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SUMMARY

In this thesis we explore two examples of how to exploit structure in networks with coopera-

tive nodes. 1) In the first direction, we explore the impact of message structure and how it may

(or may not) be exploited to increase capacity depending on how this “matches” the channel’s

structure. As an example of this concept, the Inverse Compute-and-Forward (ICF) problem is

proposed and studied, where we show that K-wise message correlations when K > 2, cannot

be utilized to improve rate regions in a Gaussian MAC channel. 2) In the second direction

we work towards explicitly exploiting channel structure in a zero-error primitive relay channel

scenario. The problem of communicating over a primitive relay channel without error is for

the first time proposed, with the goal of exploring and fulfilling the intuition that the central

role of a relay is to only deliver ”what the destination needs”. A novel relaying scheme termed

“Colour-and-Foward” is proposed and is shown to be the most efficient way of compressing

signals at the relay terminal, for any fixed number of channel uses, when enabling an effectively

full cooperation between the relay and the destination terminals, i.e. achieving the single-input

multi-output (SIMO) upper bound, is required. This Colour-and-Forward relaying is designed

by an explicit exploit of the channel structure and directly embodies the intuition of having

relay transmit “only what the destination needs”.

vii



CHAPTER 1

INTRODUCTION

Shannon theory studies the fundamental limits of communication: source coding considers

how much one may compress data, while channel coding considers how fast one may reliably

communicate data. To understand these limits, one needs to understand how to exploit dif-

ferent forms of structure in the problem. In source coding, the structure / form of the source

distribution may be exploited to compress the data efficiently. In channel coding, one devises

coding schemes to combat the particular channel or noise structure to ensure reliable commu-

nication. In this thesis we explore two examples of how to exploit structure in networks with

cooperative nodes. 1) In the first direction, we explore the impact of message structure and how

it may (or may not) be exploited to increase capacity depending on how this “matches” the

channel’s structure. 2) In the second direction we work towards explicitly exploiting channel

structure in a zero-error primitive relay channel scenario.

In the first direction, we explore how to exploit message structure in a multiple access chan-

nel. One could ask whether mimicking message structure to create correlated codewords is

always capacity achieving. We show that there is more to it than that: the message structure

must somehow be “exploitable” by the channel’s structure as well. As an example of this con-

cept, the Inverse Compute-and-Forward (ICF) problem is proposed and studied, where we show

that K-wise message correlations when K > 2, cannot be utilized to improve rate regions in a

Gaussian MAC channel. The ICF problem, considers an L user multiple access channel where

1
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transmitter m has access to the linear equation um =
⊕L

l=1 fmlwl of independent messages

wl ∈ Fklp with fml ∈ Fp, and the destination wishes to recover all L messages. This problem

may be motivated as the last hop in a network where relay nodes employ the Compute-and-

Forward strategy and decode linear equations of messages; we seek to do the reverse and extract

messages from sums over a multiple access channel. In particular, we exploit the particular form

of correlation between the equations at the different relays – which does not map onto known

results for multiple access channels with correlated sources – to improve the reliable commu-

nication rates beyond those achievable by simply forwarding all equations to the destination

independently. The presented achievable rate region for the discrete memoryless channel model

is furthermore shown to be capacity for the additive white Gaussian noise channel.

In the second direction, we focus on channel structure in the relay channel. We believe the

relay channel highlights the role of channel structure in developing capacity-achieving relaying

schemes. We are particularly interested in exploiting channel structure at the relay node to

provide “what the destination terminal needs”. We are not aware of an explicit attempt to

quantify this intuition and hence potentially develop a new relaying strategy beyond the known

Amplify, Decode or Compress-and-Forward schemes (and their variations). We start tackling

this ambitious problem in a simpler setting than the general relay channel: 1) we focus on the

primitive relay channel (PRC), which decouples the multiple access and broadcast components

of the relay channel by having the link from the relay to the destination be out of band and of

fixed capacity r; and 2) we focus on zero-error communication with finite channel inputs and

outputs, which turns our problem into a combinatorial one. We believe it is also somewhat
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easier to see, and quantify, what the destination terminal “needs” in the zero-error setting. In

particular, for zero-error communication over a PRC, we develop an exact quantitative measure

of “what the destination needs” and “what the relay should (at least) send”. This quantity is

related to the minimum number of colors of a coloring on a graph GR which captures “what

the destination needs” and is constructed based on the channel structure: both the source to

destination and the source to relay channel structures and how their relations are captured.

This graph may also be used to develop associated relaying strategies which are shown to be

capacity achieving for several classes of zero-error primitive relay channels.

1.1 Motivational Examples

1.1.1 Message structure, codebook structure and channel structure

In our first direction, we explore how to exploit message structure in a multiple access

channel and show that, with some linear constraints (inherited from the lattice implementation

of Compute-and-Forward framework) on the messages , K-wise message correlations when K >

2, cannot be utilized to improve rate regions in a Gaussian MAC channel. One might initially

conjecture that a capacity-achieving scheme should somehow mimic the message structure in the

codeword structure, but we show that this is not necessarily true. We illustrate the motivation

behind this conjecture: the classical two-user discrete memoryless MAC (1), Slepian-Wolf MAC

coding (2) and L-user discrete memoryless MAC (3) in which capacity achieving schemes mimic

the message structure. We then point out a counterexample (the ICF problem, Chapter 2) to

show the role of channel structure: the message structure must somehow be “exploitable” by

the channel’s structure as well.
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Let W1, · · · ,WM denote messages to be communicated and let the dependence / indepen-

dence among these M random variables be called the message structure. A codebook Xn
l ∈ X nl

at terminal l consists of a collection of length-n vectors of alphabet Xl. In the random cod-

ing framework, these are i.i.d. generated according to distribution of the random variable Xl

with support Xl. The codebook structure refers to the relationship among random variables Xl.

Finally, the channel structure is characterized by the conditional probability mass function in

the discrete memoryless channel or any relationship between the channel inputs and channel

output. In the following examples, we adopt graphical models 1 to represent the relationship

between/among random variables, thus indicating the message/codebook structure.

Example 1 (Two-user MAC with independent messages W1,W2). As shown in Fig. 1(a), two

transition terminals with independent message W1 and W2, Tx-1 with W1 and Tx-2 with W2,

want to transmit its own message to the destination terminal Rx simultaneously with a discrete

memoryless channel p(y|x1, x2) with channel input X1 ×X2 and output Y.

The capacity region is achieved by constructing random codebooks by PX1 at Tx-1 and

PX2 at Tx-2 respectively, where random variable X1 and X2 are independent as the message

W2 and W2 are. Fig. 1(b) and Fig. 1(c) are the graphical models, representing the message

and codebook structure. The resulting capacity region (1) is, where we see that the codebook

1A graphical model is a probabilistic model for which a graph denotes the conditional dependence
structure between random variables. Each arrow indicates a dependency.
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Tx Rx

1W1

2W2

Ŵ1, Ŵ2

(a) Channel and communication goal

W1

W2

(b) Message structure

X1

X2

(c) Codebook struc-

ture

Figure 1. Two-user MAC with independent message W1,W2

structure mimics the message structure (cannot create correlation, or destroy it any further, so

this is rather trivial):





(R1, R2) :

R1 ≤ I(X1;Y |X2)

R2 ≤ I(X2;Y |X1)

R1 +R2 ≤ I(X1, X2;Y )

for p(x1, x2, y) = p(x1)p(x2)p(y|x1, x2)





.

Example 2 (Two-user MAC with one common message W0 and two private messages W1,W2).

As shown in Fig. 2(a), three messages W0,W1,W2 are independent and are partially revealed

to two terminals: terminals Tx-l has respectively a private message Wl and a common message

W0, l = 1, 2. The channel is the same as in the previous example and is characterized by

p(y|x1, x2).
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Tx Rx

1

2

W0,W1

W0,W2

Ŵ0, Ŵ1, Ŵ2

(a) Channel and communication goal

(W0,W1)

(W0,W2)
W0

(b) Message structure

X1

X2

Q

(c) Codebook

structure

Figure 2. Two-user MAC with one common message W0 and two private messages W1,W2

The capacity region is achieved by constructing random codebooks according to the Markov

chain X1 ↔ Q↔ X2. First, codebook Qn(W0) with ‖W0‖ codewords, indexed by common mes-

sage W0 is generated by the distribution of random variable Q. Then, codebook Xn
l (Wl,W0)

at Tx-l is generated according to the conditional distribution PXl|Q, l = 1, 2. For exam-

ple, when Terminal Tx-1 wants to communicate message pair (W0,W1) = (w0, w1), sequence

qn(w0) is first chosen by codebook Qn(W0) and then codeword xnl (w1, w0) with probability

p(xn1 (w1, w0)) =
n∏
i=1

pX1i|Q=qi(w0)(x1i) is transmitted. Fig. 2(b) and Fig. 2(c) are the graphical
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models, representing the message and codebook structure. The resulting capacity region (2) is

as follows, where again the codebook structure seems to mimic the message structure:





(R1, R2) :

R1 ≤ I(X1;Y |X2, Q),

R2 ≤ I(X2;Y |X1, Q),

R1 +R2 ≤ I(X1, X2;Y |Q)

R0 +R1 +R2 ≤ I(X1, X2;Y )

for p(q, x1, x2, y) = p(q)p(x1|q)p(x2|q)p(y|x1, x2)

and ‖Q‖ ≤ min{‖X1‖ · ‖X2‖+ 2, ‖Y‖+ 3}





.

Example 3 (L-user MAC with a Special Message Hierarchy (3) ). As shown in Fig. Figure 3

and Figure 4, L messages W1, · · · ,WL are independent and are partially revealed to L terminals:

terminal Tx-1 has access to all L messages {W1, · · · ,WL}; terminal Tx-2 knows all messages

except for the first one, i.e. {W, · · · ,WL}; terminal Tx-3 knows all messages except for the

first two, i.e {W3, · · · ,WL} and so forth. The channel is characterized by p(y|x1, · · · , xL) with

channel input X1 × · · · XL and output Y.

The capacity region can be achieved by random codebooks generated by random variables

X1, · · · , XL satisfying p(x1, · · · , xL) = p(xL) · p(xL−1|xL) · · · p(x1|x2), as shown in 4(b). First,

codebook Xn
L(WL) is generated according to distribution pXL and revealed to all terminals.

Then, codebook Xn
L−1(WL−1,WL) is generated according to pXL−1|XL , producing codeword

xnL−1(wL−1, wL) with probability p(xnL−1(wL−1, wL)) =
n∏
i=1

pXL−1|XL=xLi(wL)(x(L−1)i). The re-
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Tx Rx

1

2

...

L − 1

L

W1,W2, · · · ,WL

W2, · · · ,WL

WL−1,WL

WL

Ŵ1, Ŵ2, · · · , ŴL

Figure 3. L-user MAC with a Special Message Hierarchy: channel and communication goal

maining codebooks are generated similarly. The resulting capacity region is the closure of the

convex hull of all rate tuples satisfying:





(R1, · · · , RL) :

R1 ≤ I(X1;Y |X2, · · · , XL),

R1 +R2 ≤ I(X1, X2;Y |X3, · · · , XL),

...

R1 +R2 + · · ·+RL−1 ≤ I(X1, · · · , XL−1;Y |XL)

R1 +R2 + · · ·+RL ≤ I(X1, · · · , XL;Y )

for p(x1, · · · , xL, y) = p(x1|x2) · · · p(xL−1|xL)p(xL)p(y|x1, · · · , xL)





.

Unlike examples 1, 2 and 3, example 4 shows a case where capacity region is achieved while

the “codebook structure” (Fig. 5(c)) is different from the “message structure” (Fig. 5(b)).
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(W1,W2, · · · ,WL)

(W2, · · · ,WL)

(WL−1,WL)

(WL)

(a) Message structure

X1

X2

XL−1

XL

(b) Code-

book

structure

Figure 4. L-user MAC with a Special Message Hierarchy

Example 4 (Three-user Gaussian MAC with hybrid message W0,WA,WB,WC). As shown in

Fig. Figure 5, all terminals share one common message W0 and terminal Tx-1, 2, 3 has access

to private messages WA, WB and WC respectively. As shown in Fig. 5(b), messages

WA, WB, WC are pairwise independent conditioned on the common message W0,

but in general are not mutually independent given W0. The channel is specified by the

input/output relationship Y = X1 + X2 + X3 + Z, where Z ∼ N (0, 1) is a Gaussian random

variable.

By the argument established in Chapter 2, one may show that the random codebooks

generated from Q,X1, X2, X3 satisfying p(q, x1, x2, x3) = p(q)p(x1|q)p(x2|q)p(x3|q) as shown

in Fig. 5(c) is capacity achieving. Comparing the Fig. 5(b) and Fig. 5(c), it is clear that

capacity-achieving codebook structure is not consistent with the message structure. Actually,
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Tx Rx

1

2

3

W0,WA

W0,WB

W0,WC

Ŵ0, ŴA, ŴB , ŴC

(a) Channel and communication goal

(W0,WA)

(W0,WB)
W0

(W0,WA)

(W0,WC)
W0

(W0,WB)

(W0,WC)
W0

(b) Message structure

X1

X2

X3

Q

(c) Codebook struc-

ture

Figure 5. Three-user Gaussian MAC with hybrid message W0,WA,WB,WC

it is shown that for a Gaussian MAC channel, any type of K-wise message correlations when

K > 2, are not “exploitable” by the channel.

1.2 Contribution

The contributions center around demonstrating the exploration of message/channel/codebook

structures and how to employ them to enhance the communication efficiency, i.e. enlarge the

achievable rate region. We identity that codebook structure does not have to fully mimic the

message structure to be capacity-achieving and the message structure should be “exploitable”

by the channel’s structure. In the primitive relay network, we construct a quantitative measure

of “what the destination terminal needs” in communication in a zero-error context and develop

a novel relaying strategy, termed as Colour-and-Forward, which is shown to be optimum – giv-
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ing the most efficient compression at the relays while enabling the whole network to achieve its

absolute maximal message rate – for any fixed number of channel use n.

1.3 Outline of thesis

In Chapter 2, the Inverse Compute-and-Forward problem is formulated and the capacity

region for decoding L independent messages over a Gaussian multiple access channel when the L

transmitters each have a linear equation of these L messages, subject to invertibility conditions,

is derived. In Chapter 3, 4 and 5, the zero-error and small-error communication over a primitive

relay channel are formulated and 0- and ε- Colour-and-Forward relaying are developed.



CHAPTER 2

INVERSE COMPUTE-AND-FORWARD

In this chapter, we explore how to exploit message structure in a multiple access channel.

As an example of this concept, the Inverse Compute-and-Forward (ICF) problem is proposed

and studied, where we show that K-wise message correlations when K > 2, cannot be utilized

to improve rate regions in a Gaussian MAC channel.

2.1 Introduction

The recently proposed Compute-and-Forward (CF) framework (4) enables the decoding of

linear combinations of messages at relays over Gaussian channels. The decoding of integer com-

binations of lattice codewords corresponds to decoding integer combinations of the underlying

messages u which are vectors of length k of elements over a finite field of size p, Fp, or u ∈ Fkp.

When decoding sums of messages suffices, this may sometimes be done at higher rates using

the CF rates than decoding individual messages.

In the CF model, individual messages are transmitted over a multiple access channel (MAC),

and linear combinations of messages are decoded1; in the inverse compute-and-forward (ICF)

channel model studied here the reverse is done, i.e. a destination node seeks to decode individual

messages over a MAC from relays which possess linear combinations of messages. In a larger

1The CF framework may handle more general cases when combinations of messages are transmitted
as well, but this statement was made for the sake of argument/intuitive definition of the ICF model.

12
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network one may envision source nodes having messages, destination nodes wanting to decode

these messages, and intermediate relay nodes decoding individual or linear equations of messages

according to the CF framework. We determine the rates at which we may extract individual

messages from linear message equations known at relays over a MAC. This may be combined

with CF rates in deriving overall achievable rates in larger networks. We provide some examples

for doing so, but this is not the main focus of this study. For more works on multi-source multi-

relay setup, please refer to (5), (6) and references therein.

We focus on the general L-user ICF problem where each relay node possesses a linear

combination of L messages assumed to have been obtained using the CF framework. These

relays transmit over a MAC to a single destination which seeks to decode the L individual

messages. In order for the problem to be feasible, the matrix relating the messages to the

equations must be invertible. The coefficient matrix is assumed to be non-singular throughout

the study, and several additional invertibility constraints, for succinctness, will also be imposed.

One might consider sending these L equations to the destination using independent codebooks

as in a MAC, and having the destination invert the message equations to obtain the original

messages. However, we show that the relays may extract dependencies from the linear equations

when message rates are unequal, which allows one to achieve a larger rate region. In particular,

we show that when message rates are unequal, 1) a common message may be extracted, 2)

knowing some equations limits the number of values other equations may take on, and 3) there

is a special pairwise (conditionally) independent structure in the equations.
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Past Work.The problem statement and motivation builds upon the compute-and-forward

(CF) framework (4): it is assumed that message equations have been previously decoded at

the relays, and that messages are length k vectors of elements over a finite field Fp, as in the

CF framework. There are many other applications of CF, but they all differ from the ICF

problem. For example, in (7), an integer-forcing linear receiver framework is developed for a

MIMO system and is shown to outperform conventional linear receivers. Papers (8), (9) study

a distributed antenna system (DAS) where antenna terminals, which serve user terminals, are

connected to a central processor (CP) via digital error-free links of finite capacity. Both the

up- and down-link can be facilitated by CF; we note that the “Reverse Compute and Forward”

precoding strategy proposed in (9), should not be confused with the ICF problem proposed

here. In these examples, linear equations are known at a single node (for the MIMO scenario)

or can be gathered to a central node by some error-free links (in the DAS system). In contrast,

the ICF problem studies how to directly extract the original messages over the air from the

equations known to distributed nodes.

The ICF problem was first considered for the two-user case in (10), where an achievable rate

region was presented. Though not formally presented in (10), one may show, as done here, that

the two-user ICF problem may be mapped to sending one common message and two private

messages over a MAC. This corresponds to the Slepian-Wolf MAC, whose capacity is known

for both the discrete and Gaussian channels (2; 11; 12). The capacity of an extension of the

Slepian-Wolf MAC of (2) to an arbitrary number of users, each of which has access to a subset

of independent messages is solved in (13) and simplified in (14). We note that when going
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beyond two-users, this L-user ICF problem cannot be mapped into the framework in (13), as

in the latter, the users either have common message(s) or completely independent ones, but

do not have for example, the pairwise (but not mutual) independence correlation pattern. We

are not aware of any other related problems which explicitly capture the pairwise independent

structure. One might attempt to cast this problem into the framework considered by (15), as

the transmission of arbitrarily correlated sources over a MAC channel via joint source-channel

coding. We first remark that for the two-user case their achievable rate region results in the

capacity region of the Slepian-Wolf MAC (2)1, which also corresponds to the region obtained

here for two users. More generally, in (15) only uncomputable multi-letter capacity expressions

are presented for L arbitrarily correlated i.i.d. sources. In this work we strengthen the initial

results of (10) considerably by obtaining the single-letter and fully-characterized capacity region

for the general Gaussian L-user ICF problem rather than an achievable rate region for the two-

user problem.

Contribution and Outline. The main contribution of this study is the derivation of the

capacity region for decoding L independent messages over a Gaussian multiple access channel

when each of L transmitters has a linear combination of these messages, subject to invertibility

conditions. we first present the necessary definitions and formally state the general ICF problem

in Section 2.2. Before demonstrating the most general results for arbitrary L, in Section 2.3

1As shown in the special case d) in (2), a channel-coding problem may be seen as a special case of
the related joint source-channel coding problem, where messages are extended into information sources
with the equivalent entropy rate while the channel model stays the same.
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the L = 2 user case is used to build intuition. We provide plots of numerical evaluations of

the ICF capacity region compared to other possible regions for this model, and an example

of how to combine this rate region with a CF rate region to obtain an overall rate region

for a relay network. In Section 2.4, the L = 3 user case is also outlined to build additional

intuition for the new ingredient in moving beyond two users – pairwise independent but not

mutually independent components at the transmitters. In Section 2.5, an achievable rate region

for the general L-user ICF problem is first derived, followed by the capacity region for the

Gaussian MAC channel model, the main contribution of this study. The converse follows along

similar lines to those in (11; 12), but differs in an interesting way due to the special pairwise

independent component of the message equations. In essence, for Gaussian channels, only

pairwise dependency between equations is of concern and any correlations of order higher than

2 cannot be exploited to improve the rate regions.

Notation. Row vectors and matrices are written in bold font in lower and upper case,

respectively. Length-n, n ∈ N, vector codewords are represented by Xn. Define C(x) as

1
2 log2(1 +x), E[·] as the expectation operator, and Pr[A] the probability of event A. Let A⊗B

denote the Cartesian product of the sets A and B, and ‖A‖ denote the cardinality of set A.

‖Xn‖ also denotes the Euclidean norm of vector Xn. For p prime, let Fkp ∼= {0, 1, · · · , p − 1}k

(“∼=” indicates “is isomorphic to”) denote the field of length k vectors of elements in the field

Fp ∼= {0, 1, · · · , p−1}, under element-wise addition/multiplication modulo p. Let var(X) denote

the variance of X, Rmin = min{R1, · · · , RL}, and Rmax = max{R1, · · · , RL}. Let XA denote

the set {Xa, a ∈ A} which contains all Xa with index a from a given set A. Similar notation is
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used to defined wA (the set of messages with indices in the set A) and uA (the set of equations

with indices in the set A). We use the following indexing convention: l is used for sources (w),

m for relays (u), and c for equation/message sections.

2.2 Problem Statement: Definitions and Channel Models

As shown in Figure 6, L source nodes indexed by l (l = 1, · · · , L) would like to communicate

with one destination node via L intermediate relay nodes indexed by m (m = 1, · · · , L). The

relays have successfully decoded the “message equations” um =
⊕L

l=1 fmlwl (to be made precise

below). The ICF problem seeks to determine at what rates these message equations may

be transmitted over a MAC channel in order to decode the individual messages at a single

destination. We make this more precise below, where we note that while definitions such as

messages and equations follow the definitions in (4), new definitions of message sections and

equation sections are needed to rigorously and compactly define the particular dependency

structure between the equations, which impacts the description of the capacity region.

Definition 5 (Messages, Message rate). Source-l has message wl (l = 1, 2, · · · , L) which is

uniformly drawn from Fklp ∼= {0, 1, · · · , p − 1}kl, and viewed as a row vector of elements in Fp

of length kl. The messages of the different sources are independent. Without loss of generality,

k1 ≥ k2 ≥ · · · ≥ kL; all messages are zero-padded at the head to a common length k = maxl kl.

For block length n, the message rate Rl of message wl at source-l is defined as Rl := 1
n log2(p

kl).

Let W denote the L×k matrix whose l-th row is the message wl. Note that R1 ≥ R2 ≥ · · · ≥ RL.
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1

2

L

1W1

2W2

LWL

Xn
1

Xn
2

Xn
L

...

...

...

...

...

...

u1 = ⊕L
l=1f1lwl

u2 = ⊕L
l=1f2lwl

uL = ⊕L
l=1fLlwl

DM-MAC: p(y|x1, · · · , xL)
or

Gaussian-MAC: Y n =
L∑

m=1

Xn
m + Zn

CF ICF

Sources: Relays:

Destination

Y n → (û1, · · · , ûL)
⇒ (ŵ1, · · · , ŵL)

Figure 6. L-user ICF problem in which L relays each have a linear combination

um = ⊕Ll=1fmlwl of L messages and wish to convey these messages to a single destination.

Definition 6 (Equations decoded at relays). Relay m, m = 1, · · · , L, is assumed to have

recovered a linear combination of the messages (as in the Compute-and-Forward framework

(4)): um =
⊕L

l=1 fmlwl in Fkp, for some given fml ∈ Fp. In matrix form,




u1

...

uL




=




f11 f12 · · · f1L

...
...

fL1 fL2 · · · fLL



·




w1

...

wL



, or U = F ·W,

where fm = (fm1, · · · , fmL), UT =
(
uT1 , · · · ,uTL

)
, FT =

(
fT1 , · · · , fTL

)
, and WT =

(
wT

1 , · · · ,wT
L

)
.

We note that each equation can take on 2nRmax := 2nmax{R1,··· ,RL} possible values.
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Remark 1. Unless otherwise noted, we assume that F and all c by c sub-matrices from its first

c columns are of full rank, c = 1, · · · , L. This assumption is made to simplify notation and the

derivation of the general L-user achievable rate region considerably. In particular, to recover all

messages at the destination, all one needs is for F to be full rank; requiring specific sub-matrices

to be full rank as well is not necessary to derive an achievable rate region. However, as will be

outlined in examples in subsection 2.5.5, when some of the sub-matrices are not full rank one

must carefully consider which equation sections (formally defined later) are linearly dependent.

This in turn will affect the number and form of error events and hence rate region. While the

derivation of achievable rate regions for individual cases is relatively straightforward, we have

thus far not been able to come up with a compact, non-enumerative rate region for general F.

The current conditions on F come from the proof of Lemma 62 in Appendix A, which explains

the properties of equation sections and leads to Lemma 64, which enumerates the number of

equation sections and is used in the error analysis.

Definition 7 (Memoryless MAC channel). The last hop of the network is a memoryless multi-

ple access channel (MAC) defined by the conditional probability mass functions p(y|x1, · · · , xL)

which are identical at each channel use and relate the channel inputs Xn
1 , X

n
2 , · · · , Xn

L in alpha-

bets Xnm (m = 1, 2, · · · , L) and the channel output Y n in alphabet Yn seen at the destination

node. For the memoryless additive white Gaussian noise (AWGN) channel, all input and out-

put alphabets are the real line, and this input/output relationship, over n channel uses, may be

expressed as

Y n =

L∑

m=1

Xn
m + Zn, (2.1)
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where Zn is i.i.d. Gaussian noise, Zn ∼ N (0n×1, In×n), subject to power constraints E
[
‖Xn

m‖2
]
≤

nPm.

Definition 8 (Encoding at relays). Each relay is equipped with an encoder, Em : Fkp → Xnm, that

maps the decoded equation um, a length-k vector, to a length-n codeword, i.e, Xn
m = Em(um) ∈

Xnm. For the Gaussian noise channel the encoders are further subject to power constraints

E
[
‖Xn

m‖2
]
≤ nPm.

Definition 9 (Decoding and probability of error). The destination wishes to recover the mes-

sages in W. The decoder D1 at the destination node estimates the set of equations transmitted

by the relays from the received signal, i.e., {û1, · · · , ûL} = D1(Y
n). We say that the equation

set {u1, · · · ,uL} are decoded with average probability of error ε if Pr
[⋃L

m=1 {ûm 6= um}
]
< ε.

Definition 10 (Achievable, ICF achievable rate region). A rate tuple (R1, · · · , RL) is achievable

if for any ε > 0 and n large enough, there exist a sequence of encoders E1, · · · , EL and a

decoder D1 such that the probability of error is bounded by ε. An ICF achievable rate region

RICF (R1, · · · , RL) is a set of achievable rate tuples for the ICF channel model.

Definition 11 (ICF capacity region). The capacity region for the ICF problem CICF (R1, · · · , RL)

is the closure of the set of all achievable rate tuples.

Remark 2. Let the computation rate region RCF(R1, · · · , RL) defined in (4) capture the con-

straints on message rates imposed by the communication from source nodes to the last layer of

relays. Then the intersection of RCF(R1, · · · , RL) and the ICF rate region RICF (R1, · · · , RL)

yields an achievable rate region for a larger network in which there is a single destination node
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desiring multiple messages. For succinctness, we omit the superscript ICF in most of the fol-

lowing as this study will only be focused on the ICF problem (rather than this intersection with

CF rates).

We now break up the messages and equations into sections, which will allow us to succinctly

describe the dependency structure between the equations at different nodes.

Definition 12 (Message sections, Matrix of message sections). Message wl ∈ Fklp is, after

zero-padding at the head, a length-k row vector and may be partitioned into L segments wl,c

(the cth message section of message wl), c = 1, · · · , L (from head to tail) of lengths sc and rates

ρc where

sc := kc − kc+1,

ρc :=
1

n
log2 p

sc = Rc −Rc+1,

(2.2)

with kL+1 = 0 and RL+1 = 0. Notice that
∑L

c=1 sc = k and
∑L

c=1 ρc = Rmax.
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The matrix of the c-th message section is a matrix of dimension L × sc, denoted by W̃∗c.

The l-th row of matrix W̃∗c is the c-th message section of message wl, i.e., wl,c. Define the

upper triangular matrix

W̃L×L := [W̃∗1,W̃∗2, · · · ,W̃∗L]

=




w1,1 w1,2 · · · w1,c−1 w1,c · · · w1,L−1 w1,L

0 w2,2 · · · w2,c−1 w2,c · · · w2,L−1 w2,L

...
...

0 0 · · · 0 wl,c · · · wl,L−1 wl,L

...
...

0 0 · · · 0 0 · · · 0 wL,L




. (2.3)

Definition 13 (Equation sections, Matrix of equation sections). Similarly, um,c denotes the

c-th section of equation um, i.e., um,c := fm ·W̃∗c. The matrix of c-th equation section Ũ∗c has

um,c as its m-th row, i.e. ŨT
∗c := (uT1,c,u

T
2,c, · · · ,uTL,c). We have

ŨL×L := [Ũ∗1, Ũ∗2, · · · , Ũ∗L] = F · [W̃∗1,W̃∗2, · · · ,W̃∗L] .

Definition 14 (Section rates). We denote as ρc the rate of section wl,c or um,c. Recall that

ρc := 1
n log2 p

sc = Rc −Rc+1 with sc := kc − kc+1, kL+1 = 0 and RL+1 = 0.
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2.3 Two-user Case

Before demonstrating the general L-user result, we consider the L = 2 user case in Figure 7

to build intuition. Recall that the matrix F is assumed to be non-singular and the first column

should not have zeros, i.e., f11, f21 6= 0. In Figure 7 the first hop corresponds to the CF hop, and

in the Gaussian case, at each channel use, Y3 = g13X1+g23X2+Z3 and Y4 = g14X1+g24X2+Z4.

In subsection 2.3.1, we briefly walk through three achievability schemes to show how depen-

dency patterns may be created by the presence of interference at the relays, and how these may

be exploited by different schemes in the ICF hop. In subsection 2.3.2, we numerically evaluate

these three achievable rate regions for the Gaussian-MAC channel. An illustrative example of

how CF and ICF rate regions may be combined – an interesting problem in itself but not the

focus here – is provided in subsection 2.3.2.2. The takeaways are that 1) linear equations of

messages create dependencies at the relays that may be exploited, and 2) in combining CF and

ICF in a larger network, interference is not necessarily harmful and allows for the creation of

such dependencies.

2.3.1 Three achievable rate regions for the two-user discrete memoryless ICF channel

Scheme 1: a non-coherent scheme without cardinality bounding. Ignoring the

dependencies between the two equations and communicating the two equation indices (of rates



24

1w1 3

5

2w1 4

u1 = f11w1 ⊕ f12w2

u2 = f21w1 ⊕ f22w2

g13

g14

g23

g24

CF ICF

Sources: Relays: Destination

Goal:

Y n
5 → (û1, û2)⇒ (ŵ1, ŵ2)

Network model:

Y n
3 = g13Xn

1 + g23Xn
2 + Zn

3
Y n
4 = g14Xn

1 + g24Xn
2 + Zn

4
Y n
5 = Xn

3 +Xn
4 + Zn

5

Figure 7. Two-user ICF problem with Gaussian-MAC channel. Power constraints

P1, P2, P3, P4, respectively.

Rmax = max{R1, R2} each) to the destination as if they were independent messages yields the

rate region:

RNaive(R1, R2) =





(R1, R2) :

Rmax ≤ min{I(X1;Y |X2), I(X2;Y |X1)}

Rmax +Rmax ≤ I(X1, X2;Y )

for p(x1, x2, y) = p(x1)p(x2)p(y|x1, x2)





. (2.4)

This region may be improved upon by properly accounting for the correlations between the two

equations.

Scheme 2: a non-coherent scheme with cardinality bounding. Assuming R1 ≥ R2,

each equation may take on R1 values. However, as U = F ·W and F is full rank, (u1,u2)

and (w1,w2) are in one-to-one correspondence, and there are only R1 +R2 ≤ 2R1 possibilities.

Hence, sending the two equation indices independently is redundant whenever R1 6= R2.
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To exploit this, note that when one equation is fixed, the other may not take on all possible

values in Fk1p ; this observation led to the “cardinality based approach” of (10), which resulted

in the rate region:

RCB(R1, R2) =





(R1, R2) :

Rmin ≤ min{I(X1;Y |X2), I(X2;Y |X1)}

R1 +R2 ≤ I(X1, X2;Y )

for p(x1, x2, y) = p(x1)p(x2)p(y|x1, x2)





. (2.5)

The region RCB(R1, R2) improves over RNaive(R1, R2) as the error events are more carefully

bounded (i.e. if one equation is correct, this limits the number of choices of the other equation).

Inspection of RCB(R1, R2) reveals that the codewords are still independently generated which

does not exploit the common messages present in the problem, and is generally not capacity

achieving.

Scheme 3: a capacity-achieving coherent coding scheme with cardinality bound-

ing. The relays, which have u1 and u2, actually share a common message – the message section

w1,1 of the rate ρ1 message w1, in addition to each having a private, independent message of

rate ρ2 (u1,2 = f11w1,2 + f12w2,2 or u2,2 = f21w1,2 + f22w2,2). We may map the two-user ICF

problem into the Slepian-Wolf MAC problem (2) (which in turn may be seen as Special case

d) of joint-source-channel coding over a MAC as studied in (15)) of a two-user MAC with a

common message and two private messages. This idea is first expressed in (10), but was not

fully explored, and yields the region:
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u1 :

u2 : w2 :
[

w1 :

]F=
0

{ { k2

k1{ {k1 − k2 k2

u1,1 u1,2

u2,1 u2,2

common independent

w1,1 w1,2

w2,2

Figure 8. Two-user ICF message/equation structure. Grey indicates that equation sections

u1,1 and u2,1 are fully correlated, while different solid colors indicate that two equation

sections u1,2 and u2,2 are independent. All message sections wi,j are mutually independent;

i, j = 1, 2.

RICF(R1, R2) =





(R1, R2) :

Rmin ≤ min
{
I(X1;Y |X2, Q), I(X2;Y |X1, Q),

1

2
I(X1, X2;Y |Q)

}

R1 +R2 ≤ I(X1, X2;Y )

for p(q, x1, x2, y) = p(q)p(x1|q)p(x2|q)p(y|x1, x2)





.

(2.6)

The cardinality of the alphabet of Q may be bounded as ||Q|| ≤ min
{
||X1|| · ||X2||+2, ||Y||+3

}
.

Remark 3. Any rate pair achieved by Scheme 2 can be achieved by the capacity-achieving

Scheme 3 by setting Q = ∅. Comparing these two regions, the left hand sides of the inequalities

are identical, but the right hand sides have increased due to the possible correlation of the

codewords created through Q, i.e. I(X1, X2;Y ) maximized over {p(q)p(x1|q)p(x2|q)p(y|x1, x2)}

is generally larger than the maximum evaluated over {p(x1)p(x2)p(y|x1, x2)}.
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2.3.2 Numerical comparison

Consider the AWGN channel model in Fig. Figure 7 with g13 = g23 = g24 = 1, g14 = −1

in the first hop, and symmetrize the powers as Ps = P1 = P2. Note that one can easily obtain

regions for general gij and power constraints, but that this is not the focus of this work.

2.3.2.1 Numerical comparison of three two-user ICF only rate regions

We now numerically evaluate the three achievable rate regions of Schemes 1, 2, and 3 for

the ICF hop only of an additive Gaussian noise channel as shown in Fig. Figure 7, where we

recall that all noises are i.i.d. unit variance Gaussians, i.e. Zni ∼ N (0n×1, In×n), i = 3, 4, 5.

Scheme 1 and 2 lead to the regions RGNaive(R1, R2) and RGCB(R1, R2), which correspond to those

in (Equation 2.4) and (Equation 2.5) for Gaussian inputs:

RGNaive(R1, R2) =

{
(R1, R2) : Rmax ≤ min{C(P3), C(P4),

1

2
· C(P3 + P4)}

}
, (2.7)

RGCB(R1, R2) =





(R1, R2) :
Rmin ≤ min{C(P3), C(P4)}

R1 +R2 ≤ C(P3 + P4)




. (2.8)
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Scheme 3 has been shown to be exhausted by jointly Gaussian inputs (11), yielding the

region

⋃
b1,b2∈[0,1]R

G
ICF(R1, R2 | b1, b2), where for each pair of constants b1, b2 ∈ [0, 1] we define

RGICF(R1, R2 | b1, b2) =





(R1, R2) :

Rmin ≤ min
{
C((1− b1)P3), C((1− b2)P4),

1

2
C((1− b1)P3 + (1− b2)P4)

}

R1 +R2 ≤ C(P3 + P4 + 2
√
b1b2

√
P3P4)





. (2.9)

Fig. 9(a) demonstrates the relative rate regions of the three schemes for equal relay power

P3 = P4 = 20, while Fig. 9(b) demonstrates the regions for asymmetric powers P3 = 4, P4 = 36.

From the figure, one can see how Scheme 3 improves upon Scheme 2 (coherent gains), that in

turn improves upon Scheme 1 (proper accounting of dependencies in error events). Coherent

gains are most useful for unequal R1 and R2; when R1 = R2, all regions degrade to the same line

segment depicted using thick black dots. This is intuitive: at equal rates there are no common

messages and the two linear equations known to the relays are independent and no dependencies

may be extracted or exploited. One may also observe that when the powers at the relays (nodes

3,4) are asymmetric but sum to the same value, the gains of Scheme 2 over Scheme 1 increase

while the gains of Scheme 3 over Scheme 2 decrease. The region of Scheme 1 decreases as

the powers become more asymmetric as the regular MAC channel region is constrained by the

minimum of the powers at the relays. The region of Scheme 3 also decreases with increasing

asymmetry in powers: the coherent gain manifests itself in the sum-rate as an additional term

√
P3P4. For fixed sum P3 + P4 this is maximized when they are equal.
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2.3.2.2 An example: combining CF and ICF in a network

We now illustrate how ICF may be combined with the CF rate region to provide an overall

achievable rate region in an AWGN relay network.

In the first hop, or the CF stage, since the channel gain to receiver 3 is Y3 = X1 +X2 + Z3

and that to receiver 4 is Y4 = X1 − X2 + Z4, the relay nodes 3 and 4 may decode equations

u1 = w1 ⊕ w2 and u2 = w1 	 w2 (which intuitively match the channel gains) using the CF

framework at rates (4). Next, in the ICF stage, destination node 5 recovers (w1,w2) from

(u1,u2) at rates:

First hop:





R1 ≤ 1
2 log

(
1
2 + Ps

)

R2 ≤ 1
2 log

(
1
2 + Ps

)
Second hop: region (Equation 2.9). (2.10)

To obtain an achievable rate region for the entire network, first intersect the CF and ICF

rate regions in (Equation 2.10) and then take the convex hull of the resulting regions. As one

can see in Fig. 10(b), the achievable rate region for the whole network when using CF + ICF

Scheme 3, improves upon Scheme 2, that in turns improves upon Scheme 1. Note that when

looking at only the ICF rate region, at equal rates Scheme 3 does not outperform the other

schemes. However, when combined with the CF region in a larger network, using CF + ICF

(scheme 3) outperforms the other schemes. This is because source nodes 1,2 may transmit at

unequal rates (which maximizes the benefits of Scheme 3’s coherent gains in the ICF phase),

and then use time sharing between this and the reverse unequal rates to achieve the larger rate

region.
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2.3.2.3 Comparison with the scheme of decode and forward and full cooperation

(DF+FCo)

One alternative approach for the two-hop network is to have both relays in the first hop

decode and forward (DF) the two messages w1 and w2. This allows them to fully cooperate

(FCo) in the second hop. This leads to the following achievable rate regions, which again must

be intersected and then convex-hulled:

First hop:





R1 ≤ 1
2 log (1 + Ps)

R2 ≤ 1
2 log (1 + Ps)

R1 +R2 ≤ 1
2 log (1 + 2Ps)

Second hop:

{

R1 +R2 ≤ 1
2 log

(
1 + P3 + P4 + 2

√
P3P4

)
.

(2.11)

As one can see from the expressions in equation (Equation 2.10) and (Equation 2.11), the

extra sum rate constraint, which is due to treating the first hop as two MAC channels in

the DF stage, could potentially1 render DF+FCo inferior to CF+ICF. This is confirmed by

the simulations shown in Fig. Figure 11. One misleading thought is that the superiority of

CF+ICF comes solely from the CF stage and that ICF is immaterial here. To clarify the role

of ICF scheme, we also plot the overall network rate region by adopting CF and the naive ICF

(ICF Scheme 1) in green in Fig. Figure 11, where one can see that ignoring the correlations

between the equations (ICF Scheme 1) could reduce the gains significantly. Thus, a proper ICF

1This is true when the powers at the relay nodes are not too much smaller than those at the source
nodes; otherwise, the second hop rate constraints will dominate.
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scheme is needed for the overall superior performance of the CF+ICF scheme. We also note

that in some extreme scenarios, as shown in Fig. 11(b), the gain of CF+ICF over DF+FCo

can be substantial.

Remark 4. We do not claim that CF+ICF generally leads to larger rates than DF+FCo. For

example, when the powers at the source nodes are abundant while those at the relay nodes are

scarce, the overall rate region will be dominated by the rate constraints of the second hop. In this

scenario, CF+ICF and DF+FCo will have exactly the same performance. Also, our simulations

assume that the channel coefficients are integers (with absolute value 1), which is well suited to

the Compute-and-Forward scheme. When the channel coefficients are not as assumed here, one

needs to carefully choose the equation to decode, which is outside of the scope of this study.

2.4 Three-user Case

We now move to the three-user ICF problem to build additional intuition. Recall the

following assumptions placed on coefficient matrix F: (1) full rank; (2) any 2 by 2 submatrix

from its first two columns is non-singular; and (3) all entries in its first column are non-zero.

As shown in Fig. Figure 12, recall that wl,c denotes a message section of length sc := kc− kc+1

(for k4 := 0) which corresponds to the c-th segment of message wl for c ∈ {1, 2, 3}. Let W̃∗c

be the matrix of dimension 3× sc whose l-th row is wl,c. Following the notation of Section 2.2:
[
Ũ∗1 Ũ∗2 Ũ∗3

]
=

(
F

)
·
[
W̃∗1 W̃∗2 W̃∗3

]
, or, breaking this into message sections and

equation sections, as shown in Fig. Figure 12.

It can be checked that:
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(I) Ũ∗1, or u1,1,u2,1,u3,1 are completely correlated, and may be used to reconstruct w1,1, a

common message known to all relays.

(II) u1,2,u2,2,u3,2 are pairwise independent and have the property that the third is a deter-

ministic function of the other two. These three are not mutually independent.

(III) u1,3,u2,3,u3,3 are mutually independent.

In moving to three users one interesting new aspect arises: in addition to extracting a

common message and two independent messages from the equations as in the two-user case,

in the three-user case we also extract three pairwise independent messages. One may wonder

if/how this kind of dependency may be exploited. We show that for the Gaussian MAC channel

model, no coherent power gains may be obtained from such pairwise independent correlation.

This is at least partially due to the linearity and second moment constraints of the AWGN

channel where Gaussians maximize entropy, and the second moment of a linear sum of random

variables depends only on the pairwise correlation between its elements. We conjecture that, for

fixed source/message dependencies, coherent encoding is possible or valuable only when these

dependencies are not destroyed by the channel.

Remark 5. One might ask whether this problem maps onto an extension of the two-user

Slepian-Wolf problem. An extension of the Slepian-Wolf MAC is considered in (13), where each

transmitter in an L-MAC has access to an arbitrary subset of messages from a set of independent

messages. Our problem cannot be mapped into the framework in (13), as in the latter, the users

either have common message(s) or completely independent ones, but do not have the pairwise
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(but not mutual) independence property seen here. We are not aware of any other related prob-

lems which capture the pairwise independent structure. The ICF problem might be a special case

of the problem considered in (15), which obtains an uncomputable multi-letter expression for

the capacity region for sending arbitrarily correlated sources (S1,S2,S3) ∼
∏n
i=1 p(s1i, s2i, s3i)

over a MAC channel. It is easy to pull out the fully common and the conditionally independent

components, but how to cast the pairwise independent but not mutually independent components

as a source of this form (S1,S2,S3) ∼
∏n
i=1 p(s1i, s2i, s3i) is an open problem. Unfortunately,

even if one were able to cast our constraints into a source of that form, the capacity region is

not computable. We will next show a simple achievability scheme, which turns out to be the

explicitly computable capacity region in the Gaussian case.

Theorem 15 (Memoryless three-user ICF achievability). Assume that F and all c by c sub-

matrices from its first c columns are of full rank, c = 1, · · · , L. The messages (w1,w2,w3) at

rates (R1 ≥ R2 ≥ R3) may be recovered from (u1,u2,u3) sent over a MAC if the rates lie in

RIN :=
⋃

p(q)p(x1|q)p(x2|q)p(x3|q)
R (2.12)
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for ‖Q‖ ≤ min{‖X1‖ · ‖X2‖ · ‖X3‖ + 3, ‖Y‖ + 4}, where R is the set of (R1, R2, R3) with

(R1 ≥ R2 ≥ R3) :

R1 +R2 +R3 ≤ I(X1, X2, X3;Y ) (2.13a)

2R2 +R3 ≤ I(X1, X2, X3;Y |Q) (2.13b)

R2 +R3 ≤ min{I(X1, X2;Y |X3, Q), I(X1, X3;Y |X2, Q), I(X2, X3;Y |X1, Q)} (2.13c)

R3 ≤ min{I(X1;Y |X2, X3, Q), I(X2;Y |X1, X3, Q), I(X3;Y |X1, X2, Q)}. (2.13d)

Remark 6. To understand the form, consider for example (Equation 2.13b). This results from

the error event that all message sections except the common message (w1,1 or Ũ∗1) are incorrect.

The rate of these incorrect message sections is 2(R2 − R3) + 3(R3) = 2R2 + R3. Similarly,

(Equation 2.13c) corresponds to when the common message portion and one of the codewords

is correct and thus the rates of the incorrect message portions is 1(R2−R3) + 2(R3) = R2 +R3.

Finally, (Equation 2.13d) corresponds to when the common message and two entire codewords

are correct: only the independent message section of rate R3 is wrong.

An alternative interpretation is the following: (Equation 2.13a) corresponds to the overall

sum rate constraint and (Equation 2.13b) corresponds to the sum constraint apart from the

cooperative or common message of rate R1 − R2 (see Fig. Figure 12). Any single link cannot

help the destination distinguish between more than 2nR1 possibilities for the equations (or

messages), because knowing one u, say u1, can at most resolve 2nR1 uncertainties. Hence, the

other two links must help the destination to distinguish between at least 2n(R2+R3) values so that
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overall, it may distinguish between the 2n(R1+R2+R3) possible equation or message values. This

explains (Equation 2.13c). Analogously, any two links cannot help the destination distinguish

between more than 2n(R1+R2) values; the third link distinguishes between the remaining 2nR3

choices. For the Gaussian channel, the above achievable rate region is the capacity region, given

in Theorem 17 for general L.

Remark 7. The above theorem holds for R1 ≥ R2 ≥ R3; other relative orderings may be

obtained similarly. We do not claim the convex hull of the rate regions for different orderings

to be achievable as the relative values of R1, R2, R3 are fixed as part of the ICF problem setting.

When deriving an achievable rate region for a larger network, one takes the convex hull after

intersecting the CF and ICF rate regions.

2.5 Main result: L-user ICF achievable rate region

We now present the main technical contributions: 1) an achievable rate region for the

general L-user ICF problem of extracting L independent messages from linear equations of these

messages over a multiple access channel, and 2) the capacity region for the L-user Gaussian

ICF channel. Both regions are enlarged with respect to a MAC with independent messages

as the relays extract and exploit a special form of dependency from the linear equations they

possess. The extraction of a common message allows for coherent gains, while knowing some

equations limits the values other equations may take on and hence reduces the number of error

events.

The main theorem is stated in terms of message rates Rl, while its proof in the Appendix

B is argued via section rates ρc (Definition 14, Section 2.2). The use of section rates not only
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facilitates the error analysis but also helps to reveal the effect of dependency patterns among

the equations at the relays. There is a one-to-one mapping between ρ1, · · · , ρL and R1, · · · , RL

given by ρc = Rc −Rc+1, RL+1 = 0.

2.5.1 An ICF achievable rate region for the Memoryless ICF channel

Our main achievability result for the L-user ICF channel model follows.

Theorem 16 (Achievable rate region for Memoryless ICF Channels). Assume that F and all

c by c sub-matrices from its first c columns are of full rank, c = 1, · · · , L. The messages

(w1, · · · ,wL) may be recovered from the equations u1, · · · ,uL over the memoryless MAC chan-

nel p(y|x1, · · · , xL) if:

L∑

l=1

Rl ≤ I(X1, · · · , XL;Y ) (2.14a)

2R2 +
L∑

l=3

Rl ≤ I(X1, · · · , XL;Y |Q) (2.14b)

L∑

l=ν+1

Rl ≤ I(XAC ;Y |XA, Q) for ν = 1, 2, · · · , L− 1 (2.14c)

for all A ⊂ {1, 2, · · · , L}, ‖A‖ = ν, taken over p(q) · p(x1|q) · · · · · p(xL|q) · p(y|x1, · · · , xL).

First, it may be verified that the two-user region in (Equation 2.6) and the three-user

achievability scheme in Theorem 15 may be obtained as special cases of this theorem by selecting

L = 2 and L = 3 respectively. Note that there are 2L inequalities in total in (Equation 2.14),

compared to the 2L − 1 in a classical MAC.
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We may interpret (Equation 2.14c) as follows. Take for example L = 5, ν = 2, A = {2, 3}

and AC = {1, 4, 5}. Then (Equation 2.14c) works out to

(0)R1 + (0)R2 + (1)R3 + (1)R4 + (1)R5 ≤ I(X1, X4, X5;Y |X2, X3, Q).

In this case, the correctly decoded codewords Xn
2 and Xn

3 can at most help the destination

distinguish between 2n(R1+R2) possible values of the messages w1, · · · ,w5. Hence, the remaining

codewords must help distinguish at least 2n(R3+R4+R5) of the remaining message tuples, and

these may be communicated at a rate up to I(X1, X4, X5;Y |X2, X3, Q) if Xn
2 and Xn

3 are

correct (and hence also the common message encoded into Q is correct). Alternatively, from

a linear algebra perspective, given the correct estimation of codewords Xn
2 and Xn

3 , i.e., u2

and u3, we may completely remove variables w1 and w2 from the set of remaining equations,

i.e., u1,u4,u5. Thus, we have a new equation set U′ = F ·W′, which relates (u1,u4,u5) to

(w3,w4,w5), with at most 2n(R3+R4+R5) different solutions.

The proof is provided in Appendix B. The achievability scheme generates a common code-

book for the common message w1,1 (or equivalently equation section matrix Ũ∗1) and condi-

tionally independent (conditioned on this common part) codebooks at each transmitter for the

remaining equation sections. We index everything by the equation sections and use a joint

typicality decoder to estimate these directly.

Remark 8. As noted in Remark 5, whether the above presented achievability scheme may be

cast as a special case of the L-user problem of sending arbitrarily correlated sources over a
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MAC as considered in (15) is an interesting open question. One might suspect so, but it is not

clear how to express the dependencies induced by the ICF problem as an i.i.d. (but correlated)

source of the form (S1,S2, · · · ,SL) ∼ ∏n
i=1 p(s1i, s2i, · · · , sLi). We furthermore go beyond an

achievability scheme and in the following section show capacity explicitly by obtaining a general

converse.

2.5.2 The ICF Capacity Region for the Linear Gaussian-MAC model

We now turn our attention to AWGN channels. In moving towards capacity, the difficulty

lies not in deriving rate bounds which match the general achievable rate region but rather in

showing that restriction to input distributions of the form p(q)p(x1|q) · · · p(xL|q) and Gaussian

is without loss of generality. In general, given the message equations, it may appear that all

relay node inputs could be arbitrarily correlated and hence outer bounds would need to be

evaluated over all joint p(x1, x2, · · · , xL). However, for the AWGN channel we show that the

form of the equations dictates a particular dependency structure. This structure, for Gaussian

channels, results in an achievable outer bound exhausted by Gaussian inputs.

Theorem 17 (The ICF Capacity Region for Linear Gaussian MAC). Assume that F and

all c by c submatrices from its first c columns are of full rank, c = 1, · · · , L. One can fully
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recover messages w1, · · · ,wL from the equations u1, · · · ,uL transmitted by the relays via a

linear Gaussian MAC channel in (Equation 2.1) if and only if the message rates Rl satisfy:





∑L
l=1Rl ≤ 1

2 log2

(
1 +

∑L
j=0 d

2
j

)

2R2 +
∑L

l=3Rl ≤ 1
2 log2

(
1 +

∑L
j=1 d

2
j

)

∑L
l=ν+1Rl ≤ 1

2 log2

(
1 +

∑
j∈AC d

2
j

)

(2.15)

for ν = 1, · · · , L − 1, RL+1 := 0, and all A such that ‖A‖ = ν, A ⊂ {1, 2, · · · , L}, with some

{d0, · · · , dL} such that d0 =
√
b1 +

√
b2 + · · · + √bL, dj =

√
Pj − bj, and 0 ≤ bj ≤ Pj, for

j = 1, · · · , L.

Proof. Achievability: Let Q,Q1, Q2, · · · , QL ∼ N (0, 1), and all independent, be used to gen-

erate i.i.d. length n sequences Qn, Qn1 , · · · , QnL. Relay m sends:

Xn
m(um) =

√
bmQ

n(um,1) +
√
Pm − bmQnm(um,2, · · · ,um,L), 0 ≤ bm ≤ Pm.

Thus, p(q) is Gaussian, and every p(xm|q) is again Gaussian. Then, at each channel use,

Y = X1 + · · ·+XL + Z

=
√
b1Q+

√
P1 − b1Q1 + · · ·+

√
bLQ+

√
PL − bLQL + Z

:= d0Q+ d1Q1 + · · ·+ dLQL + Z
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where d0 =
√
b1 + · · · + √bL and dm =

√
Pm − bm, m = 1, 2, · · · , L as in the Theorem state-

ment. Evaluating the bounds of Theorem 16, we obtain the achievable rate region specified by

inequalities (Equation 2.15).

Converse:

The converse uses Lemmas 18, 19 and 20 to upper bound the capacity region as follows

C
Lemma 18
⊆ Rout

Lemma 19
⊆

⋃
R′

Lemma 20
⊆

⋃
R′′ .

We first state the lemmas, explain the intuition and show how they are used to establish the

converse. We defer the proofs of Lemmas 18 and 19 to the following subsections, while the

proof of Lemma 20 is inline.

First, Lemma 18 provides an outer bound Rout valid for any memoryless channel. Define

P := {p(q, x1, · · · , xL) : Xm → Q→ Xm′ , ∀m 6= m′, m,m′ ∈ {1, 2, · · · , L}} (2.16)

Lemma 18. C ⊆ Rout, where Rout is defined as

Rout :=
⋃

p(q,x1,··· ,xL)∈P
R(Q,X1, · · · , XL), (2.17)

where R(Q,X1, · · · , XL) denotes the set of rate tuples (R1, · · · , RL) that satisfy inequalities

(Equation 2.14).
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Lemma 19 further loosens the outer bound Rout in Lemma 18 for the Gaussian-MAC model

Y = X1+· · ·+XL+Z and showsRout ⊆
⋃R′. The essence of its proof in Section 2.5.4 is to note

that for Gaussian channels subject to power constraints, only second moment constraints are of

interest and the variance of a linear sum of random variables does not depend on correlations

of order higher than 2.

Lemma 19. For the Gaussian-MAC model, Y = X1+· · ·+XL+Z, for any given p(q, x1, · · · , xL) ∈

P, region R(Q,X1, · · · , XL) can be outer bounded by region R′, where R′ consists of the rate

tuples: 



∑L
l=1Rl ≤ C(

∑L
m=1E[X2

m] +
∑

m 6=m′ E[XmXm′ ])

2R2 +
∑L

l=3Rl ≤ C(
∑L

m=1 var[Xm|Q])

∑L
l=ν+1(l − ν)(Rl −Rl+1) ≤ C(

∑
m∈AC var[Xm|Q])

(2.18)

for ν = 1, 2, · · · , L − 1, RL+1 := 0, and all possible A such that A ⊂ {1, 2, · · · , L} and

‖A‖ = ν.

We outer bound the outer bound R′ one more time in Lemma 20. This lemma is based

on the power constraints and the Markov chains Xm → Q → Xm′ , ∀m 6= m′, m,m′ ∈

{1, 2, · · · , L}. To show Lemma 20, note that it follows from (11, Lemma B.3) that E[XmXm′ ] ≤
√
E[X2

m]− var(Xm|Q)
√
E[X2

m′ ]− var(Xm′ |Q). This, together with tm = E[X2
m]−var(Xm|Q)
E[X2

m]
∈

[0, 1], m = 1, · · · , L immediately lead to the following Lemma.
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Lemma 20. The region R′ ⊆ R′′, where R′′ consists of the rate tuples that satisfy





∑L
l=1Rl ≤ C(

∑L
m=1E[X2

m] +
∑

m6=m′
√
tmtm′

√
E[X2

m]E[X2
m′ ])

2R2 +
∑L

l=3Rl ≤ C(
∑L

m=1(1− tm)E[X2
m])

∑L
l=ν+1Rl ≤ C(

∑
m∈AC (1− tm)E[X2

m])

(2.19)

for ν = 1, 2, · · · , L− 1, and all possible A such that A ⊂ {1, 2, · · · , L} and ‖A‖ = ν.

Combining Lemma 18, Lemma 19 and Lemma 20, we have

C ⊆ Rout ⊆
⋃

p(q,x1,··· ,xL)∈P
R′|Y=X1+···+XL+Z, p(q,x1,··· ,xL)∈P

⊆
⋃

t1,t2,··· ,tL∈[0,1]
R′′|t1,··· ,tL

.

where the last region may be verified to be that stated in Theorem 17 with bj replaced by tjPj

– i.e. may be achieved by jointly Gaussian inputs which are conditionally independent given

Gaussian p(q).

2.5.3 Proof of Lemma 18

Proof. We have the Markov chain W → U → (X1, · · · , XL) → Y → Û. Recall that Ũ∗c

stands for the cth column of the equation matrix ŨL×L, which is equivalent to UL×k, and that

ρc := Rc −Rc+1:
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n(

L∑

l=1

Rl) = n

L∑

c=1

cρc
(a)
= H(U)

(b)

≤ I(U;Y n) + nεn

≤
n∑

i=1

I(U;Yi) + nεn

(c)
=

n∑

i=1

I(U, X1i, · · · , XLi;Yi) + nεn

(c)
=

n∑

i=1

I(X1i, · · · , XLi;Yi) + nεn

(e)

≤ nI(X1, · · · , XL;Y ) + nεn

(2.20)

n(2R2 +

L∑

l=3

Rl) = n

L∑

c=2

cρc
(a)
= H([Ũ∗2, Ũ∗3, · · · , Ũ∗L])

(a)
= H(U|Ũ∗1)

= I(U;Y n|Ũ∗1) +H(U|Y n, Ũ∗1)

(b)

≤ I(U;Y n|Ũ∗1) + nεn

≤
n∑

i=1

I(U;Yi|Ũ∗1) + nεn

(c)
=

n∑

i=1

I(U, X1i, · · · , XLi;Yi|Ũ∗1) + nεn

(c)
=

n∑

i=1

I(X1i, · · · , XLi;Yi|Ũ∗1) + nεn

(d)
=

n∑

i=1

I(X1i, · · · , XLi;Yi|Qi) + nεn (Qi := Ũ∗1)

(e)

≤ nI(X1, · · · , XL;Y |Q) + nεn

(2.21)
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n(
L∑

l=ν+1

(l − ν)(Rl −Rl+1) = n
L∑

c=ν+1

(c− ν)ρc
(a)
= H(U|uA)

(a)
= H(uAC |Ũ∗1, uA,)

= I(uAC ;Y n|Ũ∗1,uA) +H(uAC |Y n, Ũ∗1, uA)

(b)

≤ I(uAC ;Y n|Ũ∗1, uA) + nεn

≤
n∑

i=1

I(uAC ;Yi|Ũ∗1, uA) + nεn (2.22)

(c)
=

n∑

i=1

I(uAC , XAC i;Yi|U,1,uA, XAi) + nεn

(c)
=

n∑

i=1

I(XAC i;Yi|Ũ∗1, XAi) + nεn

(d)
=

n∑

i=1

I(XAC i;Yi|Qi, XAi) + nεn (Qi := Ũ∗1)

(e)

≤ nI(XAC ;Y |Q,XA) + nεn

The equalities in (a) all follow by definitions, and Lemma 62 and 64 in the Appendix. This

is where we use that F and all c by c sub-matrices from its first c columns are of full rank – if

not Lemmas 62 and 64, and hence the relationships between rates and entropies would change.

Inequalities (b) follow from Fano’s Inequality, where εn → 0 as n → ∞. Steps (c) follow from

the encoding functions, the Markov chain at the start of this proof, and the memoryless channel

properties. In steps (d), we set Qi := Ũ∗1. In steps (e), by further time-sharing arguments and

Jensen’s inequality we obtain the form in (Equation 2.14) as n→∞.



45

Notice that since the um are conditionally pairwise independent given Ũ∗1 and since Xn
m is

a function of um, then Xn
m (and hence also Xm) are conditionally pairwise independent given

Q.

2.5.4 Proof of Lemma 19

Proof. The key is to first apply the Max-Entropy therorem conditioned on Q = q. The proof

of I(XAC ;Y |XA, Q) ≤ C
(∑

m∈AC var[Xm|Q]
)

is shown as an example.

I(XAC ;Y |XA, Q) = EQ[I(XAC ;Y |XA, Q = q)]
(a)
=EQ[h(

∑

m∈AC
Xm + Z|Q = q)− h(Z)]

(b)

≤EQ
[

1

2
log

(
var(

∑
m∈AC Xm + Z|Q = q)

var(Z)

)]

(c)
=EQ


1

2
log


1 +

∑

m∈AC
var(Xm|Q = q)






(d)

≤ 1

2
log


1 +

∑

m∈AC
var(Xm|Q)


 ,

(2.23)

where (a) follows by definition of Y and the linearity of the AWGN channel model, (b) follows

by the fact that Gaussians maximize entropy subject to second moment constraints (c) is the

critical step and follows from 1) the linearity of the AWGN channel model, 2) the variance

of a linear sum of random variables is defined by the pairwise relationships between these

random variables, and does not depend on any higher order correlations such as for example



46

E[X1X2X3|Q = q], and 3) the fact that Xi’s are conditionally independent conditioned on Q.

Since this is the crucial step, note that

var(
∑

m∈AC
Xm + Z|Q = q) =

∑

m∈AC
var(Xm|Q = q) + 2

∑

i,j∈AC ,i 6=j
cov(Xi, Xj |Q = q)+var(Z)

=
∑

m∈AC
var(Xm|Q = q)+var(Z), (2.24)

where ‘cov’ denotes the covariance between two random variables. Note that since Xi, Xj are

conditionally independent given Q = q, cov(Xi, Xj |Q = q) = 0. Step (d) follows from Jensen’s

inequality.

2.5.5 On the assumptions placed on F

As commented in Remark 1, the assumption that F and all c by c sub-matrices from its

first c columns, c = 1, 2, · · · , L, are of full rank is made for the succinctness of presentation.

Without the requirements on sub-matrices, one could further exploit the specific dependencies

between the equations um for each specific coefficient matrix F. We provide examples of how

to proceed in this direction for L = 2 and 3 next. We note that F must always be full rank in

order for the ICF problem to be feasible. However, no further requirements need to be imposed

on sub-matrices to do so.
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Two-user example: Recall that we require F to be full rank and its first column entries

f11 and f21 to be non-zero. However, there are four types of 2 by 2 matrices (upto scalings on

rows) that yield invertible F (feasible) but violate the assumptions on sub-matrices:

F =




0 1

1 1


 , F =




1 1

0 1


 , F =




0 1

1 0


 , F =




1 0

0 1


 .

Consider

F =




0 1

1 1


 , and hence





u1 = 0 ·w1 ⊕ 1 ·w2

u2 = 1 ·w1 ⊕ 1 ·w2

.

In this case, the two equations u1 and u2 are actually independent. Although F is still

full rank and may be inverted to recover the original messages W, knowing u1, for example,

can only resolve w2 and the number of possible choices of u2 is 2nR1 . Thus, the cardinality

bounding arguments in Scheme 2 in Section 2.3 fails. The achievable rate region shrinks to





(R1, R2) :

Rmax ≤ I(X2;Y |X1)

Rmin ≤ I(X1;Y |X2)

R1 +R2 ≤ I(X1, X2;Y )

for p(x1, x2, y) = p(x1)p(x2)p(y|x1, x2)





.
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When F =




1 0

0 1


, following similar arguments, one can check that the region (Equation 2.5)

should be modified to





(R1, R2) :

Rmin ≤ I(X2;Y |X1)

Rmax ≤ I(X1;Y |X2)

R1 +R2 ≤ I(X1, X2;Y )

for p(x1, x2, y) = p(x1)p(x2)p(y|x1, x2)





.

We omit the other cases for brevity. This is an example of how, in contrast to (16), we do not

require all square sub-matrices of F to be full rank. Nevertheless, the format of the rate region

varies.

Three-user example: Recall that we require F to be full rank and further assume that (1)

its first column entries f11, f21 and f31 are all non-zero; (2) any 2 by 2 submatrix from its first

two columns is nonsingular. There are many (but finite) realizations of F such that it satisfies

the feasibility constraint (full rank) but violates the assumptions on sub-matrices. We consider

one example to show that the derivation of achievable rate region for each individual case is
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a relatively straightforward extension of the work presented in Appendix B, but the format of

corresponding rate region differs from case to case. Let

F =




1 1 1

1 1 3

1 2 3




and hence





u1 = 1 ·w1 ⊕ 1 ·w2 ⊕ 1 ·w3

u2 = 1 ·w1 ⊕ 1 ·w2 ⊕ 3 ·w3

u3 = 1 ·w1 ⊕ 2 ·w2 ⊕ 3 ·w3

.

It may be checked that:

1. coefficient matrix F is invertible but sub-matrix




1 1

1 1


 is singular 1;

2. equation sections u1,1, u2,1 and u3,1 share the same information;

3. equation sections u1,2 and u2,2 are exactly the same instead of being (pairwise) indepen-

dent;

4. equation sections u1,3, u2,3 and u3,3 are mutually independent.

We now ask whether the derived achievable rate region in the Appendix B for the discrete

memoryless MAC still holds in this case. The analyses of Error event type I, II III remain

valid while the analysis of Error event type IV is unable to proceed, and must be modified as

follows:

1Note that is submatrix

[
1 3
1 3

]
is also singular but it does not violate our sub-matrix assumption.



50

Let β2 represent the number of correctly estimated equation sections among Ũ∗2, i.e.,

u1,2,u2,2, · · · ,uL,2, and β3 for Ũ∗3. Let ν ∈ {1, 2}, A ⊂ {1, 2, 3}, and ‖A‖ = ν. For de-

tailed definitions of these parameters/indicators, please refer to the proof in Appendix B.

• The analysis of Error event type I holds due to the definition of the jointly typical set.

• The analysis of Error event type II, Error event type III, and case ν = 1 of Error event

type IV remains valid even though β2 = 2 is possible, which violates Lemma 64. This

results from the fact that the most demanding constraints among these error event cases

do not change. For example, when ν = 1, A = {1}, AC = {2, 3}, we have u1,2 = u2,2 =

the correct value. Thus, β2 cannot be 1 as expected but is actually 2. Surprisingly, this

does not disagree with equation (Equation B.3) when ν = 1 since γ2 = 1, γ3 = 2 stays

true.

• The singularity of sub-matrix




1 1

1 1


 does affect the case when ν = 2 in Error event

type IV. For example, when A = {1, 2}, AC = {3}, we have β2 = 2, β3 = 2 and thus

γ2 = 1, γ3 = 1, i.e., 1 · ρ2 + 1 · ρ3 = R2 ≤ I(X3;Y |X1, X2, Q) instead of 0 · ρ2 + 1 · ρ3 =

R3 ≤ I(X3;Y |X1, X2, Q).

In summary, the achievable rate region for this particular choice of F would lead to the

same region as in (Equation 2.13) except for the third term in inequality (Equation 2.13d)

which becomes the new R2≤ I(X3;Y |X1, X2, Q).

Remark 9. Note that if two rows are exchanged in matrix F, say the 2nd and 3rd rows,

then inequality R3 ≤ I(X2;Y |X1, X3, Q) in region (Equation 2.13) will be replaced by R2 ≤
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I(X2;Y |X1, X3, Q). Thus, we note that the assumption that all c × c sub-matrices of the first

c columns of F be non-singular is not necessary for our coding scheme, but makes a succinct

and consistent presentation of rate regions possible.

While achievable rate regions could be naturally extended using the above techniques, we

note that for the Gaussian model, the converse as currently written would not naturally fol-

low. The Markov inequalities (pairwise independent conditioned on the common message) no

longer naturally follow and the current argument that mutually independent (conditioned on

Q) Gaussians maximize the outer bound would fail.

2.5.6 On the generalization of the ICF result

The ICF problem and particular message structure is motivated by relay networks in which

CF is used at relay nodes. An abstract generalization of our capacity result holds for the

following channel model.

Abstract Gaussian ICF model. Consider again an L-user Gaussian channel model as

in (Equation 2.1). Consider a set of 1 + 2 + 3 + · · ·+L independent messages and a set of L×L

functions satisfying:

1. One message W1,1 is of rate ρ1, two messages W1,2,W2,2 of rate ρ2, three messages

W1,3,W2,3,W3,3 of rate ρ3, · · · , L messages W1,L, · · · ,WL,L of rate ρL.

2. All users know message W1,1 (or a one-to-one function Ti,1 thereof).
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3. Each user i = 1, 2, · · · , L, for each l = 2, 3, · · · , L knows a function say Ti,l of the messages

W1,l, · · · ,Wl,l such that given any l of L functions Ti,l, i = 1, 2, · · · , L, it is possible to

reconstruct the original l messages.

4. For l = 2, 3, · · · , L, any two Ti,l for different i are independent.

Constraints 2) and 3) allow us to relate message rates to the entropy (or conditional entropy)

of some sets of equations, needed in Lemma 18 in Subsection 2.5.3. Furthermore, since all

messages are independent, together with constraint 4) in particular, the set of Markov chains

Xm → Q→ Xm′ , ∀m 6= m′, m,m′ ∈ {1, 2, · · · , L}, presented in Lemma 18 are ensured. Thus,

Lemma 19 and Lemma 20 may be derived, and the converse for the Gaussian channel follows.

The remainder of the necessary definitions follow by extension of those in Section 2.2. Then

the next Corollary is easy to obtain from the proof of Theorem 17.

Corollary 21. The capacity region of Theorem 17 is the capacity region for the Abstract Gaus-

sian ICF model described above, with the convention that ρc = Rc −Rc+1 and RL+1 = 0.

2.6 Conclusion

We consider an L-user multiple access channel where transmitter m has access to the linear

equation um =
⊕L

l=1 fmlul of independent messages ul ∈ Fklp with fml ∈ Fp, and the destination

wishes to recover all L messages. The dependency patterns among these given equations are

explored and exploited to enlarge the achievable rate region relative to sending these equations

independently as in a classical MAC channel. In the discrete memoryless MAC channel model,

a tighter achievable rate region than (10) is obtained by adopting a coherent encoding scheme
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which exploits the fact that given equations at unequal message rates, common messages are

in fact shared by the transmitters. In the Gaussian MAC channel, the general L-user capacity

region is derived. All derived results assume invertibility constraints on the coefficient matrix of

the decoded message equations, which is discussed. The outer bound relies heavily on the the

linearity and second moment constraints of the AWGN channel, in addition to careful accounting

of the dependency structure between the equations. In essence, only pairwise dependency

between equations is of concern in Gaussian channels. This ICF capacity region may be used

as a building block for the “last hop” in relay networks where CF is employed at relay nodes,

besides being of independent interest. As such, capacity is also obtained for a generalized

abstraction of our model. Whether the achievable rate region presented for a general, non-

Gaussian memoryless channel is capacity remains an interesting open question; We are currently

not able to find an example of a channel where this type of message dependency would enlarge

the achievable rate region.
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Figure 9. Numerical evaluation for two-user Gaussian-MAC ICF problem. In (a)

P3 = P4 = 20, and in (b) P3 = 4, P4 = 36. The union of the two orderings R1 ≥ R2 and

R2 ≥ R1 (each convex) is plotted rather than their convex hull, as elaborated on in Remark 7.
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Figure 10. An example: combining CF and ICF in a network. Powers at the source nodes are

Ps = P1 = P2 = 30; Powers at the relay nodes are P3 = 4, P4 = 36; I.id noises are with

variance N = 1. In (a), the union of the two orderings R1 ≥ R2 and R2 ≥ R1 (each convex) is

plotted rather than their convex hull, as elaborated on in Remark 7. (a) also contains the first

CF hop explained in equation (Equation 2.10). In (b), we show the convex hull of the

intersection of each scheme with the CF rate region. We use the convention: thin dotted lines

for the first hop, thin solid lines for the second hop, thick solid lines for the rate regions for

the whole network and thick dotted lines to depict the line R2 = R1.
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Figure 11. Examples of CF+ICF outperforming DF+FCo.
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Figure 12. Three user ICF message/equation structure. The grey color indicates that these

equation sections (u∗,1) are fully correlated; shading indicates that these three equation

sections (u∗,2) are pairwise independent, while different solid colors indicate that these three

equation sections (u∗,3) are mutually independent. All message sections wi,j are mutually

independent.



CHAPTER 3

BACKGROUND ON COLOUR-AND-FORWARD RELAYING AND

PRIMITIVE RELAY CHANNELS

From this chapter onwards, we will present our work on how to exploit channel structure to

improve communication efficiency. In particular, the primitive relay channel is adopted to study

how to optimally operate the relay terminal using the smallest conference rate that enables the

whole network to achieve its absolute maximum message rate, i.e. the single-input multiple-

output upper bound. The (zero-error) Colour-and-Forward and ε-Colour-and- Forward relaying

algorithms will be represented in Chapter 4 and Chapter 5 respectively. In this chapter, we

will provide background on the primitive relay channel, our motivation for developing Colour-

and-Forward relaying algorithms, and how we was inspired to study zero- error communication

over the primitive relay channel.

3.1 Primitive relay channels

As shown in Figure 13, a primitive relay channel (PRC) ((X , p(y, yR|x),Y × YR), r) consists

of a source terminal S that wants to communicate a message W to a destination terminal D

aided by a relay terminal R. The broadcasting links (X , p(y, yR|x),Y × YR) from the source

to the relay and destination terminals are orthogonal to the error-free conference link with

maximum rate r bits / channel use from the relay to the destination terminal. This channel

58
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model is motivated when a relay terminal cannot simultaneously transmit and receive signals

or when the relay has an out-of-band link to the destination.

S

R

YR

D

r

X Y ŴW

Figure 13. A primitive relay channel ((X , p(y, yR|x),Y × YR), r).

Clearly, a primitive relay channel is much simpler than a classical relay channel (X ×

XR, p(y, yR|x, xR),Y × YR): It decouples the multiple-access component and the broadcasting

component in a classical relay channel. Studying PRCs can help to better understand the

classical relay channels. As pointed out in (17), there are two perspectives on the study of

primitive relay channels. From the transmitter’s point of view, it can be seen as the simplest

channel coding problem with a source coding constraint. At the same time, from the relay’s

point of view, it is the simplest source coding problem for a channel code; the relay wishes to

compress Y n
R to help the receiver decode Xn.
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My endeavour on primitive relay channels follow the second perspective: Seeing communi-

cating over a PRC as a source coding problem for a channel code. 1 Note that for each input

symbol X = x, what the relay terminal shall observe is a random variable that is defined by

the conditional pmf p(yR|x); Once a codebook is chosen, what the relay terminal shall observe

would be a random process, each random variable of which depends on the transmitted symbol.

The terminology “for a channel code” is adopted to emphasize the phenomenon that what needs

to be compressed at the relay terminal depends on the channel codebook. This is also reflected

in the optimization over all possible codebooks in Theorem 31 and equation (Equation 4.10)

for resolving the minimum required conference rate, which is the main focus of this study.

In particular, the question we are interested in is how to operate the relay terminal to

achieve the maximal possible network message rate while using the least number of bits on

the conference link. we are driven by the straightforward intuition that the core function

of the relay is to help the destination in disambiguating the channel inputs, i.e. to provide

“what the destination needs”. The relay need not decipher the channel inputs (messages)

nor transmit what the destination can infer about the channel inputs from its own received

signals. A relay’s goal is not to decode the message - this is why Decode-and-Forward fails in

general; it is not to provide “what the destination does not want”, i.e. the noise, - this is why

Amplify-and-Forward fails in general; nor is it desirable to waste its communication to send

“what destination already possesses”. One might argue that Partial Decode-and-Forward and

1Surely, the source coding problem and the design of the channel codebooks will be coupled and/or
entangled.
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Compress-and-Forward embody the idea of providing “what the destination needs” to some

extent. However, we are not aware of any explicit attempt to characterize and quantify this

intuition, which could potentially lead to a new relaying strategy with improved rates.

What the relay should forward depends on both the broadcasting links and the allowable

conference rate r. When r is infinite or large enough, the relay can simply forward everything

it has observed to the destination terminal. Thus, the primitive relay channel effectively turns

into a point-to-point channel with single input and two outputs, say (X , p(y, yR|x),Y × YR),

whose capacity is known. The natural question to ask is how large the conference link capacity r

should be to ensure that the PRC network can achieve the capacity of the point-to-point channel

(X , p(y, yR|x),Y×YR). We denote this capacity as the single-input multi-output (SIMO) upper

bound for the given PRC channel. When conference rate r is big enough such that the SIMO

upper bound can be achieved, We say that an “effectively full cooperation” between the relay

and destination terminals can be established.

The small-error 1 version of this question was first proposed in (17) and remains open.

We propose the zero-error version of this problem and obtain the exact solution for any fixed

number of channel use n. Next, let us see a toy problem, which explains the motivation of this

study: the advocation of having the relay terminal deliver “only what the destination needs”

as well as the introduction of studying the “zero-error” communication over a PRC.

1Communication allowing a vanishing probability of error is called small-error or ε−error communi-
cation, while communication without error is called zero-error or 0-error communication.
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3.2 A motivating example

Take for example a PRC with p(y, yR|x) = p(y|x)p(yR|x) as in Figure 14. The destination,

upon receiving Y can tell whether {1, 2} or {3, 4} were sent, but not which message within

those sets. The relay can “provide the destination what it needs” by forwarding E or O, i.e.

whether the X was even or odd. This amounts to considerable savings for the conference link

capacity with respect to sending YR directly, and allows the destination to fully resolve which

X was sent as long as the conference link capacity is at least 1 bit. Please check the detailed

explanation in Figure 17.

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4
p(y|x) p(yR|x)

X Y X YR ỸR

O

E

Figure 14. Toy Problem: p(y, yR|x) = p(y|x)p(yR|x). A solid link indicates the probability

value p(∗|x) is positive, where ∗ indicates y or yR.

It may be checked that this simple channel does not fall into a class of PRCs for which ca-

pacity is known, i.e. it is not a degraded, semideterministic, orthogonal-component, or semide-

terministic PRC.
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The next question is how one interpret this toy example and decide if it is possible and how

to generalize the insights that its solution embodies, if any.

First try: take this toy problem as a small-error communication problem.

Assume that the probability value on each solid link in Figure 14 is equal to 1
2 . Assume r = 1

bit.

It can be checked that regardless of the distribution on X, we have H(Y |X) = H(YR|X) = 1

bit. It can also be checked that the H(Y ) ≤ 2 bits and the equality is achieved when Pr[X ∈

{1, 3}] = Pr[X ∈ {2, 4}] = 1
2 . Similarly, H(YR) ≤ 2 bits and the equality is achieved when

Pr[X ∈ {1, 2}] = Pr[X ∈ {3, 4}] = 1
2 . It is also clear that the capacity of this channel, denoted

as Cε, should be upper bounded by the maximal entropy of X, i.e., Cε ≤ maxp(x)H(X). That

is, Cε ≤ log 4 = 2 bits.

We next try to apply various communication schemes on this toy channel and compute the

maximal achievable rate under each scheme. Note that these achievable rates serve as lower

bounds on the capacity Cε.

• By direct transmission, i.e. using only the direct link from the source terminal to the

destination terminal, we have the achievable rate Rε,1 = maxp(x) I(X;Y ). It can be

checked that Rε,1 = 1 bit and the maximum is achieved when Pr[X ∈ {1, 3}] = Pr[X ∈

{2, 4}] = 1
2 .

• When the direct link is not used, we have Rε,2 = maxp(x) min{r, I(X;YR)}. Rε,2 =

min{r, 1} = 1 bit, because maxp(x) I(X;YR) = 1 bit.
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• When the relay adopts the Decode-and-Forward strategy, we haveRε,3 = maxp(x) min{I(X;Y )+

r, I(X;YR)}. Rε,3 = maxp(x) I(X;YR), because I(X;YR) ≤ I(X;Y ) + r. Thus, Rε,3 = 1

bit. The equality is achieved when Pr[X ∈ {1, 2}] = Pr[X ∈ {3, 4}] = 1
2 .

• When Partial Decode-and-Forward is adopted, we haveRε,4 = maxp(u,x),‖U‖≤‖X‖min{I(X;Y )+

r, I(U ;YR)+I(X;Y |U)}. It can be checked that Rε,4 = 2 bits and the equality is achieved

when Pr[X = 1] = Pr[X = 4] and Pr[X = 2] = Pr[X = 3], and U = 1YR∈{1,3}, meaning

U = 1 when YR ∈ {1, 3} and U = 0 otherwise.

Note that the achievable rate by Partial Decode-and-Forward strategy coincides with the upper

bound of the capacity. Thus, we can claim that the capacity of this channel is 2 bits/channel

use.

We also remark that this capacity Cε = 2 bits per channel use is achieved in one-shot, i.e.

by using only one channel use and requires no block coding. Furthermore, the probability of

error is exactly 0.

We can see that the intuitive “Even/Odd” mapping in Figure 14 from YR’s to the two

labels E,O coincides the Partial Decode-and-Forward relaying strategy. But since the Partial

Decode-and-Forward scheme involves the axillary random variable U , it is in general not clear

how to construct a proper communication scheme.

A second try: take this toy problem as a zero-error communication problem.

We are excited about the effectiveness and the efficiency of the “Even/Odd” mapping, but we are

frustrated to see that this straightforward and intuitive mapping seems to just be an application

of the traditional Partial Decode-and-Forward relaying scheme, which is not constructive.
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We note that the essence of this mapping is that YR needs not to decode X, it just needs to

say whether X is even or odd (E or O), which is exactly the information that the destination

terminal lacks about the transmitted symbol. This motivates us to realize that

the essential role of a relay is to only provide “what the destination needs”

To define “what the destination needs”, we need to define the destination terminal’s goal. A

natural setting is to request the destination terminal to obtain as much information about X

as if the genie pair (Y, YR) was given, based on its own observation and the message sent by

the relay terminal through the conference link. That is to let the whole network to achieve the

SIMO bound.

Given the goal of achieving the SIMO bound, we still need to represent and quantify “what

the destination does and does not know about X”. This line of thinking naturally leads to

the zero-error communication setting and the proposal of the study on communicating over a

PRC without error. In Chapter 4, Colour-and-Forward relaying is developed for the zero-error

PRC communication problem and is shown to be optimum for any fixed number of channel use.

Based on the insights gained in the zero-error scenario, the ε-Colour-and-Forward relaying that

mimics the construction of that in the zero-error scenario is proposed in Chapter 5.

3.3 Notation convention

Throughout Chapter 4 and Chapter 5, we will use subscripts z adn ε to denote the zero-

error and small-error context respectively. we use upper and lower cases to differentiate the

overall network message rate Rz and the conference rate rz. The superscripts of a graph or set

indicate the vertex nodes or the elements of the set, while their subscripts denote the needed
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parameters. Bold font, as well as the superscript n are both used to denote a sequence of length

n. Let random pair (X,Y ) ∼ p(x, y) and (X,Y ) ∈ X × Y. Denote the marginals for X and

Y by p(x) and p(y) respectively. When a conditional joint pmf p(y, yR|x) with support X and

output Y × YR is restricted to input K, we denote its induced conditional pmf, support and

output by pK(y, yR|x), K and Y|K × YR|K respectively. All logarithms are base 2.

3.3.1 Graph theoretic notation

A graph G(V,E) consists of a set V of vertices or nodes together with a set E of edges,

which are two-element subsets of V . Two nodes connected by an edge are called adjacent. we

will usually drop the V,E indices in G(V,E).

An independent set of a graph G is a set of vertices, no two of which are adjacent. Let

independence number α(G) be the maximum cardinality of all independent sets. A maximum

independent set is an independent set that has α(G) vertices. Note that one graph can have

multiple maximum independent sets. A colouring of graph G is any function c over the

vertex set such that c−1 induces a partition of the vertex set into independent sets of G. The

chromatic number χ(G) of the graph G is the least number of colours in any colouring. A

minimum colouring of graph G uses χ(G) colours.

The strong product G �H of two graphs G and H is defined as the graph with vertex set

V (G �H) = V (G) × V (H), in which two distinct vertices (g, h) and (g′, h′) are adjacent iff g

is adjacent or equal to g′ in G and h is adjacent or equal to h′ in H. G�n denotes the strong

product of n copies of G.
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A confusability graph GXp(y|x) of X given Y , specified by conditional probability function

p(y|x) with support X and output Y, is a graph whose vertex set is X and an edge is placed

when two different nodes x, x′ ∈ X may be “confused”, that is, if ∃y ∈ Y : p(y|x) · p(y|x′) > 0.

For a given conditional probability function p(y|x), we denote S
X|Y
p(y|x)(y) := {x : p(y|x) > 0}

as the conditional support of Y = y. Thus, the confusability graph GXp(y|x) can be equivalently

constructed by fully connecting the nodes inside each conditional support S
X|Y
p(y|x)(y), for all

y ∈ Y.

Graph G(A) is the induced subgraph of graph G, with vertex set A ⊆ V (G) and edge set

(A×A) ∩ E(G).

3.4 Contribution

The main contribution of this study:

• Zero-error communication over a primitive relay channel is for the first time proposed and

studied.

• Colour-and-Forward relaying is designed and serves as an example of how one may ex-

plicitly exploit channel structure with the intuitive goal of having relay transmit “only

what the destination needs”

• Show that Color-and-Forward algorithm is optimal– for any fixed number of channel uses,

this relaying scheme requires the smallest conference link capacity if one desires to achieve

the SIMO upper bound.

• Develop various bounds on the minimum required conference rate r∗z
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• Develop an alternative capacity achieving scheme for the small-error point-to-point chan-

nel, which embodies an explicit codebook construction using graph theoretic notation.

• Derive the ε-Colour-and-Forward relaying for small-error PRC communication problems,

which serves a good example of how to transfer insights gained from studying the zero-

error problem into the small-error domain.



CHAPTER 4

0-COLOUR-AND-FORWARD

In this chapter, the zero-error communication over a primitive relay channel is first defined

before the Colour-and-Forward algorithm is introduced. We will show that the Colour-and-

Forward relaying defined in Definition 28 is optimum for any fixed number of channel uses n.

We do not have a solution for the asymptotic scenario, but some bounds for it are obtained

based on the n-shot Colour-and-Forward relaying scheme.

4.1 Zero-error preliminaries

The zero-error capacity of a point-to-point discrete memoryless channel was initially studied

by Shannon in (18) in 1956; see (19; 20) for further zero-error capacity details.

Consider zero-error communication over a point-to-point channel (X , p(y|x),Y). First, note

that only whether p(y|x) is zero or not matters for communication without error. Next, consider

first communicating over a single channel use: the maximal number of channel inputs the

destination can distinguish without error is α(GXp(y|x)), the maximum number of vertices that

are non-adjacent, or pairwise distinguishable. When multiple channel uses are allowed, we

know that α([GXp(y|x)]
�n) is the number of distinguishable channel inputs Xn, where [GXp(y|x)]

�n

is the strong product of n copies of graph GXp(y|x).
1 Thus, the zero-error capacity of a point-

1Note that the n-fold strong product graph [GX
p(y|x)]

�n is equivalent to graph GXn

p(yn|xn), which is the

confusability graph directly constructed from the compound channel (Xn, p(yn|xn),Yn) with p(yn|xn) =∏n
i=1 p(yi|xi).

69
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to-point channel (X , p(y|x),Y) is defined as the supremum of all achievable message rates, i.e.,

sup
n

1
n logα([GXp(y|x)]

�n).

The zero-error capacity is then characterized as (19)

lim
n→∞

1

n
logα([GXp(y|x)]

�n) = lim
n→∞

log n

√
α([GXp(y|x)]

�n) ,

which may be upper and lower bounded as (18; 19):

logα(GXp(y|x)) ≤ lim
n→∞

log n

√
α([GXp(y|x)]

�n) ≤ log ‖X‖

where ‖X‖ is the cardinality of the input alphabet, which is the maximal number of possible

inputs per channel use. Note the limit exists by Lemma 22.

Lemma 22. Let G denote the confusability graph specified by p(y|x). Then the sequence

{log n
√
α(G�n)}∞n=1 converges to sup{log n

√
α(G�n), n = 1, 2, · · · }.

Proof. It can be checked that the sequence {α(G�n)}∞n=1 is super-multiplicative, i.e. α(G�(n1+n2)) ≥

α(G�n1)·α(G�n2) for any indices n1, n2. Thus, the sequence {logα(G�n)}∞n=1 is super-additive

and each item is non-negative. By Fekete’s Lemma, the limit lim
n→∞

log n
√
α(G�n) exists and is

equal to sup{log n
√
α(G�n), n = 1, 2, · · · }.

Remark 10. The behavior of the sequence of independence numbers for strong product graphs,

say {α(G�n)}∞n=1, is a long standing open question and attracts attention in research fields like

graph theory and combinatorics (21), (22), and is notoriously difficult. As discussed in the
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Introduction section, it took 23 years for the researchers to prove that Shannon’s conjecture

that the Shannon capacity for the pentagon graph/channel is 1
2 log 5, while the value of the

Shannon capacity for the 7-cycle graph remains unresolved (23). Given this, it is understandable

that researchers are reluctant to approach zero-error communication problems over a multiple-

terminal network. We thus would like to emphasize that the formation and proposal of zero-error

communication over a PRC is a real contribution by itself.

4.2 Zero-error communication over a primitive relay channel and the minimum

conference rates r∗z and r
∗(n)
z

We first define zero-error communication over a PRC, then we introduce cut-set bounds,

SIMO bounds and the minimum conference rates r∗z and r
∗(n)
z , which are the quantities and

optimization problems of interest in this study.

4.2.1 Zero-error communication over a primitive relay channel

As shown in Figure 15, an n-shot protocol (n,X , h, g) for zero-error communication over a

PRC ((X , p(y, yR|x),Y × YR), rz) is composed of a codebook X ⊆ X n, a rz-admissible relaying

function h : YnR →WR which satisfies ‖WR‖ ≤ 2n·rz and a decoding function g : Yn×WR → X .

Let X̂ and Ŵ demote the estimate for codeword X and the message W respectively. Note that

Ŵ = φ−1(X̂) = φ−1(g(Y n,WR)). Because the mapping φ( ) is bijective, decoding message

W ∈ W is equivalent to decoding codeword X ∈ X . We will not distinguish these two concepts

and abuse notation ŵ ∈ X and Ŵ = g(Y n,WR) for the decoding result at the destination.

A message rate Rz := 1
n log ‖W‖ = 1

n log ‖X‖ is achievable if there exists an n-shot protocol

(n,X , h, g) over a PRC ((X , p(y, yR|x),Y × YR), rz) achieving zero error, i.e. Pr[g(y, wR) 6=
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S

R

Y
n
R

D

‖WR‖ ≤ 2n·rz

Xn Y n

WR := h(Y n
R ) ∈ {1, · · · , ‖WR‖}

Ŵ := g(Y n,WR)
X ∈ X ⊆ Xn

φ(W ) = X
W ∈ W = {1, · · · , ‖W‖}

Figure 15. An n-shot protocol (n,X , h, g) for zero-error communication over a PRC

((X , p(y, yR|x),Y × YR), rz), with an encoder φ, a codebook X , a relaying function h and a

decoding function g.

w] = 0 for all values w ∈ X . The capacity Cz of zero-error communication over a PRC

((X , p(y, yR|x),Y × YR), rz) is the supremum of all possible achievable rates Rz for any n.

Clearly, Cz is at most log ‖X‖.

As indicated in Chapter 3 , the goal of this study is to study what is the best compression

algorithm that leads to the most efficient summary of relay’s observations while enabling the

relay to help the destination terminal to its maximum capability. Basically, we keep the broad-

casting links (X , p(y, yR|x),Y ×YR) unchanged in a PRC and ask how Cz changes as rz varies.

So in the rest of theis chapter, we will use Cz(rz) to denote the zero-error capacity of a PRC

((X , p(y, yR|x),Y × YR), rz).

4.2.2 “Cut-set” bound for Cz

Before formally proposing the SIMO bound for a PRC channel, we state the cut-set bounds

first. Note that the inequality in (Equation 4.1) involves the value of r, which does not show

up in the SIMO bound in (Equation 4.2).
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Proposition 23 (Zero-error capacity cut-set bound). The capacity Cz(rz) of the 0-error PRC

is upper bounded by

Cz(rz) ≤ min{ log lim
n→∞

n

√
α([GXp(y|x)]

�n) + rz,

log lim
n→∞

n

√
α([GXp(y,yR|x)]

�n) }.
(4.1)

Proof. Note that log lim
n→∞

n

√
α([GXp(y|x)]

�n) is the zero-error capacity of the direct link from the

source to the destination terminal; if this is orthogonal to what is received from the relay, we

obtain the first bound. The second bound is obtained by recognizing log lim
n→∞

n

√
α([GXp(y,yR|x)]

�n)

as the zero-error capacity of a point-to-point channel p(ỹn|x) with ỹn = (yn, ynR), obtained by

giving (genie) ynR to the destination.

4.2.3 SIMO bounds and the minimum conference rates r∗z and r
∗(n)
z

As discussed in Chapter 3, the question we are after is how to operate the relay terminal so

that with the minimum conference rate one can achieve the maximal possible network message

rate, i.e., the capacity of the virtual point-to-point channel (X , p(y, yR|x),Y × YR). Formally,

we propose

Proposition 24 (Zero-error capacity SIMO upper bound). The zero-error capacity of a PRC

channel

((X , p(y, yR|x),Y × YR), rz) is upper bounded by

Cz(rz) ≤ SIMO := log lim
n→∞

n

√
α([GXp(y,yR|x)]

�n) }. (4.2)
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This is established by allowing full cooperation between the relay and destination terminals.

Proposition 24 can as well be derived from the cut-set bounds in Proposition 23 by setting rz

equal to infinity, making the first quantity in (Equation 4.1) irrelevant for the minimization.

Clearly, Cz(rz)|rz=∞ = SIMO. Also, Cz(rz) = SIMO, when rz ≥ log ‖YR‖, implying that

the conference link can afford letting the relay terminal transmit its complete observation with-

out compression. We are interested in the minimum value of rz such that Cz(rz) = SIMO, i.e.,

what is the best compression rate at the relay terminal. Formally, we define the minimum con-

ference rate r∗z that can enable an effectively full cooperation between the relay and destination

terminals as:

Definition 25 (The minimum conference rate r∗z).

r∗z := inf{rz : Cz(rz) = SIMO} . (4.3)

When restricted to the n channel uses only, n = 1, 2, · · · , let C
(n)
z (rz) denote the supremum

of messages rates that are achievable by using n channel uses. Similarly, we can derive and

define the the corresponding SIMO bound SIMO(n) and the minimum conference rate r
∗(n)
z :

Proposition 26 (The n-shot zero-error capacity SIMO upper bound). The n-shot zero-error

capacity of a PRC channel ((X , p(y, yR|x),Y × YR), rz) is upper bounded by

C(n)
z (rz) ≤ SIMO(n) := log n

√
α([GXp(y,yR|x)]

�n) }, (4.4)
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where SIMO(n) denotes the maximum achievable rate of the virtual channel (X n, p(yn, ynR|xn),Yn×

YnR).

Definition 27 (The n-shot minimum conference rate r
∗(n)
z ).

r∗(n)z := inf{rz : C(n)
z (rz) = SIMO(n)} . (4.5)

Remark 11. We emphasize again that

SIMO = sup
n=1,2,···

SIMO(n) = lim
n→∞

SIMO(n) . (4.6)

The first equality comes from the definition of the capacity of a point-to-point channel to be the

superemum of its all achievable rates. The second equality is established by by Lemma 22.

The plan is to first derive an upper bound on r
∗(n)
z , for any fixed number of channel use n.

We then derive various upper bounds on r∗z based on this sequence of upper bounds of r
∗(n)
z . For

details, please check Chapter 4.7.

4.3 Colour-and-Forward relaying: from an intuition to an algorithm

4.3.1 Colour-and-Forward relaying: from an intuition to an algorithm

The Colour-and-Forward relaying strategy that will be presented is based on the intuition

of providing “what the destination needs”, i.e. remaining information lossless, while trying

to minimize the number of bits needed to do so. In this subsection, we demonstrate how to
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transform this intuition into a practical and executable construction of a relaying algorithm

using 1-shot case.

Sitting at the destination terminal, for a given a conditional joint pmf p(y, yR|x) with support

X and output Y × YR, we consider an arbitrary observation Y = y. Given this observation

Y = y, the destination knows that the channel input symbol lies in the corresponding conditional

support SXp(y|x)(y). What the destination needs is to resolve the ambiguity among which x out

of SXp(y|x)(y) was sent. Furthermore, according to the joint pmf p(y, yR|x), the destination knows

what the relay could have observed when the channel input symbol is X = x given observation

Y = y, i.e.

BYR
p(y,yR|x)(x, y) := {yR : p(y, yR|x) > 0 for given x and y}.

In order to help D distinguish which channel input symbol x was actually transmitted, the relay

terminal needs to differentiate different collections of yR, i.e., BYR
p(y,yR|x)(x, y) in terms of the

first index x for a given second index y. We propose to do so through the Construction of

the graph GR(V,E) as shown in Table I.

For example, in the toy problem in 3.2 discussed in the Introduction (??) section, when

the destination terminal observes Y = 1, it knows that the transmitted symbol can be either

X = 1 or X = 2 (assuming that they can both show up in the codebook), as shown in Table II.

When the true transmitted symbol is indeed X = 1, the relay terminal would have observed a

YR = yR where yR ∈ {1, 3} based on the conditional joint pmf p(y, yR|x) = p(y|x)p(yR|x). On

the other hand, when the true transmitted symbol is indeed X = 2, the relay terminal would

have observed a YR = yR where yR ∈ {2, 4}. Thus, to help the destination terminal to further
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1) Vertices: V = YR := {yR1, yR2, · · · yR‖YR‖};

2) Edges: for every y ∈ Y, construct a sequence of subsets of YR,

BYR
p(y,yR|x)(x, y), indexed by x, where x ∈ SX|Yp(y|x)(y). Edges are placed

by fully connecting any two subsets BYR
p(y,yR|x)(x, y) and BYR(x′, y),

where x 6= x′ (i.e. put an edge between every pair (yR, y
′
R) where

yR ∈ BYR
p(y,yR|x)(x, y) and y′R ∈ BYR(x′, y).) Note that for a given Y = y,

the yR vertices that are inside one BYR
p(y,yR|x)(x, y) need not be connected.

TABLE I

CONSTRUCTION OF THE GRAPH GR(V,E)

decide which symbolX out of the two-symbol set {1, 2} is the true transmitted symbol, it suffices

for the relay terminal to tell group {1, 3} from group {2, 4}. Note that it is immaterial, from

the perspective of helping the destination terminal, if the relay will distinguish its observations

one from another within a given group; for example, whether YR = 1 and YR = 3 (from group

{1, 3}) will be distinguished or not by the relay terminal has no interest to the destination

terminal (for classifying the ambiguity when Y = 1 was observed).

We listed in Figure 16 the needs for other observations, say, Y = 2, 3, 4 and superimpose all

the edge constraints to get the compression graphGR. We can label (or color) the 4 vertices by E

and O, standing for Even and Odd, and satisfy the edge constraints, meaning no two connected
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The ambiguity at destination What relay has observed What the destination wants from relay

SX
p(y|x)(y) BYR

p(y,yR|x)(x, y) expressed as edge constraints

Y = 1
X = 1 {1, 3}

1− 2, 1− 4, 3− 2, 3− 4
X = 2 {2, 4}

TABLE II

EXPRESS “WHAT THE DESTINATION TERMINAL NEEDS” WHEN IT OBSERVES

Y = 1 AS EDGE CONSTRAINTS IN THE COMPRESSION GRAPH.

vertices have the same label (or color). Thus, all the “needs” or request of the destination

terminal is met. As discussed earlier in the Introduction section (??), forwarding E or O to the

destination terminal will help it to fully identify what X symbol has been transmitted.

As one can see from the three confusability graphs listed in Figure 17: (1) the destination

terminal cannot fully distinguish all four transmitted symbols based on its own observations,

i.e. graph GXp(y|x) is not edge-free; (2) Graph GXp(y,ỹR|x) is free of edges, meaning the destination

terminal can fully distinguish four transmitted symbols based on its own observations and two

labels (or colours), say ỸR = E,O; (3) Two graphs GXp(y,yR|x) and GXp(y,ỹR|x) are the same,

termed as the property of being informationloss-less in Theorem 30, which We will show to be

in general true.
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SX
p(y|x)(y) BYR

p(y,yR|x)(x, y) edges

Y = 1
X = 1 {1, 3}

1− 2, 1− 4, 3− 2, 3− 4
X = 2 {2, 4}

Y = 2
X = 1 {1, 3}

1− 2, 1− 4, 3− 2, 3− 4
X = 2 {2, 4}

Y = 3
X = 3 {1, 3}

1− 2, 1− 4, 3− 2, 3− 4
X = 4 {2, 4}

Y = 4
X = 3 {1, 3}

1− 2, 1− 4, 3− 2, 3− 4
X = 4 {2, 4}

1E

3E

2O 4O

GR

Figure 16. Express “what destination needs” by imposing compression constraints, i.e. the

edge constraints on compression graph GR. The relay can simply “provide the destination

what it needs” by forwarding E or O, i.e. whether the X was even or odd.

4.3.2 Formal definitions of Colour-and-Forward algorithm

We now formally define the Colour-and-Forward graph and Colour-and-Forward relaying for

any fixed number of channel use n. Consider the compound or symbol-extended broadcasting

channel (X n, p(yn, ynR|xn),Yn×YnR) which is represented by a conditional joint pmf p(yn, ynR|xn)

with support X n and output Yn×YnR. The compression graph can be analogously defined and

the vertex nodes are ynR’s. Recall that bold font, as well as the superscript n are both used to

denote a sequence of length n. The n-shot Colour-and-Forward graph is defined as:

Definition 28 (Colour-and-Forward graph G
(n)
R ). Given a conditional joint pmf p(y,yR|x)

with support X n and output Yn × YnR, graph G
(n)
R is an undirected graph with vertex set YnR

and an edge yR1 − yR2 is imposed when for some y, x1 6= x2, Pr(Y = y,YR = yR1|X =

x1) · Pr(Y = y,YR = yR2|X = x2) > 0.
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Y SX
p(y|x)(y) edges

1 {1, 2} 1− 2
2 {1, 2} 1− 2
3 {3, 4} 3− 4
4 {3, 4} 3− 4

1

3

2 4

(a) GXp(y|x).

(Y, YR) SX
p(y,yR|x)(y, yR) edges

(1, 1)

{1} ∅(1, 3)
(2, 1)
(2, 3)
(1, 2)

{2} ∅(1, 2)
(2, 4)
(2, 4)
(3, 1)

{3} ∅(3, 3)
(4, 1)
(4, 3)
(3, 2)

{4} ∅(3, 2)
(4, 4)
(4, 4)

1

3

2 4

(b) GXp(y,yR|x).

(Y, ỸR) SX
p(y,ỹR|x)(y, ỹR) edges

(1, O)

{1} ∅(1, O)
(2, O)
(2, O)
(1, E)

{2} ∅(1, E)
(2, E)
(2, E)
(3, O)

{3} ∅(3, O)
(4, O)
(4, O)
(3, E)

{4} ∅(3, E)
(4, E)
(4, E)

1

3

2 4

(c) GXp(y,ỹR|x).

Figure 17. Three confusability graphs in the toy problem in Figure 14.

Note that G
(n)
R is short for the standard notation G

Y nR
p(yn,ynR|xn)

, which explicitly indicates

that the vertex nodes of the graph are relay’s observation ynR’s and the edges are determined

by the broadcasting links (X n, p(yn, ynR|xn),Yn × YnR).

It can be checked that the construction of the graph GR(V,E) described in Table Table I is

consistent with the Definition 28 when n is 1.

Remark 12. Note that graph G
(2)
R , constructed from (X 2, p(y2, y2R|x2),Y2 × Y2

R), cannot be

derived from graph G
(1)
R , which is constructed from (X , p(y, yR|x),Y×YR), by any standard graph
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product operations. In particular, the relationship between graphs G
(2)
R and G

(1)
R is different from

any of the four standard graph products surveyed in (24). To emphasize this fact, we adopt open

parenthesis for n in the superscript, i.e. (n), to denote the n-shot Colour-and-Forward graph

G
(n)
R . The complexity of graph G

(n)
R is a reflection of the channel structure, of which one can

make use to provide a more efficient compression algorithm by adopting a proper block coding

length n.

We now propose a novel relaying function W
∗(n)
R , based on the Colour-and-Forward graph

G
(n)
R .

Definition 29 (Colour-and-Forward relaying W
∗(n)
R ). Given a conditional joint pmf p(y,yR|x)

with support X n and output Yn × YnR, we define the Colour-and-Forward relaying W
∗(n)
R as a

function of YR by a minimum colouring c with χ(G
(n)
R ) colours on graph G

(n)
R :

W
∗(n)
R := c(YR)

where graph G
(n)
R is defined in Definition 28. (Note that c is not unique.)

4.4 Colour-and-Forward relaying is information-lossless

Recall that the Colour-and-Forward relaying W
∗(n)
R is defined as a minimum coloring func-

tion on the Colour-and-Forward graph, as shown in Definition 29 and Definition 28, for any n

channel uses. In this section, we will show that this relaying W
∗(n)
R is infomrationloss-less and

leads to a complete characterization of the minimum required conference rate r
∗(n)
z , for any fixed

number of channel uses, proposed as an optimization problem in (27). In subsection We will
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also discuss the connection between the Colour-and-Forward relaying and the Witsenhausen’s

source coding problem (25).

4.4.1 Information-lossless Theorem

The information-lossless property demonstrated in the toy problem in Figure Figure 17 can

generalized as:

Theorem 30 (Information-lossless). Colour-and-Forward relaying W
∗(n)
R is information-lossless

in the sense that, together with Y n, the destination terminal can infer as much information

about the transmitted symbol Xn as if the genie Y n
R was received. Mathematically,

{SXn

p(yn,w
∗(n)
R |xn)(y

n, w
∗(n)
R ) : (yn, w

∗(n)
R ) ∈ Yn×W∗(n)R } = {SXn

p(yn,ynR|xn)(y
n, ynR) : (yn, ynR) ∈ Yn×YnR}

(4.7)

Furthermore, it holds that GX
n

p(yn,ynR|xn)
= GX

n

p(yn,w
∗(n)
R |xn)

, i.e. the confusability graph on X n

from p(yn, ynR|xn) equals that from p(yn, w
∗(n)
R |xn). W

∗(n)
R is generated by Definition 29 from

p(yn, ynR|xn) with support X n and output Yn × YnR.

Recall that a confusability graph, for example GX
n

p(yn,ynR|xn)
, by definition is characterized

by the collection of conditional joint supports, for example {SXn

p(yn,ynR|xn)
(yn, ynR) : (yn, ynR) ∈

Yn × YnR}, and does not depend on the actual probability values. Thus, once the equality in

(Equation 4.7) is established, it immediately follows that GX
n

p(yn,ynR|xn)
= GX

n

p(yn,w
∗(n)
R |xn)

holds.

We will show the proof in the next subsection (subsection 4.4.2).

Recall that in Subsection 4.3.1 we showed that the “Even/Odd” mapping for the toy problem

indicated in Figure 14 in Chapter 3.2, can be derived by creating a Colour-and-Forward graph
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and is indeed a Colour-and-Forward relaying, by recognizing ỸR as W
∗(1)
R . It can be checked in

Figure 17 that two sets of conditional supports, indicated in equation (Equation 4.7) are the

same and two corresponding confusability graphs are equal.

4.4.2 Proof of Theorem 30

We next show the proof of Theorem 30.

Proof. We first rewrite equation (Equation 4.7) in a more compact way:

{SX

p(y,w
∗(n)
R |x)(y, w

∗(n)
R ) : (y, w

∗(n)
R ) ∈ Yn ×W∗(n)R } = {SX

p(y,yR|x)(y,yR) : (y,yR) ∈ Yn × YnR}

(4.8)

where the bold font is used to denote a sequence of length n for succinctness. Note that the

superscript (n) as denoted in Remark 12 is kept to emphasize that Colour-and-Forward graph

G
(n)
R cannot be constructed from G

(1)
R via any standard graph product operations. Thus, W

∗(n)
R

needs not to be related to W
∗(1)
R .

Note W
∗(n)
R = c(YR) is a deterministic function of YR by Definition 29. Thus given the con-

ditional joint pmf p(y,yR|x), the introduced conditional joint pmf p(y, w
∗(n)
R |x) is computable.

We justify equality (Equation 4.8) by pointing out

SX

p(y,w
∗(n)
R |x)(y, w

∗(n)
R ) = ∪

yR ∈ c−1(w
∗(n)
R )

SX
p(y,yR|x)(y,yR) (4.9)

and showing that every non-empty SX
p(y,yR|x)(y0,yR0) is equal to SX

p(y,w
∗(n)
R |x)

(y0, w
∗(n)
R0 ), where

w
∗(n)
R0 = c(yR0).
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For every (y0,yR0) such that SX
p(y,yR|x)(y0,yR0) 6= ∅, we denote c(yR0) = w

∗(n)
R0 and let

c−1(w∗(n)R0 ) = {yR0,yR1, · · · ,yR(K−1)}, where K ≥ 1 is the number of yR’s that are mapped to

the same colour index w
∗(n)
R0 . When K = 1, SX

p(y,w
∗(n)
R |x)

(y0, w
∗(n)
R0 ) = SX

p(y,yR|x)(y0,yR0). When

K ≥ 2, SX

p(y,w
∗(n)
R |x)

(y0, w
∗(n)
R0 ) = SX

p(y,yR|x)(y0,yR0)∪SX
p(y,yR|x)(y0,yR1)∪· · ·∪SX

p(y,yR|x)(y0,yR(K−1)).

Note that SX
p(y,yR|x)(y0,yR0) is non-empty:

• when SX
p(y,yR|x)(y0,yR0) has only one element, say x0, it is true that Pr(Y = y0,YR =

yR0|X = x0) > 0. By the construction of W
∗(n)
R in Definition 29, it holds that Pr(Y =

y0,YR = yRt|X = xq) = 0 for all t = 1, · · · ,K − 1 and xq 6= x0. Otherwise, the

presumption that yR0 and yRt share the same colour index w
∗(n)
R0 leads to a contradic-

tion. As a result, for all t = 1, · · · ,K − 1, SX
p(y,yR|x)(y0,yRt) = {x0} when Pr(Y =

y0,YR = yRt|X = x0) > 0 and SX
p(y,yR|x)(y0,yRt) = ∅ otherwise. Thus, we have

SX
p(y,yR|x)(y0,yR0)∪SX

p(y,yR|x)(y0,yR1)∪· · ·∪SX
p(y,yR|x)(y0,yR(K−1)) = SX

p(y,yR|x)(y0,yR0),

and SX

p(y,w
∗(n)
R |x)

(y0, w
∗(n)
R0 ) = SX

p(y,yR|x)(y0,yR0).

• when SX
p(y,yR|x)(y0,yR0) has more than one element, i.e., x0,x

′
0 ∈ SX

p(y,yR|x)(y0,yR0) and

x0 6= x′0. Applying the argument above twice, we have Pr(Y = y0,YR = yRt|X = xq) = 0

for all t = 1, · · · ,K−1 when xq 6= x0 and xq 6= x′0. Thus, Pr(Y = y0,YR = yRt|X = x) =

0 for all t = 1, · · · ,K−1 and all x ∈ X , i.e., SX
p(y,yR|x)(y0,yRt) = ∅ for all t = 1, · · · ,K−1.

So, SX

p(y,w
∗(n)
R |x)

(y0, w
∗(n)
R0 ) = SX

p(y,yR|x)(y0,yR0).

Thus, every non-empty SX
p(y,yR|x)(y0,yR0) is equal to SX

p(y,w
∗(n)
R |x)

(y0, w
∗(n)
R0 ), where w

∗(n)
R0 =

c(yR0) and hence equation (Equation 4.8) and equation (Equation 4.7) hold.
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4.4.3 Connection with the Witsenhausen’s source coding problem

Readers might be reminded of Witsenhausen’s work1 in (25) shown in Figure 18, where a

point-to-point zero-error source coding problem with correlated side information available only

at the receiver’s end is studied. Witsenhausen’s graph GX is on vertex set X and x1 is joined

to x2 by an edge when, for some y, p(x1, y)p(x2, y) > 0. The minimum signal alphabet size, for

encoding a sequence of n independent pairs is shown to be the chromatic number χ(GnX) of the

product of n copies of the graph GX . Witsenhausen’s graph GX solves a standard compression

problem for exact recovery of the source random variable X given side information Y . In

contrast, the relaying function in Definition 29 is not a standard compression problem as the

destination is not seeking to reconstruct yR, but rather is a channel-aware form of compression:

two relay observations yR1 and yR2 cannot be ”combined”, i.e. are connected in graph GR only

when the destination, based on its own observation and the color index, is incapable of resolving

the ambiguity between x and x′, i.e. for some y and x 6= x′, p(y, yR1|x)p(y, yR2|x′) > 0.

In the problem of zero-error communication over a PRC, consider the extreme channel

realization when YR = X with probability 1. In this scenario, graph GXp(y,yR|x) becomes edge-

free and with a large enough conference rate, one can achieve overall network message rate

log ‖X‖. This also implies that the channel input codebook has to be the full channel input

alphabet X , sayX = K = X . In this specific case, finding r∗z may be mapped to the source

coding problem with receiver side information, which was solved by Witsenhausen (25) and

1In this subsection, we adopt the notation for confusability graphs from the Witsenhausen’s work
(25).
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Tx Rx

1X X̂
i(X) ∈ [1 : M ]

side info Y

Given PXY , what is Mmin := minM , subject to Pr[X 6= X̂] = 0?

Figure 18. Transmit X to a receiver which has knowledge of Y (the side information) by

means of a discrete signal taking as few values as possible.

in this case, coincides with the result presented here. It is noted that the construction of the

GR graph (on YR) in Table I or Definition 29 gives the same graph as that constructed by

Witsenhausen (on X ). This can be seen by realizing that Witsenhausen’s graph GX can be

constructed by fully connecting SX|Y (y) for each y, which is exactly what the iterative algorithm

does in Step 2.(a) in this scenario.

But we note that in general, finding the minimum conference rate r∗z is different from

Witsenhausen’s source coding problem with receiver side information. This is because: 1) not

all PRCs have YR = X; 2) when the SIMO bound is not the absolute maximum log ‖X‖, only

some subset of the channel input alphabet can be transmitted and there may be more than

one choice of channel input codebook, as seen in the example in Tables I and II; and 3) in

general, G
(n)
R is not a n-fold strong product of graph G

(1)
R , i.e. G

(n)
R 6= [G

(1)
R ]�n, and cannot be

constructed via any standard graph product operations surveyed in (24).



87

4.5 Characterizing r
∗(n)
z by ColourRate(n)

In this section, we present an exact characterization of the minimum required conference

rate r
∗(n)
z as defined in Definition (27), based on the Colour-and-Forward relaying W

∗(n)
R defined

in Definition 29. Recall that when a conditional joint pmf p(y, yR|x) with support X and output

Y × YR is restricted to input K, we denote its induced conditional pmf, support and output by

pK(y, yR|x), K and Y|K × YR|K respectively.

Theorem 31 (Colour-and-Forward relaying is optimal). Colour-and-Forward relaying in Def-

inition 29 leads to the minimum required conference rate r
∗(n)
z for any fixed number of chan-

nel use n. That is, r
∗(n)
z = ColourRate(n), where r

∗(n)
z is specified in (Equation 4.5) and

ColourRate(n) is defined as

ColourRate(n) :=

min
K is a maximum independent set of graph GX

n

p(yn,yn
R
|xn)

log
n

√
χ(G

(n)
R |K)

, (4.10)

where χ(G
(n)
R |K) is the chromatic number of graph G

(n)
R |K, constructed via the algorithm de-

scribed in Definition 28 with restricted input / codebook K.

Letting n = 1 in Theorem 31, we have Corollary 32. We will use this 1-shot scenario

to illustrate the minimization involved in equations (Equation 4.10) and (Equation 4.11), in

Remark 13. We also compare ColourRate(1), in 1-shot scenario, to other trivial bounds, in

Remark 14.



88

Corollary 32 (Colour-and-Forward relaying is optimal, n = 1). Colour-and-Forward relaying

W
∗(1)
R in Definition 29 characterizes the exact value of the minimum required conference rate

r
∗(1)
z , specified in (Equation 4.5). That is, r

∗(1)
z = ColourRate(1) and

ColourRate(1) := min
K is a maximum independent set of graph GX

p(y,yR|x)

logχ(GR|K) , (4.11)

where χ(GR|K) is the chromatic number of graph GR|K, constructed via the algorithm described

in Table I from the induced conditional joint pmf pK(y, yR|x).

Remark 13. We will provide an example of how to compute ColourRate(1) in detail in Sub-

section (XX). But to give one a sense of the optimization involved, we provide a summary

in this remark. We note that the minimization is over the different maximum independent

sets of the graph GXp(y,yR|x) and that different maximum independent sets may yield different

conference link rates. To illustrate this, consider the PRC described by the joint distribution

p(y, yR|x) provided in Table I. Its confusability graph, and compression graphs GR constructed

by the Colour-and-Forward algorithm (for inputs in X or some maximum independent subsets

K1 and K2 of the confusabilty graph GXp(y,yR|x)) when n = 1, are shown in Table II. We note

that in order to have the smallest number of colours for the conference link one must use K2

and not K1.

Remark 14. Note that the vertex set of graph GR|K is YR|K, which is a subset of YR, i.e.

YR|K ⊆ YR. Thus,

χ(GR|K)
(a)

≤ ‖YR|K‖
(b)

≤ ‖YR‖ .
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By Brooks’ Theorem (26), the chromatic number of a graph is at most the maximum degree ∆

(the largest vertex degree), unless the graph is complete or an odd cycle. So χ(GR|K) is at most

∆ and can be as low as 1. Inequality (a) can be strict. The equality in (b) is obtained only when

the restriction of support from X to K does not prohibit any YR = yR from showing up. One

extreme case is when graph GXp(y,yR|x) is edge free, then K equals to the whole vertex set and

YR|K = YR. Please refer to the examples in the case study in Chapter 4.6.

4.5.1 Achievability proof for Theorem 31

To show the achievability of Theorem 31 is to show r
∗(n)
z ≤ ColourRate(n).

Proof for the achievability of Theorem 31. We establish the achievability by explicitly construct-

ing an n-shot protocol (n,X , h, g) that can achieve SIMO(n) when rz ≥ ColourRate(n), im-

plying r
∗(n)
z ≤ ColourRate(n).

Choose codebook X to be the (or any) maximum independent set K of graph GX
n

p(yn,ynR|xn)

that achieves the minimum in equation (Equation 4.10), i.e., log
n

√
χ(G

(n)
R |X ) = ColourRate(n).

Note that ‖X‖ is equal to α(GX
n

p(yn,ynR|xn)
), i.e., log ‖X‖ = SIMO(n).

Consider the restricted conditional joint pmf p|X (yn, w
∗(n)
R |xn), from which we construct

the Colour-and-Forward graph G
(n)
R |X , according to Definition 28, and the Colour-and-Forward

relaying W
∗(n)
R |X , according to Definition 29. Choose the relaying function h(yR) := W

∗(n)
R |X =

c(yR) as in Definition 29. Note that log ‖W∗(n)R |X ‖ = log
n

√
χ(G

(n)
R |X ) = ColourRate(n). So

when rz ≥ ColourRate(n), W
∗(n)
R |X can be successfully transmitted to the destination terminal.
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By Theorem 30, we have GX
n

p|X (yn,w∗(n)R |xn)
= GX

n

p|X (yn,ynR|xn)
. Thus, the decoding function

g specified in equation (Equation 4.12) is valid and completes the construction of the desired

n-shot protocol (n,X , h, g) that can achieve SIMO(n) when rz ≥ ColourRate(n).

g(yn, w
∗(n)
R ) := SX

n

p|X (yn,w∗(n)R |xn)(y
n, w

∗(n)
R ) = ∪

yR ∈ c−1(w
∗(n)
R )

SX
n

p|X (yn,ynR|xn)(y
n, ynR) . (4.12)

4.5.2 Converse proof for Theorem 31

To prove optimality of Colour-and-Forward relayingW
∗(n)
R is to show r

∗(n)
z ≥ ColourRate(n),

which requires the following zero-error data-processing inequality.

Lemma 33 (Data-Processing Inequality). Given a conditional pmf p(y|x), let Z = f(Y ) be any

deterministic mapping f : Y → Z and denote p(z|x) the induced conditional pmf from p(y|x).

Then the confusability graph GXp(y|x) specified by p(y|x) has no more edges than the confusability

graph GX|Z specified by p(z|x); i.e., E(GX|Y ) ⊆ E(GX|Z).

X p(y|x) Y f(Y ) Z

(X , p(z|x),Z)

(X , p(y|x),Y)

Figure 19. Data-processing cannot increase the zero-error capacity: the zero-error capacity of

the induced channel (X , p(z|x),Z) is no larger than the original channel (X , p(y|x),Y).
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Recall that the zero-error capacity of a point-to-point channel (X , p(y|x),Y) is fully charac-

terized by the confusability graph GXp(y|x) and is directly related to the independence number of

its n-fold strong product. Lemma 33 implies α(GXp(y|x)) ≥ α(GXp(z|x)), because the more densely

a graph is connected, the smaller its independence number becomes. Equivalently, as shown in

Figure 19, the zero-error capacity of the induced channel (X , p(z|x),Z) is no larger than the

original channel (X , p(y|x),Y). Lemma 33 and its validity follows directly from the definition

of confusability graph and the nature of zero-error communication.

Now we are ready to present the proof for the converse part of Theorem 31.

Proof for the converse of Theorem 31. It suffices to prove r
∗(n)
z ≥ ColourRate(n). Let (n,X , h, g)

denote any n-shot protocol that can achieve the SIMO upper-bound message rate SIMO(n)

without error, say R
(n)
z = 1

n log ‖X‖ = log n

√
α(GXp(yn,ynR|xn)

). We will show that ‖W(n)
R ‖ ≥

‖W∗(n)R ‖ = 2n·ColourRate(n) must hold for any such relaying function h : YnR →W
(n)
R (for any n).

Because rate 1
n log ‖X‖ can be achieved by the given n-shot protocol (n,X , h, g), we know

that the induced subgraph GX
n

p(yn,w
(n)
R |xn)

(X ) 1 2 must be edge-free. Recall that W
(n)
R is a deter-

ministic function of Y n
R , so (Y n,W

(n)
R ) is a deterministic function of (Y n, Y n

R ). According to the

data-processing inequality in Lemma 33, we have E(GX
n

p(yn,ynR|xn)
(X )) ⊆ E(GX

n

p(yn,w
(n)
R |xn)

(X )) =

1Graph G(A) is the induced subgraph of graph G, with vertex set A ⊆ V (G) and edge set (A×A)∩
E(G).

2GXn

p(yn,w
(n)
R |xn)

(X ) is the same as GXn

p|X (yn,w
(n)
R |xn)

.
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∅. Thus, we know that two induced subgraphs GX
n

p(yn,ynR|xn)
(X ) and GX

n

p(yn,w
(n)
R |xn)

(X ) must both

be free of edges. Consider any triple (X = x,Y = y,W
(n)
R = w

(n)
R ) ∈ X ×Yn|X ×W(n)

R , we have

Pr[Y = y,W
(n)
R = w

(n)
R |X = x]

=
∑

yR:h(yR)=w
(n)
R

Pr[Y = y,YR = yR|X = x]

Thus,

SX

p(y,w
(n)
R |x)

(y, w
(n)
R ) = {x ∈ X : p|X (y, w

(n)
R |x) > 0}

={x ∈ X :
∑

yR:h(yR)=w
(n)
R

Pr[Y = y,YR = yR|X = x] > 0}

=
⋃

yR:h(yR)=w
(n)
R

{x ∈ X : Pr[Y = y,YR = yR|X = x] > 0}

=
⋃

yR:h(yR)=w
(n)
R

SX
p(y,yR|x)(y,yR)

(4.13)

SX
p(y,yR|x)(y,yR) has zero or one element because graph GX

n

p(yn,ynR|xn)
(X ) has no edges. Sim-

ilarly, since graph GX
n

p(yn,w
(n)
R |xn)

(X ) is edge-free, SX

p(y,w
(n)
R |x)

(y, w
(n)
R ) shall also at most have

one element. So in equation (Equation 4.13), the sets to be unioned can have 0 or 1 el-

ement and all non-empty sets shall be the same, i.e., containing one same element. This

means that for any fixed Y = y, any two different yR’s such that SX
p(y,yR|x)(y,yR1) and

SX
p(y,yR|x)(y,yR2) (which are both either an empty set or a single-element set) have differ-

ent elements, say x1 and x2, are prohibited to be mapped into the same color W
(n)
R . That is,

requiring two yR’s to be differentiated (via the relaying function h) if for some y, x1 6= x2,

Pr(Y = y,YR = yR1|X = x1) · Pr(Y = y,YR = yR2|X = x2) > 0, is necessary. Equivalently,
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all edges in the compression graph G
(n)
R constructed in the Colour-and-Forward algorithm are

necessary; any other valid relay mapping W
(n)
R = h(YR) would result in equally or more strict

edge constraints than Colour-and-Forward or graph G
(n)
R . Note that as more edges are added to

a graph, its chromatic number cannot decrease. Therefore, for any valid relay mapping W
(n)
R ,

we have ‖WR‖ ≥ ‖W∗(n)R ‖, implying r
∗(n)
z ≥ ColourRate(n).

4.6 An example of computing ColourRate(1)

In this section, taking the example of the 1-shot case, we will demonstrate: (1) how to

compute ColourRate(1) in Corollary 32 and illustrate in details the process of minimization over

all possible maximum independent sets; (2) how to interpret the information-lossless property

of the Colour-and-Forward relaying W
∗(1)
R stated in Theorem 30. For succinctness, we drop the

superscript (1) and use W ∗R to denote W
∗(1)
R .

Throughout the section, we will be studying the PRC, whose broadcasting component is

defined in Table IV, and try to compute the minimum required conference rate r
∗(1)
z , a threshold

below which the PRC will fail to achieve the SIMO upper bound message rate SIMO(1). Recall

that r
∗(1)
z is equal to ColourRate(1) by Corollary 32. Table IV enumerates a conditional joint

probability mass function: p(y, yR|x), where ‖X‖ = ‖Y‖ = ‖YR‖ = 5. An entry at position

(x, y, yR) is denoted by “∗” (the actual value does not matter), when its probability p(y, yR|x)

is positive and by “0” when p(y, yR|x) = 0.
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4.6.1 Compute all possible codebooks

Recall that valid codebooks are the maximum independent sets of the confusability graph

GXp(y,yR|x). So we first compute confusability graphGXp(y,yR|x) from the conditional joint pmf illus-

trated on Table IV, by enumerating the collection of conditional supports, i.e., {SXp(y,yR|x)(y, yR) :

(y, yR) ∈ Y × YR}, and obtaining edge constraints by fully connecting the X symbols within

each conditional support SXp(y,yR|x)(y, yR). This process and the resulting confusability graph

GXp(y,yR|x) are provided in detail in Figure 20.

(Y, YR) SX
p(y,yR|x)(y, yR) edges

(1, 3)
{1} ∅(1, 4)

(2, 1)
(3, 3) {2} ∅
(3, 1) {3} ∅
(4, 3)
(2, 4)

{4} ∅(4, 4)
(5, 3)
(1, 1) {5} ∅
(5, 5)
(2, 2) {1, 2} 1− 2

1
2

3

4

5

confusability graphs: GX
p(y,yR|x)

Figure 20. Construct confusability graph GXp(y,yR|x).

As shown in Figure 20, graphGXp(y,yR|x) has two maximum independent sets: K1 = {1, 3, 4, 5}

and K2 = {2, 3, 4, 5}.
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4.6.2 Compute Colour-and-Forward graph GR

After obtaining all possible codebooks, one can consider the restricted conditional joint pmf

under each chosen codebook, say (K1, pK1(y, yR|x),Y|K1 ×YR|K1) and (K2, pK2(y, yR|x),Y|K2 ×

YR|K2), and compute the corresponding Colour-and-Forward graphs, say GR|K1 and GR|K2 ,

according to Definition 29 or the construction algorithm shown in Table I. But before computing

GR|K1 and GR|K2 , we would like to compute GR|X based on (X , p(y, yR|x),Y × YR) first as

a benchmark for comparison. Note that the construction of Colour-and-Forward graph GR,

in Definition 28, and Colour-and-Forward relaying W ∗R, in Definition 29, applies to any given

broadcasting component, regardless of whether the conditional joint pmf is a restricted one or

not, say, (X , p(y, yR|x),Y ×YR), (K1, pK1(y, yR|x),Y|K1 ×YR|K1) and (K2, pK2(y, yR|x),Y|K2 ×

YR|K2).

Figure 21(a) illustrates the iterative algorithm: for each Y ∈ [1 : 5], construct a sequence of

BYR
p(y,yR|x)(x, y) ⊆ YR = [1 : 5], where x ∈ SXp(y|x)(y) = {x : p(y|x) > 0} and put an edge between

every pair (yR, y
′
R) where yR ∈ BYR

p(y,yR|x)(x, y) and y′R ∈ BYR
p(y,yR|x)(x

′, y). Superimposing these

edges, we have the compression graph GR|X as shown in Figure 21(b).

In graph GR|X in Figure 21(b), different colours are used to denote one choice of minimum

colouring function c. These colours specify the relay’s mapping W ∗R = c(YR).

As shown in Figure 22, two collections of conditional supports are equal, say, {SXp(y,yR|x) :

(y, yR) ∈ Y × YR} = {SXp(y,w∗R|x) : (y, w∗R) ∈ Y × W∗R}, and two corresponding confusability

graphs are equal, say, GXp(y,yR|x) = GXp(y,w∗R|x)
. That is, compressing YR into W ∗R is information
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SX
p(y|x)(y) BYR

p(y,yR|x)(x, y) edges

Y = 1
X = 1 {3, 4}

1− 3, 1− 4
X = 5 {1}

Y = 2
X = 1 {1, 2}

1− 2, 1− 4, 2− 4X = 2 {2}
X = 4 {4}

Y = 3
X = 2 {3}

1− 3
X = 3 {1}

Y = 4
X = 3 {3}

3− 4
X = 4 {4}

Y = 5
X = 4 {3}

3− 5
X = 5 {5}

(a) The iterative algorithm for constructing compression graph GR.

1
2

3

4

5

Compression graph GR

1g
2b

3b

4r

5r

One minimum colouring c

(b) The compression graph GR and one choice of minimum

colouring function c.

Figure 21. Constructing compression graph GR from p(y, yR|x) in Table IV. Note that the

least number of colours required is: χ(GR) = 3.

lossless in the sense that together with Y , W ∗R provides the same ability to distinguish different

X = x’s as YR, as stated in Theorem 30.
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(Y, YR) SX
p(y,yR|x)(y, yR) edges

(1, 3)
{1} ∅(1, 4)

(2, 1)
(3, 3) {2} ∅
(3, 1) {3} ∅
(4, 3)
(2, 4)

{4} ∅(4, 4)
(5, 3)
(1, 1) {5} ∅
(5, 5)
(2, 2) {1, 2} 1− 2

(a) Conditional supports

SXp(y,yR|x)(y, yR).

(Y,W ∗R) SX
p(y,w∗

R
|x)(y, w

∗
R) edges

(1, b)
{1} ∅(1, r)

(2, g)
(3, b) {2} ∅
(3, g) {3} ∅
(4, b)
(2, r)

{4} ∅(4, r)
(5, b)
(1, g) {5} ∅
(5, r)
(2, b) {1, 2} 1− 2

(b) Conditional supports

SXp(y,w∗
R
|x)(y, w

∗
R).

1
2

3

4

5

GX
p(y,yR|x) = GX

p(y,w∗
R
|x)

(c) Confusability

graphs.

Figure 22. Compressing YR into W ∗R according to the minimum colouring function c on graph

GR in 21(b), is information lossless in the sense that together with Y , W ∗R provides as much

information of about X as YR. Note that the independence number is: α(GXp(y,yR|x)) = 4.

4.6.3 Compute Colour-and-Forward graph GR|K1

When codebookK1 = {1, 3, 4, 5} is chosen, the induced broadcasting component is (K1, pK1(y, yR|x),Y|K1×

YR|K1).

• The iterative algorithm: in 23(a).1

• The compression graph GR|K1 : in 23(b).2

1We retain the cross-out items in Tables 23(a), 25(a) to serve a comparison with the construction
algorithm in Figure 21(a).

2We retain the dotted edges in 23(b), 25(b) to serve as a comparison with the compression graph in
21(b).
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• One choice of minimum colouring on compression graph GR|K1 : in 23(b) with chromatic

number χ(GR|K1) = 3.

• The information-lossless property stated in Theorem 30 is verified in Figure 24.

4.6.4 Compute Colour-and-Forward graph GR|K2

When codebook K2 = {2, 3, 4, 5} is chosen and the induced broadcasting component is

(K2, pK2(y, yR|x),Y|K2 × YR|K2).

• The iterative algorithm: in 25(a).1

• The compression graph GR|K2 : in 25(b).2

• One choice of minimum colouring on compression graph GR|K2 : in 25(b) with chromatic

number χ(GR|K2) = 2.

• The information-lossless property stated in Theorem 30 is verified in Figure 26.

4.6.5 The value of ColourRate(1)

So ColourRate(1) = log min{χ(GR|K1), χ(GR|K2)} = log min{3, 2} = 1 bit/channel use.

This means that when the conference rate is smaller than 1 bit/channel use, there exists no

communication scheme that can achieve the message rate SIMO(1) = log 4 = 2 bits/channel

use. Note that in order to have the smallest number of colours for the conference link one must

use K2 and not K1 as the codebook.

1See footnote 1.

2See footnote 2.
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4.7 Properties of r
∗(n)
z and its connection with r∗z

We note that in general, the Colour-and-Forward graph or the compression graph G
(n)
R ,

which determines the value of r
∗(n)
z , cannot be constructed via any standard graph product

operations surveyed in (24). The Colour-and-Forward compression graphs G
(n)
R s’ behavior and

their chromatic numbers as a function of n are not obvious, and are interesting open questions

that requires more work. We show in Subsection 4.7.2 a class of PRC channels where r
∗(n)
z is

known as an exemplary exploration of charactering G
(n)
R and r

∗(n)
z .

In Subsection 4.7.1, we discuss how to go beyond the limitation of n-shot channel use and try

to infer r∗z based on r
∗(n)
z ’s. As demonstrated in Figure 27, the PRC capacity C

(n)
z (rz) depends

on two parameters: the number of channel uses n and the conference link capacity rz. For any

fixed number of channel use n, PRC capacity C
(n)
z (rz) is non-decreasing w.r.t. rz and when

rz ≥ r∗(n)z , C
(n)
z (rz) stays at SIMO(n). For the sequence SIMO(n), we have the asymptomatic

conclusion that sup
n
SIMO(n) = lim

n→∞
SIMO(n). But for finite n’s, how SIMO(n), i.e. the

sequence of independence numbers of the strong product graphs log n

√
α([GXp(y,yR|x)]

�n), behaves

is a long-standing open question (21; 22).

Figure 27 is also very helpful for understanding Lemma 34 and the corresponding proofs.

4.7.1 Bounds on r∗z

In this section, we discuss the relationship of r
∗(n)
z and r∗z in general and provide the following

lower and upper bounds of r∗z .

Firstly, similar to what was done (17), based on the cut-set bounds on PRC capacity, as

presented in Proposition 23, we can have a lower bound for r∗z :
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log
lim
n→∞

n

√
α([GXp(y,yR|x)]

�n)

lim
n→∞

n

√
α([GXp(y|x)]

�n)
≤ r∗z . (4.14)

Next we show several upper bounds on r∗z based on the value of r
∗(n)
z ’s, which can be fully

characterized by the Colour-and-Forward relaying algorithm.

Lemma 34 (Upper bounds on r∗z ). r∗z can be lower and upper bounded by:

(1) r∗z is no greater than the supremum of r
∗(n)
z . That is, r∗z ≤ U1, where U1 := sup

n
r
∗(n)
z .

(2) Let U2 := sup
n∈J

r
∗(n)
z , where J ⊆ {1, 2, · · · }. As long as J has infinitely many elements, U2

is an upper bound on r∗z , i.e., r∗z ≤ U2.

(3) When {SIMO(n)}∞n=1 is a closed set, r∗z = U3, where U3 := min
t: SIMO(t)=SIMO

r
∗(t)
z .

It is clear that U2 ≤ U1 and U2 is a more strict upper bound on r∗z than U1. One of the

reasons why we can restrict the set on which the superum is defined, from natural numbers

{1, 2, · · · } to its any subset J that has infinite many elements, is due to the fact that the

sequence {SIMO(n)}∞n=1 has a limit, which equals to its supremum.

Note that to infer the behavior of r∗z from the upper bounds on r
∗(n)
z requires knowing how

SIMO depends on SIMO(n). By the super-multiplicity of the independence number sequence

of the strong product graphs and Fekete’s lemma, we know that sequence SIMO(n) converges

to its supremum. In general, the maximum need not exist.

When {SIMO(n)}∞n=1 is an open set, meaning SIMO = lim
n
SIMO(n) = sup

n
SIMO(n)

cannot be obtained by any SIMO(n), we conservatively conjecture that
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Conjecture 35. r∗z = lim
n→∞

r
∗(n)
z .

Remark 15. We remark that r∗z can be strictly smaller than U1. If rz < U1, it means that rz <

r
∗(n)
z holds for at least one n. Otherwise, rz will be an upper bound on r

∗(n)
z and the assumption

rz < U1 will contradict with U1 being the least upper bound (the supremum) of r
∗(n)
z . We further

note that, for any n that satisfies rz < r
∗(n)
z , we have C

(n)
z (rz) < C

(n)
z (r

∗(n)
z ) = SIMO(n)

by the definition of r
∗(n)
z . But this does not necessarily harm the validity of sup

n
C

(n)
z (rz) =

sup
n
SIMO(n). In the case where sup

n
C

(n)
z (rz) = sup

n
SIMO(n) indeed holds, r∗z will be smaller

or equal to rz and thus strictly smaller than U1.

Remark 16. r∗z can be smaller than the infimum of r
∗(n)
z . That is, there may exist PRC

channels where r∗z < L1, where L1 := inf
n
r
∗(n)
z . Consider C

(n)
z (rz) when rz < L1. Clearly,

rz < r
∗(n)
z holds for any n, because L1 equals to the infimum of r

∗(n)
z . So for all n, C

(n)
z (rz) <

SIMO(n) is true. Thus, sup
n
C

(n)
z (rz) ≤ sup

n
SIMO(n) holds, equivalently, sup

n
C

(n)
z (rz) ≤

SIMO holds.

• When sup
n
C

(n)
z (rz) < SIMO, we can conclude that r∗z > rz.

Note the assumption is L1 > rz, from which one cannot cannot tell if r∗z is bigger or

smaller than L1.

• But when sup
n
C

(n)
z (rz) = SIMO happens, we can conclude that r∗z ≤ rz.

Note the assumption is rz < L1, which implies r∗z < L1.

So we have shown that r∗z < L1 is possible.

Next we present the proofs for the three statements in Lemma 34.
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Proof of Lemma 34 - (1). Consider C
(n)
z (rz) when rz ≥ U1. First rz ≥ U1 ≥ r∗(n)z holds for any

n, because U1 is the supremum of all r
∗(n)
z ’s. It is also true that C

(n)
z (rz) ≥ C(n)

z (r
∗(n)
z ), because

C
(n)
z (rz) is non-decreasing with respect to rz. Note that C

(n)
z (r

∗(n)
z ) by definition achieves the

SIMO upper bound, i.e. C
(n)
z (r

∗(n)
z ) = SIMO(n). So C

(n)
z (rz) ≥ SIMO(n) holds for any n.

Thus we have sup
n
C

(n)
z (rz) ≥ sup

n
SIMO(n), equivalently, Cz(rz) ≥ SIMO. This implies that

r∗z ≤ U1.

Proof of Lemma 34 - (2). It suffices to show when rz ≥ U2, Cz(rz) = SIMO holds. Recall that

Cz(rz) is defined as sup
n
C

(n)
z (rz), and SIMO is defined to be sup

n
SIMO(n), which is equal to

lim
n→∞

SIMO(n).

First, rz ≥ U2 implies rz ≥ r∗(n)z for any n ∈ J . Because C
(n)
z (rz) is non-decreasing, we have

C
(n)
z (rz) ≥ C

(n)
z (r

∗(n)
z ), equivalently C

(n)
z (rz) ≥ SIMO(n), for any n ∈ J . So, sup

n∈J
C

(n)
z (rz) ≥

sup
n∈J

SIMO(n) holds.

Secondly, because sup
n
C

(n)
z (rz) ≥ sup

n∈J
C

(n)
z (rz), we have sup

n
C

(n)
z (rz) ≥ sup

n∈J
SIMO(n), equiv-

alently, Cz(rz) ≥ sup
n∈J

SIMO(n). If sup
n∈J

SIMO(n) = SIMO holds, then Cz(rz) ≥ SIMO holds,

which establishes Cz(rz) = SIMO because Cz(rz) ≤ SIMO is always true.

We next show that sup
n∈J

SIMO(n) = SIMO holds by showing sup
n∈J

SIMO(n) = lim
n→∞

SIMO(n).

Assume sup
n∈J

SIMO(n) < lim
n→∞

SIMO(n). Let sup
n∈J

SIMO(n) = lim
n→∞

SIMO(n) − δ, where δ

is some given positive real number that can be arbitrarily small. By the definition of the

existence of a limit, we know that there exists some big number N such that when n > N ,

SIMO(n) ≥ lim
n→∞

SIMO(n)− δ
2 > lim

n→∞
SIMO(n)− δ. This means that there are at most N
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items of sequence SIMO(n), which are smaller than or equal to lim
n∈J

SIMO(n)− δ. Because J

has infinitely many elements and thus has more than N elements, J has to contain n’s that are

greater than N . This implies that, set {SIMO(n), n ∈ J} contains SIMO(n)’s that are greater

than lim
n→∞

SIMO(n) − δ. So, sup
n∈J

SIMO(n) > lim
n→∞

SIMO(n) − δ holds and contradicts with

the assumption sup
n∈J

SIMO(n) < lim
n→∞

SIMO(n) − δ. Thus, sup
n∈J

SIMO(n) ≥ lim
n→∞

SIMO(n).

Recall that lim
n→∞

SIMO(n) = sup
n→∞

SIMO(n), which is greater or equal to sup
n∈J

SIMO(n). So,

we have sup
n∈J

SIMO(n) = lim
n→∞

SIMO(n).

Proof of Lemma 34 - (3). When {SIMO(n)}∞n=1 is a closed set, its supremum matches its max-

imum. That is, max
n

C
(n)
z (rz) = sup

n
C

(n)
z (rz) = SIMO. Recall that r∗z = inf{rz : Cz(rz) =

SIMO}. Clearly, for t that satisfies SIMO(t) = SIMO, r
∗(t)
z is an upper bound on r∗z . So

U3 is an upper bound on r∗z . U3 is tight, because of the optimality of the Colour-and-Forward

relaying, i.e., r
∗(n)
z is the minimum required conference link that can enable the whole network

to achieve message rate SIMO(n).

4.7.2 A class of PRC channels where r∗z is known

Lemma 36. For PRC channels where p(y, yR|x) satisfies (a) p(y, yR|x) = p(y|x) · p(yR|x), and

(b) p(y|x) > 0 for all y ∈ Y and x ∈ X ,

1.

r∗z = lim
n→∞

SIMO(n) (4.15)
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2. r
∗(n)
z = SIMO(n), which implies

min
K∈K̃
X (G

(n)
R |K) = α([GXp(y,yR|x)]

�n) (4.16)

Proof of Lemma 36. We first prove statement 1) and statement 2) will follow immediately after

1) has been established.

Recall that we have the following lower bound on r∗z by inequality (Equation 4.14):

log
lim
n→∞

n

√
α([GXp(y,yR|x)]

�n)

lim
n→∞

n

√
α([GXp(y|x)]

�n)
≤ r∗z .

Condition (b) implies that GXp(y|x) is fully-connected and α([GXp(y|x)]
�n) = 1 for any n. Thus,

lim
n→∞

log n

√
α([GXp(y,yR|x)]

�n) ≤ r∗z . (4.17)

Statement 1) follows by combining (Equation 4.17) with (Equation 4.18) and (Equation 4.19).

So we next just need to show (Equation 4.18) and (Equation 4.19).

r∗(n)z ≤ lim
n→∞

log n

√
α([GXp(yR|x)]

�n) (4.18)

and

lim
n→∞

log n

√
α([GXp(y,yR|x)]

�n) = lim
n→∞

log n

√
α([GXp(yR|x)]

�n) (4.19)
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Equality (Equation 4.19) holds because SXp(y,yR|x)(y, yR) = {x : p(y, yR|x) > 0} = {x :

p(y|x) > 0, p(yR|x) > 0} = {x : p(yR|x) > 0} = SXp(yR|x)(yR), for any y ∈ Y and yR ∈ YR,

implying GXp(y,yR|x) = GXp(yR|x).

Inequality (Equation 4.18) can be shown by considering the following communication scheme

where

• The destination terminal ignore its own observation and only utilize what it receives from

relay terminal

• The relay terminal adopts the Decode-and-Forward (DF) relaying strategy, which is

constrained by the source-to-relay capacity lim
n→∞

log n

√
α([GXp(yR|x)]

�n) and the relay-to-

destination conference link capacity rz.

So the maximal achievable rateRz for this communication scheme is min{ lim
n→∞

log n

√
α([GXp(yR|x)]

�n), rz}.

Noting equality (Equation 4.19), it can be checked that when rz ≥ lim
n→∞

log n

√
α([GXp(yR|x)]

�n),

the SIMO bound message rate lim
n→∞

log n

√
α([GXp(y,yR|x)]

�n) can be achieved. By definition of r∗z ,

this implies that inequality (Equation 4.18) holds and completes the proof for statement 1).

The above argument for establishing statement 1) is valid, when only n channel uses are

allowed. Thus, we have r
∗(n)
z = SIMO(n), i.e. min

K∈K̃
X (G

(n)
R |K) = α([GXp(y,yR|x)]

�n).

Remark 17. Equality (Equation 4.16) relates independence and chromatic numbers of two dif-

ferent graphs, which are both derived from the same underlying channel p(y, yR|x). This equality

might have meaningful implication or interpretation in graph theory as well as understanding
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the intrinsic channel structure. It might be another example of bridging the closely intertwined

research fields like combinatorics, graph theory and information theory. We thus propose the

following open question:

Open question: How to interpret the equality in (Equation 4.16)?

4.8 The perfect PRCs and examples

4.8.1 Zero-error capacity of a special class of primitive relay channels

Applying Theorem 31 using the Colour-and-Forward relay strategy W ∗R defined in Definition

29, We may obtain the zero-error capacity of a special class of primitive relay channels. We

term these perfect primitive relay channels as (1) like in the point-to-point channel, we can

characterize the zero-error capacity exactly, and not because any of the associated graphs are

perfect graphs necessarily; (2) the zero-error capacity of such PRCs is the maximal possible rate

– the logarithm of the channel input alphabet size ‖X‖.

Definition 37. A PRC channel ((X , p(y, yR|x),Y × YR), rz) is perfect if

1. GXp(y,yR|x) is edge free;

2. rz ≥ U3, where U3 is defined in Lemma 34.

Theorem 38. The zero-error capacity of the perfect primitive relay channel satisfying condi-

tions in Definition 37, is

Cz,perfect = log ||X ||.

Proof. The converse is trivial: the zero-error capacity is always upper bounded by log ‖X‖.

The achievability follows by default:
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• graph GXp(y,yR|x) being edge-free implies that block coding brings no gain than a single-

shot coding scheme. That is, SIMO(n) = logα(GXp(y,yR|x)) = log ‖X‖ for any n. So U3

in Lemma 34 is well-defined.

• SIMO = log ‖X‖ is achievable because rz ≥ r∗z is guaranteed by rz ≥ U3.

To be explicit, the n-shot protocol (n, X = X , h, g) achieves zero error when rz ≥ U3, with the

codebook X being the whole channel input alphabet as desired, the relaying h(yR) := c(ynR) as

in Definition 29 and the decoding function g(yn, w
∗(n)
R ) as in the proof of Theorem 31:

g(yn, w
∗(n)
R ) := SX

n

p|X (yn,w∗(n)R |xn)(y
n, w

∗(n)
R ) = ∪

yR ∈ c−1(w
∗(n)
R )

SX
n

p|X (yn,ynR|xn)(y
n, ynR)

Note that while the overall message rate remains as a constant, we still adopt n-shot pro-

tocols or block-coding schemes; we do so to minimize the required conference rate at the

relay-to-destination conference link. An interesting open question is to find an example where

SIMO(1) = SIMO(2) and r
∗(1)
z > r

∗(2)
z .

4.8.2 More examples

We provide in the following another three conventional examples to further illustrate the

intuition and potential benefit of relaying to provide “what the destination needs”. For the

sake of simplifying the description for a conditional joint pmf, we let p(y, yR|x) = p(yR|x)p(y|x)

in the these three examples. An edge in a bipartite graph between X and Y (or X and YR)

indicates p(y|x) > 0 (or p(yR|x) > 0).
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4.8.2.1 The pentagon problem

We now consider a channel where the direct link between the source and destination consists

of Shannon’s “pentagon problem”, which was notoriously difficult to solve. If the relay link is

such that the corresponding channel forms a perfect PRC (this relay link described by p(yR|x)

is not unique) an example of which is shown in Figure 28, we have α(GXp(y,yR|x)) = 5 and rate

log 5 can be achieved, when rz ≥ log 3 (in a 1-shot scheme). Note that smaller values of rz

might still be able to guarantee the maximal rate log ‖X‖ = log 5 when multiple channel uses

are allowed, but this is left open.

We compare the rate achieved by our strategy with that achieved by a “Decode-and-

Forward” (DF) relaying strategy. In a DF strategy, the relay would like to decode every

codeword w ∈ X , in which case the message rate is constrained by Rz ≤ logα(GXp(yR|x)). In this

example, α(GXp(yR|x)) = 3. Thus, Rz ≤ log 3 is a hard constraint on the message rates that can

be achieved by Decode-and-Forward, which is clearly inferior to that achieved by our scheme.

This scheme might be seen as a “channel-aware” (depends on the conditional p(y, yR|x)) com-

pression of YR, and thus might be seen as a smart way of implementing Compress-and-Forward.

4.8.2.2 An example where no compression is possible

We now provide an example in Figure 29 to show that there exist channels for which no

information lossless compression is possible at the relay and the relay has to forward everything

that it has observed, i.e, r∗z = log ‖YR‖. The relaying scheme W ∗R captures this phenomenon

by requiring 8 different colours for 8 yR’s, as shown in Figure 29.
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4.8.2.3 An example where much compression is possible

Finally, in Figure 30 We show an example of a channel where YR may be highly compressed

without losing the needed information about X – i.e. we do not need to reconstruct YR at

the destination, but only need to use the conferencing link to resolve any remaining ambiguity

from the direct link. Here, one may verify that by sending only one of the two colours over the

conferencing link, that a capacity of log 8 may be achieved when rz ≥ log 2.

4.9 Conclusion

In this chapter, the problem of communicating over a primitive relay channel without error

is for the first time proposed, with the goal of exploring and fulfilling the intuition that the

central role of a relay is to only deliver ”what the destination needs”. Next, a novel relaying

scheme termed “Colour-and-Foward” is proposed and is shown to be the most efficient way of

compressing signals at the relay terminal, for any fixed number of channel uses, when enabling

an effectively full cooperation between the relay and the destination terminals, i.e. achieving

the single-input multi-output (SIMO) upper bound, is required. This Colour-and-Forward

relaying is designed by an explicit exploit of the channel structure and directly embodies the

intuition of having relay transmit “only what the destination needs”. We also provide various

non-trivial bounds on the asymptotic case, say r∗z – the minimum required conference rate

such that the given PRC channel can achieve the SIMO upper bound message rate. But the

general relationship of r
∗(n)
z and r∗z depends on the behavior of SIMO bounds, say SIMO(n),

which is the sequence of independence numbers of the graph products of a graph specified by

the broadcasting component of the PRC channel in discussion, and is not clear. We believe
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understanding the behavior of the Colour-and-Forward graphs G
(n)
R plays a central role in

deciding the limit of how much and how efficiently the relay terminal can contribute to the

overall communication. Probably, a characterization of the Colour-and-Forward graphs G
(n)
R

will help in identifying certain new categories of PRC channels whose capacity characterize

may be more computable/tractable. Also, graph theory and combinatorics could potentially

benefit from the connection among the graphs in Lemma 36, introduced by the study of zero-

error communication over a PRC and the Colour-and-Forward relaying algorithm. In next

chapter, we will show how to apply the Colour-and-Forward relaying scheme to the small-error

communication problem over a PRC channel.
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confusability compression colored
graph graph compression graph

1
2

3
4

5

X = [1 : 5]

1
2

3

4

5

Compression graph GR|X

1g
2b

3b

4r

5r

χ(GR|X ) = 3

1

3
4

5

2

K1 = [1, 3 : 5]

1
2

3

4

5

Compression graph GR|K1

1g
2b

3b

4r

5r

χ(GR|K1
) = 3

2

3
4

5

1

K2 = [2, 3 : 5]

1
2

3

4

5

Compression graph GR|K2

1r
2b

3b

4r

5r

χ(GR|K2
) = 2

TABLE III

AN EXAMPLE TO SHOW THE IMPACT OF THE CHOICE OF INDEPENDENT SETS

IN THEOREM 31. THE CONDITIONAL JOINT PMF P (Y, YR|X) IN DISCUSSION IS

SHOWN IN IV.
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s(p(y, yR|x)) YR YR YR YR YR

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Y

1
2
3
4
5

0 0 ∗ ∗ 0
∗ ∗ 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 ∗ 0 0 0
0 0 ∗ 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
∗ 0 0 0 0
0 0 ∗ 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 ∗ 0
0 0 0 0 0
0 0 0 ∗ 0
0 0 ∗ 0 0

∗ 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 ∗

X = 1 X = 2 X = 3 X = 4 X = 5

TABLE IV. Conditional joint probability mass function: p(y, yR|x), where

‖X‖ = ‖Y‖ = ‖YR‖ = 5. Note that s(p(y, yR|x)) equals to ∗ when p(y, yR|x) > 0 (actual value

is unimportant) and 0, otherwise.
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SX
p|K1

(y|x)(y) BYR

p|K1
(y,yR|x)(x, y) edges

Y = 1
X = 1 {3, 4}

1− 3, 1− 4
X = 5 {1}

Y = 2
X = 1 {1, 2}

1− 2, 1− 4, 2− 4
X = 2 {2}
X = 4 {4} 1− 4, 2− 4

Y = 3
X = 2 {3}

1− 3 ∅
X = 3 {1}

Y = 4
X = 3 {3}

3− 4
X = 4 {4}

Y = 5
X = 4 {3}

3− 5
X = 5 {5}

(a) The iterative algorithm for constructing com-

pression graph GR|K1 .

1
2

3

4

5

Compression graph GR|K1

1g
2b

3b

4r

5r

One minimum colouring c

(b) The compression graph GR|K1 and one choice of minimum

colouring function c.

Figure 23. Constructing compression graph GR|K1 from induced conditional joint pmf

(K1, pK1(y, yR|x),Y|K1 × YR|K1). Note that the least number of colours required is:

χ(GR|K1) = 3.



114

(Y, YR) SX
p(y,yR|x)(y, yR) edges

(1, 3)
{1} ∅(1, 4)

(2, 1)
(3, 3) {2} ∅
(3, 1) {3} ∅
(4, 3)
(2, 4)

{4} ∅(4, 4)
(5, 3)
(1, 1) {5} ∅
(5, 5)
(2, 2) {1, 2} {1} 1− 2 ∅

(a) Conditional supports

SXpK1
(y,yR|x)(y, yR).

(Y,W ∗R) SX
p(y,w∗

R
|x)(y, w

∗
R) edges

(1, b)
{1} ∅(1, r)

(2, g)
(3, 3) {2} ∅
(3, g) {3} ∅
(4, r)
(2, r)

{4} ∅(4, r)
(5, b)
(1, g) {5} ∅
(5, r)
(2, 2) {1, 2} {1} 1− 2 ∅

(b) Conditional supports

SXpK1
(y,w∗

R
|x)(y, w

∗
R).

1
2

3

4

5

GX
pK1

(y,yR|x) = GX
pK1

(y,w∗
R
|x)

(c) Confusability graphs.

Figure 24. Compressing YR into W ∗R according to the minimum colouring function c on graph

GR in 23(b), is information lossless in the sense that together with Y , W ∗R provides as much

information of about X as YR.
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SX
p|K2

(y|x)(y) BYR

p|K2
(y,yR|x)(x, y) edges

Y = 1
X = 1 {3, 4} 1− 3, 1− 4
X = 5 {1} ∅

Y = 2
X = 1 {1, 2}

1− 2, 1− 4, 2− 4
X = 2 {2}
X = 4 {4} 2− 4

Y = 3
X = 2 {3}

1− 3
X = 3 {1}

Y = 4
X = 3 {3}

3− 4
X = 4 {4}

Y = 5
X = 4 {3}

3− 5
X = 5 {5}

(a) The iterative algorithm for constructing com-

pression graph GR|K2 .

1
2

3

4

5

Compression graph GR|K2

1r
2b

3b

4r

5r

One minimum colouring c

(b) The compression graph GR|K2 and one choice of minimum

colouring function c.

Figure 25. Constructing compression graph GR|K2 from induced conditional joint pmf

(K2, pK2(y, yR|x),Y|K2 × YR|K2). Note that the least number of colours required is:

χ(GR|K2) = 2.
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(Y, YR) SX
p(y,yR|x)(y, yR) edges

(1, 3)
{1} ∅(1, 4)

(2, 1)
(3, 3) {2} ∅
(3, 1) {3} ∅
(4, 3)
(2, 4)

{4} ∅(4, 4)
(5, 3)
(1, 1) {5} ∅
(5, 5)
(2, 2) {1, 2} {2} 1− 2 ∅

(a) Conditional supports

SXpK2
(y,yR|x)(y, yR).

(Y,W ∗R) SX
p(y,w∗

R
|x)(y, w

∗
R) edges

(1, 3)
{1} ∅(1, 4)

(2, 1)
(3, b) {2} ∅
(3, r) {3} ∅
(4, b)
(2, r)

{4} ∅(4, r)
(5, b)
(1, r) {5} ∅
(5, r)
(2, 2) {1, 2} {2} 1− 2 ∅

(b) Conditional supports

SXpK2
(y,w∗

R
|x)(y, w

∗
R).

1
2

3

4

5

GX
pK2

(y,yR|x) = GX
pK2

(y,w∗
R
|x)

(c) Confusability graphs.

Figure 26. Compressing YR into W ∗R according to the minimum colouring function c on graph

GR in 23(b), is information lossless in the sense that together with Y , W ∗R provides as much

information of about X as YR.
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1 2 3 4 5 6 7
n

c(∞,∞)

c(
n
,γ
)

c(n, γ ≥ γ∗(n))

c(2, γ ≥ γ∗(2))

c(2, γ = 1.4)

c(2, γ = 0)

c(2, γ)

N1 N2

Figure 27. A symbolic graph for showing PRC capacity C
(n)
z (rz) as a function of n and rz.

Note that for succinctness, subscripts z are omitted and C(n, r) is adopted to indicate

C
(n)
z (rz). C(n, r ≥ r∗(n)) equals to the SIMO bound SIMO(n). Red solid and dashed lines

are depicted to indicate that the SIMO bound sequence SIMO(n) converges. That is, there

exists big enough n (N1 or N2) after which all SIMO bounds will be within certain divergence

from the limit, which equals to the supremum of the sequence.

p(y|x) p(yR|x)

X Y

1

2

3

4

5

1

2

3

4

5

X YR

1

2

3

4

5

1

2

3

4

5

GR

1g

2r

3g

4r

5b

Figure 28. Pentagon problem: marginals and GR graph used for relaying. The capacity is

log 5 and may be achieved if rz ≥ log 3, in 1-shot.
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p(y|x) p(yR|x)

X Y

1

2

3

4

5

6

1

2

X YR

1

2

3

4

5

6

1

2

3

4

5

6

7

8

GR

1g

2br
3b

4r

5p

6or
7bl

8y

Figure 29. An example where information lossless compression at the relay is impossible.

p(y|x) p(yR|x) GR

X Y
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7
8

1
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4
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6
7
8

X YR

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

1r

2b
3r

4b

5r

6b
7r

8b

Figure 30. An example where much compression is possible.



CHAPTER 5

ε-COLOUR-AND-FORWARD RELAYING IN SMALL-ERROR

PRIMITIVE RELAY CHANNELS

In this chapter, we will apply Colour-and-Forward relaying, originally proposed for the com-

munication over a primitive relay channel (PRC) channel without error, to the conventional

small-error communication case, as studied in (17). A new ε-Colour-and-Forward relaying algo-

rithm is analogously proposed for the problem of communicating over a PRC channel allowing

arbitrarily small probability of error. To facilitate the transfer of insights from zero-error

Colour-and-Forward relaying to small-error PRCs, an alternative ε-error capacity-achieving

scheme for a discrete memoryless point-to-point channel is proposed. This scheme resembles

that for obtaining the 0-error capacity, utilizing a joint typicality graph which parallels the role

of the confusability graph in 0-error communications. In this new framework, an explicit code-

book construction approach is provided for the ε-error scenario using graph theoretic notation:

the codebook is constructed as some maximum independent set of a joint-typicality confus-

ability graph under the optimal input distributions. Although the codebook – which involves

finding the maximum independent sets of a graph is not easily computable and is in general

NP-complete, it provides a unified way to analyze both the 0 and ε-error capacities of a point-to-

point channel. Consequently, when the relay and destination can fully cooperate, the small-error

PRC can be analogized as a virtual zero-error PRC; any zero-error Colour-and-Forward relaying

119
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developed for this virtual zero-error PRC serves as one ε-error Colour-and-Forward relaying for

the original small-error PRC.

5.1 Shannon’s channel coding theorems: small-error versus zero-error

Communication allowing a vanishing probability of error is called small-error or ε−error

communication, while communication without error is called zero-error or 0-error communi-

cation. Let (X , p(y|x),Y) denote a discrete memoryless point-to-point channel, where finite

sets X and Y are respectively the channel input and output alphabets, and the conditional

probability mass function (pmf) p(y|x) describes the channel. The small-error capacity and

the zero-error capacity of a point-to-point discrete memoryless channel were initially studied

by Claude E. Shannon, in (27) in 1948 and in (18) in 1956.

5.1.1 The small-error / ε-error scenario

Capacity for the small-error scenario is given below.

Theorem 39 (Shannon’s channel coding theorem: small error scenario (27) ). The supremum

of all message rates that one can communicate via channel (X , p(y|x),Y), allowing a vanishing

probability of block-error, is max
p(x)∈PX

I(X;Y ). PX denotes the set of all possible pmfs defined on

set X .

This is established by a random coding argument, which generates codebooks randomly,

utilizes joint typicality decoding and computes the average (expected) probability of block-

error over all possible codebooks. When the block-error probability averaged over all possible

codebooks goes to zero as the block length goes to infinity, one may conclude that there exists
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at least one codebook under which the block-error probability can be made arbitrarily small.

This shows the existence, rather than construction, of a good codebook.

5.1.2 The zero-error scenario

The expression for the capacity of a point to point channel (X , p(y|x),Y) when one wishes

to recover the sent message exactly looks quite different:

Theorem 40 (Shannon’s channel coding theorem: zero error scenario (18)). The supremum

of all message rates that one can communicate via channel (X , p(y|x),Y) without error is

sup
n

1
n logα([GXp(y|x)]

�n).

The proof for this theorem is very intuitive and straightforward. Note that for zero-error

communication, only whether p(y|x) is zero or not matters and the point-to-point channel can

be fully described by its confusability graph GXp(y|x) where an edge indicates that the receiver

cannot distinguish the two vertices it connects. To build intuition, first consider communicating

over a single channel use: the maximal number of channel inputs the destination can distinguish

without error is α(GXp(y|x)), the maximum number of vertices that are non-adjacent, or pairwise

distinguishable. When multiple channel uses are allowed, by extension, α([GXp(y|x)]
�n) is the

number of distinguishable channel inputs Xn, where [GXp(y|x)]
�n is the strong product of n

copies of graph GXp(y|x).
1 2

1Note that the n-fold strong product graph [GX
p(y|x)]

�n is equivalent to graph GXn

p(yn|xn), which is the

confusability graph directly constructed from the compound channel (Xn, p(yn|xn),Yn) with p(yn|xn) =∏n
i=1 p(yi|xi).

2One can show that the supremum of sequence { 1n logα([GX
p(y|x)]

�n)}∞n=1 is equal to its limit.
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5.2 Definitions

We now make several definitions for both 0- and ε-error communication so as to make the

parallel evident. In particular, we define the 0-error and ε-error version of the confusability

graphs.

5.2.1 Definitions for zero-error communication

Definition 41 (Conditional support). For a given triple (X , p(y|x),Y), the conditional support

of Y = y is SXp(y|x)(y) := {x : p(y|x) > 0} .

Definition 42 (Confusability graph). The confusability graph GXp(y|x) with respect to Y and

p(y|x) for point to point channel (X , p(y|x),Y), is defined on X and two different symbols

x′ 6= x′′ ∈ X are connected by an edge if there exists some y ∈ Y such that p(y|x′) · p(y|x′′) > 0.

5.2.2 Robust typicality

We adopt the form of robust typicality proposed in (28); several lemmas based on this

definition provided or easily derived from (28) are provided in the Appendix for completeness.

Definition 43. For a given random variable X ∼ p(x), its typical set TX
p(x),ε is defined as

{x ∈ X n : ∀a ∈ X , |vx(a)− p(a)| < ε · p(a)}

where vx(a) denotes the empirical distribution on X based on the sample x.
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Definition 44. For a given random variable pair (X,Y ) ∼ p(x, y), their joint typical set TXY
p(x,y),ε

is defined as

{(x,y) ∈ X n × Yn : ∀(a, b) ∈ X × Y, |vx,y(a, b)− p(a, b)| < ε · p(a, b)|}

where vx,y(a, b) denotes the empirical distribution on X × Y based on the sample pair (x,y).

5.2.3 Definitions for ε-error communication

Definition 45 (ε-conditional support). For a given triple (X , p(y|x),Y), the n-shot joint-

typicality conditional support of Y = y is SX
p(x,y),ε(y) := {x ∈ X n : (x,y) ∈ TXY

p(x,y),ε}.

Definition 46 (ε-confusability graph). For a point to point channel (X , p(y|x),Y) and a chosen

input distribution p(x), its n-shot joint-typicality confusability graph GX
p(x,y),ε is defined on X n,

where two vertices x′ and x′′ are connected if there exists one y ∈ Yn such that (x′,y) ∈ TXY
p(x,y),ε

and (x′′,y) ∈ TXY
p(x,y),ε. The parameter 0 < ε < 1.

Definition 47 (Restricted ε-confusability graph). For a point to point channel (X , p(y|x),Y)

and a chosen input distribution p(x), choose parameters 0 < ε1 < ε2 < 1 such that typical set

TX
p(x),ε1

is a subset of the vertex set of the ε-confusability graph GX
p(x,y),ε2

, defined in Definition

46. Then, the restricted ε-confusability graph is defined as GX
p(x,y),ε1,ε2

= GX
p(x,y),ε2

(TX
p(x),ε1

), i.e.

the induced subgraph of graph GX
p(x,y),ε2

on vertex subset TX
p(x),ε1

.
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5.3 A new capacity-achieving scheme for Shannon’s small-error coding theorem

The link between the 0-error and ε-error channel coding theorems lies in using the ε-

confusability graph in Def. 46 to mimic a zero-error communication protocol whose confus-

ability graph is provided in Def. 42. We formally define the new communication protocol in

Subsection 5.3.1, evaluate its probability of error in Subsection 5.3.2, demonstrate the max-

imal achievable rate of this protocol in Subsection 5.3.3. This will show that that this new

communication protocol is indeed capacity-achieving. That is,

Theorem 48. The communication protocol in Definition 49 can achieve message rates that are

arbitrarily close to max
p(x)

I(X;Y ), i.e., it is capacity-achieving.

Remark 18. We acknowledge that the communication protocol in Definition 49 is essentially

equivalent to the standard random coding protocol, rephrased in the graph theoretic notation.

One might think that this is a trivial “rephrasing”. But it is noted that this representation via

graph theoretic notation is meaningful, because it provides a novel perspective of viewing the

small-error communication and thus allows and facilitates the usage of mathematical tools in

graph theory and combinatorics.

5.3.1 The ε-error point-to-point communication protocol

We now propose a protocol whose codebook and decoding are based on the restricted ε-

confusability graph GX
p(x,y),ε1,ε2

of Definition 47.
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Definition 49 (Communication protocol). For any given input distribution p(x), the protocol

consists of a codebook L, which is an independent set of the restricted ε-confusability graph

GX
p(x,y),ε1,ε2

, and a decoder:

L ∩ SX
p(x,y),ε2

(y) . (5.1)

If the intersection is an empty set, the receiver declares an error. If the intersection is non-

empty, the receiver claims the only element it contains to be the transmitted one.

Remark 19. It is noted that there is a one-to-one mapping from the message set to the codebook

L and the transmitter sends the codeword corresponding to a given message.

The communication protocol in Definition 49 essentially view the graph GX
p(x,y),ε1,ε2

as its

confusability graph, just like in the zero-error scenario. Intuitively, when only some independent

set of graph GX
p(x,y),ε1,ε2

is sent, the destination terminal can distinguish all codewords pairwise

(with arbitrarily small probability of error) given its side information (its own observation Y =

y). Thus, the maximum number of codewords (channel input sequences) that the destination

terminal can pairwise distinguish is equal to the independence number of graph GX
p(x,y),ε1,ε2

.

Recall that graph GX
p(x,y),ε1,ε2

is a restricted graph of GX
p(x,y),ε2

over the vertex subset TX
p(x),ε1

.

Thus, being an independent set of graph GX
p(x,y),ε1,ε2

, codebook L simultaneously qualifies for

an independent set of graph GX
p(x,y),ε2

and a subset of TX
p(x),ε1

.

Considering the first aspect, i.e. codebook L being an independent set of the ε-confusability

graph GX
p(x,y),ε2

, it follows that the intersection of a clique SX
p(x,y),ε2

(y) and an independent set

L can at most have one element. In the zero-error communication scenario, the intersection
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L∩SX
p(y|x),ε2(y) has exactly one element, which is exactly the sent codeword. In the small-error

communication scenario, the intersection L ∩ SX
p(x,y),ε2

(y) has at most one element, which may

or may not be the sent codeword. As we will show, when taking into the second aspect, i.e.

codebook L being a subset of TX
p(x),ε1

and ε1 < ε2, the probability that the intersection has the

sent codeword as the unique element can be made arbitrarily close to 1.

Remark 20. Having two parameters ε1, ε2 and the requirement ε1 < ε2 are necessary to bound

the probability of error in (Equation 5.2). This subtlety comes from the necessity of establishing

Lemma 65. We note that weak typicality is insufficient to establish the Lemma 65 (or conse-

quently Theorem 48). Overall, we believe that adopting robust typicality and using the restricted

ε-confusability graph in Definition 47 are both critical, and novel, components of this protocol.

5.3.2 Analysis of probability of error

The probability of error under this protocol is:

Pr[error] :=
1

‖L‖
∑

x∈L
Pr[ error |x ∈ L was sent ] ≤ δε1,ε2(n), (5.2)
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where δε1,ε2(n) := 2‖SXYp(x,y)‖ · e
−(ε2−ε1)2· 1

1+ε1
·(n·pmin(a,b))

3 and pmin(a, b) := min(a,b)∈SXY
p(x,y)

p(a, b)

goes to 0 as n→∞, as

Pr[ error |x ∈ L was sent ]

= Pr[L ∩ SXp(x,y),ε2,n(Y) = ∅ or

L ∩ SXp(x,y),ε2,n(Y) 6= {x} |x ∈ L was sent ]

=1− Pr[L ∩ SXp(x,y),ε2,n(Y) = {x} |x ∈ L was sent ]

=1− Pr[(x,Y) ∈ TXY
p(x,y),ε2

|x ∈ L was sent ]

≤1− (1− δε1,ε2(n)) = δε1,ε2(n)

(5.3)

where the inequality and the value of δε1,ε2(n) follow from Lemma 65 in the Appendix.

5.3.3 The maximal achievable rate

It has been shown that the probability of error can be made small, but now discuss how

large the codebook L may be while guaranteeing this.

We claim that for any given p(x), the communication protocol in Definition 49 can achieve

rates arbitrarily close to I(X;Y ) evaluated at p(x) (we will maximize over p(x) in the next

subsection). This will be shown by investigating the maximum cardinality of codebook L.

Recall that it is desired that

1. L is a subset of the vertex set of graph GX
p(x,y),ε1,ε2

, i.e, L ⊆ TX
p(x),ε1

.

2. L is an independent set of graph GX
p(x,y),ε1,ε2

, denoted by E
(
GX
p(x,y),ε1,ε2

(L)
)

= ∅.
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We show that such an L exists using a random coding argument. First generate a random

set S consisting of s i.i.d. sequences of X of length n, i.e. S = {x(w) : w ∈ [s]}. Next, compute

the probability that this random set S satisfies requirements 1) and 2) above. The probability

being positive indicates the existence of some “good” realizations of set S satisfying 1) and 2).

Thus, rate 1
n log s would be achievable.

Mathematically, we are interested in:

Pr[S ⊆ TX
p(x),ε1

and E
(
GX
p(x,y),ε1,ε2

(S)
)

= ∅]

= Pr[S ⊆ TX
p(x),ε1

and E
(
GX
p(x,y),ε2

(S)
)

= ∅]

≥Pr[S ⊆ TX
p(x),ε1

]− Pr[E
(
GX
p(x,y),ε2

(S)
)
6= ∅]

≥
(

1− 2 · ‖SXp(x)‖ · e−
ε21·n·pmin(a)

3

)s
− 2n(2·(

1
n
log s−I(X;Y ))+ε′2)

=:∆p(x,y),ε1,ε2(n)

(5.4)

where ε′2 := ε2 · (H(XY ) +H(X|Y ) + 2H(X) +H(Y )). The first equality follows by Definition

47 that graph GX
p(x,y),ε1,ε2

is an induced subgraph of graph GX
p(x,y),ε2

. The first inequality in the

above equation follows from Pr[A ∩B] ≥ Pr[A]− Pr[B̄].

We defer the proof of the second inequality for now and first interpret this lower bound.

• When 1
n log s ≥ I(X;Y ), the lower bound ∆p(x,y),ε1,ε2(n) < 0, which is not useful.

• For any 1
n log s < I(X;Y ) (but arbitrarily close), for any p(x, y), ε1, ε2, there exists n large

enough such that ∆p(x,y),ε1,ε2(n) > 0. Thus, Pr[S ⊆ TX
p(x),ε1

and E
(
GX
p(x,y),ε1,ε2

(S)
)

=

∅] > 0.
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Now we show the computation of probabilities Pr[S ⊆ TX
p(x),ε1

] and Pr[E
(
GX
p(x,y),ε2

(S)
)
6= ∅].

5.3.3.1 compute Pr[S ⊆ TX
p(x),ε1

]

By Lemma 66 in the Appendix and the independence of x(w), w ∈ [s], we have

Pr[S ⊆ TX
p(x),ε1

] = Pr[∀w ∈ [s], x(w) ∈ TX
p(x),ε1

]

≥
(

1− 2 · ‖SXp(x)‖ · e
− ε

2
1·n·pmin(a)

2+ε1

)s (5.5)

5.3.3.2 compute Pr[E
(
GX
p(x,y),ε2

(S)
)
6= ∅]

Pr[E
(
GX
p(x,y),ε2

(S)
)
6= ∅]

= Pr[GX
p(x,y),ε2

(S) has some edge(s) ]

(a)

≤s · (s− 1) · Pr[x(w) and x(w′) is connected]

=s · (s− 1) · Pr[{(x,x′,y) : x(w) = x, x(w′) = x′, (x(w),y) ∈ TXY
p(x,y), ε2

, (x(w′),y) ∈ TXY
p(x,y),ε2

}]

=s · (s− 1) ·
∑

(x,y)∈TXY
p(x,y),ε2

∑

x′∈SX
p(x,y),ε2,n

(y)

p(x,x′,y)

(b)

≤s · (s− 1) · 2n(1+ε2)H(X,Y ) · 2n(1+ε2)H(X|Y )

· 1

2n(1−ε2)H(X)
· 1

2n(1−ε2)H(X)
· 1

2n(1−ε2)H(Y )

:=s · (s− 1) · 2n(−2·I(X;Y )+ε′2) < 2n(2·(
1
n
log s−I(X;Y ))+ε′2)

(5.6)

The inequality (a) follows from the union bound and (b) follows from Lemmas 67, 68, 69.
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5.4 A unified framework for small-error and zero-error coding

In this section, we will introduce a “matrix” P (n) representation of a point-to-point discrete

memoryless channel (X , p(y|x),Y). Depending on the type of communication, i.e. zero-error

or small-error, this matrix P (n) is defined as P
(n)
ε and P

(n)
z respectively. The zero-error /

small-error capacity of the given channel can be correspondingly defined by supremum of the

independence numbers of the confusability graphs, determined through the same mechanism as

in Definition 56 by matrix P
(n)
ε or P

(n)
z .

5.4.1 Matrix representation for small-error coding scheme

Definition 50 (Matrix P
(n)
ε ). For a given point-to-point discrete memoryless channel (X , p(y|x),Y)

and a fixed channel input distribution p(x), define a two-dimensional matrix P
(n)
ε by

• The dimensions are ‖X n‖ × ‖Yn‖.

• Each entry is either 0 or 1 and is specified by P
(n)
ε (x,y) = Ip(x,y)>0 · I(x,y)∈TXY

p(x,y),ε2,n

·

Ix∈TX
p(x),ε1,n

, where p(x, y) = p(x)p(y|x).

For each matrix P
(n)
ε , define a graph:

Definition 51. For any n-shot use of point-to-point discrete memoryless channel allowing

arbitrarily small probability of error, represented by P
(n)
ε , define graph GX

P
(n)
ε

:

• The vertex set consists of all row indices x, where there is at least one non-zero entry.

• Consider every column of the matrix and fully connect row indices of the non-zero entries

in that column. The edge set is a union of edges resulting from all columns.
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It can be checked that the confusability graph GX
p(x,y),ε1,ε2

is equivalent to graph P
(n)
ε . The

decoding function, say L∩SX
p(x,y),ε2

, in the communication protocol in Definition 49 is equivalent

to looking at the column indexed by Y = y in matrix P
(n)
ε and trying to see if there is only

one non-zero entry in that column. As n increases, the probability that there is exactly one

non-zero entry in the column can be arbitrarily close to 1.

Because the communication protocol in Definition 49 is capacity-achieving (48), it follows

that

Lemma 52. The small-error capacity of a point-to-point discrete memoryless channel (X , p(y|x),Y)

P (n) is characterized by the supremum of independence numbers of graph GX

P
(n)
ε

, i.e.

C(P (n)
ε ) = sup

n
max
p(x)

1

n
logα(GX

P
(n)
ε

) (5.7)

where GX

P
(n)
ε

is defined by P
(n)
ε via Definition 51.

5.4.2 Matrix representation for zero-error coding scheme

Definition 53 (Matrix P
(n)
z ). For a given point-to-point discrete memoryless channel (X , p(y|x),Y)

and a fixed number of channel use n, define a two-dimensional matrix P
(n)
ε by

• The dimensions are ‖X n‖ × ‖Yn‖.

• Each entry is either 0 or 1 and is specified by P
(n)
z (x,y) = Ip(y|x)>0, where p(y|x) =

n∏
i=1

p(yi|xi).

For each matrix P
(n)
z , define a graph:
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Definition 54. For any n-shot use of point-to-point discrete memoryless channel allowing

arbitrarily small probability of error, represented by P
(n)
z , define graph GX

P
(n)
z

:

• The vertex set consists of all row indices x, where there is at least one non-zero entry.

• Consider every column of the matrix and fully connect row indices of the non-zero entries

in that column. The edge set is a union of edges resulting from all columns.

Consider n = 1. It is straightforward that the conditional support of Y = y in Definition

41 is just the x-indices of non-zero entries in the column y in matrix Pz, i.e. SXp(y|x)(y) = {x :

Pz(x, y) > 0}. Futhermore, the confusability graph GXp(y|x) is a union of cliques, where each

clique is define on the support of a column. It can be checked that graph GX

P
(n)
z

is the same as

graph [GXp(y|x)]
�n.

Thus, it follows by definition that

Lemma 55. The zero-error capacity of a point-to-point discrete memoryless channel P
(n)
z is

characterized by the supremum of independence numbers of graph GX

P
(n)
z

, i.e.

C(P (n)
z ) = sup

n

1

n
logα(GX

P
(n)
z

) (5.8)

where GX

P
(n)
z

is defined by P
(n)
z via Definition 54.

5.4.3 A unified framework for small-error and zero-error coding

Thus, we can represent a n-shot usage of a point-to-point discrete memoryless channel

(X , p(y|x),Y) by matrix P
(n)
ε or P

(n)
z . We define the confusability graph GX

P (n) as
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Definition 56. For a given point-to-point discrete memoryless channel P (n), define graph

GX
P (n):

• The vertex set consists of all row indices x, where there is at least one non-zero entry.

• Consider every column of the matrix and fully connect row indices of the non-zero entries

in that column. The edge set is a union of edges resulting from all columns.

5.5 Application to the primitive relay channel

In this section, we will utilize the matrix representation of the capacity-achieving communi-

cation protocol in Definition 49 to mimic the construction of the Colour-and-Forward relaying

algorithm, originally developed for zero-error communication, to construct the ε-Colour-and-

Forward relaying .

5.5.1 Construct ε-Colour-and-Forward

S

R

Y
n
R

D

‖WR‖ ≤ 2n·rε

Xn Y n

WR := h(Y nR ) ∈ {1, · · · , ‖WR‖}

Ŵ := g(Y n,WR)
= L ∩ SX

p(x,y),ε1,ε2,n
(Y n)

xn ∈ L ⊆ TX
p(x),ε1,n

φ(W ) = xn(W )
W ∈ W = {1, · · · , ‖W‖}

Figure 31. A capacity-achieving communication protocol by joint-typicality confusability

graph, when rε =∞. An n-shot protocol (n,L, h, g) for small-error communication over a

PRC ((X , p(y, yR|x),Y × YR), rε), with an encoder φ, a codebook L, a relaying function h and

a decoding function g.
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Let p∗(x) be the optimal input distribution that maximizes I(X;Y, YR). By Theorem 48,

we can use the communication protocol with p∗(x) in Definition 49 to achieve the maximum

(or cut-set) information rate max
p(x)

I(X;Y, YR).

It is noted that for any fixed number of channel use n, the communication protocol in Defi-

nition 49 is fully specified by the restricted ε-confusability graph G
X|Y,YR

p(x,y,yR),ε1,ε2
or equivalently,

the collection of restricted ε-conditional supports

T :=
{
TX
p(x),ε1

∩ SX|Y,YR

p(x,y,yR),ε2
(y,yR) : (y,yR) ∈ Yn × YnR

}
(5.9)

Based on collection T , we can implement the Colour-and-Forward relaying algorithm in (29; 30).

We first state the ε-Colour-and-Forward graph and relaying and will explain the motivation

in the next subsection.

Definition 57 (ε-Colour-and-Forward graph G
(n)
R,ε2

). For a joint distribution p(x, y, yR), define

G
(n)
R,ε2

as a graph with

• Vertex set {yR : ∃(x,y) s.t. (x,y,yR) ∈ TXYYR

p(x,y,yR),ε2
}

• Edges constructed by connecting two vertices yR1 and yR2 if there exist (x1,y), (x2,y),

and x1 6= x2 such that (x1,y,yR1) ∈ TXYYR

p(x,y,yR),ε2
and (x2,y,yR2) ∈ TXYYR

p(x,y,yR),ε2
.

For the Colour-and-Forward relaying function, we define
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Definition 58 (ε-Colour-and-Forward relaying W
(n)
R,ε ). Let c be a minimum colouring on the

ε-Colour-and-Forward graph G
(n)
R,ε2

, defined in Definition 57. Let

W
(n)
R,ε =





c(yR), when yR ∈ V (G
(n)
R,ε2

)

0, otherwise

. (5.10)

5.5.2 ε-Colour-and-Forward is information-lossless

ε-Colour-and-Forward is information-lossless, in the sense that

Lemma 59 (Information-lossless). The following two graphs are the same:

G
X|Y,YR

p(x,y,yR),ε2
= G

X|Y,WR

p(x,y,wR),ε2
(5.11)

where graphs G
X|Y,YR

p(x,y,yR),ε2
and G

X|Y,WR

p(x,y,wR),ε2
are defined according to Definition 46, and W

(n)
R,ε is

defined by the ε-Colour-and-Forward algorithm.

Corollary 60.

GX
p(x,y,yR),ε1,ε2

= GX
p(x,y,wR),ε1,ε2

(5.12)

because

G
X|Y,YR

p(x,y,yR),ε2
(TX
p(x),ε1

) = G
X|Y,WR

p(x,y,wR),ε2
(TX
p(x),ε1

) (5.13)
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and graph GX
p(x,y,yR),ε1,ε2

can be viewed as an induced subgraph of GXp(x,y,yR),ε2,n by restricting

the vertex set to TX
p(x),ε1

. That is,

GX
p(x,y,yR),ε1,ε2

= G
X|Y,YR

p(x,y,yR),ε2
(TX
p(x),ε1

) (5.14)

Proof of Lemma 59. G
X|Y,YR

p(x,y,yR),ε2
= G

X|Y,WR

p(x,y,wR),ε2
or ε-Colour-and-Forward relaying W

(n)
R,ε is in-

formation lossless follows the same proof in the zero-error Colour-and-Forward relaying, nicked

named as 0-Colour-and-Forward.

Recall that graph G
X|Y,YR

p(x,y,yR),ε2
is fully specified by the collection {SX

p(x,y,yR),ε2
(y,yR) :

(y,yR) ∈ Yn × YnR} and graph G
X|Y,WR

p(x,y,wR),ε2
by {SX

p(x,y,wR),ε2
(y, wR) : (y, wnR) ∈ Yn ×WR}.

The lemma follows if these two collections are equivalent, say,

{SX
p(x,y,yR),ε2

(y,yR) : (y,yR) ∈ Yn × YnR}

= {SX
p(x,y,wR),ε2

(y, wR) : (y, wR) ∈ Yn ×WR}
(5.15)

We do not state the proof explicitly here, but showing that the above equivalence statement

follows naturally from the proof for the 0-Colour-and-Forward being information lossless, the

Theorem 2 in (29).

Firstly, it has been shown in Section 5.4 that the small-error and zero-error communication

over the point-to-point single-input multiple-output channel, (X , p(y, yR|X),Y × YR), can be

unitedly represented in the matrix form P (n). Recall that p∗(x) denotes the optimal input

distribution that maximizes I(X;Y, YR). So we have sup
n

1
n logα(GPn

ε,p∗(x)
).
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Furthermore, the 0-Colour-and-Forward graph (the Colour-and-Forward graph GR in Defi-

nition 12 in (29)) and ε-Colour-and-Forward graph can also be defined in a unified way:

• Given a three dimensional matrix P(x,y,yR)

• The vertex set is {yR : ∃ some (x,y) s.t. P (x,y,yR) > 0}

• The edges are constructed by connecting yR1 and yR2 if there exist (x1,y) and (x2,y),

where x1 6= x2 such that P (x1,y,yR1) · P (x2,y,yR2) > 0.

Thus, the argument for 0-Colour-and-Forward graph being information lossless applies for

ε-Colour-and-Forward graph.

5.6 Conclusion and Discussion

In this chapter, we have presented a new framework for viewing the ε-error channel coding

theorem in terms of zero-error notions such as confusability graphs, unifying the 0 and ε-

error communication strategies. The motivation is to provide a tool for translating results in

one domain to the other. We show that this new coding scheme is capacity achieving and

furthermore explicitly constructs the codebooks as independent sets of confusability graphs

(rather than random generation). It is acknowledged that this new communication scheme is

essentially equivalent to the standard random coding protocol and might at first appear to be

a mere rephrasing of the Shannon’s coding scheme using graph theoretic notations. It is noted

that this representation via graph theoretic notation is meaningful, because it provides a novel

perspective on how to view small-error communication and thus allows and facilitates the usage
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of mathematical tools in graph theory and combinatorics. Further connections with coding for

computing is also an open question that is worth investigating.

Based on the alternative capacity-achieving scheme for the point-to-point discrete memo-

ryless channel, the ε-Colour-and-Forward relaying scheme for the small-error communication

over PRC channels is established, adopting the insights from the Colour-and-Forward relaying

scheme originally developed for the zero-error PRC channels. This transfer of insights sets a

good example of relating problems in different domains, in particular connecting the zero-error

and small-error communication problems. The zero-error Colour-and-Forward has been shown

to be optimal for any fixed number of channel uses. It remains a open problem to determine

whether ε-Colour-and-Forward is optimum for small-error PRCs to achieve its SIMO bounds.
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grant:
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ences: [year of original publication] IEEE. Reprinted, with permission, from [author names,

paper title, IEEE publication title, and month/year of publication].

2) Only the accepted version of an IEEE copyrighted paper can be used when posting the

paper or your thesis on-line.

3) In placing the thesis on the author’s university website, please display the following

message in a prominent place on the website: In reference to IEEE copyrighted material which

is used with permission in this thesis, the IEEE does not endorse any of [university/educational

entity’s name goes here]’s products or services. Internal or personal use of this material is

permitted. However permission to reprint/republish IEEE copyrighted material for advertising

or promotional purposes or for creating new collective works for resale or redistribution to
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servers or lists, or to reuse any copyrighted component of this work in other works must be

obtained from the IEEE.
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Appendix B

PROOF OF THEOREM 16

Proof. We first present the definition for Error matrix T and lemmas regarding the structure

of the equations at the relays which will aid in the error analysis.

Definition 61 (Error matrix T). Define the L× L binary matrix TL×L as:

TL×L :=




Iu0
1,1

(u1,1) Iu0
1,2

(u1,2) · · · Iu0
1,L

(u1,L)

Iu0
2,1

(u2,1) Iu0
2,2

(u2,2) · · · Iu0
2,L

(u2,L)

...
...

Iu0
L,1

(uL,1) Iu0
L,2

(uL,2) · · · Iu0
L,L

(uL,L)




L×L

∈ {0, 1}L×L,

where Ia(b) is the indicator function which has value 1 if a = b and 0 otherwise. Entries of TL×L

from different columns are independent, while entries of the same column are correlated, which

follows from the message matrix WL×k being block upper triangular. We present properties of

T in Lemmas 62 and 64, which will be used to enumerate the different error events for the

ICF problem. Lemma 62 states that given arbitrary c or more elements of Ũ∗c, the remaining

entries of Ũ∗c can be reconstructed deterministically; this will limit the number of error events

in decoding the equation sections as outlined in Lemma 64.
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Lemma 62 (Properties of equation sections). Assume the matrix F and all c by c sub-matrices

from its first c columns are of full rank. Then, for any column c = 1, · · · , L,

row space of Ũ∗c := span [{u1,c, · · · ,uL,c}] = span [UA,c]

where UA,c = {ua,c : a ∈ A}, and A ⊂ {1, 2, · · · , L}, ‖A‖ ≥ c.

Proof. Recall that we zero-pad at the head of each message to make them of equal length k.

Thus,

Ũ∗c = F · W̃∗c = F ·




w1,c

...

wc,c

0

...

0




= F[1,··· ,L]×[1,··· ,c] ·




w1,c

...

wc,c




where sub-matrix F[1,··· ,L]×[1,··· ,c] contains the first c columns of matrix F. Given any c rows of

Ũ∗c, we can solve for {w1,c, · · · ,wc,c}, i.e., W̃∗c, since any square sub-matrix of F[1,··· ,L]×[1,··· ,c]

is guaranteed to be of full rank. This is why we need only all c × c sub-matrices of the first c

columns to be full rank.

Definition 63. Let βc :=
L∑

m=1
Iu0

m,c
(um,c), c = 1, 2, · · · , L. βc indicates the number of “1”

entries in cth column of error matrix T, i.e., the number of correctly estimated cth equation

sections.
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Lemma 64 (Cardinality lemma for L-user ICF problem). We have

1. βc ∈ {0, 1, · · · , c− 1, L}, ∀c = 1, · · · , L.

2. The number of possible values the equation matrix UL×k, i.e. ŨL×L, may take on is

2n
∑L
c=1 γcρc, where ρc = 1

n log2 p
sc is the rate of equation section um,c, and γc is:

γc =





c− βc if βc = 0, 1, · · · , c− 1

0 if βc = L

.

Proof. First, note that βc ∈ {0, 1, · · · , c − 1, L},∀c = 1, · · · , L. To see this, from Lemma 62,

we know that, if there are c or more occurrences of Iu0
m,c

(um,c) = 1 in the cth column of error

matrix TL×L, i.e., βc ≥ c, then the row space of Ũ∗c is determined and the remaining L − βc

rows of Ũ∗c may be deterministically computed from the rows for which um,c = u0
m,c. Then the

remaining L− βc rows of Ũ∗c are guaranteed to equal those of Ũ0
∗c. So, βc ≥ c implies βc = L.

Next, γc is equal to the number of rows of Ũ∗c that remain free/unresolved given a particular

value of βc. To see this, from Lemma 62, there are c degrees of freedom for the row space of

Ũ∗c. When βc 6= L, i.e., when βc < c , there are at most c−βc remaining choices for the L−βc

rows of Ũ∗c. So γc = c− βc. When βc = L, Ũ∗c is fixed and there is no freedom in specifying

its rows, i.e, γc = 0.

Finally, to show the number of choices of UL×k, i.e. ŨL×L, there are 2nγcρc choices of

equation section matrix Ũ∗c with dimension L×sc. As the L equation sections are independent,
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when {β1, β2, · · · , βL} are given, the number of possible choices of UL×k is
∏L
c=1 2nγcρc =

2n
∑L
c=1 γcρc .

We now proceed with the proof of achievability. Fix p(q)·p(x1|q)· · · · ·p(xL|q)·p(y|x1, · · · , xL).

Codebook generation:

1. Generate 2nρ1 sequences qn i.i.d. ∼ p(q), indexed by u1,1 or equivalently by um,1, m =

2, · · · , L.

2. At each relay m, m = 1, · · · , L, for each sequence qn, generate 2n(ρ2+···+ρL) sequences

Xn
m(um) := Xn

m(um,2, · · · ,um,L|um,1) i.i.d. according to Pr(Xn
m(um)) =

n∏
t=1

p(xmt|qt(um,1)),

where xmt denotes the t-th position in the row vector/sequence xnm, and qt denotes the

t-th position in the sequence qn.

Notice that we index codebooks by the message equations; this differs somewhat from more

standard codebooks indexed by a message ∈ {1, 2, · · · , 2nR} for coding rate R. Codebooks

Qn(u1,1) and Xn
m(um),m = 1, · · · , L are revealed to the relays and destination. Codebook Qn

can be equivalently indexed by u1,1,u2,1, · · · ,uL,1 as needed or even Ũ∗1, i.e. this common

portion is available to all relays.

Encoder: Relay m sends signal Xn
m(um).

Decoder: The destination node looks for unique u1, · · · ,uL such that (Y n, Qn(Ũ∗1), Xn
1 (u1), · · · , Xn

L(uL))

are ε-jointly typical according to p(q, x1, · · · , xL, y), or lie in the set A
(n)
ε (Q,X1, · · · , XL, Y ).

If none, or more than one tuple of equation sections are jointly typical with the given Y n, an

error is declared.
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Error analysis: Define the event E
(
ŨL×L

)
=
{(
Qn(Ũ∗1), Xn

1 (u1), · · · , Xn
L(uL), Y n

)
∈ A(n)

ε

}
.

Assume WLOG that the equation set {u0
1,u

0
2, · · · ,u0

L}, also represented as Ũ0
L×L, is the true,

or transmitted set of message equations. Recall the following definitions, and further define

αm, ν as follows, which will help in succinctly enumerating the error events:

TL×L = IŨ0
L×L

(
ŨL×L

)
∈ {0, 1}L×L

βc =
L∑

m=1

Iu0
m,c

(um,c) ∈ {0, 1, · · · , c− 1, L}

αm =
L∏

c=1

Iu0
m,c

(um,c) ∈ {0, 1}

ν = the number of ones in {α1, · · · , αL} ∈ {0, 1, · · · , L}.

We may then denote four different types of error events; event Ec(Ũ0
L×L) indicates the case

when the correct codeword is not jointly typical with the received signal Y n and is denoted as

error event type I. Error event types II - IV are provided in Table Table V. Note that we

use the error matrix T to facilitate the classification of error events and the analysis of their

corresponding probabilities. Recall that, for each c = 1, · · · , L, that βc denotes the number of

correct items in the c-th column of T, i.e, denotes the number of correctly estimated equation

sections um,c. Observe that values of β1, · · · , βL are mutually independent by default due to

the uniform and i.i.d. generation of the message vector (wl ∈ Fklp ) over the finite field Fp. This

allows us to first categorize the error events according to the two possible values of β1 (Table

Table V). Conditioned on the value of β1, we may then enumerate all possible values for
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β2, · · · , βL. Such an enumeration is correct but may be simplified as follows: note that greater

than or equal to one zeros in the mth row of T will lead to the same probabilistic dependence

of the received signal yn on codewords xnm. That is, for each m = 1, · · · , L, αm denotes whether

the m-th equation um is correct. We can then more succinctly classify the error event types

using αm, reflected as variable ν = the number of ones in {α1, · · · , αL} in Table Table V.

Further explanations for each error event type follow.

Possible error events
Error event type

β1 ∈ {0, L} ν ∈ {0, 1, · · · , L}

0 ∀ ν ∈ {0, 1, · · · , L} II

L ν = 0 III

L
some fixed ν, ν ∈ {1, · · · , L− 1}

IV
some fixed A, ‖A‖ = ν

L ν = L correct

TABLE V

TABLE DENOTING THE TYPES OF ERROR EVENTS.



148

Appendix B (Continued)

By symmetry, the probability of error may be expressed as

P (n)
e = Pr

(
ˆ̃U0
L×L 6= Ũ0

L×L | Ũ0
L×L is sent

)

≤ Pr
(
Ec(Ũ0

L×L)
)

+ Pr




⋃

ŨL×L 6=Ũ0
L×L, β1=0,

E(ŨL×L)




+ Pr




⋃

ŨL×L 6=Ũ0
L×L, β1=L, ν=0

E(ŨL×L)


+ Pr




⋃

ŨL×L 6=Ũ0
L×L, β1=L, ν∈{1,··· ,L−1}

E(ŨL×L)




We consider the conditions which will drive P
(n)
e → 0 as n → ∞ for each of the events

separately.

• Error event type I: Pr
(
Ec(Ũ0

L×L)
)

vanishes by properties of the jointly typical set A
(n)
ε .

• Error event type II: Consider Pr
(⋃

ŨL×L 6=Ũ0
L×L, β1=0E(ŨL×L)

)
. The constraint β1 = 0

indicates that U∗1 6= U0
∗1 (common message is incorrect) but says nothing about the

remaining U∗c, c = 2, 3, · · · , L. This incorrect first column serves as the index for sequence

qn(U∗1), on which codewords Xn
m(um) are conditioned. Thus the incorrectness of first

column implies that the observed yn is independent of the true (qn, xn1 , · · · , xnL). Thus,

for each error event in this category,

Pr
(
E(ŨL×L) |β1 = 0

)
≤ 2−n·(I(Q,X1,··· ,XL;Y )−ε) (a)

≤ 2−n·(I(X1,··· ,XL;Y )−ε).
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where (a) follows by the Markov chain Q→ (X1, · · · , XL)→ Y , By the union bound,

Pr




⋃

ŨL×L 6=Ũ0
L×L, β1=0

E(ŨL×L)


 ≤ ‖

{
ŨL×L | ŨL×L 6= Ũ0

L×L, β1 = 0
}
‖ × 2−n·(I(X1,··· ,XL;Y )−ε).

By Lemma 64, the maximal value of the cardinality term (which in turn yields the domi-

nant constraint) occurs when βc = 0 for all remaining c = 2, · · · , L, yielding the maximum

value of 2n
∑L
c=1 γcρc = 2n

∑L
c=1 cρc , and hence the following is needed to ensure Pe → 0:

L∑

c=1

cρc ≤ I(X1, · · · , XL;Y ). (B.1)

• Error event type III: Consider Pr
(⋃

ŨL×L 6=Ũ0
L×L, β1=L, ν=0E(ŨL×L)

)
. This implies that

the first column of T are all ones (index Ũ∗1 of Qn is correctly decoded) and there exists

at least one zero in every row of T (at least one equation section of each equation is

wrong). Thus,

Pr
(
E(ŨL×L) | some {β1, · · · , βL} s.t. ŨL×L 6= Ũ0

L×L, β1 = L, ν = 0
)
≤ 2−n·(I(X1,··· ,XL;Y |Q)−ε).

By the union bound

Pr




⋃

ŨL×L 6=Ũ0
L×L, β1=L, ν=0

E(ŨL×L)




≤‖
{

ŨL×L | ŨL×L 6= Ũ0
L×L, β1 = L, ν = 0

}
‖ × 2−n·(I(X1,··· ,XL;Y |Q)−ε).
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By Lemma 64, the maximal cardinality occurs when β1 = L and βc = 0 for c = 2 · · · , L,

with a maximum value of 2n
∑L
c=1 γcρc = 2n

∑L
c=2 cρc . This yields the dominant constraint

L∑

c=2

cρc ≤ I(X1, · · · , XL;Y |Q). (B.2)

• Error event type IV: Consider Pr
(⋃

ŨL×L 6=Ũ0
L×L, β1=L, ν∈{1,··· ,L−1}

E(ŨL×L)
)

. This im-

plies that all entries of the first column and ν rows of matrix T are correct. We further

sub-categorize this type of error event. Let A ⊂ {1, · · · , L}, ‖A‖ = ν, denote the indices

of rows that are all ones, i.e, αm = 1,∀m ∈ A. Let AC = {1, · · · , L} \ A denote the rows

that contain at least one zero, i.e., αm = 0,∀m ∈ AC . For each A, we note that Xn
m for

m ∈ A are correct, and the remaining Xn
m′ for m′ ∈ AC are incorrect. Thus, for each type

of error event within this sub-category, we have

Pr
(
E(ŨL×L) | some {β1, · · · , βL} s.t. ŨL×L 6= Ũ0

L×L, β1 = L,A, ‖A‖ = ν
)
≤ 2−n·(I(XAC ;Y |XA,Q)−ε).

By the union bound

Pr




⋃

{β1,··· ,βL} s.t. ŨL×L 6=Ũ0
L×L, β1=L, A, ‖A‖=ν

E(ŨL×L)




≤‖
{

ŨL×L | {β1, · · · , βL} s.t. ŨL×L 6= Ũ0
L×L, β1 = L, A, ‖A‖ = ν

}
‖ × 2−n·(I(XAC ;Y |XA,Q)−ε).
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By Lemma 64, the maximum value of the cardinality term occurs when β1 = L and

βc =





L c < ν

ν c ≥ ν
for c = 2, · · · , L,

yielding the upper bound, by Lemma 64,

‖
{

ŨL×L | {β1, · · · , βL} s.t. ŨL×L 6= Ũ0
L×L, β1 = L, A, ‖A‖ = ν

}
‖ ≤ 2n

∑L
c=1 γcρc = 2n

∑L
c=ν+1(c−ν)ρc .

Thus, the most constraining condition needed to ensure Pe → 0 is

L∑

c=ν+1

(c− ν)ρc ≤ I(XAC ;Y |XA, Q), where A ⊂ {1, · · · , L}, ‖A‖ = ν . (B.3)

This constraint holds for all ν ∈ {1, · · · , L− 1}.

Substituting ρc = Rc −Rc+1 (RL+1 = 0) yields Theorem 16.



152

Appendix C

LIST OF LEMMAS ON THE ROBUST TYPICALITY

The following lemmas may be shown using standard techniques following the presentation

in (28) and are included for completeness.

Lemma 65. Let 0 < ε1 < ε2 < 1. For every x ∈ TX
p(x),ε1

,

Pr[(x,y) ∈ TXY
p(x,y),ε2

|x = x] ≥ 1− δε1,ε2(n) , (C.1)

where δε1,ε2(n) := 2‖SXYp(x,y)‖ · e
−(ε2−ε1)2· 1

1+ε1
·(n·pmin(a,b))

3 and pmin(a, b) := min(a,b)∈SXY
p(x,y)

p(a, b).

Lemma 66.

Pr[x ∈ TXp(x),ε,n] ≥ 1− δε(n) , (C.2)

where δε(n) := 2 · ‖SXp(x)‖ · e−
ε2·n·pmin(a)

3 goes to zero as n→∞ and pmin(a) := mina∈SX
p(x)

p(a).

Lemma 67. For every x ∈ TX
p(x),ε,

2−(1+ε)H(X)n ≤ p(x) ≤ 2−(1−ε)H(X)n . (C.3)

Lemma 68.

(1− δXYε (n)) · 2(1−ε)H(X,Y )n ≤ ‖TXY
p(x,y),ε‖ ≤ 2(1+ε)H(X,Y )n (C.4)

δXYε (n) := 2 · ‖SXYp(x,y)‖ · e
− ε

2·n·pmin(a,b)

2+ε and pmin(a, b) := min(a,b)∈SXY
p(x,y)

p(a, b).
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Lemma 69. Random variable pair (X,Y ) ∼ p(x, y). SXp(x,y),ε,n(y) := {x ∈ X n : (x,y) ∈

TXY
p(x,y),ε}. Then,

‖SXp(x,y),ε,n(y)‖ ≤ 2(1+ε)H(X|Y )n
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