: full time -2.04* -1.67 ‒ ‒ 

Residence: multi-unit residential building ‒ ‒ -4.13*** -3.60 

Proximity to family members: less than 5 -1.79** -2.17 -2.25* -1.66 

Population density (log) 1.36*** 2.80 ‒ ‒ 

Pick-up children     

Constant -6.00** -2.37 -4.66*** -3.48 

Having a child 6.91*** 3.68 ‒ ‒ 

HH size: greater than 2 ‒ ‒ 5.61*** 4.37 

HH size: greater than 3 8.71*** 3.39 ‒ ‒ 

Employment: unemployed 4.32*** 3.54 ‒ ‒ 

Severity level: high 3.96*** 2.58 1.48* 1.77 

Proximity to child: less than 5 11.10** 2.28 4.03** 2.32 

Destination: shelter 3.91*** 3.21 ‒ ‒ 

Pick-up other family members     

Constant -2.84* -1.74 -2.63** -2.03 

Employment: full time 3.28*** 2.61 ‒ ‒ 

HH size: greater than 2 ‒ ‒ 4.23*** 3.48 

Proximity to other family members: less than 5 2.45*** 2.77 ‒ ‒ 

Destination: shelter 1.95** 2.10 2.07** 2.53 

Model Specification     

Log-likelihood at convergence -64.19 -57.74 

Restricted log-likelihood 160.40 141.50 

Note: *Significant at 90%, **significant at 95%, ***significant at 99% 
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Table 7.4. Average Marginal Effects for the MNL Model 

Variable 
Meet with family 

and friends 

Shop for 

supplies 

Pick-up 

children 

Pick-up other 

family members 

Employment: full time 4.22% -4.68% 0.13% 0.33% 

Employment: unemployed -12.94% -0.44% 13.43% -0.05% 

Having a child -31.96% -1.08% 33.20% -0.15% 

HH size: greater than 3 -50.73% -1.58% 52.55% -0.24% 

Proximity to child: less than 5 -52.75% -2.32% 55.28% -0.20% 

Proximity to other family members: less 

than 5 
0.27% -1.98% 0.05% 1.65% 

Severity: high -10.65% -0.37% 11.05% -0.03% 

Destination: shelter -7.14% -0.19% 7.04% 0.29% 

Further, being member of a large family and presence of at least on child in the family 

significantly increase the probability of pick-up child. Indeed, according to Table 7.4, the 

probability of child pick-up increases by 33.2% for household who have at least one child and by 

52.6% for households with more than 3 members. Similar pattern is recognized in the results of 

the rank ordered model as Figure 7.4(a) shows an increase in the probability of higher ranks of 

either pick-up child and pick-up other family members by those who live in households with more 

than 2 members. 

Table 7.5. All Possible Ranking Order for Having Two Intermediate Stops 

ID First stop Second stop 

1 Meet with family & friends Shop for supplies 

2 Meet with family & friends Pick-up children 

3 Meet with family & friends Pick-up other family members 

4 Shop for supplies Meet with family & friends 

5 Shop for supplies Pick-up children 

6 Shop for supplies Pick-up other family members 

7 Pick-up children Meet with family & friends 

8 Pick-up children Shop for supplies 

9 Pick-up children Pick-up other family members 

10 Pick-up other family members Meet with family & friends 

11 Pick-up other family members Shop for supplies 

12 Pick-up other family members Pick-up children 
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Moving to the factors that represent characteristics of the emergency event, the results 

indicate that having a family member in a close proximity of the event’s location increases the 

chance of pick-up children or other family members by 55.28% and 11.05%, respectively, for those 

with only one stop in their evacuation tour. On the same note, for evacuees with two intermediate 

stops, Figure 7.4(b) suggests that probability of ranking pick-up children or other family members 

above other alternatives increases in these situations. Furthermore, we found that severity level of 

the event significantly affects the type of intermediate stop(s) in the evacuation tour. Per results, 

respondents with only one stop in their evacuation tour are more likely to pick-up their children in 

the case of an event with high severity. Figure 7.4(b) exhibits the same pattern in the case of two 

stops. We found that generally those ranking orders with pick-up children as the first or second 

stop (i.e., 2, 5, 7, 8, 9, and 12) have higher chances of being selected. 

As the only built-environment variable that was found to be significant in the stop type 

model, population density has a positive effect on the probability of shop for supplies and meet 

with family and friends. We also found that the outcomes of the previously determined evacuation 

attributes significantly affect the decision on the type of intermediate stop. Table 7.3 reveals that 

if the final destination of the evacuation tour is determined as shelter, the corresponding binary 

indicator positively affects the probability of picking up children and other family members within 

the evacuation tour. This is expected as previous studies have shown that evacuees tend to go to 

shelters in case of more severe events (Sadri, Ukkusuri, and Murray-Tuite 2013a; Smitherman and 

Soloway-Simon 2002), in which they are more concerned about saving their family members. 

According to Table 7.4, this variable increases the probability of pick-up children and other family 

members by 7.0% and 0.3% for respondents with only one intermediate stop in their tour. 
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Similarly, for those with two intermediate stops, selecting shelter as the final destination would 

result in ranking pick-up family members above others. 

 
a) Demographic Characteristics 

 
b) Event’s Characteristics 

Figure 7.4. Average Marginal Effects for Ranking Orders 
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7.4 Conclusions 

This chapter focuses on the tour formation phase of the proposed evacuation demand 

framework which comprises of two steps. First, three components of the evacuation tour (i.e., 

number of stops, travel time, and travel distance) are estimated via a joint ordered-continuous-

continuous model. The results indicate that a wide range of demographic (e.g., age, housing type, 

and employment status), land-use (e.g., population density), and characteristics of the event (e.g., 

government order and event severity level) affects evacuees’ decision behavior during no-notice 

emergency events. Interestingly, we found that the number of intermediate stops has endogenous 

effect on the travel time and distance decisions, which indicates that tours with higher number of 

stops are associated with higher travel time and distance. Furthermore, significance of the 

correlation parameters confirms the existence of the shared unobserved factors that affect all 

components, which entails the application of the joint modeling approach. 

In the next step, the type of the intermediate stops in the evacuation tour is determined by 

considering the estimated number of stops from the tour component model. For those with only 

one stop in their tour, a MNL model is developed to determine the probability for each stop type 

(meeting with family & friends, shop for supplies, pick-up children, and pick-up other family 

members). For those with more than one stop in their tour, a variation of the rank ordered logit 

model is utilized that simultaneously determines the type and ordering of the intermediate stops. 

The findings are specifically useful to account for the additional trips that people make 

during the evacuation procedures which are sometimes in the opposite direction of the evacuation 

plans. The final objective is to reduce the number of fatalities and economic damage during 
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emergencies through creating effective policies, which should direct individuals’ decision in favor 

of the most useful information against other factors that they consider. 
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8. CONCLUSIONS AND FUTURE WORKS 

8.1 Introduction 

Two types of emergency events are introduced in the literature that are different in terms 

of their predictability. First group consists of advance-notice emergency events such as hurricanes 

or tornados where authorities can inform the public when they are predicted so that household 

members and government officials can start to plan for emergency evacuation planned. Second 

type corresponds to no-notice emergency events such as terrorist attacks or earthquakes that are 

not predictable. Therefore, there is no time to develop comprehensive evacuation plans after event 

occurrence, which highlights the importance of pre-disaster planning for these situations. 

Studies that focus on evacuation behavior during advanced-notice events are abundant in 

the literature whereas, only a few studies investigated behavioral response during no-notice 

emergency events. There is still a huge gap in literature with respect to investigation of evacuation 

behavior for no-notice emergency events mainly due to the scarcity of data. In an effort to fill such 

a gap, this study employs an internet-based stated preference (SP) survey conducted in Chicago 

Metropolitan Area to analyze individuals’ evacuation behavior. The proposed framework is 

designed to be compatible with a large-scale activity-based model. 

This study first introduces a new disaggregated evacuation demand model, which is 

designed to be compatible with the Agent-based Dynamic Activity Planning and Travel 

Scheduling (ADAPTS) activity-based model. The proposed behavioral evacuation demand model 

is placed before the activity execution phase and is only called if a disaster has happened. Once a 

disaster happens the evacuation model is called to estimate the new demand in three steps of 
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evacuation decision, planning, and tour formation before updating every person’s schedule 

accordingly.  

8.2 Summary and Major Findings 

The proposed framework starts by identifying individuals’ decision to evacuate where they 

can either ignore the event, seek shelter at their current location, or evacuate. To do so, we first 

apply a two-step clustering algorithm to account for heterogeneity in the dataset by grouping the 

respondents into homogeneous clusters. Then, a multivariate ordered probit model is estimated on 

each cluster to determine the probability spectrum for each outcome of the evacuation decision. If 

individuals decide to evacuate, the framework starts by planning the evacuation activity attributes 

with models specifically designed for no-notice emergencies. 

The evacuation planning phase of the framework deals with estimating departure time, 

destination type, and travel mode for the newly generated evacuation activity. First, a joint 

discrete-continuous model of destination type and departure time is estimated to account for 

possible interrelation between these two decision variables. The joint modeling structure is utilized 

to account for shared unobserved factors and possible causality effects between evacuation 

destination and departure time choices, which directly affect the spatial and temporal components 

of the transportation network. In the next step of the evacuation planning phase, the framework 

determines the travel mode of the evacuees’ by utilizing support vector machine as one of the most 

precise and popular machine learning techniques.  

The last part of the framework before updating people’s schedule corresponds to forming 

the evacuation tours. This means various components in evacuees’ tours including number of 
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intermediate stops, type of these stops, and travel time and distance are determined. First, a joint 

ordered-continuous-continuous model is estimated to determine the tour characteristics (number 

of stops, travel time, and travel distance). Then, based on the determined number of intermediate 

stops, a MNL model (for one stop in the tour) or a variation of rank ordered logit model (for those 

with more than one stop in the tour) is utilized to determine the type of each stop. 

Finally, the framework updates people’s schedule where those who are determined that 

they ignore the event follow their previously determined activity schedules. The schedule of those 

who decided to stay in the same place that they were at the time of the event is replaced with an 

indoor activity until the safe situation will be announced. In the case that individuals decided to 

evacuate, a new evacuation activity (which its attributes are determined in the planning phase) will 

replace the routine activity schedules of evacuees. 

The main findings of this study that can help responsible agencies to develop pre-disaster 

plans are summarized below: 

• Retired individuals and those with disability tend to stay with their family as well as travel 

to their final evacuation destination without any intermediate stops. This is not surprising 

due to their reliance on their family members for emergency evacuation. 

• Individuals living in single houses tend to return home or shelter in their place, while those 

living in multi-unit buildings are more likely to choose shelters or hotels as their 

destination. 

• Population density positively affects the probability of choosing shelters and staying with 

family as evacuees’ final destination. On the other hand, higher population density leads to 

decreasing the probability of high number of stops in the evacuation tour, while increasing 
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the tour’s total travel time. This could be attributed to occurrence of traffic congestion 

during emergency events, which increases evacuation travel time. Ultimately people avoid 

unnecessary intermediate stops in order to save time and reach their evacuation destination. 

• Access to a vehicle at the time of an emergency event significantly increases the chance 

evacuation by using a private vehicle. 

• Individuals who are located within a five-mile radius of the event’s location at the time of 

its occurrence are more likely to decide to evacuate, whereas those who are further from 

the event location are more likely to seek shelter at their place. On the same note, if the 

emergency event happens near individual’s family members, they are more likely to add 

intermediate stops to their evacuation tour to pick them up. Interestingly, people who are 

in the vicinity of an event are less likely to choose private vehicle and Metra as their 

evacuation mode. 

• Those who are experiencing emergency events associated with high risks are more likely 

to evacuate to shelters which are generally perceived as refuge with the availability of food, 

water, and basic medical facilities. These individuals are also more likely to add an 

intermediate stop in the evacuation tours to pick up their children. We also found that the 

same individuals are more likely to evacuate by their own vehicle and Metra. On the other 

hand, people who are experiencing low-risk events tend to evacuate late and choose their 

own home or stay with family and friends as their final evacuation tour.  

• Issuance of an evacuation order significantly increases the chance of evacuation and at the 

same time decreases the probability of shelter at place and ignoring the event. On the same 

note, individuals tend to depart soon and are more likely take refuge in shelters or hotels 
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compared to those who have received a non-mandatory seek shelter order. This variable 

also increases the chance of using private vehicle and Metra as evacuation mode. 

Generally, issuance of an evacuation order is perceived as events with higher severity 

levels and risks; therefore, people tend to evacuate to farther locations such as suburban 

areas which can be relatively accessible by Metra services and auto. We also found that 

this factor significantly increases the chance of higher number of stops, as well as travel 

time and distance of evacuation tour. 

8.3 Major Contributions 

The findings of this study can shed light on individuals’ complex decision behavior in 

response to no-notice disasters and are useful for government agencies to facilitate the evacuation 

process through creating effective policies. These policies should direct individuals’ decision in 

favor of the most informed decisions that may result in minimum economic damage and loss of 

life. The contributions of this thesis can be summarized below: 

• Individuals’ evacuation behavior during advanced-notice events has been extensively 

studied in past studies, whereas no-notice emergency events have not been adequately 

investigated mainly due to the scarcity of data. This study utilizes an internet-based SP 

survey to analyze individuals’ decision mechanism towards various evacuation attributes.  

• One major issue in modeling no-notice emergency events is the dispersity of household 

members in the network, which causes additional trips in the evacuation tour. To account 

for this issue, this study to present a framework which can be implemented in a large-scale 

activity-based model; these models are able to locate all family members and resources in 
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the network at the time of an event. Therefore, the framework can simultaneously account 

for background trips and induced demand as a result of a no-notice disaster and provide a 

suitable platform to analyze a variety of evacuation plans and policies. 

• The study accounts for heterogeneity in the decision to evacuate by dividing individuals 

into homogeneous groups, which has been largely ignored in the literature of no-notice 

emergency events. 

• Although evacuation attributes are closely intertwined due to unobserved shared factors or 

endogenous effects of decision variables on each other, no study has yet investigated them 

in a joint structure. The study contributes to the literature by presenting joint models of 

evacuation attributes and tour components in the context of no-notice emergency events. 

• Literature on no-notice emergency events usually focus on individuals’ decision with 

regards to one type of intermediate stop in the evacuation tour (i.e., pick-up children). 

However, the proposed framework considers multiple types of intermediate stops, and 

determines their number, type, and order in a single phase. 

8.4 Limitations and Directions for Future Research 

With regards to the data used in this study, recent studies showed that emergence of social 

media can significantly contribute to individuals’ evacuation behavior. Therefore, lack of the 

related information in the utilized data is a limitation of this study and therefore, incorporating 

factors related to usage of social media can be a potential direction for future study. Another 

limitation of the dataset corresponds to the low number of observations where it leads to restricting 

the variations of decision variables, specifically in the tour formation step. The geographical area 
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covered for data collection is another limitation of this study, which prevents us from testing 

transferability of the proposed framework to other geographical regions. 

This study has several other potentials for future research directions. First, collecting 

revealed preference dataset after no-notice emergency for model validation is an important future 

step of this study. With respect to the utilized modeling procedure in the evacuation planning 

phase, the method can be expanded by developing a joint model that considers the correlation of 

all evacuation attributes (i.e., departure time, destination, and model) while controlling for rarely 

selected alternatives in the mode decision. Furthermore, applying other joint modelling techniques 

and comparing their results with the employed copula approach detailed in Chapter 6 would be 

informative about their performance. Finally, the proposed evacuation demand model should be 

implemented in the ADAPTS structure in order to develop a policy-sensitive framework that 

captures the dynamics in evacuees’ behavior with respect to traffic conditions of the network.  
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