
Cerberus:

Detection and Characterization of Automatically-Generated Malicious

Domains

BY

EDOARDO COLOMBO
Laurea Triennale (BS) Computer Engineering, Politecnico di Milano, Italy, 2011

Laurea Magistrale (MS) Computer Engineering, Politecnico di Milano, Milano, Italy, 2014

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2014

Chicago, Illinois

Defense Committee:

V.N. Venkatakrishnan, Chair, University of Illinois at Chicago
Stefano Zanero, Politecnico di Milano
Lenore Zuck, University of Illinois at Chicago

To Etta and Nino.

ii

ACKNOWLEDGMENTS

My first thank you goes to my parents, Laura and Carlo, who have always encouraged me

to follow my dreams and my passions. They have supported me during my whole life, especially

during these five years at the Politecnico: They have always decided to sacrifice something of

theirs to make my life better. Among other things, I would like to especially thank them as

they allowed me to study at the University of Illinois at Chicago, one of the greatest experiences

of my life.

I love you.

I would like to thank Prof. Stefano Zanero, Prof. Lorenzo Cavallaro and Prof. Federico

Maggi for helping me throughout my research efforts. They are the most professional and

passionate professors and researchers I have ever met, and it was a true pleasure to work

together. A special thank you to Prof. Stefano Zanero who has allowed me to go as a visiting

student to the Royal Holloway University of London, and to Prof. Lorenzo Cavallaro who

hosted me and made me feel more than welcome.

I would also like to thank my friends, who have supported me, and the people at the NECST

Lab, where I spent endless hours working with them. It is a really nice environment for research,

where labor and fun are harmonically mixed.

EC

iii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1

2 BOTNETS . 7
2.1 What is a botnet? . 8
2.1.1 Botnet Purposes . 8
2.2 Botnet Topologies . 11
2.2.1 Centralized . 11
2.2.2 P2P . 11
2.2.3 Unstructured . 12
2.3 Communication Systems of DNS-based Botnets 12
2.3.1 Preliminary Concepts . 13
2.3.2 Command & Control Channel 16
2.3.3 Rallying Techniques . 16
2.4 Domain Generation Algorithms 20
2.4.1 The Idea . 20
2.4.2 The Choice of the Seed . 21
2.4.3 Migration Strategy . 22
2.4.4 Side Effects and Weaknesses . 22
2.5 Botnet Countermeasures . 23
2.5.1 Sinkholing . 24
2.5.2 Takeover . 24
2.6 Botnets: a Modern Threat . 26
2.6.1 Torpig . 26
2.6.2 Cryptolocker . 29
2.7 Summary . 40

3 TRACKING DOWN A BOTNET . 41
3.1 Problem Statement . 42
3.2 State of the Art . 42
3.2.1 Detecting Malware Domains at the Upper DNS Hierarchy . . 43
3.2.2 Detecting Malicious Activities by Passive DNS Analysis . . . 44
3.2.3 Detecting C&C Servers by NetFlow data Analysis 46
3.2.4 Detecting FFSN by passive DNS data analysis 47
3.2.5 Leveraging NXDOMAIN and clients’ IP addresses 48
3.2.6 Leveraging activity history to detect botnets 49
3.2.7 Using SVM and SSK to classify AGDs 50
3.2.8 Phoenix, Detecting DGA-based botnets 52

iv

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

3.3 Goals and Challenges . 55

4 INTRODUCING CERBERUS . 58
4.1 Cerberus Overview . 59
4.2 Cerberus Details . 63
4.2.1 The Bootstrap Phase . 63
4.2.2 The Filtering Phase . 64
4.2.3 The Detection Phase . 68
4.3 Summary . 78

5 SYSTEM IMPLEMENTATION . 80
5.1 System Architecture . 81
5.1.1 The Process . 81
5.1.2 The Actors . 84
5.2 System Details . 86
5.2.1 The Configuration File . 86
5.2.2 The Domain Data Structure . 88
5.2.3 The Bootstrap Phase . 89
5.2.4 The Filtering Phase . 91
5.2.5 The Detection Phase . 93
5.3 Summary . 95

6 EXPERIMENTAL VALIDATION . 96
6.1 Goals . 98
6.2 Dataset . 98
6.3 The Classifier . 99
6.3.1 Accuracy . 99
6.3.2 Analysis of Classification Errors 100
6.3.3 Training Speed . 102
6.4 Cerberus in the Wild . 103
6.4.1 The Bootstrap . 104
6.4.2 Collecting Data . 105
6.4.3 Producing New Knowledge . 106
6.4.4 Summary . 111

7 CONCLUSIONS . 112
7.1 Limitations . 113
7.2 Future Works . 115
7.3 Concluding Remarks . 116

CITED LITERATURE . 116

v

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

VITA . 123

vi

LIST OF TABLES

TABLE PAGE

I FILE EXTENSIONS SEARCHED BY CRYPTOLOCKER. 35

II RANSOM AMOUNTS IN EARLY CRYPTOLOCKER VERSIONS. 36

III TLDS REQUIRING CLEARANCE BEFORE REGISTRATION. . 66

IV SSK EXAMPLE FROM LODHI 2002. 71

V TECHNOLOGIES USED IN CERBERUS. 95

VI ISC/SIE DATA SUMMARY STATISTICS. 99

VII CERBERUS CLASSIFIER ACCURACY STATISTICS. 100

VIII TWO OF THE ELEVEN CLUSTERS PRODUCED BY PHOENIX. 105

IX A SAMPLE OF THE MALICIOUS DOMAINS CLASSIFIED DUR-

ING THE FIRST WEEK. 106

X AUTONOMOUS SYSTEMS OF THE DOMAINS IN CLUSTER-

ING PHASE. 107

XI CERBERUS’ NEW CLUSTERS. 107

XII JADTRE THREATS SAMPLE DOMAINS. 108

XIII CLUSTERS MERGED BY CERBERUS. 109

XIV CLUSTER FOUND WITHOUT GROUPING BY AS. 114

vii

LIST OF FIGURES

FIGURE PAGE

1 An example of a botnet. 9

2 example.com labels hierarchy. 13

3 DNS resolution of www.polimi.it. 15

4 Harcoded IP. 17

5 Harcoded domain. 19

6 DGA rallying mechanism. 21

7 Sinkholing. 24

8 Takeover. 25

9 An example of a Cryptolocker spam e-mail. 31

10 Cryptolocker ransom message. 38

11 Meaningful Word Ratio example, Schiavoni, Maggi, Cavallaro, and

Zanero [22]. 53

12 2-gram score example, Schiavoni et al. [22]. 53

13 Cerberus overview. 60

14 Cerberus lifecycle. 61

15 The DBSCAN Algorithm. 74

16 Cerberus classification process. 82

17 Cerberus’ class diagram. 85

18 Domain and DomainName classes. 89

viii

LIST OF FIGURES (Continued)

FIGURE PAGE

19 The abstract class DNSStreamFilter and three of its implementations. 91

20 Cerberus classifier accuracies. 101

21 Cerberus SSK classifier confusion matrix. 102

22 From the top: cluster a’s and cluster d’s distances distributions. . . 103

23 Cerberus classifier training time. 104

24 Samples from cluster 3e774 and misclassified unseen domains. 113

ix

SUMMARY

Botnets are networks of infected machines (the bots) controlled by an external entity, the

botmaster, who uses this infrastructure to carry out malicious activities, e.g., spamming and Dis-

tributed Denial of Service. The Command and Control Server (C&C) is the machine employed

by the botmaster to dispatch orders to and gather data from the bots, and the communication

is established through a variety of distributed or centralized protocols, which can vary from

botnet to botnet. In the case of DGA-based botnets, a Domain Generation Algorithm (DGA)

is used to find the rendezvous point between the bots and the botmaster. Botnets represent one

of the most widespread and dangerous threats on the Internet and therefore it is natural that

researchers from both the industry and the academia are striving to mitigate this phenomenon.

The mitigation of a botnet is a topic widely covered in literature, where we find many works

that propose approaches for its detection. Still, all of these systems suffer from the major

shortcomings of either using a supervised approach, which means that the system needs some

a priori knowledge, or leveraging DNS data containing information on the infected machines,

which leads to issues related to the users’ privacy and the deployment of such systems.

We propose Cerberus, an automated system based on machine learning, capable to au-

tomatically discover new botnets and use this knowledge to detect and characterize malicious

activities. Cerberus analyzes passive DNS data, free of any privacy issues, which allows the

system to be easily deployable, and uses an unsupervised approach, i.e., Cerberus needs no

a priori knowledge. In fact the system applies a series of filters to discard legitimate domains

x

SUMMARY (Continued)

while keeping domains generated by AGDs and likely to be malicious. Then, Cerberus keeps

record of the activity related to the IP addresses of those domains, and, after ∆ time, it is able

to isolate clusters of domains belonging to the same malicious activity. This knowledge is later

used to train a classifier that will analyze new DNS data for detection.

We tested our system in the wild by analyzing one week of real passive DNS data. Cerberus

was able to detect 47 new clusters of malicious activities: Well known botnets as Jadtre, Sality

and Palevo were found among the others. Moreover the tests we ran on the classifier showed

an overall accuracy of 93%, proving the effectiveness of the system.

xi

CHAPTER 1

INTRODUCTION

Botnets are one of the most widespread threats on the Internet. Analysts from the industry

and security researchers are both striving to mitigate such ever increasing phenomenon. Recent

reports from McAfee [17] and Enisa [8] confirm that all malicious activities on the Internet

show no disruption of their steady growth, botnets included. Attackers are also widening the

spectrum of targeted platforms: In April 2012 it was reported that more than 600,000 Apple

computers [7] were infected by the Flashback malware, which turned these machines into bots.

Moreover, mobile threats have experienced an outstanding increase, becoming a serious problem

for Android users, being the mobile OS by Google the most targeted platform.

Also, research by Grier, Ballard, Caballero, Chachra, Dietrich, Levchenko, Mavrommatis,

McCoy, Nappa, Pitsillidis, et al. [10] illustrates how the malicious activities are no longer per-

petrated for no-profit reasons of miscreants’ entertainment, but do involve economical returns.

Emergence of the exploit-as-a-service business model [10] is a worrying new phenomenon, where

exploit kits are sold likewise as a commodity for attackers’ needs.

Botnets themselves are becoming infrastructures that are unashamedly crafted for lucrative

goals. Torpig and Zeus for instance aim at stealing financial accounts credentials from the

infected machines and send them back to the attackers. Another lucrative kind of malware is

ransomware. Ransomware is a not new, yet never as scary, threat that has made the news lately

with the coming of Cryptolocker, a malware able to collect revenues that were conservatively

1

2

estimated at 1,100,000 USD [25]. The communication between the infected machines and the

attacker, and the infection itself were realized by the means of a botnet.

Therefore the mitigation of botnets is of primary interest for defenders, and to this end

their efforts focus on unveiling the IP addresses of the so called Command & Control Servers

(C&C hereafter). A C&C Server is the machine from where the attackers dispatch their orders

to and collect data from the infected machines. In a centralized botnet architecture (the most

prevalent), once the communication between the C&C and the infected machines, the bots, is

disrupted, the latter become dormant and usually harmless.

Attackers are well aware of the most precious asset and weakness in their infrastructure

and have developed increasingly sophisticated techniques to make the disruption of the C&C

channel a fatiguing endeavor on the defenders’ side. To this end, most of nowadays’ centralized

botnets’ communication relies on the employment of Domain Generation Algorithms (DGAs

hereafter), which make the rendezvous point (i.e., the moment when the bot finds the botmas-

ter) unpredictable and the communication channel resilient to interruptions. These algorithms

generate lists of random domains every τ time, say daily, sometimes employing unpredictable

seeds, which the bots try to contact. The attacker registers one domain and awaits for the

zombies to reach the correct URL. When this happens the communication can start and data

can be transmitted in both directions.

The mitigation of botnets is a topic widely covered in literature, [2] [4] [6] [18] [22] [24]

[26], where many authors propose detection tools which, yet effective, mostly rely either on

a supervised approach or on clients’ IP addresses or on both, two aspects that we deem as

3

shortcomings. In fact, the supervised approach requires labeled data to be fed to the system,

which means that before the detection can be actually started, there has to be another way

to track the threat and label it as such. Moreover this approach suffers from new menaces

that exhibit features previously not considered, as a change in the DGA. Leveraging clients’

IP addresses is a shortcoming as it leads to difficulties related to the clients’ privacy and the

deployment of a monitoring system at lower levels of the DNS hierarchy.

In 2013, Schiavoni et al. [22] proposed Phoenix, a detection system that meets most of our

criteria, as it does not require any a priori knowledge and it analyzes passive DNS data, free of

any privacy issues. Phoenix is able to discover clusters of domains used as aliases for botnets’

C&C servers, thus unveiling their IP addresses, and to detect malicious domains, using the

knowledge (i.e., the clusters) previously generated. Despite these valuable features, Phoenix

is not able to detect i) threats that use C&C servers with previously unseen IP addresses, ii)

threats that dynamically slightly modify the DGA, e.g., by changing the set of TLDs used and

iii) it lacks of validation in the wild.

We propose Cerberus, a detection system that overcomes the aforementioned limitations

of Phoenix, being able to detect previously unseen threats in the wild using an unsupervised

approach. Cerberus goes through three stages to achieve its goals. The first phase is called

Bootstrap Phase, where it uses Phoenix to generate the ground truth, later to be employed in

the Detection Phase, in an unsupervised and automatic fashion. The ground truth consists

of a list of clusters of domains related to DGA-based malicious activities, e.g., botnets and

4

trojans. This ground truth is not necessary to Cerberus to function, as it is able to operate

in a complete unsupervised fashion.

After the system has been bootstrapped, it starts analyzing a live stream of DNS passive

data, which consists of DNS replies: the domain name, the IP address it resolves to and the

TTL. This data needs to be filtered from legitimate domains. To this end during the Filtering

Phase, we apply a list of heuristics to the data, heuristics that take into account parameters

as the registration date, the TLD employed and the TTL. The domains that remain at the end

of the filtering process are to be considered likely to be malicious.

These domains are the input to the aforementioned Detection Phase, where we try to

label this data using the ground truth generated in the Bootstrap Phase. To this purpose,

Cerberus sees whether the unseen domain d shares its IP address with the clusters: If this is

the case we train a Support Vector Machine equipped with the Subsequence String Kernel [16]

function and we use it to label d. Otherwise, we start keeping track of the IP of d, l. This

means that we record the likely-to-be- malicious domains that resolve to l throughout time.

After ∆ time of recording, Cerberus groups these suspicious IPs by the Autonomous System

that they reside in and performs a clustering routine that leverages the DBSCAN algorithm

and the Subsequence String Kernel as a metric. These clusters are then added to the ground

truth and the increased knowledge is then used to analyze new live DNS data.

We used one week of real passive DNS data collected by a ISC/SIE passive DNS monitor

to test our system. During the first week Cerberus classified 187 malicious domains, 167 of

which belonged to the Conficker threat, previously discovered by Phoenix. At the end of the

5

week we had collected 1,300 suspicious IP addresses, for a total of 3,576 domains. Then the

clustering routine was able to extract 47 new clusters, featuring known malicious IP addresses

of threats as Palevo and Sality. The clusters were added to the previous knowledge and the

day after Cerberus was able to detect 319 malicious domains.

Document Organization

The remainder of this document is organized in the following fashion:

• Chapter 2 provides the background knowledge needed to understand the phenomenon we

aim at analyzing. We give a definition of what a botnet is in Section 2.1, why the attackers

are interested in Section 2.1.1 in setting up this type of infrastructure, how a botnet can

be structured in Section 2.2, the communication system between the botmaster and the

bots in Section 2.3, focusing on the Domain Generation Algorithms in Section 2.4 and

the countermeasures that can be applied to mitigate this threat in Section 2.5. Then

we present two case studies of botnets active in the wild, Torpig and Cryptolocker in

Section 2.6;

• Chapter 3 discusses why we want to study this phenomenon, in Section 3.2 we present the

current the state of the art we wish to improve and in Section 3.3 the goals and challenges

we mean to achieve and face, respectively;

• Chapter 4 introduces Cerberus, a detection system for DGA-based malicious activities.

In Section 4.1 we give an overview of the system, while in Section 4.2 we discuss in details

all of its aspects;

6

• Chapter 5 explains how Cerberus was implemented and the technologies employed,

describing the overall architecture (see Section 5.1)), the process in Section 5.1.1 and

then the actors involved in Section 5.1.2 during the system’s lifecycle. Then we focus on

the most crucial parts and provide a more detailed description of those in Section 5.2;

• in Chapter 6 we test the effectiveness of our system. To this end we run two tests. The

first one serves to confirm the accuracy of the SVM Classifier, and it employs the clusters

generated by Phoenix as dataset. For the second one instead we use DNS passive data

collected by a ISC/SIE DNS monitor. We let Cerberus analyze one week of data and

look at the results, which look promising;

• Chapter 7 analyzes the shortcomings Cerberus is affected by and proposes possible

remedies to them, along with a few possible enhancements and future developments.

Finally, it sums up what we achieved in this work;

CHAPTER 2

BOTNETS

A botnet is a network of compromised machines, remotely controlled by the botmaster.

These malicious infrastructures are deployed by the attackers for profit, and the more machines

are compromised, the more powerful the infrastructure, the more profitable the business. In

the last years we have witnessed an aggressive spread of this phenomenon that defenders from

both the industry and the academia are striving to mitigate. In this chapter we will tackle the

different aspects of botnets in order to give a brief yet insightful overview of this threat.

Chapter Organization

The remainder of the chapter is organized in the following fashion:

• in Section 2.1 we explain what is a botnet;

• in Section 2.2 we explain the different topologies a botnet can feature;

• in Section 2.3 we explain how botnet’s hosts communicate;

• in Section 2.4 we deeper analyze a certain way to communicate, on which we focus in

Cerberus;

• in Section 2.5 we overview the possible techniques to mitigate a botnet;

• in Section 2.6 we provide two case studies to better explain why this phenomenon is a

serious and expanding threat.

7

8

2.1 What is a botnet?

A botnet is a network of compromised machines called bots or zombies under the remote

control of a human operator called botmaster [9].

The bot is the piece of software that infects and compromises the machines. The infection is

carried out through a variety of so-called distribution channels, which vary from compromised

websites that serve malware via drive-by mechanisms to phishing. Once infected, the machine

will continue to work as nothing changed to the eyes of the legitimate user, while it is now

capable of executing malicious activities on the behalf of the botmaster, who will employ a

Command and Control Server (C&C) to dispatch orders to and gather information from the

zombies. What is the nature of these criminal activities are addressed in the next paragraphs.

2.1.1 Botnet Purposes

The main purpose of a malicious botmaster is to recruit as many zombies as possible in his

army, as any botnet activity augments its effectiveness by the number of bots involved. In the

following of this section we depict a few scenarios of malicious activities carried out employing

this type of infrastructure.

Information Gathering

Botnets of this type aim at stealing personal data of various kind from the infected machines.

Torpig for instance, which we shall further analyze in Section 2.6.1, was crafted with the

precise intention of stealing financial accounts credentials and credit or debit card numbers.

Beside personal data, we can think of a scenario where the infected machines reside inside a

9

C&C Server
Botmaster

Zombie

Zombie

Zombie

Figure 1: An example of a botnet.

corporate network. In this case the targets would be trade secrets, as intellectual properties or

management plans.

Distributed Computing

The network of infected machines can be leveraged to perform computing-intensive tasks.

One of the most interesting ones is Bitcoin mining: Cybercriminals aim at creating a botnet

of infected machines forced to perform complex calculations to earn them money, putting the

machines under heavy CPU and GPU load [25]. Trojan.Coinbitminer is an example of this

type of malware1.

1http://www.symantec.com/security_response/writeup.jsp?docid=2011-072002-1302-99

http://www.symantec.com/security_response/writeup.jsp?docid=2011-072002-1302-99

10

Spamming

Spamming is one of the most known malicious activities. Spamming botnets are used to send

out a high volume of e-mails with various purposes, amongst which we find malware spreading

as an e-mail attachment (the Cryptolocker malicious binary was spread in this fashion in its

early versions, see Section 2.6.2), frauds, XSS attacks and advertisement of malicious services,

basically using the bots as mail transfer agents without the victims noticing. It is not easy to

set up and keep active such an infrastructure, as spam sources get blacklisted and the messages

are no longer delivered. By employing a distributed rather than centralized message dispatching

servers architecture, the attackers aim at and succeed in circumventing this obstacle.

Distribute Denial of Service

Distribute Denial of Service (DDoS) is an attack where a machine receives an excessive

amount of requests. To overcome the overwhelming volume of incoming traffic, usually the

machine interrupts its services. This results in economic loss, especially when the company

business heavily depends on the offered service online availability. In this case the bots are

commanded by the botmaster to send an excessive amount of requests to the targeted machine.

Malware Diffusion

Once the bot program infects a machine, it can be used to install further malware. An

example of this behavior comes from the recent Cryptolocker ransomware: Its primary vector

of infection was the Zeus Gameover P2P botnet, beside being spread via e-mail spamming.

11

Summary

In this section we have defined what is a botnet and discussed why an attacker would struggle

to create this type of networks. In the next section we want to present the different topologies a

botnet can be structured into and explain why we chose to target the centralized architecture.

2.2 Botnet Topologies

Different botnet topologies, imply different benefits and weaknesses. Our study will focus on

the centralized architecture, as it is the most spread, even though recent reports [8] indicate a

rise in the P2P topology. Remarkably, certain P2P botnets automatically fall back to centralized

topologies in case of failures to avoid starvation of the bots.

2.2.1 Centralized

This topology reflects the classic and well-established client-server pattern. The bots com-

municate directly with the botmaster [22], which forwards messages between clients [4]. This

technique guarantees i) low latency and ii) control over the packet delivery. On the other hand

its weaknesses are caused by i) a single point of failure, if the C&C is compromised the whole

botnet is, and ii) are easier to detect, since many clients connect to the same point [4].

2.2.2 P2P

The main advantage in employing a P2P technology consists of a much more robust and

resilient infrastructure, as we do not have anymore a single point of failure, but each bot is

responsible of broadcasting the message received to the other zombies. However, the design of

P2P systems are more complex and there are typically no guarantees on message delivery or

latency [4].

12

2.2.3 Unstructured

This is another way to design a botnet, featuring zombies that are completely agnostic

with respect to the same botnet they belong to. Whenever they need to send a message to

the infected network, they encrypt it, randomly scan the Internet and pass along the message

when they detect another bot. Even though the design is quite simple, it would not be able to

guarantee the actual deliver and it would also be prone to extremely high latencies.

Summary

We have presented three different topologies a botnet can be structured into and explained

that we chose the centralized architecture as it is the most used by the attackers. Now we want

to understand how the zombies communicate with the botmaster.

2.3 Communication Systems of DNS-based Botnets

Every distributed network of machines must be equipped with a communication protocol,

as communication intra hosts is a defining feature of these architectures. Before starting the

exchange of malicious commands, the bots and the botmaster must establish a connection. In

centralized botnets, this happens through the C&C Server in the so called rallying phase, when

the bots and the C&C Server find a rendezvous point.

In the following of this section, we aim at describing the rallying phase in detail, presenting

three different ways through which the rendezvous can be found. One is the evolution of the

previous one, evolution dictated by the necessity of finding a more resilient and robust technique,

and they all refer to the centralized topology. Before that we would like to summarize a few

preliminary concepts needed in the following of this chapter.

13

2.3.1 Preliminary Concepts

We deal with two key concepts that need to be understood before we start dealing with

botnets: The domain names and the DNS technology and infrastructure.

Domain Names

Domain names are a way to help humans remembering resources’ locations on the Internet,

otherwise only traceable by their IP address. A domain name is a sequence of labels, separated

by dots. The labels are to be read from right to left as to respect the hierarchy they reflect.

Take for instance the domain www.example.com. This domain name is composed by three labels

or subdomains. Starting from the rightmost one, we find the .com label. This is called Top

Level Domain and it comprises the generic top-level domains (gTLDs) and the country code

top-level domains (ccTLDs).

third level domain︷ ︷
www . example︸ ︸

second level domain

.
top level domain︷ ︷

com

Figure 2: example.com labels hierarchy.

The next label in the example is example and it is called second level domain. Along with

the TLD it forms a hostname, which is a domain name to which corresponds an IP address,

14

i.e., an actual machine. We say that example is a subdomain of com. Next on we find www,

which identifies a subdomain of example.com (see Figure 2).

The labels hierarchy can count up to 127 levels and a domain name cannot be longer than

253 ASCII characters, though practical implementations may impose more strict limits. How

an IP address is retrieved when using a domain name is achieved by the Domain Name System

(DNS) and we explain it in the following.

The Domain Name System

The DNS is a hierarchical and distributed infrastructure of databases and servers that

provide the translation from domain names to IP addresses.

It is hierarchical because no single database contains the, for instance, the whole www.example.com

entry, but we have a distinct node for at least each one of the first three levels of hierarchy:

The first one is the root server. The root server looks at the first label of the domain, the

TLD, and redirects the DNS query to the right TLD server. The TLD servers then look

at the second level domain, example, and redirect the query to the correct authoritative

server. Authoritative servers are under the authority of the organizations that register them,

and contain (at least) the domain-name-to-IP record.

The actual querying procedure requires another actor, the local DNS server (see Figure 3).

Local DNS servers are used to reduce the load of servers located at higher levels of the hierarchy

by caching the results. In fact, when an authoritative server replies, it sends also a Time To

Live parameter, which sets for how long a local DNS server can reply using the cached value

rather than asking the root server again.

15

Requesting Host

Local DNS Server TLD DNS Server

Root DNS Server

Authoritative DNS Server

www.polimi.it

1 8

4

5

2

3

6

7

Figure 3: DNS resolution of www.polimi.it.

www.polimi.it

16

2.3.2 Command & Control Channel

The Command & Control Channel (C&C) is the logical communication channel between

the bots and the C&C Server, i.e., the botmaster. It is a bidirectional channel that allows the

botmaster to dispatch orders to the bots, and the bots to send the harvested data or feedback

back to the botmaster, depending on the purpose and functioning of the botnet.

A C&C Channel is established after the malware connects the zombie to the C&C server.

Upon establishment of the C&C channel, the zombie becomes part of attacker’s botnet army [9].

Therefore, if the defenders managed to tear down the C&C channel, i) the botmaster would

not be able to send orders to the bots, and ii) the zombies would not be able of sending the

data they have collected, making the infrastructure harmless.

Single Point of Failure

It is no surprise that defenders concentrate their efforts in blocking C&C communications as

a medium to disable botnets [22]. To this end, the main techniques used are takeover, where

you take control of a botnet, and sinkholing, where you just interrupt the C&C Channel. We

will focus on these techniques in Section 2.5, what is important now is to understand that if

an attacker wants to keep the infrastructure alive, he has to build a robust and resilient C&C

Channel. In the following of this section we present three different techniques to address this

matter.

2.3.3 Rallying Techniques

A rallying technique is a protocol to establish a connection, i.e., the C&C Channel, between

the botmaster and the bots. In a centralized topology, it is bots’ responsibility to find the

17

C&C Server, as the latter is agnostic with respect to the location of its army. In the next

paragraphs we will describe three techniques, in ascending order of complexity and resiliency

to the defenders’ countermeasures.

Hardcoded IP Address

The simplest way to instruct a bot to connect to a server is to hardcode the endpoint’s

IP address in the program itself (see Figure 4), or to ship the malware with an external file

containing the IP address to contact. There are a few improvements that can be adopted, as

providing a list of rendezvous IPs rather than a single one, and update the list throughout time,

in case the botmaster is forced to migrate the C&C Server somewhere else.

C&C Server
131.175.124.129

Bot

131.175.124.129

reply

Figure 4: Harcoded IP.

Nevertheless this technique is vulnerable to information leakage: Once the defenders get

the malware binary and are able to reverse-engineer it, they know the rendezvous points. Once

18

this information is acquired, they can set up a strategy to simultaneously sinkhole all the C&C

servers and make the infrastructure harmless.

Hardcoded Domain Name

A first improvement consists in leveraging the DNS protocol, and ship the malware with

a (list of) domain to query to obtain the IP address of the C&C Server [22]. In this way the

attacker is free to move the C&C Server to different locations (i.e., different IP addresses) and

update the DNS records to let the domain point to the new IP address. This leads to a com-

munication protocol that is more robust and resilient than hardcoded IP addresses. Defenders

in this case have to intervene at the DNS level and seek for registar authorities’ cooperation in

sinkholing the domain names. A successful case of this kind of operation is the takeover of a

Zeus botnet by researchers at Trend Micro [21].

Although the countermeasures in this case are harder to be played out, this technique still

suffers from the leakage problem: Once the defenders get their hands on the malware binary

and are able to reverse-engineer it, they know the rendezvous points.

Domain Generation Algorithms

A Domain Generation Algorithm (DGA hereafter) is an algorithm used to automatically

generate domain names, so called Automatically Generated Domains (AGDs hereafter). Most

of modern botnets leverage this technique in the rallying phase: Both the botmaster and the

bots produce a list of pseudo-random domains, one of which is registered and functions as

rendezvous point. As our work heavily relies on the malicious AGDs detection, we further

analyze this technique in Section 2.4.

19

Bot DNS Server

C&C Server

1 badsite.org

2 131.175.124.129

3 contact
131.175.124.129

4 reply

Figure 5: Harcoded domain.

Summary

In this section we have presented how in a botnet the communication between the bots

and the botmaster is achieved. We have analyzed the evolution of the rallying techniques

that attackers have implemented throughout time to make their network more resilient to the

defenders’ countermeasures. The primary and most resilient technique employed nowadays

consists of the generation of random domains, as briefly described in Section 2.3.3. In the next

section we provide a deeper analysis of this protocol, as Cerberus focus its detection technique

on it.

20

2.4 Domain Generation Algorithms

In the previous section we have briefly mentioned the use of DGAs as a rallying mechanism

to set up the communication channel in a botnet. In this section we analyze in detail the

features and the weaknesses of such a technique.

2.4.1 The Idea

Hardcoded IP addresses and domains suffer from information leakages. In DGA-based

botnets the malware that runs each bot is equipped with instructions to generate possible

rendezvous locations, rather than with the locations themselves. A DGA uses one or more

random seeds to initialize the generation of N random strings, where N can vary up to several

thousands of domain produced at each routine.

Both the botmaster and the bots produce the same list of random domain names at the

same time. The botmaster then contacts a registar authority to register just one or a few of

them. Unfortunately, there are registrars that do not enforce strict checks on the final ends of

the registered domains, and simply allow whoever pays to register whichever domain name1.

When the rallying phase starts, the zombies begin to try to contact the domains in the list. If

the domain is not registered, i.e., the DNS server replies with an NXDOMAIN answer, the zombie

continues to query the domains. As soon as the DNS server delivers a valid answer, the bot

contacts that domain and the C&C Channel is established (see Figure 6).

1http://krebsonsecurity.com/wp-content/uploads/2012/03/rogue_registrars_2012_DRAFT.
pdf

http://krebsonsecurity.com/wp-content/uploads/2012/03/rogue_registrars_2012_DRAFT.pdf
http://krebsonsecurity.com/wp-content/uploads/2012/03/rogue_registrars_2012_DRAFT.pdf

21

C&C Server
Bot DNS Resolver

DNS query: ahj.info

DNS reply: NXDOMAIN

DNS query: sjq.info

DNS reply: 131.75.67.3

C&C Channel Open

Figure 6: DGA rallying mechanism.

2.4.2 The Choice of the Seed

The first botnets to adopt this rallying technique had simple DGAs. For instance the Torpig

DGA relied on the date and on a hardcoded constant to generate the list of domains. Moreover

this list would count up to six possible domains a day, three of which valid throughout the whole

week. This näıve implementation lead the defenders to takeover the botnet by registering in

advance a list of all the possible domains to be contacted in the close future [26].

In order to get around this issue, attackers started producing a much higher volume of

domains: Conficker.C produces batches that count 50,000 daily domains. This entails a

strong asymmetry between the endeavors that the defenders should cope with to register all

22

the possible domains and the effort on the miscreants’ side, who have to register just one

domain. The economics of such a brute force approach make it impossible to be played out.

Another technique involves the choice of an unpredictable seed, for instance the current

Twitter trending topic, making impossible every precautionary registrations of domains as

neither the botmaster nor the defenders can know what this seed will be at the moment of the

domains’ creation.

2.4.3 Migration Strategy

By using DGAs, attackers can set up a very robust migration strategy. It is almost no use

for the defenders to retrieve the list of random domain names. Once a domain is used to set

up the C&C, it is no longer valid: It is then useless to blacklist it. The only way to disrupt the

communications is to retrieve the IP address of the C&C Server. Still, once this information is

acquired, it suffices to change the IP address the new random domains will resolve to, to escape

the defenders’ handcuffs. The next time the bots will try to establish the C&C Channel they

will use new domains and new IP addresses, thus making the creation of the communication

untraceable.

2.4.4 Side Effects and Weaknesses

DGAs have at least two side effects. We report them as they are used as a detection

strategy in many works in literature. Moreover we will exploit the second one in our own

detection system.

23

NXDOMAINS

The use of DGAs causes high peaks of DNS requests that return an NXDOMAIN answer. This

phenomenon can be traced by analyzing the DNS traffic, and hosts that exhibit this behavior are

likely to be infected. This approach was successfully followed by Antonakakis, Perdisci, Nadji,

Vasiloglou, Abu-Nimeh, Lee, and Dagon [3] and, when it is easy to have access to the clients’

IP address, it remains the most effective technique to track down DGA-based malware, even

though it involves privacy related issues due to the required access to the infected machines’ IP

addresses.

Random Names

It is quite easy for a person to distinguish between an AGD and a domain created by a

human. For instance zz87ihfda88.com quickly calls attention, while a domain as facebook.com

is readily recognized as “normal”. Schiavoni et al. [22] leveraged this feature to automatically

distinguish the ones from the others.

2.5 Botnet Countermeasures

In this section we present two countermeasures to the botnet phenomenon. The first one,

sinkholing, is a passive technique that aims at interrupting the communication between the bots

and the botmaster: The defenders do not care about anything else. The second one, takeover,

is an active technique where the defenders rather hijack than disrupt the communications, thus

acquiring control over the infrastructure.

24

2.5.1 Sinkholing

Sinkholing is a countermeasure to mitigate botnets that target the C&C Channel. The

defenders stop the communications between the bots and the botmaster (see Figure 7). This is

achieved usually by leveraging the DNS infrastructure once the IP of the C&C Server is known.

Defenders can modify the DNS answers returned by DNS servers as to point to machines under

their control. In this scenario they are not interested in controlling the botnet, or accessing the

information harvested by the bots, but only in blocking the communication, thus making the

threat harmless.

Bot C&C Server

Figure 7: Sinkholing.

2.5.2 Takeover

When defenders succeed in a takeover operation it means that they successfully took control

over a botnet (see Figure 8). This operation requires two stages.

25

The first one can be seen as a sinkholing operation, where they have to ensure that the bots

communicate with machines under their controls rather than with the C&C Server. This can be

achieved in at least two ways. Stone-Gross et al. [26] managed to reverse engineer the Torpig

DGA, then generated the list of all the possible AGDs in the close future and registered them.

Sancho and Link [21] instead contacted the registar authority and asked them to collaborate

by rerouting the traffic directed toward a domain that identified a Zeus C&C.

In the second stage the machine(s) under the defenders’ control must mimic the behaviour

of the C&C server previously in charge. If they succeed in the mimicking, the bots would

start sending the harvesting data to and obey to orders received from the defenders. We find

in literature [26] and in industry reports [21] successful examples of takeovers, which greatly

helped to shed some light on how a botnet works. In Section 2.6.1 we shall further analyze

what Stone-Gross et al. [26] managed to achieve.

Bot Defender C&C Server

Figure 8: Takeover.

26

2.6 Botnets: a Modern Threat

In the previous sections we have described the botnet phenomenon, highlighting the tech-

nologies employed to build this kind of infrastructure and the countermeasures used by the

defenders to mitigate this threat. In this section we give some quantitative data to highlight

the severity of the menace and explain why defenders care about it and are struggling to stem

its diffusion.

In Section 2.6.1 we propose a summary of [26], where the authors managed to take control

of the Torpig, one of the first botnets, for ten days, and managed to see and quantify what

this kind of infrastructure is capable of.

In Section 2.6.2 we analyze Cryptolocker, a type of malware that falls into the category

of ransomware. Cryptolocker appeared at the beginning of September 2013, and was respon-

sible of more than 250,000 infected machines, leading to earnings that sum up to the order of

magnitude of millions of USD.

2.6.1 Torpig

When Stone-Gross et al. [26] started to track Torpig, they managed to take control of the

whole infrastructure for a period of ten days time. This was the first ever reported case of

takeover, which unveiled unique details about techniques and modus operandi behind botnets.

Over the years, subsequent researches inspired by [26] adopted similar and novel methods to

track and counteract botnets.

27

DGA

They managed to fully reverse the DGA, which is reported in Listing 2.1. Torpig DGA is

capable of producing up to six domain names every day. First it computes a weekly random

string, which remains the same for seven days. After appending .com, .net and .biz to the

random string the bots try to contact the resulting domains. If it is not able of establishing a

communication with any of them, it then computes a daily random string. Same as with the

weekly case, the three TLDs are appended to the random string and the corresponding domains

are contacted.

Stone-Gross et al. [26] noticed a few interesting facts:

• the Domain Generation Algorithm is seeded with a hardcoded numerical parameter and

the current date, no unpredictable seed is used;

• there are only six domains generated every day, three of which stay the same for seven

days.

Takeover Strategy

These observations gave the researchers a competitive advantage, which lead them to pre-

emptively register all the possible domains for three consecutive weeks, from January 25th to

February 15th, 2009 [26] and set up a copycat of the infrastructure employed by the attacker

to collect the data. The takeover successfully started on the 25th and ended prematurely on

February 4th, due to a change in the DGA algorithm.

28

Data Collection

Torpig is a malware crafted with the precise intention of stealing financial data. In ten

days Stone-Gross et al. [26] were able to collect credentials of 8,310 accounts at 410 financial

institutions and 1,660 unique credit and debit card numbers.

Revenues

Even though a precise estimation is far from trivial, the authors indicate that in ten days

activity the Torpig controllers may have profited anywhere between 83,000 and 83,000,000

USD [26].

Listing 2.1: Torpig DGA Python implementation Stone-Gross et al. [26].

suffix = ["anj", "ebf", "arm", "pra", "aym", "unj", "ulj",

"uag", "esp", "kot", "onv", "edc"]

3

def generate_daily_domain():

t = GetLocalTime()

6 p = 8

return generate_domain(t, p)

9 def scramble_date(t, p):

return (((t.month ^ t.day) + t.day) * p) + t.day + t.year

12 def generate_domain(t, p):

if t.year < 2007:

29

t.year = 2007

15

s = scramble_date(t, p)

c1 = (((t.year >> 2) & 0x3fc0) + s) % 25 + ’a’

18 c2 = (t.month + s) % 10 + ’a’

c3 = ((t.year & 0xff) + s) % 25 + ’a’

21 if t.day * 2 < ’0’ or t.day * 2 > ’9’:

c4 = (t.day * 2) % 25 + ’a’

else:

24 c4 = t.day % 10 + ’1’

return c1 + ’h’ + c2 + c3 + ’x’ + c4 + suffix[t.month - 1]

2.6.2 Cryptolocker

Cryptolocker is a trojan classified as ransomware, because it asks the victim for a ransom

to get back the documents of hers that the malware has encrypted right after infecting the

machine. Ransomware malware has become an increasing problem [17] in the most recent

years. Cryptolocker has appeared at the beginning of September 2013 and targets several

Windows Systems, including Windows 7. Although Symantec classifies this kind of threat easy

30

to remove1, its effects are, in most cases, devastating. In the next paragraphs we analyze what

has gained the status of menace of the year2.

Infection Vector

The very first samples seem to have been released on September 5, 2013 [15]. Compromised

websites were responsible of the download, i.e., it was a drive-by-download attack, where you

just need to visit or “drive by” a web page, without stopping to click or accept any software,

and the malicious code can download in the background to your device3. Then the attackers

chose to change the infection vector, shifting from compromising websites to sending spam e-

mails. Business professionals were the targets of this second phase: Even the Swansea Police

Department, Massachusetts USA, had to pay 750 USD to recover images and documents that

had been encrypted by Cryptolockker4. They would receive fake “consumer complaints”

against either themselves or the organization they belong to. Attached to these e-mails was

a zip archive with a random alphabetical filename containing 13 to 17 characters [15]. Once

decompressed, you would find in the archive a single file inside, an executable actually, featuring

the exe extension for executables in the Windows environments.

1http://www.symantec.com/security_response/writeup.jsp?docid=2013-091122-3112-99

2http://www.symantec.com/connect/blogs/cryptolocker-qa-menace-year

3https://blogs.mcafee.com/consumer/drive-by-download

4http://www.theguardian.com/technology/2013/nov/21/us-police-force-pay-bitcoin-ransom-in-cryptolocker-malware-scam

http://www.symantec.com/security_response/writeup.jsp?docid=2013-091122-3112-99
http://www.symantec.com/connect/blogs/cryptolocker-qa-menace-year
https://blogs.mcafee.com/consumer/drive-by-download
http://www.theguardian.com/technology/2013/nov/21/us-police-force-pay-bitcoin-ransom-in-cryptolocker-malware-scam

31

On October 7, 2013, researchers from the Dell SecureWorks Counter Threat Unit observed

yet another shift in Cryptolocker distribution. GameOver Zeus1 would now be responsible for

the ransomware spreading and installation. The user would receive a spam e-mail, featuring

a fake Adobe Reader icon attachment. Once opened, this would lead to the download of the

Upatre malware: It would execute Gameover Zeus, which finally would download and install

Cryptolocker. According to [15] at the time of their publication, December 18 2013, this last

infection vector is the primary.

Dear Mr. Doe,

Please find the attached copy invoice which is showing

as unpaid in our ledger.

I would be grateful if you could look into this matter

and advise on an expected payment date.

Many Thanks

John Smith

Figure 9: An example of a Cryptolocker spam e-mail.

1http://www.secureworks.com/cyber-threat-intelligence/threats/The_Lifecycle_of_
Peer_to_Peer_Gameover_ZeuS/

http://www.secureworks.com/cyber-threat-intelligence/threats/The_Lifecycle_of_Peer_to_Peer_Gameover_ZeuS/
http://www.secureworks.com/cyber-threat-intelligence/threats/The_Lifecycle_of_Peer_to_Peer_Gameover_ZeuS/

32

DGA

Cryptolocker now leverages a Domain Generation Algorithm to produce a list of URLs.

This algorithm uses the results of calls to Windows APIs (day, month and year) as initial seed,

and is capable of 1,000 different pseudo-random domains at once. Let us go through the several

stages 1.

The Initial Seed Cryptolocker gets its initial seed, the current date, either from two Win-

dows APIs: QueryPerformanceCounter or GetTickCount. If the first API call is success-

ful, the result is stored in the ECX register, otherwise the second one is called.

Generating The Array of Seeds After the initial seed is obtained, Cryptolocker gener-

ates an array of 623 further seeds combining SHR, XOR, IMUL and ADD operations.

Computing the Key During this stage another set of operations are performed, which

we will not report here because of none interest, that produce a new key as result, to be

employed in the DGA generation step.

Domain Generation Algorithm You can find in Listing 2.2 the Domain Generation Al-

gorithm pseudocode. As you can see starting from the key computed in the above steps

(KEY) and computing three new keys employing the current day, month and year, it is able

to generate the random domain name (ServerName).

1http://blog.fortinet.com/A-Closer-Look-at-Cryptolocker-s-DGA/

http://blog.fortinet.com/A-Closer-Look-at-Cryptolocker-s-DGA/

33

TLD The last step consists of attaching the TLD to the random string. Cryptolocker uses

seven different TLDs: .ru, .org, .co.uk, .info, .com, .net and .biz. Cryptolocker

simply iterates this list in order and attaches the TLD.

Listing 2.2: Cryptolocker DGA pseudocode.

NewKey = (((KEY * 0x10624DD3) >> 6) * 0xFFFFFC18) + KEY

3 DayKey = (CurrentDay << 0x10) ^ CurrentDay

if (DayKey <= 1)

DayKey = CurrentDay << 0x18

6

MonthKey = (CurrentMonth << 0x10) ^ CurrentMonth

if (MonthKey <= 7) {

9 MonthKey = CurrentMonth << 0x18

if (MonthKey <= 7)

MonthKey = !(MonthKey)

12 }

YearKey = ((CurrentYear + NewKey) << 0x10) ^ (CurrentYear + NewKey)

15 if (YearKey <= 0xF)

YearKey = ((CurrentYear + NewKey) << 0x18)

}

18

StringLength = (((DayKey ^ ((YearKey ^ 8 * YearKey ^ ((DayKey ^

((MonthKey ^ 4 * MonthKey) >> 6)) >> 8)) >> 5)) >> 6) & 3) + 0xC

34

21

do {

MonthKey = ((MonthKey ^ 4 * MonthKey) >> 0x19) ^ 0x10 *

24 (MonthKey & 0xFFFFFFF8)

DayKey = (DayKey >> 0x13) ^ ((DayKey >> 6) ^ (DayKey << 0xC))

& 0x1FFF ^ (DayKey << 0xC)

27 YearKey = ((YearKey ^ 8 * YearKey) >> 0xB) ^

((YearKey & 0xFFFFFFF0) << 0x11)

index += 1

30 ServerName[index - 1] = (DayKey ^ MonthKey ^ YearKey) % 0x19 + ’a’

} while (index < StringLength)

C&C Communication

Once the list of AGDs is computed, Cryptolocker tries to contact the C&C Server via

HTTP. When it receives a non-NXDOMAIN reply from the DNS server, it encrypts a phone-

home message with an RSA public key embedded in the malware itself. Only servers with the

corresponding RSA private key can decrypt this message and successfully communicate with

an infected system [15].

Encryption

One of them corresponds to the C&C, which will generate a 2048-bit RSA key pair and will

transmit the public one to the victim. It is interesting to know that the attackers, rather than

implementing their own encryption scheme, leverage Microsoft’s CrytpoAPI to build a robust

35

program that is difficult to circumvent [15]. The RSA public key will be used to encrypt files

featuring a set of extensions that are likely to indicate personal documents (see Table I).

It is interesting to notice that the attackers chose to target, amongst the others, files with

extensions that come from the Adobe suite of professional tools for graphics (Adobe Illustrator,

.ai), publishing (Adobe InDesign, .indd), photo editing (Adobe Photoshop, .psd), or Auto-

Cad (.dwg), a software by AutoDesk used to produce professional CADs, mostly employed by

architects. These types of files are usually the results of many hours of work, therefore it is

very likely that a user affected by Cryptolocker will be willing to pay rather than starting from

scratch. We think this is interesting under a psychological point of view: Rather than personal

data, the attackers target the results of laborious work.

TABLE I: FILE EXTENSIONS SEARCHED BY CRYPTOLOCKER.

odt ods odp odm odc odb doc docx docm wps xls

xlsx xlsm xlsb xlk ppt pptx pptm mdb accdb pst dwg

dxf dxg wpd rtf wb2 mdf dbf psd pdd pdf eps

ai indd cdr jpg jpe jpg dng 3fr arw srf sr2

crw cr2 dcr kdc erf mef mrw nef nrw orf raf

raw bay rwl rw2 r3d pef srw x3f der cer crt

pem pfx p12 p7b p7c ptx

36

Ransom

Once the documents are found and encrypted, a ransom message will be shown to the user

(see Figure 10), where he is informed that some of his files were encrypted, and in order to gain

access to them he has to pay a ransom. The ransom varied in the early versions (Table II), but

then raised to and remained at 300 USD.

TABLE II: RANSOM AMOUNTS IN EARLY CRYPTOLOCKER VERSIONS.

Amount Currency

2,000 Czech Koruna (CZK)
1,500 Norwegian Krone (NOK)
1,500 Swedish Krona (SEK)
1,000 Mexican Peso (MXN)
1,000 Danish Krone (DKK)
500 Polish Zloty (PLN)
200 Brazilian Real (BRL)
200 New Zealand Dollar (NZD)
200 Romanian Leu (RON)
100 U.S. Dollar (USD)
100 Euro (EUR)
100 Australian Dollar (AUD)
100 Canadian Dollar (CAD)
100 British Pound Sterling (GBP)

The attackers would let choose the victims a payment method amongst the following ones:

cashU is a safe payment method designed for and customized to suit, serve & support

online shoppers in all Arabic speaking and surrounding countries with secure, accessible

37

and easy to use payment solutions, giving everyone the possibility to buy online without

discriminating on income, nationality or banking contacts.1

Ukash Ukash is an electronic money system regulated by the Financial Conduct Authority

that allows users to exchange their cash for a secure code. The code is then used to make

payments online, to load cards or e-wallets or for money transfer.2

Paysafecard an electronic payment method for predominantly online shopping and is

based on a pre-pay system. Paying with paysafecard does not require sharing sensitive

bank account or credit card details3.

Bitcoin Bitcoin is a decentralized monetary system that aims to become the digital equiv-

alent of cash. Like cash, Bitcoin transactions do not explicitly identify the payer nor the

payee: a transaction is just a cryptographically signed message that embodies a transfer

of funds from one public key to another [25].

Green Dot MoneyPak is yet another pre-paid service to send money. It can be purchased

at thousands of stores nationwide (U.S., Ed.), including major retailers such as Walmart,

Walgreens, CVS/pharmacy, Rite Aid, Kmart and Kroger4.

1https://www.cashu.com/site/en/aboutCashu

2https://en.wikipedia.org/wiki/Ukash

3https://en.wikipedia.org/wiki/Paysafecard

4https://www.moneypak.com/AboutMoneyPak.aspx

https://www.cashu.com/site/en/aboutCashu
https://en.wikipedia.org/wiki/Ukash
https://en.wikipedia.org/wiki/Paysafecard
https://www.moneypak.com/AboutMoneyPak.aspx

38

Figure 10: Cryptolocker ransom message.

39

The Revenues

It is hard to provide a precise estimate of the earnings that Cryptolocker brought to the

attackers. Spagnuolo 1 made a rough estimate of Cryptolocker earnings coming from the Bitcoin

payment system. In total they identified 771 ransoms, for 1,226 BTC (approximately USD

1,100,000 on December 15, 2013) [25]. Such a measurement was addressed as “conservative”.

It is quite clear that the Cryptolocker malware is to be considered of a very lucrative threat.

Conclusions

Cryptolocker is a very interesting example of malware for a few reasons listed here below.

• The primary infection vector is via a botnet: The fact that the attackers chose this vector

lead us to think that in the future most of malware will be distributed in such a fashion.

• Cryptolocker forms itself a botnet: The network of infected machines communicate with

the C&C server in a centralized fashion, employing a DGA based rallying scheme.

• Being a ransomware the malware of the year witnesses the attackers’ paradigm shift, from

no-profit malicious activities carried out for hacking interests to profitable ones, capable

of massive earnings. “Some men just want to watch the world burn” is no longer an

appropriate motto2 to address the attackers.

1Michele Spagnuolo is one of the most brilliant persons I have ever had the chance to know and a
friend of mine. Therefore it is a great pleasure of mine to cite his work.

2The Dark Knight, 2008 Warner Bros.

40

• Attackers do not steal sensitive personal data, but lock computer files that, give the major-

ity of targeted extensions, are likely to be the result of professionals’ work, demonstrating

a particular attention toward increasing the victims’ willingness to pay.

All of the aforementioned reasons fully justify the focus of our work, as modern miscreants’

threats leverage the topology and communication scheme we have tailored our software to search

for.

2.7 Summary

In this section we have introduced the phenomenon of botnets, one of today’s most spread

and dangerous threats in computer security. We have briefly overviewed some of the purposes

carried out by these malicious infrastructures. We have explained why most of these infras-

tructures feature a centralized architecture and employ a rallying mechanism based on Domain

Generation Algorithms to establish the C&C Channel, the communication medium used to i)

send orders to the bots and ii) retrieve harvested data or feedback from the bots. Then we

focused on the possible countermeasures to mitigate the threat: Both sinkholing and takeover

do need the C&C server IP address to be played out. Finally we have reported two real life

cases of botnets in the wild, demonstrating the threat danger and the actuality. In the next

chapter we focus on the problem we aim at contributing to resolve, i.e., how to track down a

botnet.

CHAPTER 3

TRACKING DOWN A BOTNET

Chapter 2 gave an overview of the phenomenon of botnets, which has become one of the

most spread and remunerative malicious activities on the Internet. Therefore it is of great

interest for defenders to invest time and labor in finding new ways to mitigate them. Given the

primary architecture employed (centralized), the most effective way to make a botnet harmless

is to track down the C&C Server and interrupt the communication between the botmaster and

the bots.

In this chapter we define the problem of interrupting a botnet activities, present the state

of the art and state the goals of our work and the challenges we need to solve.

Chapter Organization

The remainder of this chapter is organized in the following fashion:

• in Section 3.1 we precisely define the problem we want to address in this work;

• in Setion 3.2 we present the most recent works in literature that cover this matter, high-

lighting the points of strength and the shortcomings, both starting point for Cerberus;

• in Section 3.3 we elicit the goals we want to achieve with Cerberus and the challenges

that have to be faced, highlighted in Setion 3.2.

41

42

3.1 Problem Statement

Tracking down and mitigating a botnet is the multi-faceted problem that we wish to address.

In the previous section we had an overview on the various topologies, and highlighted how,

though P2P botnets are growing, the centralized architecture is still the most popular. Moreover

we have explained how most of them employ a rallying mechanism based on DGAs.

In Section 2.5 we have seen how the two most effective countermeasures, sinkholing and

takeover both aim at disrupting the C&C Communication Channel. To perform this task it

is necessary to know the IP address of the C&C Server.

Therefore the problem of mitigating a centralized DGA-based botnet can be “reduced” to the

task of finding the IP addresses of the C&C servers that operate the malicious infrastructure,

though this operation is far from trivial.

In the next section we analyze the current state of the art. Throughout this analysis we

highlight the major shortcomings of the current solutions and underline the importance of

overcoming these limitations and how Cerberus aims at achieving this goal.

3.2 State of the Art

Botnet detection and, more generally, malicious activities detection, by analyzing network

data is a topic broadly covered in literature. We focus on the detection of botnets that use

DGAs to establish the communication channel and on approaches that analyze high volumes

of DNS data.

Works are presented in chronological order: Section 3.2.1 introduces Kopis by Antonakakis

et al. [2], which leverages three groups of features to distinguish malicious domains from benign

43

domains. Then, in Section 3.2.2, we report Exposure [5], a system that leverages large-scale

passive DNS analysis techniques to detect malicious domains. Disclosure [6] is a system that

aims at finding C&C servers IP addresses by analyzing NetFlow data (see Section 3.2.3). In

sections 3.2.5 and 3.2.4 we present two works, [19] [3], that focus on the infected machines

rather than on the C&C servers, an approach that leads to privacy and deployment difficulties.

Sharifnya and Abadi [24] propose the interesting approach of grouping together suspicious ac-

tivities and then look at their history to decide whether they are actually malicious or not (see

Section 3.2.6). Haddadi, Kayacik, Zincir-Heywood, and Heywood [12] focus on the detection of

automatically generated domains employed by DGA-based botnets, comparing different tech-

niques that do not use ad hoc features, but leverage the domain name itself (see Section 3.2.7).

Finally in Section 3.2.8 we present Phoenix [22], a system able to extract clusters of domains

related to DGA-based malicious activities from blacklists and a module of Cerberus.

3.2.1 Detecting Malware Domains at the Upper DNS Hierarchy

Antonakakis et al. [2] with Kopis were the first to monitor DNS activity at the higher

hierarchy level to detect domains related to malicious activities. It leverages this uncharted

point of view to explore new features later to be used to train a supervised classifier.

Requester Diversity This group of features capture the geographical diversity of the

hosts that query ad domain d. Malicious domains are usually queried by machines dis-

tributed differently from those querying legitimate domains [22].

Requester Profile This group of features aim at characterizing the different profiles of

users that query DNS servers. Especially, it divides them into two broad categories: Those

44

who reside in small networks, for instance a corporate network, and those who reside in

large-scale networks. The insight is that while the latter should be more protected, as

activity is usually better monitored in such infrastructures, the former are more likely to

be exposed to and infected by malware.

Resolved-IPs Reputation This group of features aims to describe whether, and to what

extent, the IP address space pointed to by a given domain has been historically linked

with known malicious services [2].

Kopis lifetime is divided into training and operation mode. During the first phase the

system is fed with a set of known legitimate and a set of known malware-related domains. For

each domain the system computes a feature vector that summarizes the domain behaviour in a

time window of m days. Then, during operation mode, Kopis builds a feature vector for each

unseen domain, capturing its behavior during a given epoch Ej . After the vector is built it

assigns a label (benign or malicious) to the unseen domain and a confidence score.

Limitations

The main limitation of this work is the inability to track down DGA-based botnets, as admit-

ted by the authors themselves. This is caused by the short life span of the AGDs, which makes

them untraceable by the detection process implemented by Antonakakis et al. [2]. Moreover,

the system is supervised, as it requires initial base knowledge to be trained with.

3.2.2 Detecting Malicious Activities by Passive DNS Analysis

Bilge et al. [5] in their work propose Exposure, a system that classifies domain names as

malicious or benign leveraging large-scale, passive DNS analysis techniques. To achieve their

45

goal, the authors first select 15 features to discriminate between legitimate and malevolent

traffic by feeding a J48 decision tree with pre-labeled benign and malicious DNS traffic (i.e.,

DNS requests and responses). The 15 features are grouped into four logical sets, reported here

below.

Time-Based Features capture the peculiar time-related behaviors of malicious domains,

for instance querying patterns, as high volume requests followed by a sudden decrease,

typical of AGDs.

DNS Answer-Based Features are four features related to the informations that can be

retrieved querying a DNS server, as the number of distinct IP addresses resolved by a

particular domain d.

TTL Value-Based Features the Time To Live expresses how much time, usually in sec-

onds, a cached domain to IP mapping should be considered valid. In their research Bilge

et al. [5] found that usually malicious domains feature a low (less than 100s) TTL.

Domain Name-Based Features are two features that aim at capturing the randomness

of a domain name.

Then Bilge et al. [5] train a supervised classifier to label domains as malicious or benign,

producing a blacklist of domain names–IP addresses, available on their website1.

1http://exposure.iseclab.org/

http://exposure.iseclab.org/

46

Limitations

Even though able to produce a confirmed blacklist of malicious domains and IP addresses,

Exposure is a supervised classification system which requires labeled data to be trained.

3.2.3 Detecting C&C Servers by NetFlow data Analysis

Bilge et al. [6] propose Disclosure, a system that aims at finding C&C servers IP addresses

by analyzing NetFlow data. The rationale behind this choice resides in the lack of raw network

data sources, motivated by administrative and technical issues. NetFlow is a network protocol

by Cisco Systems for summarizing network traffic as a collection of network flows [6], where a

network flow is a unidirectional sequence of packets that share specific network properties.

Bilge et al. [6] individuate three classes of features that separate benign from malicious

network flows. The first one relates to the size of the flow. As miscreants’ C&C channels

have been crafted with the goal of being resilient and stealth, packets belonging to this flows

tend to feature a small and constant size. The second concerns the client access patterns.

Infected machines will try to contact the botmaster at fixed and regular intervals during the

day, while benign traffic exhibits a more “random” behavior. The last class of features captures

the temporal patterns of access. Legitimate traffic tends to happen during daylight, whilst

malicious traffic does not feature this discrimination.

A Random Forest classifier is fed with labeled data during the training phase. Then it is

tested against data from a university network and from a Tier 1 ISP.

47

Limitations

Even thought the use of NetFlow data is an interesting and uncharted approach towards the

unveil of C&C servers, this approach shows some major shortcomings. Fire [27], Exposure [5]

and Google Safe Browsing1 are reputations systems leveraged by the system to reduce the false

positive rate, otherwise unacceptable in volume of points, though low in percentage. Moreover

the selected features could be easily circumventable by an attacker. For instance he could tell

the bots to communicate during daylight. Or he could instruct them to have a more “random”

access behavior.

3.2.4 Detecting FFSN by passive DNS data analysis

FluxBuster was introduced by Perdisci et al. [19] as a system able to detect domains and

IP addresses involved in the activity of FFSN, by analyzing DNS data obtained by passively

monitoring DSN traffic collected from “above” local RDNSs servers [19]. The authors found

four features that characterize DNS traffic belonging to this threat: i) a short TTL, ii) high

frequency in changing the resolving IP addresses, iii) high cardinality of the set of resolving

IPs [22] and iv) the number of networks the IPs reside in. Perdisci et al. [19] use these features

to label new data as FFSN and non-FFSN domains using a supervised classifier trained with

labeled data. The authors are able to distinguish domains belonging to malicious FFSN from

the benign ones, even if such a technique is used also for legitimate purposes (CDN Networks),

with a low false positive rate.

1https://developers.google.com/safe-browsing/

https://developers.google.com/safe-browsing/

48

Limitations

Perdisci et al. [19] focus on the clients, the infected bots, rather than on the C&C servers

of the activities (spam, phishing, etc.). Moreover their approach is supervised and requires

previous knowledge.

3.2.5 Leveraging NXDOMAIN and clients’ IP addresses

Antonakakis et al. [3] propose Pleiades, a system to i) discover and cluster together AGDs

that belong to the same botnet, ii) build models of such clusters and use this knowledge to iii)

classify unseen domains.

During the first step, DGA Discovery, Antonakakis et al. [3] analyze streams of unsuccessful

DNS resolutions, as seen from “below” a local DNS server [3]. The streams are collected during

a given period of time, and then clustered. The clustering is performed according to two criteria:

• the statistical similarity shared by domain name strings;

• the domains have been queries by overlapping sets of hosts [3].

The final output of this module is a set of NXDOMAIN clusters: Each cluster is likely to represent

a DGA previously unknown or not yet modeled [3]. After this stage is completed the system

moves to the DGA Modeling phase: This module receives a labeled dataset of malicious and

legitimate domains, and leverages this knowledge to train the multi-class DGA Classifier.

Then the DGA Classification module aims at achieving two tasks. The first one is to label

a subset of a cluster of NXDOMAINs with one of the labels seen in the DGA Modeling stage. The

49

second is to trace back those domains that belong to the clusters of NXDOMAIN but resolve to

an actual IP address, in order to locate the C&C Server.

Limitations

One limitation reside in the use of a HMM-based detector, unable to detect certain types

of DGAs, such as Boonana, as indicated by the authors. Another shortcoming, also indicated

by Antonakakis et al. [3], is the possible scenario where the attackers produce on purpose ran-

dom streams of NXDOMAIN to sidetrack the detection system. Moreover, once again, Pleiades

requires i) the clients’ IP addresses and subsequently ii) DNS monitoring at the lower level,

bringing in all the privacy and deployment-related issues discussed above.

3.2.6 Leveraging activity history to detect botnets

Sharifnya and Abadi [24] developed a system to detect DGA-based botnet based on features

that include the history of their activity. They aim at tracking down hosts infected by DGA-

based botnets by leveraging DNS queries and trying to group together hosts that exhibit similar

malicious behaviors.

The first step is to whitelist the DNS queries, filtering out those domains that appear in

the Alexa TOP 100 list (list of the most 100 popular domains on the Internet by volume of

queries).

Then Sharifnya and Abadi [24] group together those domains that i) resolve to the same

IP address or ii) have the same Second Level Domain (SLD) and TLD. After a time window

they label as suspicious those groups where domains are automatically generated. To establish

whether a domain is automatically generated, they first compute the distributions of 1-gram and

50

2-gram for Alexa TOP 1,000,000 sites and the malicious domain names from Murofet [24]. Then

they leverage the Kullback-Leibler divergence and the Spearman’s rank correlation coefficient

to tell to which category a domain name belongs to.

Simultaneously, another building block of their system, called Suspicious Failure Detector,

triggers and flags the host as suspicious when a high volume NXDOMAINS DNS queries is

originated. Finally, the results from the previous blocks are combined by the Negative Repu-

tation Calculator, responsible of the final verdict, i.e., tell whether a host shall be considered

bot-infected or not.

Limitations

The idea of grouping together suspicious activities and leveraging their history will be

borrowed and, in our opinion, enhanced by Cerberus. Even in light of the positive results

shown by the authors, this work suffers from two major shortcomings. First the system needs

a feed of malicious domains automatically generated to compute the malicious distributions

of n-grams, resulting vulnerable to DGAs that exhibit a new and different distribution of n-

grams. Second this is an approach host-based, which requires the DNS query with the client

IP address. This choice involves all the difficulties related to privacy issues and, consequently,

leads to non-repeatable experiments [20] and deployment difficulties already discussed in [22].

3.2.7 Using SVM and SSK to classify AGDs

Haddadi and Zincir-Heywood [11] focus on detection of automatically generated domains

employed by DGA-based botnets. In their work they compare with other techniques a genetic

programming approach, result of their previous work [12], to detect malicious domain names,

51

based only on the string format, i.e., the raw domain name string. This is quite important as

to the best of our knowledge, all detection systems in this field analyze DNS network traffic

behaviour via classifiers with pre-defined feature sets [11]. We briefly compare the techniques

and motivate why we chose the Support Vector Machine approach in Cerberus.

The first technique to be introduced relies upon Support Vector Machines, state of the art

classifiers in many supervised learning tasks. A Support Vector Machine finds a hyperplane that

optimally separates the points of the dataset in two classes. This technique can be employed

to perform k-classes classification by building k binary classifiers. The machine needs a Kernel

Function to be able to separate data which is not-linearly separable. Lodhi et al. [16] proposed

the Subsequence String Kernel, a kernel based on common substrings to determine strings’

similarity. Once the SVM is equipped with the kernel it must be trained with an initial dataset

and then it is ready for classification.

In the authors’ Stateful-SBB approach there are three populations that coevolve: A point

population, a team population and a learner population. The point population consists of a

subset from the training data samples. The learner population represents a set of symbionts,

which relate a GP-bidding behaviour with an action [11]. Finally, in the team population we

find a set of learners. The evolution follows a Pareto competitive coevolution.

The authors trained the classifier to distinguish between three classes of domains, two ma-

licious and one benign. Conficker and Kraken were chosen as representative of the domains de-

voted to botnets’ C&C communication, while 500 benign domains were manually extracted from

52

the Alexa list. The results favor the SVM approach, which features the highest score (0.996)

and a training time (431.53) one order of magnitude less than the SBB approach (2227.64).

Limitations

Haddadi and Zincir-Heywood [11] strongly improve previous features based classifiers, lever-

aging only the raw string of the domain name. Nevertheless their work suffers from being a

supervised approach. In fact the system must be trained using AGDs blacklist, and it is not

capable of detecting new threats. Nevertheless this work lead us to consider the SVM approach

when we had to design and implement our classifier, for two main reasons: i) in [11] it is the

best tool to perform such a task, with performances close to perfection, ii) employing the String

Subsequence Kernel as system-wide metric to be used by the DBSCAN clustering routine (see

Par. DBSCAN Clustering in Section 4.2.3) to perform similarity calculations between domains

and cluster of domains. Such matters shall be more deeply discussed in Chapter 4.

3.2.8 Phoenix, Detecting DGA-based botnets

Schiavoni et al. [22] proposed Phoenix, a system able to extract clusters of domains related

to DGA-based malicious activities from blacklists. To this end, Phoenix first separates domains

automatically generated from those created by humans, by leveraging a vector of linguistic

features. These linguistic features are i) the meaningful word ratio, i.e., the ratio of domain’s

characters composing meaningful words to the cardinality of the domain itself and ii–iv) the

popularity score of the n-grams, with n ranging from one to three. We shall better explain these

concepts via an example. Consider the domain names facebook.com and pub03str.info. Let

us compute the meaningful word ratio for both of them (see Figure 11).

53

d = facebook.com

R(d) =
|face|+ |book|
|facebook| = 1

likely HGD

d = pub03str.info

R(d) =
|pub|

|pub03str| = 0.375.

likely AGD

Figure 11: Meaningful Word Ratio example, Schiavoni et al. [22].

The domain facebook.com scores 1, as all of the characters in the domain name contribute

to form the words face and book, which can be found in the English language dictionary. The

high score indicates that we have a domain which is likely a Human Generated Domain (HGD).

On the other hand, in the domain name pub03str.info the only meaningful substring is pub

and the meaningful word ratio is equal to 0.375, likely an AGD.

Consider now the domain names facebook.com and aawrqv.com and let us compute the

popularity score of the 2-gram (see Figure 12).

d = facebook.com

fa ac ce eb bo oo ok
109 343 438 29 118 114 45

mean: S2 = 170.8

likely HGD

d = aawrqv.com

aa aw wr rq qv
4 45 17 0 0

mean: S2 = 13.2

likely AGD

Figure 12: 2-gram score example, Schiavoni et al. [22].

54

The popularity is computed by counting the number of occurrences of the domain’s sub-

strings in the English language dictionary. This score captures the pronounceability of a domain

name: The more the times a n-gram is found in the dictionary, the higher the score, the eas-

ier should be to pronounce the domain name. For instance, the oo 2-gram is very common

in the English dictionary as it is a common sound in the English language. In our example

facebook.com features a high score and it is therefore likely to be a HGD, while aawrqv.com

features a low score and it is therefore likely to be an AGD.

All of the four aforementioned features are combined into a feature vector f , which is

computed for every domain belonging to the Alexa Top 100,000 domains list, which lists the

100,000 most popular domains on the web, all very likely to be domain names generated by

humans. Then Schiavoni et al. [22] computed the centroid over this group of domains. The idea

is that if a domain is farther than a certain threshold λ, then it is likely to be automatically

generated.

The algorithm described above is used to separate the HGDs from the AGDs in a blacklist of

malicious domains. Then the subset of AGDs is used to generate clusters of domains, depending

on the IP they resolve to. Hopefully such IP addresses belong to the C&C servers responsible of

controlling the malicious activity the domains refer to. Once the clusters have been generated,

Phoenix uses a list of features to compute clusters’ models to be used for classification of

unseen domains. The goal is to label unseen domains with one of the threats identified in the

clustering phase.

55

Limitations

There are two major limitations in Phoenix, the first conceptual while the second concerns

the system’s validation. The conceptual limitation resides in the features used to classify unseen

domains. One of these features is the IP address of the C&C servers, which means that if an

unseen domain does not share the IP address with one of the clusters it is not considered

malicious. Obviously this is not true, as actually attackers do change the location of the C&C

server once they are identified. Moreover, other two features used by Schiavoni et al. [22] are the

length of the domain and the TLD. This means that if an attacker decides to use a DGA that

makes domains longer or shorter than usual, or domains that exhibit a different TLD, Phoenix

does not label them as belonging to the threat they actually belong to. The other limitation

has to do with how the system was validated. Schiavoni et al. [22] did not test Phoenix in the

wild, whereas the purpose of a detection system is to detect threats analyzing real world data.

3.3 Goals and Challenges

Our primary goal is to isolate in an automatic and unsupervised fashion DGA-based botnets,

clustering malicious activities that use the same DGA, by analyzing DNS passive data, in order

to unveil botnets’ C&C servers IP addresses, as to make it possible to apply the required

countermeasures.

Most systems described above, [11] [24] [2] [3] [19] [6], suffer from the supervised approach.

We think that in this particular scenario this is a major issue: We would like our system to be

able to detect new threats with little or no previous knowledge. Other systems, [3] [24], leverage

the clients’ (i.e., the bots’) IP addresses to cluster together DNS traffic that relates to the same

56

malicious activities. This approach falls into the privacy related issues that arise when dealing

with this kind of data. Moreover the monitors to get these samples must be located at the

lower levels of the DNS hierarchy, which causes difficulties in the deployment of the monitors

themselves. One system, Pleiades [3] does not perform well with some types of DGAs (e.g.,

Boonana), whereas we want to build a detection software that does not leverage some features

of peculiar DGAs.

Phoenix [22] is the system that meets most of our criteria, as it uses an unsupervised

approach and analyzes passive DNS data, free of any privacy issues. Still, it shows some major

shortcomings, as the impossibility of detecting unknown botnets, the fact that the classifier is

not resilient to small modifications in the DGAs and the lack of a validation in the wild, which

makes us agnostic with respect to Phoenix’s effectiveness once deployed in the real world.

Building a system that evolves in an automatic and unsupervised fashion constitutes a hard

challenge to face. We have to find a way to filter out benign domains while keeping the malicious

domains that does not require knowledge to be fed, i.e., we have to think about general features

that characterize malicious AGDs. Moreover this filtering process must be fast enough to allow

an online detection process while dealing with high volumes of data. We also need to understand

how to cluster together domains that look “similar”, therefore we have to develop a concept

of similarity between domain names (i.e., strings) that is able to capture the patterns shared

by AGDs produced by the same DGA. Once the malicious activities are clustered, we need to

understand how we can use this knowledge to build a classifier that is resilient to small changes

57

in the DGA and does not use ad hoc features. The previous challenges brought to the birth of

Cerberus, which shall be presented in Chapter 4.

CHAPTER 4

INTRODUCING CERBERUS

Cerberus or Kerberos () is a three-headed guardian dog from the Greek mythology, in

charge of patrolling the gates of Hades, land of the dead. Preventing dead souls to evade the

underworld was his duty. In the same fashion we wanted to build a tool to detect malicious

domains employed by botnets and track down the IP addresses these domains resolve to, as to

guarantee that they shall not tarnish the namespace ever again.

As the hellhound featured three heads, our Cerberus operates in three phases: The Boot-

strap Phase, where the initial optional ground truth is generated, the Filtering Phase,

where the DNS data is filtered, and the Detection Phase, where domains are classified and

new threats are discovered.

Chapter Organization

The remainder of this chapter is organized in the following fashion:

• in Section 4.1 we will describe Cerberus at a high level of abstraction, providing an

overview of the overall process;

• in Section 4.2 we will tackle all the elements that form Cerberus.

58

59

4.1 Cerberus Overview

Cerberus is composed of three main modules or phases: Bootstrap, Filtering and De-

tection (see Figure 13). The Bootstrap Phase is fed with a blacklist of malicious domains

and provides the initial ground truth to the system in an automatic and unsupervised fashion.

We use the term ground truth to refer to the knowledge that the system trusts even though its

correctness was not validated by any external authority. The ground truth consists of a set of

clusters of domain names and the IP addresses they resolve to, clusters that represent DGA-

based malicious activities employing the same DGA. This knowledge is used by the Detection

Phase.

The Detection Phase consumes the output of the Filtering Phase, where a stream of

DNS replies is filtered to obtain a list of likely malicious domains. To this end we employ

a list of filters mostly based on heuristics and whitelists to reduce as much as possible the

number of legitimate domains, while keeping the suspicious ones. After the Filtering Phase

is completed, the Classifier uses the ground truth previously generated to detect known threats,

i.e., the Classifier returns a list of malicious domains labeled with one of the clusters from

the ground truth. To this end, for each unseen domain it selects those clusters that share the

domain IP address and then decides to which one it should be assigned using a Support Vector

Machine that leverages the Subsequence String Kernel to compute similarity between strings.

Those domains that do not share their IP address with the ground truth are fed to the

Time Detective: The rationale is that at this very moment we cannot establish whether these

“suspicious” domains are actually malicious, but by analyzing the activity related to their IP

60

Malicious Domains Phoenix Clusters

Time DetectiveSuspicious Domains

Filtering

DNS Stream

Classifier

Bootstrap

Filtering

Detection

Figure 13: Cerberus overview.

61

addresses we may be able to correctly identify the threats. The Time Detective stores the

“suspicious” IP addresses and keeps track of the domains that resolve to them throughout time.

After ∆ time has passed it groups them by their Autonomous System, and clusters together the

domains that are deemed similar (see Section 4.2.3). After the new clusters are generated they

are added to the ground truth and this further knowledge is then used to increase the range of

detected threats.

Detection

Bootstrap

Clustering
Increase

Knowledge

Discover

Figure 14: Cerberus lifecycle.

This process is summarized in Figure 14: Cerberus can automatically evolve by increasing

its knowledge in an unsupervised fashion: The Clustering routine allows to discover new threats

that are added to the ground truth. Then the system can return in the Detection Phase,

62

leveraging the new knowledge. In the next section we discuss in further detail what briefly

described above.

63

4.2 Cerberus Details

In the previous section we have given a brief overview of how Cerberus works. In the

following of this section, we shall go in deeper detail, throughly explaining every aspect of the

Bootstrap, Filtering and Detection phases.

4.2.1 The Bootstrap Phase

The Bootstrap Phase aims at providing Cerberus with the initial ground truth. This

knowledge is not mandatory to have, as the system needs no a priori knowledge to start

detecting new threats. Nevertheless it is useful to have the possibility to plug it into Cerberus,

which can use it to label the unseen domains during the Detection Phase. To this end we

employ Phoenix. Phoenix takes as initial input a list of malicious domains. It then applies

a DGA filter (the same used in Paragraph 4.2.2) to filter out those domains that appear likely

benign, under the assumption that domains generated manually, by a human, are benign, in

contrast to AGDs, which are generated automatically by a DGA. Therefore the remaining

domains are both non-benign (i.e., suspicious) and automatically generated.

Cerberus clusters these domains depending on the IP address(es) they resolve to. Hence

at the end of the clustering process, Cerberus has a list of clusters of domains and the IP

addresses they resolve to, domains produced by the same DGA and IP addresses that should

belong to the C&C servers, and it will later leverage this list to label unseen domains in the

Detection Phase.

The following are two of the eleven clusters generated by the Bootstrap Phase:

64

Cluster f105c

Threat: Palevo

IPs: 176.74.176.175

208.87.35.107

Domains: cvq.com

epu.org

bwn.org

Cluster 0f468

Threat: Sality

IPs: 217.119.57.22

91.215.158.57

178.162.164.24

94.103.151.195

Domains: jhhfghf7.tk

faukiijjj25.tk

pvgvy.tk

4.2.2 The Filtering Phase

After the Bootstrap Phase, Cerberus aims at classifying unseen domains from a stream

of DNS passive data. The DNS stream we receive comes from the real world, hence it features

both benign and malicious domains. Therefore we want to reduce as much as we can the amount

of legitimate domains while keeping as many malicious domains as possible. To achieve this

goal the DNS feed goes through a list of filters listed here below.

Alexa Whitelist

This filter removes all the domains that rank amongst the first 1,000,000 in the Alexa Top

Domains list. The rationale is that the most popular domains in the Web are less likely to

be malicious. Even though this is not completely true (as of 2012, BarracudaLabs found 58

65

drive-by-download malicious websites in the first 25,000 Alexa domains1), there are no known

cases of malicious AGDs found among the Alexa Top 1M. Moreover we are looking for domains

used to set up the C&C channel: They are usually valid for one day and then thrown away and

it is very unlikely that they make it to the list.

Content Distribution Networks

DGAs are used to legitimate ends by Content Delivery Networks (CDNs). These infrastruc-

tures consist of a large distributed system of servers, deployed with the intention of providing

users with content at high availability and high performance. YouTube and Amazon Cloud-

Front are examples of this type of networks. In our system we filled in a list of the most

popular CDNs: If a domain belongs to one of them it is filtered out. For instance, the domain

r4---sn-a5m7lnes.c.youtube.com belongs to the YouTube CDN: It was clearly generated by

some DGA, but it is not malicious and therefore it must be filtered out.

Top Level Domain Whitelist

Some TLDs require clearance before the domain can be registered (see Table III). When the

attackers register their domains they do not want to go through authorizations by third party

authorities, for two obvious reasons: i) they do not want anyone to investigate the domain

they are going to register and ii) they cannot wait for the time required by clearance process.

Therefore all of those domains that feature a TLD listed in Table III are filtered out.

1https://media.blackhat.com/ad-12/Royal/bh-ad-12-quanitfying-royal-slide.pdf

https://media.blackhat.com/ad-12/Royal/bh-ad-12-quanitfying-royal-slide.pdf

66

TABLE III: TLDS REQUIRING CLEARANCE BEFORE REGISTRATION.

TLD Entity TLD Entity

.ac.uk British academic
domains

.edu educational

.aero air-transport industry .gov governmental

.arpa Address and Routing
Parameter Area

.int international
organizations

.coop cooperatives .mil US Military
.museum museums .pro professions

.post postal services .travel travel and tourism
industry

Time To Live

The TTL parameter sets for how long a cached DNS record is to be considered valid in a

local DNS Server. Previous works in literature ([5], [13]) stated that this value was set to very

low values (100s) in the case of malicious domains. The rationale, from the botnet operators,

is that these infrastructures need to update fast their C&C locations and therefore need the

DNS server to update the records at the same pace. However, more recent investigations seem

to state the opposite. Xu and Wang [29] from Palo Alto Networks reported that approximately

80% of fast-flux domains exhibit a change rate greater than 30 minutes/IP, while in 2008 Holz

et al. [13] reported that fast-flux domains exhibited a changing rate less than 10 minutes/IP.

This change, and the subsequent change in TTL values, is due economic reasons and to avoid

detection based on changing rate. Therefore we decided to filter out all the domains featuring

a low TTL value, less than 300 seconds. We chose this value after analyzing two weeks of

67

DNS data from the ISC/SIE dataset in our possession: We manually searched for the domains

classified as malicious by an early version of Cerberus, and noticed that all the benign domains

featured a TTL equal or lower than 300 seconds.

Phoenix DGA Filter

The domains employed in DGA-based malicious activities feature that randomness captured

by Schiavoni et al. [22] in Phoenix. Therefore we filter out those domains that do not exhibit

the required level of randomness to be labeled as AGDs.

Whois Queries

Finally we look at the registration date. We leverage the insight that attackers do not (and

sometimes cannot, as when using unpredictable seed in the DGA, e.g., Twitter trend topic)

register their domains much time in advance, as otherwise they would not be able to leverage

the resilient migration strategy allowed by the use of DGAs: If the C&C is unveiled they should

update the DNS records for all the pre-registered domains.

Therefore we query a Whois server to ask for the registration date of every domain: If the

domain is “old” it is discarded, whereas if either it was recently registered or the Whois server

replied with an error code (e.g., no information is available for that domain), we conservatively

keep the domain. For all the retained domains we store the registration date for later use in

the detection phase.

Summary

We want to recap here the features of the domains that remain at the end of the filtering

process and that constitute the input for the Detection Module. For each step we report also

68

the number of domains that persist after the filtering process in a pilot experiment conducted

on 30’ of sampled traffic (see Section 6.2).

20,000domains remain with a TTL greater than 300 seconds;

19,000domains not in the Alexa Top 1M whitelist;

15,000domains not in the most popular CDNs;

800 domains likely to be AGDs;

700 domains featuring a TLD that does not require previous authorization;

300 domains that have been recently registered.

4.2.3 The Detection Phase

In theDetection Phase, we aim at recognizing domains belonging to known botnets and to

discover new ones. These two tasks are achieved by two different modules: The SSK Classifier

and the Time Detective respectively.

The Subsequence String Kernel Classifier

This component is fed with the data coming from the Filtering Phase. It classifies each

unseen domain domain d using the knowledge provided by Phoenix, i.e., the clusters of DGAs,

eventually including those generated by Cerberus. The classifying process consists of assigning

d to one of those clusters. Schiavoni et al. [22] had developed their own classifier, but it suffered

from the major shortcoming of using ad hoc parameters, such as the domain length and the

TLD. This means that if d features a TLD other than those in the clusters, or if it features a

length that does not reside in the previously seen boundaries, it is discarded.

69

We wanted to have a classifier resilient to such changes, one that would label d leveraging

only the string itself as a feature to compute similarity amongst d and the clusters. Haddadi

et al. [12] compared different approaches in classifying AGDs: As the Support Vector Machine

technique outplayed all the others with respect to the F-Score, we decided to use this approach.

Support Vector Machines

The Support Vector Machine is a binary learning machine that can be used for classification

and rule regression [1]. The main idea of this classification algorithm is to build a hyperplane

that optimally separates the samples of data into two categories with maximal margin [12]. It is

possible to build a k -classes classifier, with k greater than two, by building k binary classifiers.

Support Vector Machines must undergo a training phase, where they are fed with points

in the form of {xi, yi}, where xi is a feature vector and yi is the binary class label (e.g., 1 or

−1). Note that in our context, the labels need not to be provided manually because we use

clusters as labels, which are generated automatically. There is a parameter to be set during

the classification process: C, which controls the punishment function for misclassified points.

In our implementation we left this parameter to 1, its default value.

When dealing with linear data we have to find two hyperplanes:

w · x− b = 1

and

w · x− b = −1

70

that bound a region, called the margin, where no data point is present. Training the SVM in

this case means to maximize the distance between the hyperplanes. SVMs can be also employed

to classify data that are non-linearly separable, but they need to be equipped with a kernel

function, a non-linear mapping of an input data into a high dimensional feature space [12].

When the mapping is completed, the hyperplane that maximizes the separation margin can be

constructed. Then, as a final step, a linear mapping from the feature space to the output space

is required [12]. In the next paragraph we shall better explain what a kernel function is and

introduce the Subsequence String Kernel.

Subsequence String Kernel

A function that calculates the inner product between mapped examples in a feature space

is a kernel function [16]. Therefore for any mapping:

φ : D → F

we define a kernel function as

K(di, dj) = ⟨φ(di),φ(dj)⟩

where ⟨·, ·⟩ is the dot product and di, dj are feature vectors. In 2002 Lodhi et al. [16] proposed

a kernel function to measure the similarity of strings. The idea is to compare them by means

of the substrings they contain: The more substrings in common, the more similar they are [16].

We can better explain the process by looking at the example in Table IV.

71

TABLE IV: SSK EXAMPLE FROM LODHI 2002.

c-a c-t a-t c-r a-r

φ(cat) λ2 λ3 λ2 0 0
φ(car) λ2 0 0 λ3 λ2

ker(car, cat) = λ4

ker(car, car) = ker(cat, cat) = 2λ4 + λ6

ker(car, cat) =
λ4

(2λ4 + λ6)
=

1

(2 + λ2)

We consider the two strings car and cat. The first step is to compute the feature space of

the strings to be compared. In this case it is a 5-dimensions space composed by the features

c-a, c-t, a-t, c-r and a-r, which are all the possible non-contiguous two characters long

substrings of car and cat.

We then set a decay factor λ that measures a decay in the quality of the similarity between

strings, i.e., if we have λn, it means that we need n characters of the string to match the

substring. In our example we have for instance c-t, which is present in cat, but it requires

three characters to be matched: c, a and t. That is why we then find λ3 in the cell (φ(cat),

c-t).

We then define the inner product between two strings s and t as the sum over all common

subsequences weighted according to their frequency of occurrence and lengths [16]. In formulas:

Kn(s, t) =
∑

u∈
∑n

⟨φu(s) · φu(t)⟩ =
∑

u∈
∑n

∑

i:u=s[i]

∑

j:u=t[j]

λl(i)+l(j)

72

In our example car and cat share only the substring c-a (we have highlighted the column).

Therefore we have:

ker(car, cat) = λ2 + λ2 = λ4

which is the unnormalised kernel. To get the normalised kernel we divide by ker(car, car) =

ker(cat, cat) = 2λ4 + λ6, which yields 1
(2+λ2) .

The Classification Process

When an unseen domain d arrives, we select the clusters that share the IP address with d.

Those clusters are used to train the Support Vector Machine that is then used to classify d.

What happens when no cluster shares the IP address with d is explained in the next paragraphs.

The Time Detective

When an unseen domain d does not share the IP address with the clusters of the ground

truth, we issue the Time Detective: We want to keep track of the activity related to its IP

address for ∆ time to see if it shows hints of maliciousness.

After ∆ time has passed, first we group together domains that resolved to IPs that reside in

the same Autonomous Systems, then we try to extract clusters of similar (similarity is computed

using the SSK) domains using the DBSCAN clustering algorithm. After the clustering routine

is done, we add these new clusters of malicious domains to the ground truth. To see whether

two clusters (one from the new ones and the other from the old ones) are similar, we run a

similarity test. After this stage is completed, Cerberus starts classifying new unseen domains,

73

leveraging the increased knowledge. In the next paragraphs we shall tackle every aspect of the

aforementioned process.

DBSCAN Clustering

The DBSCAN algorithm relies on the concept of density reachability. In Figure 15 B is

density-reachable by A, as there is a chain of data points such that the next point is no farther

from the previous one than ε. DBSCAN allows several metrics to measure the distance among

samples: Euclidean, Manhatthan, Jaccard and Mahalanobis are a few examples. In Cerberus

we use a Kernel Distance and we compute the distance matrix using the Subsequence String

Kernel. ε is a parameter set a priori, usually by looking at the k-distance graph. The other

parameter DBSCAN requires to be set is minPts, the minimum number of points required to

form a cluster. For instance, in our situation, if minPts was set to four, all the points from

A to B would belong to the same cluster. If it was set to six, all the points from A to B

would be considered noise. In our implementation we set the minPts parameter to ∆, where ∆

measures in days how much time we wait before performing the clustering routine. We chose

this number following this rationale: In ∆ time a cluster must count at least one domain for

each day passed, i.e., the bots must have contacted the C&C Server at least once a day. In the

next paragraph we will explain how we set the ε parameter.

ε estimation

To estimate ε we used a heuristic that leverages the k distance graph. The k distance graph

is a graph in which two vertices p and q are connected by an edge, if the distance between p

74

A

B

noiseε

Figure 15: The DBSCAN Algorithm.

and q is among the k-th smallest distances from p to other objects of the population1. We set

k equal to minPts, and we calculate the variance of the distances for the neighborhood of each

point. We then consider the point that features the neighborhood with the lowest variance.

From that neighborhood we take the highest distance. The rationale is that we want to be sure

that the minPts least dispersed points are clustered together.

It could happen that this value needs to be slightly adjusted. Therefore we modify ε using

a tolerance τ parameter. In formulas:

ε = ε× τ

1https://en.wikipedia.org/wiki/Nearest_neighbor_graph

https://en.wikipedia.org/wiki/Nearest_neighbor_graph

75

We try different values of τ that range from -0.5 to 0.5, step 0.1, and we choose the value

that yields the best clustering quality. In the next paragraph we explain how we measure the

clustering quality.

Measuring Clustering Quality

To measure the clustering quality we use the C-Index proposed by Hubert and Schultz [14].

They define NW as the sum of the number of pairs in each cluster:

NW =
K∑

k=1

nk(nk − 1)

2

where nk is the cardinality of cluster k. They then define SW as the sum of the NW distances

between all the pairs of points inside each cluster, Smin as the sum of the NW smallest distances

between all the pairs of points in the entire dataset and Smax as the sum of the NW largest

distances between all the pairs of points in the entire dataset.

Hubert and Schultz [14] define the C-Index as the ratio of the sum of distances infra-cluster

to the sum of the distances intra-clusters (normalized). The C-Index ranges from 0 to 1, and

lower values yield better clusters. In formulas:

C =
SW − Smin

Smax − Smin

As previously stated we iterate the clustering process for each list of domains over eleven

values of tolerance (from -0.5 to 0.5, step 0.1) and keep the clusters that feature the lowest

C-Index. Once the process is completed for all the Autonomous Systems, we have to decide

76

whether the new clusters must be added to the ground truth produced by Phoenix, or if there

are couples of clusters that, though not sharing the IP addresses, should be merged together

as they represent the same family of DGA. In the next paragraph we explain how we measure

similarity between clusters.

During the test described in Section 6.4, When applying the clustering routine to AS 22489,

τ = 0.2

yielded the lowest value of C-Index = 0.0032.

Measuring Clusters Similarity

Cerberus is able to tell when two clusters are to be merged together. To this end it

employs the Welch’s test.

Suppose we want to establish whether cluster A should be merged or not with cluster B.

We can represent both of the clusters in matrix form, where we have the elements on rows and

columns, and a cell contains the distance between the elements, computed using the SSK.

Am,m =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 a2 · · · am

a1 a1,1 a1,2 · · · a1,m

a2 a2,1 a2,2 · · · a2,m

...
...

...
. . .

...

am am,1 am,2 · · · am,m

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Bn,n =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 · · · bn

b1 b1,1 · · · b1,n

b2 b2,1 · · · b2,n

...
...

. . .
...

bn bn,1 · · · bn,n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

77

We then build the n × m matrix A ∼ B, which features the n elements of A as rows and

the m elements of B as columns.

A ∼ Bm,n =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 b2 · · · bn

a1 d1,1 d1,2 · · · d1,n

a2 d2,1 d2,2 · · · d2,n

...
...

...
. . .

...

am dm,1 dm,2 · · · dm,n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We then run the Welch’s test: The Welch’s test is used when two samples may show different

variances and it is a variation of Student’s t-test. We leverage the two-tailed test, where the

null hypothesis states that the two samples have equal mean. The test will yield a p-value that

will allow to accept or reject the hypothesis. In Cerberus we decided to set the p-value to

1%: Values greater than that will tell the clustering routine that there is not enough statistical

evidence to keep the clusters separated, and Cerberus will merge the clusters together.

The rationale behind this procedure is that when two clusters actually are the same cluster,

if we mix the elements, the original cluster (A in our example) and the “mixed” one (A ∼ B)

should feature the same distribution of the distances.

Cluster a and b Welch’s test yielded the values

t ≃ 2.2 and p ≃ 0.03

78

As we set the p-value to 1%, we cannot refuse h0, i.e., the clusters are merged together.

Further investigation on palevotracker.abuse.ch confirmed that both IP sets identify

Palevo C&C (see Section 6.4).

Cluster a

IPs: 176.74.176.175

208.87.35.107

Domains cvq.com

epu.org

bwn.org

Cluster b

IPs: 82.98.86.171

82.98.86.176

82.98.86.175

82.98.86.167

82.98.86.168

82.98.86.165

Domains knw.info

rrg.info

nhy.org

4.3 Summary

In this section we have introduced Cerberus and explained how it works. Cerberus

lifecycle is composed of three main phases. During the Bootstrap Phase it produces the

initial ground truth. When we use the term ground truth, we do not mean ground truth per

se, as there is no manual check of the results produced, but we mean the knowledge that the

system trusts. This knowledge is later used in the Detection Phase, but before the actual

detection can start Cerberus goes through the Filtering Phase. During the filtering phase

the DNS stream to be analyzed is sifted out from legitimate domains, using a series of heuristics.

palevotracker.abuse.ch

79

The remaining data is fed to the aforementioned Detection Phase, during which Cerberus

uses the clusters of AGDs from the initial ground truth to label the unseen domains. Those

domains that do not share the IP address with the clusters are recorded for ∆ time and then a

clustering routine is performed. The newly generated knowledge is then added to the system’s

ground truth. In the next chapter we describe the implementation of Cerberus, focusing on

the crucial parts of the system.

CHAPTER 5

SYSTEM IMPLEMENTATION

In this chapter we discuss a few aspects concerning the implementation of Cerberus.

Cerberus is implemented in Python, and it uses well known and high performance libraries

for machine learning and scientific calculus. We discuss the system’s architecture, focusing

on the process and the actors involved in the unseen domains’ classification and new threats’

discovery. Moreover, we describe in deeper detail a few core aspects of Cerberus, as the

possibility of customizing the system using an external json configuration file and how we

managed to address the performance challenges of the Filtering Phase leveraging the concepts

of map and reduce.

Chapter Organization

The remainder of the chapter is organized in the following fashion:

• in Section 5.1 we discuss the architecture of Cerberus, describing in detail the system’s

lifecycle and the actors that participate;

• in Section 5.2 we discuss the actual implementation of the core parts of the system.

80

81

5.1 System Architecture

In this section we describe Cerberus’s architecture in a top down fashion, first introducing

the process, i.e., how the system analyzes the DNS data and detects botnets, and then focusing

on the actors, the classes and modules that compose Cerberus. Before that we will provide a

few technical details about the technologies employed.

Cerberus is implemented in Python, version 2.7.3, and it uses MongoDB, version 2.4.9, as

database system, as it offers good performances. We used Shogun, SciPy and scikit-learn

to implement the SVM with SSK classifier and the DBSCAN with SSK clusterer, while NumPy

offered the high-performance data structures used in the system.

5.1.1 The Process

Cerberus needs to have two folders and a configuration file to function. The first folder

serves as a buffer where an external service (e.g., a passive DNS monitor), sends the DNS

data, which must be organized into text files where each line is a DNS reply in json format.

The configuration file contains the system’s settings, later to be thoroughly explained (see

Section 5.2.1).

After γ time (e.g., one hour), the input files are moved to a second folder to start the

analysis process (1), while in the first folder, now emptied, the buffering process can start over

again. The DNS replies are parsed and a list of Domain objects (see Section 5.2.2) is created

and stored into the database (2). This list shall later be referenced to as the dirty dns list.

Once the previous storing procedure is completed, the filtering routine can start. The

domains from the dirty dns list are loaded in memory from the database and filtered (3)

82

applying the list of filters described in Section 4.2.2. The resulting list of domains, to be

referred to as cleaned dns, is then stored into the database (4).

Buffer Folder Analysis Folder

dirty dns

cleaned dnsClassifierclassified dns

suspicious ips

Time Detective

1 2

3

4

56

7

8

Figure 16: Cerberus classification process.

83

Now the classification process can start. For each domain from the cleaned dns list, Cer-

berus first looks at the IP address and sees whether one or more clusters from the ground

truth share the same IP address (5). In this case, a SVM is trained and a label is assigned to

the domain: All the domains for which it was possible to assign a label are stored in a database

schema called classified dns (6). The domains that do not share their IP address with the

ground truth are not discarded: Their IP address is stored in the suspicious ips database

schema (7). In this collection each document is composed of i) the IP address and ii) the

domains that resolved to that IP address throughout time.

After ∆ time, the clustering routine tries to generate new clusters to be added to the

ground truth (8). The IPs collected in the suspicious ips schema are grouped by their

respective Autonomous System, and their lists of resolved domains are merged together. Then,

for each AS, we run the DBSCAN clustering routine on the list of domains, which produces the

aforementioned new clusters of similar domains. For instance, say we have IP Φ that resolves

the domains D(Φ) = {φ1, . . . ,φn}, IP Ω that resolves the domains D(Ω) = {ω1, . . . ,ωm}, and

for the both of them the AS is α. Then Cerberus will group together Φ and Ω, and will merge

their lists of domains, obtaining

D(Φ,Ω) = {φ1, . . . ,φn,ω1, . . . ,ωm}

84

that is then fed to the DBSCAN clustering routine to extract the clusters of similar malicious

domains. When this stage is terminated, Cerberus adds these clusters to its ground truth

and restarts analyzing the DNS stream, leveraging the enhanced knowledge.

Before describing the actors involved in the aforementioned process, we would like to justify

the heavy use of the database, i.e., why we chose to store the domains at each step. The

reason is to have a system failure compliant : If Cerberus crashes, it is possible to retrieve

the results of the last completed stage, instead of wasting time in starting the classification

from the beginning. For instance, if the system fails right after the filtering process, the list of

cleaned dns domains can be retrieved from the database and classified.

5.1.2 The Actors

Cerberus is organized into six major classes (see Figure 17) of which the homonymous

Cerberus class is the main one, exposing the high level functionalities of the system. It is

initialized with a config parameter, a json file that contains the variables to customize the

system at the user’s needs. The bootstrap() function initializes the system with the ground

truth and it is automatically issued before the system starts to classify the unseen domains.

The fetch dns cleaned stream() and classify domains() subroutines are issued by the

execute daily routine() function, which takes care of classifying the unseen domains coming

from the DNS data. They are both executed by calls to the DataManager class, which offers

lower-level functionalities to i) parse the input file of DNS data, ii) filter the DNS data and

iii) classify the DNS data. While the parsing is achieved by the class itself, filtering and

classification are relayed to other modules. The SVMSSKClassifier takes care of selecting the

85

Cerberus
config

bootstrap()

classify domains()

execute daily routine()

fetch dns cleaned stream()

load configuration(path)

FileManager

mv dns stream()

clean folder()

DataManager

classify dns cleaned stream()

fetch dns cleaned stream()

parse raw dns data()

TimeDetective

store suspicious ip address()

cluster suspicious domains()

SVMSSKClassifier

train()

classify()

DBSCANSSKDomainsClusterer

get clusters()

Figure 17: Cerberus’ class diagram.

86

candidate clusters (those that share the IP address(es) with the unseen domain about to be

classified), train the SVM and classify the unseen domain. The filtering process is achieved by

the stream filter.py module, described in Section 4.2.2. It is not reported in Figure 17 as it

is not a class.

The TimeDetective class is used by both the DataManager and the Cerberus class. In the

first case it is called the store suspicious ip address() method, which takes care of keeping

track of the suspicious IPs and storing them in the MongoDB database. In the second case,

cluster suspicious domains() is issued, which in turn calls the get clusters() method,

which generates the clusters of AGDs and belongs to the DBSCANSSKDomainsClusterer class.

Finally, the FileManager class handles the routines related to filesystem calls.

5.2 System Details

In this section we focus on the core aspects of the implementation of Cerberus, and provide

a more detailed description. First we present the configuration file used to customize the system

to user’s needs. Than we briefly see the Domain and DomainName classes, used by Cerberus

to store the data throughout the analysis. Finally we tackle the crucial aspects of the three

phases of Cerberus: Bootstrap, Filtering and Detection.

5.2.1 The Configuration File

Cerberus was designed to be flexible and customizable. To this end, we envisaged the

possibility of setting a few variables via an external json file. The user needs to put this file in

the same folder where Cerberus is and name it config.json.

87

Cerberus, the main class, is then initialized with it and the values are passed to the various

manager classes. An example is reported in Listing 5.1 where we explain the meaning of the

different variables.

Listing 5.1: Cerberus’ configuration file.

{

"database_type": "mongodb",

3 "dns_path": "dns_traffic",

"filters": [

"ttl",

6 "alexa",

"cdn",

"ns",

9 "tld",

"dga",

"whois"

12],

"reports_path": "reports",

"stream_path": "dns_stream",

15 "ttl": 300

}

database type is the database system used: Cerberus features a layer of abstraction to

access the data that allows other database systems to be used;

88

dns path is the path of the folder where the DNS data is moved before being analyzed;

filters is the array of filters to be applied in the filtering phase. The user can decide

which filters are to be used and the order they appear in the file is the same order in which

they shall be applied;

reports path is the folder where Cerberus stores the database dumps after a classification

routine is completed;

ttl is the TTL threshold to be used when filtering out the domains exhibiting a TTL value

lower than the set threshold;

dns stream is the path of the folder where the DNS data is collected, i.e., the buffer folder;

5.2.2 The Domain Data Structure

DNS records are parsed into Domain objects, previously implemented by Schiavoni et al.

[22] in Phoenix, and still used in Cerberus to ensure inter-operability. Domain objects have

two main attributes the domain name, instance of the DomainName class, and the ip mappings,

both private and accessible via getters (see Figure 18).

The DomainName contains the domain name, parsed in labels. It offers access to the whole

original domain name, to the TLD and to the chosen prefix respectively via the get original -

domain name(), get public suffix() and get chosen prefix() methods.

The ip mappings contains the list of IPs resolved by the domain, saved as Python strings

objects.

89

Domain

get domain name()

get ip mappings()

DomainName

get chosen prefix()

get original domain name()

get public suffix()

Figure 18: Domain and DomainName classes.

5.2.3 The Bootstrap Phase

The Bootstap Phase is reported in Listing 5.2. Cerberus first tries to load the ground

truth from a saved file (lines 6–8). If this file is not found (i.e., the system was never boot-

strapped before), Cerberus generates the list of AGDs clusters and saves it to bootstrap.pk

using the cPickle module from the Python standard library, that offers functions to save ob-

jects into binary files. This technique allows Cerberus to be bootstrapped only once and then

load the knowledge. We have implemented the possibility of manually issuing the bootstrap

method, to ensure the capability of re-initializing the system with different blacklists.

Listing 5.2: bootstrap function implementation.

def bootstrap(self):

"""Generates botnet clusters to classify unseen domains."""

3 logger.info("Bootstrapping Cerberus...")

try:

6 with open(’bootstrap.pk’, ’rb’) as f:

90

self.dga_subclusters = pickle.load(f)

logger.info("Cerberus bootstrap retrieved from file.")

9 except IOError:

bootstrap_cluster_factory = DomainClusterDatabaseFactory(

identifier=’exposure’,

12 experiment=False)

bootstrap_cluster = bootstrap_cluster_factory.get()

family_clusterer = FamilyClusterer(bootstrap_cluster)

15 self.dga_subclusters = family_clusterer.compute_clusters()

with open(’bootstrap.pk’, ’wb’) as f:

pickle.dump(self.dga_subclusters, f)

18 logger.info("Finished bootstrapping Cerberus.")

dispatcher.send(

21 signal=signals.BOOTSTRAP_DONE,

sender=self.__class__.__name__)

We would like to remember that the Bootstrap Phase i) produces knowledge in an un-

supervised and automatic fashion and ii) it is not necessary to Cerberus to function, as

the system is able to operate in a complete unsupervised way. If no knowledge is available

when Cerberus is started for the first time, all the analyzed domains will be stored in the

suspicious ips database schema, and used by the Time Detective to extract the clusters

(see Figure 16).

91

5.2.4 The Filtering Phase

The Filtering Phase is achieved by the stream filter.py module, where we find the

sift dns stream function. The sift dns stream function receives as input a list of filters, a

data source and a synchronized queue, as implemented in the multiprocessing Python library,

where to store the results. All the filters in the list must be an implementation of the abstract

class DNSStreamFilter. This class requires all of its children to implement the filter method.

In this way, the sift dns stream method can iterate on a list of filters and call the filter

method on each one of them (see Figure 19). While the filters are applied in a serial fashion,

each filter sifts the data in parallel.

DNSStreamFilter

filter(domains list)

AlexaWhitelistFilter

filter(domains list)

DGAFilter

filter(domains list)

WhoisFilter

filter(domains list)

Figure 19: The abstract class DNSStreamFilter and three of its implementations.

The data is first sliced into N parts, where N is the number of cores automatically detected.

Then N new processes are instantiated to process the slices. The domains that are not filtered

out are stored in a shared and synchronized queue that at the end of the process is transformed

into a list and returned. In other words we have applied the concepts of map and reduce, which

92

perfectly fit our situation, where we have to apply the same operation (the filter method) to

a large amount of independent data (the domains).

We designed the Filtering Phase having in mind the possibility of getting data from

multiple sources. To this end, the sift dns stream function is not issued directly, but by the

sift dns streams function. We provide this method with a list of jobs, objects of the Job

class, which is initialized with a list of filters and a list of domains, thus offering the possibility

of having multiple jobs, one for each source.

Listing 5.3: sift dns stream function implementation.

def sift_dns_stream(filters, data_source, queue):

"""It sifts a single datasource. Datasource must be a list of Domain

3 objects."""

temp = data_source

6 n_of_cores = multiprocessing.cpu_count()

logging.info("Starting data analysys for %d documents", len(temp))

9 for stream_filter in filters:

if not isinstance(stream_filter, DNSStreamFilter):

logging.error("Not a DNSStreamFilter object.)))

12 else:

logging.info("Filtering using " + stream_filter.name)

temp_q = manager.Queue()

15 if len(temp) == 0:

93

continue

step = len(temp) / min(n_of_cores, len(temp))

18 slices = [temp[x:x+step] for x in xrange(0, len(temp), step)]

processes = list()

21 for i, s in enumerate(slices):

p = Process(

target=sift_dns_stream_slice,

24 args=(s, temp_q, stream_filter,)

)

p.start()

27 processes.append(p)

for i, process in enumerate(processes):

30 process.join()

temp = list(chain.from_iterable(dump_queue(temp_q)))

33 logging.info("Number of domains: " + str(len(temp)))

queue.put(temp)

5.2.5 The Detection Phase

The Detection Phase includes Classification and Clustering of the unseen domains.

In the next paragraphs we will go through the most important aspects concerning the imple-

mentation of these two tasks.

94

Classification

The Classification is performed by the SVMSSKClassifier class. Each instance is initial-

ized i) with the clusters that share the IP address with the domain to be classified, and ii) the

parameters to be used with the SSK, which are the decay factor λ and the substring length

u. This class exposes two public methods, train() and classify(). The first one is used to

train the SVM on the clusters it was initialized with. The SVM and the kernel functions are

those implemented in the Shogun library for machine learning. The classify() method takes

as input the domain to be classified and returns the identifier of the cluster the domain was

labeled with.

Clustering

The clustering module ssk clustering.py contains the classes involved in the clustering

process. The DBSCANSSKClusterer class was implemented as a first abstraction layer to cluster

together strings objects using the DBSCAN algorithm. It is initialized with the list of strings

that form the initial population, then it computes the distance matrix using again the Subse-

quence String Kernel as implemented in the Shogun library. Then it leverages the DBSCAN

algorithm from the scikit-learn library, which allows a precomputed distance to be used as

a metric.

To analyze the DNS data we implemented the DBSCANSSKDomainsClusterer, subclass of

DBSCANSSKClusterer, which accepts a list of Domain objects as input. We made this choice

to respect the software engineering guidelines of modularity and extensibility. In fact in this

way it is easy to deal with a change in the representation of the DNS data. Whatever the new

95

class that replaces Domain can be, it is sufficient to implement just the translation to string

objects.

In order to compare two clusters for deciding whether to merge them together or not,

we implemented the ClustersComparator class. It is initialized with two clusters of do-

mains, instances of the DomainCluster class implemented by Schiavoni et al. [22] in Phoe-

nix. ClustersComparator objects offer the clusters should merge() methods, which tells

whether the clusters should merge by computing the Welch’s test as implemented in the scipy

library.

5.3 Summary

In this chapter we have presented various aspects concerning the implementation of Cer-

berus. We summarize in Table V the technologies employed to tackle the different parts.

TABLE V: TECHNOLOGIES USED IN CERBERUS.

Aspect Technology Version

Programming Language Python 2.7.3
Database System Mongo DB 2.4.9

Calculus numpy 1.7.1
Data Mining Shogun 3.2.0
Data Mining scikit-learn 0.14.1
Data Mining scipy 0.12.0

In the next chapter we shall validate the goodness of Cerberus.

CHAPTER 6

EXPERIMENTAL VALIDATION

In this chapter we describe the results that validated the effectiveness of Cerberus. We

had two goals in mind: first we wanted to confirm the effectiveness of the Classifier, which

is easily quantifiable by terms of the confusion matrix produced; second, we wanted to test

Cerberus’s goodness when deployed in the wild. To this end we let the system analyze one

week of real DNS passive data and see if it classifies unseen domains belonging to known

threats and if it detects new threats. This latter test is far from trivial: Given the massive

quantitative of data it is very hard even to give a rough estimation of false negatives, as it

would require to manually check every domain discarded in the Filtering Phase. Moreover

some results, though important, cannot be quantified: For instance Cerberus was able to

correctly separate clusters of domains belonging to the same threat, but using different DGAs,

and to merge together two clusters of domains employed by Palevo, brilliantly understanding

that they belonged to the same botnet. Both of the aforementioned test are presented in the

following of this chapter, highlighting the goodness of the obtained results.

Chapter Organization

The remainder of the chapter is organized in the following fashion:

• in Section 6.1 we precisely set our goals, what we want to prove with our experiments;

• in Section 6.2 we describe the dataset employed in our experiments;

96

97

• in Section 6.3 we test the effectiveness of the classifier;

• in Section 6.4 we run a one week simulation to see how the system would behave once

deployed.

98

6.1 Goals

As discussed in Section 3.2.8, Phoenix suffers from two main kind of shortcomings, one

conceptual whereas the other concerns the validation. The conceptual shortcomings regard the

use of ad hoc parameters when it comes to classifying unseen domains, an approach that is prone

to overfitting and, in our case, it is not able to correctly classify AGDs that feature a different

TLD or a domain length that evades the previous thresholds. With our first experiment we want

to validate our classifier: This test is described in Section 6.3. The second kind of shortcoming

has to do with validation. Phoenix was not tested in the wild, whereas this is a mandatory

step for a detection system that wants to be deployed in the real world. In Cerberus we have

addressed this issue, and in Section 6.4 we confirm this claim.

6.2 Dataset

Cerberus’ tests employed real passive DNS data collected in the wild. With the term passive,

we refer to the technique invented by Weimer [28] in 2004, called “Passive DNS Replication”,

to obtain Domain Name System data from production networks, and store it in a database for

later reference [28]. The sensors, deployed as close as possible to large caching servers, collect

the data and send it to an analyzer module, where the data is filtered. After the filtering

process, the data is transformed in a format that makes the querying process easier, and stored

in a database. We were able to get access to approximately three months of data, from the

12th of January to the 15th of March 2013. About 609 M of DNS queries/replies were collected

by the ISC/SIE monitor. Data statistics are summarized in Table VI. The data was divided

99

TABLE VI: ISC/SIE DATA SUMMARY STATISTICS.

Begin of Recording Sat, 12 Jan 2013 18:19:57 GMT
End of Recording Fri, 15 Mar 2013 23:37:11 GMT

Total Records 608,958,044

into snapshots of twenty minutes on average, counting 200,000 DNS messages, of which about

50,000 were successful (i.e., non NXDOMAIN) DNS replies.

6.3 The Classifier

We tested Cerberus’s classifier against the ground truth generated by Phoenix, i.e., the

clusters generated during the Bootstrap Phase. We employed data automatically labeled by

Cerberus and not data manually labeled by humans as we wanted to run a test as close as

possible to the real case scenario. Cerberus in fact, will automatically produce the labeled

records later to be used for classification, and we wanted to have our experiment set up to

reproduce such situation. Note that, though automatically labeled, the clusters’ maliciousness

and quality were manually assessed by Schiavoni et al. [22] and therefore represent a valid

dataset to run our experiment.

6.3.1 Accuracy

We considered four clusters that counted 1,100 samples, thus we could measure the accuracy

depending on the number of domains used up to 1,000 samples, and leave the remaining 100

domains for testing. We validated the classifier using repeated random sub-sampling validation,

ten times for each amount of points. This means that, for instance, for ten times we randomly

100

selected 200 points to train the classifier and 100 points to test it: This validation method

allows to reveal the effects of overfitting, if any. We collected the overall accuracies from the

confusion matrix along with the computation time. We repeated this operation until we counted

1,000 points in the training set, step 100. This data is reported in Table VII. Overall accuracy

TABLE VII: CERBERUS CLASSIFIER ACCURACY STATISTICS.

Accuracy

Domains Avg Std Min Max Time (s)

1,000 0.927 1.17 · 10−2 0.905 0.950 101.49
900 0.926 1.41 · 10−2 0.892 0.948 86.56
800 0.928 1.33 · 10−2 0.907 0.948 73.59
700 0.916 1.27 · 10−2 0.897 0.940 62.72
600 0.920 1.21 · 10−2 0.895 0.940 50.88
500 0.917 1.03 · 10−2 0.897 0.933 42.44
400 0.918 1.44 · 10−2 0.887 0.938 29.24
300 0.910 1.74 · 10−2 0.880 0.933 21.37
200 0.895 1.37 · 10−2 0.877 0.920 14.13

grows and then stabilizes at about 93% from 800 points on (see Figure 20). For this reason the

implementation of the Classifier has a sampling upper bound of 800 points to be randomly

selected from the clusters to train the SVM used for classification.

6.3.2 Analysis of Classification Errors

We report in Figure 21 one of the confusion matrices, obtained using 1,000 samples for

training, during the validation. As you can see in the picture the best performances are obtained

101

0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95

200
300
400
500
600
700
800
900

1000

Accuracy

P
oi
nt
s

Figure 20: Cerberus classifier accuracies.

with cluster a, while the worst with cluster d. This holds for all the sub-sampling validations.

This is due to the different lengths and distribution of characters that characterize the clusters.

Cluster a in fact, is composed of domains that, on average, count more than thirty characters

and are produced using a DGA that leverages a common hashing function over the date. This

kind of algorithm generates domains that share a sort of “pattern” which allows the classifier to

better recognize such domains. On the other hand, cluster d’s domains are three characters long:

Therefore it is harder to find “patterns” shared by the domains and consequently harder for the

Classifier to classify the domains correctly. This is confirmed by looking at the distribution of

the distances among the domains in the clusters, computed using the Subsequence String Kernel

and reported in Figure 22. It is evident that distances in cluster a have a normal distribution

with a very low mean and variance, which indicate very high intra-cluster similarity, whereas

102

cluster d’s distances are randomly distributed and exhibit higher values, which indicate low

intra-cluster similarity. Note that despite of this weakness, the overall accuracy allows us to

use this classifier when Cerberus is deployed in the wild.

Predicted
a b c d

A
ct
ua
l a 100 0 0 0

b 1 92 6 1

c 2 0 98 0

d 3 0 6 91

a

caaa89e...d4ca925b3e2.co.cc

f1e01ac...51b64079d86.co.cc

b

kdnvfyc.biz

wapzzwvpwq.info

c

jhhfghf7.tk

faukiijjj25.tk

d

cvq.com

epu.org

Figure 21: Cerberus SSK classifier confusion matrix.

6.3.3 Training Speed

Training time grows, in a linear fashion, from 14.13 to 101.49 seconds (see Figure 23). As

Cerberus is designed to analyze a live stream of DNS data, the training time is not negligible,

as it could make the classification process too long. To address this issue we can store the

trained SVM machines: For instance if an unseen domain d can belong either to cluster α or

cluster β, Cerberus trains the SVM using cluster α and cluster β. Then this machine is stored

103

0

5,000

10,000

15,000

0.2 0.4 0.60.6 0.8
0

5,000

Figure 22: From the top: cluster a’s and cluster d’s distances distributions.

as a binary file using the cPickle Python library: When another unseen domain g can belong

either to cluster α or cluster β, Cerberus retrieves the stored trained SVM, loads it in memory

and uses it to label g, thus drastically improving the performances.

6.4 Cerberus in the Wild

This is the main test to prove the effectiveness of Cerberus. We decided to run a batch

experiment of one week and one day of deployment in the wild, using real data from the

aforementioned dataset (see Section 6.2). During the first week Cerberus leveraged the ground

truth generated in the Bootstrap Phase to classify those unseen domains that would share

their IP address with the clusters in the ground truth. Those unseen domains that would

not share the IP address with any of the clusters were considered “suspicious”, as were not

104

10 20 30 40 50 60 70 80 90 100 110

200
300
400
500
600
700
800
900
1000

Training Time (s)

P
oi
nt
s

Figure 23: Cerberus classifier training time.

discarded by the Filtering Phase (i.e., they are likely-malicious), and stored in a database.

Then, after one week time passed, the Time Detective ran the clustering routine on these

“suspicious” domains: New clusters were found and added to the ground truth. The day after

Cerberus used that knowledge to successfully label unseen domains belonging to previously

unknown threats, drastically augmenting the number of detected malicious domains.

6.4.1 The Bootstrap

Before starting classifying data, Cerberus can be bootstrapped: If this happens the system

can leverage the knowledge obtained to classify unseen domains. Otherwise Cerberus starts

to function with no knowledge and will build its ground truth throughout time in an automatic

fashion. We decided to bootstrap the system, in order to see how Cerberus behaves before

and after it increases its knowledge, and to use the blacklist provided by Exposure [5], thus

105

providing Cerberus with the same knowledge used to feed Phoenix [22]. OnceThe Bootstrap

is completed, Cerberus possesses a list of eleven clusters of malicious domains likely generated

by the same DGA: Among others we find clusters that Schiavoni et al. [22] confirmed referring

to Palevo and Conficker. Two of the eleven clusters generated by Phoenix in Bootstrap

Phase are reported in Table VIII.

TABLE VIII: TWO OF THE ELEVEN CLUSTERS PRODUCED BY PHOENIX.

Cluster f105c

Threat: Palevo
IPs: 176.74.176.175

208.87.35.107

Domains: cvq.com

epu.org

bwn.org

Cluster 0f468

Threat: Sality
IPs: 217.119.57.22

91.215.158.57

178.162.164.24

94.103.151.195

Domains: jhhfghf7.tk

faukiijjj25.tk

pvgvy.tk

6.4.2 Collecting Data

The test started the day February, 7th 2013. At the end of the week, February, 14th 2013,

roughly 22,000,000 DNS replies were analyzed, 187 domains were classified as malicious and

labeled using the ground truth provided by Phoenix in the Bootstrap Phase (see Table IX).

We searched VirusTotal for the labeled domains and we were able to prove that 167 domains

belonged to the Conficker botnet, while the remainder to other botnets or generic malware,

106

including the Flashback botnet. Moreover 3,576 domains considered by Cerberus “suspi-

cious” (i.e., they were not filtered out by the Filtering Phase) were stored together with

their IP addresses: We counted exactly 1,300 distinct IP addresses, which means that multiple

“suspicious” domains resolved to the same IP.

TABLE IX: A SAMPLE OF THE MALICIOUS DOMAINS CLASSIFIED DURING THE
FIRST WEEK.

Labeled 07e21

Threat: Conficker
Domains: hhdboqazof.biz

poxqmrfj.biz

hcsddszzzc.ws

tnoucgrje.biz

gwizoxej.biz

jnmuoiki.biz

6.4.3 Producing New Knowledge

At the end of the week Cerberus performed the clustering routine over the domains resolv-

ing to suspicious IP addresses. As described in Section 4.2.3, the clustering routine is performed

only after grouping the IP addresses by Autonomous System. We report in Table X the main

ASs involved in the analysis. We applied the clustering routine, which yielded 47 clusters, of

which the bigger ones (counting more than 25 elements) are reported in Table XI along with

the related threat. This means that, taking as input only the passive DNS traffic, Cerberus

was able to identify, in a completely automatic fashion, groups of IPs that are associated to

107

TABLE X: AUTONOMOUS SYSTEMS OF THE DOMAINS IN CLUSTERING PHASE.

AS Network Name Country

15456 INTERNETX-AS InterNetX GmbH DE
22489 Castle Access Inc UK
47846 Sedo GmbH DE
53665 BODIS-1 - Bodis, LLC CN

TABLE XI: CERBERUS’ NEW CLUSTERS (ASTERISKS TO MATCH TABLE ??).

Threat AS IPs Size

Sality 15456 62.116.181.25 26
Palevo 53665 199.59.243.118 40
Jadtre* 22489 69.43.161.180

69.43.161.174

173

Jadtre** 22489 69.43.161.180 37
Jadtre*** 22489 69.43.161.167 47
Hiloti 22489 69.43.161.167 24
Palevo 47846 82.98.86.171

82.98.86.176

82.98.86.175

82.98.86.167

82.98.86.168

82.98.86.165

142

Jusabli 30069 69.58.188.49 73
Generic Trojan 12306 82.98.86.169

82.98.86.162

82.98.86.178

82.98.86.163

57

108

TABLE XII: JADTRE THREATS SAMPLE DOMAINS.

Cluster IP Sample Domains

Jadtre* 69.43.161.180

69.43.161.174

379.ns4000wip.com

418.ns4000wip.com

285.ns4000wip.com

78.ns4000wip.com

272.ns4000wip.com

98.ns4000wip.com

Jadtre** 69.43.161.180 391.wap517.net

251.wap517.net

340.wap517.net

137.wap517.net

203.wap517.net

128.wap517.net

Jadtre*** 69.43.161.167 388.ns768.com

353.ns768.com

296.ns768.com

312.ns768.com

153.ns768.com

30.ns768.com

malicious botnet activity (e.g., C&C). This is new knowledge, which an investigator can use

to find new botnet servers. There are three clusters, two of which sharing the IP address

69.43.161.180 and all of three residing in the same AS, that are labeled with the same threat,

Jadtre1. The reason why they are not one cluster, though belonging to the same threat, is be-

cause they were generated using three different DGAs, as it is clear from Table XII. This proves

that Cerberus is able of a fine grained detection of malicious activities, showing its capability

of isolating not only different threats, but different DGA used by the same threat. The new

clusters were then added to the ground truth. Cerberus ran a similarity check to see whether

the new clusters should be merged together with the old ones. The Welch’s test told that

there was not enough statistical evidence to consider clusters a and b, reported in Table XIII,

1http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=
TrojanDownloader:Win32/Jadtre.A

http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=TrojanDownloader:Win32/Jadtre.A
http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=TrojanDownloader:Win32/Jadtre.A

109

dissimilar, thus Cerberus decided to merge them together. Further investigations1 confirmed

that the IP addresses from both cluster a and cluster b belonged to Palevo C&Cs. This means

that Cerberus was able to understand that the domains of the two clusters, the first generated

by Phoenix from the Exposure blacklist, and the second discovered by Cerberus analyzing

real passive DNS data, were produced by the same DGA. This discovery lead the ground truth

to be enriched, as the IP address 199.59.243.118 was added to the cluster, together with the

domains. This means that Cerberus was able to successfully discover a migration by lever-

aging only the linguistic features computed by the SSK. After the new clusters were added to

TABLE XIII: CLUSTERS MERGED BY CERBERUS.

Cluster a

IPs: 176.74.176.175

208.87.35.107

Sample Domains cvq.com

epu.org

bwn.org

lxx.net

Cluster b

IPs: 82.98.86.171

82.98.86.176

82.98.86.175

82.98.86.167

82.98.86.168

82.98.86.165

Sample Domains knw.info

rrg.info

nhy.org

ydt.info

1https://palevotracker.abuse.ch/

https://palevotracker.abuse.ch/

110

the ground truth, Cerberus started again the Detection Phase, leveraging the increased

knowledge: The next day Cerberus classified 319 malicious domains, while during the whole

previous week counted 187 malicious domains, on average 26 domains a day. Hence, Cerberus

was able to increase its knowledge in a completely automatic and unsupervised fashion and use

this enhanced knowledge to drastically (twelve times as much) augment the number of daily

classified malicious domains.

111

6.4.4 Summary

Firstly Cerberus was bootstrapped using the Exposure [5] blacklist, extracting eleven

clusters of domains referring to the same DGA. Then for one week Cerberus analyzed a stream

of passive DNS data collected in the wild by a ISC/SIE DNS monitor. During that week 187

malicious domains were detected and 1,300 IP addresses were labeled as “suspicious”. At the

end of the week the clustering routine produced new knowledge in the form of 47 new clusters,

which were added to the ground truth. One of them was automatically merged by Cerberus

and a check of the IP addresses on the Web confirmed that both clusters belong to the Palevo

botnet. Therefore Cerberus was able to

1. perform on-line detection of known threats;

2. automatically detect new threats;

3. increase its knowledge;

4. use the new knowledge to classify previously unknown threats.

We think that these results are quite encouraging and so prove the effectiveness of Cerberus.

Obviously there is more that can be done and there are some difficulties to overcome. These

matters shall be addressed in the next chapter.

CHAPTER 7

CONCLUSIONS

Cerberus results seem promising and it is therefore worth continuing to follow this approach.

In this chapter we first address the limitations Cerberus suffers from, mainly related to the

Detection Phase. Then we will discuss the possible further developments that could fix the

aforementioned issues and enhance the system. Finally we will try to briefly summarize what

we achieved with Cerberus.

Chapter Organization

The remainder of the chapter is organized in the following fashion:

• in Section 7.1 we discuss the current limitations of Cerberus;

• in Section 7.2 we discuss how to possibly address these limitations and how to enhance

Cerberus presenting a few further developments.

112

113

7.1 Limitations

Cerberus suffers from two main limitations, both related to the Detection Phase. The

first one is encountered when an unseen domain d does not belong to any of the clusters the

SVM was trained on (i.e. the clusters sharing their IP address with d): Cerberus will anyway

assign it to the most “similar” cluster. This is an issue that needs to be solved. We need to

find a test that allows us to tell when a single domain does not belong to any of the clusters

selected to train the SVM. If this is the case we could design a temporary buffer where these

domains are stored, and perform the clustering routine on this buffer every γ time to isolate

new clusters. This situation is depicted Figure 24: Figure 24 (a) reports sample domains from

Cluster 3e774

16542.com 79581.com

44962.com 46096.com

72879.com 09941.com

42661.com 90338.com

47176.com 69313.com

75827.com 34171.com

(a)

Labeled 3e774

asdfuh982hdodjc.com

open-932978.com

hp21821867626.mygateway.net

www2.h3xa.com

061107dd0208.agulhal.com

clkh71yhks66.com

(b)

Figure 24: Samples from cluster 3e774 and misclassified unseen domains.

the cluster 3e774, generated during the Bootstrap Phase. These domains share an easily

identifiable pattern: They all count five digits and exhibit the .com TLD. In Figure 24 (b) there

114

are a few domains labeled as 3e774, while it is clear that they were not produced using the

same DGA.

The second major limitation regards the clustering routine. It could be the case that the

attacker’s servers span across more than one Autonomous System: in our test in the wild there

was just one recorded case, still it is not a phenomenon to be ignored. E.g., in Table XIV is

reported a cluster of domains found by clustering on the flattened list of domains related to

the suspicious IPs instead of grouping them by Autonomous System. We did not follow this

approach in Cerberus because even though it is possible to find a minor number of clusters

otherwise untraceable, the overall clustering quality is seriously worsened.

TABLE XIV: CLUSTER FOUND WITHOUT GROUPING BY AS.

Domains IP

j5.kwu.rcvn.biz 64.191.8.11

1a.flw.rcvn.biz 184.22.158.49

vn.oxw.rcvn.biz 173.212.224.158

sp.ebx.rcvn.biz 37.1.217.136

nm.iwk.rcvn.biz 64.191.8.32

41.ajs.rcvn.biz 184.82.98.22

a3.fxw.rcvn.biz 64.191.58.73

70.axw.rcvn.biz 96.9.139.111

df.wek.rcvn.biz 66.96.248.248

115

7.2 Future Works

We start from the limitations listed in the previous section to elicit the future developments

of Cerberus. The first and crucial improvement to be done is to find a way to determine

whether a single domain is coherent with the cluster it is about to be put into. This is crucial

because, as stated in the previous section, an IP address could serve more than one malicious

activity, each one possibly employing a different DGA. The second crucial development con-

cerns the clustering routine, as Cerberus is not able of detecting malicious activities that

span different Autonomous Systems. One possible way to address this issue is to combine the

clustering results obtained when grouping and when not grouping by AS.

One improvement regards the Classifier. Shafer and Vovk [23] proposed the Conformal

Predictor, a tool that tells you how much confident you can be about a prediction, based on

the history of your past predictions. We would like this component to be added to Cerberus,

as we would have a way to determine how much confident we can be when labeling an unseen

domain to Cerberus’s ground truth.

One important future development is to save the SVMs as they are trained, storing a

dictionary where the keys are the clusters the SVM was trained on and the values are the

SVMs objects themselves.

Finally we would like to deploy Cerberus and analyze real time data. Then we could

develop a web application where the user can i) ask the system whether a domain or an IP is

malicious (i.e., that domain or IP is in one of the clusters of the ground truth), ii) download

116

the ground truth and iii) upload a dump of traffic (think of a corporate network) and have

Cerberus analyzing it to detect and discover malicious activities.

7.3 Concluding Remarks

We presented Cerberus, a system able to detect and characterize unseen DGA-based

threats, botnets above all, easily deployable and free of privacy related issues as it analyzes

passive DNS data, and able to operate without any a priori knowledge. We started from and

improved the results obtained by Phoenix [22], being able to discover new threats that rely

on C&C servers that exhibit unseen IP addresses, and building a better classifier which is now

trained not on ad hoc parameters, but leverages the domain name itself as classification feature.

We tested Cerberus in the wild, analyzing one week of passive DNS data collected from

the 7th to the 14th of February, 2013. The system, without any a priori knowledge, was able

to isolate 47 clusters of malicious domains belonging to various threats among which we find

the well known Palevo, Sality and Jadtre. Moreover we tested the classifier in a four classes

classification test, featuring an overall precision of 93% with 800 points in the training set.

Therefore, given the results obtained, we argue that Cerberus improves the systems pro-

posed so far by adopting an unsupervised approach and analyzing passive DNS data, two

features that allow Cerberus to automatically detect previously unseen DGA-based threats

in the Internet.

CITED LITERATURE

[1] Alpaydin, E. Introduction to machine learning. MIT press: 2004. [Citation at page 69]

[2] Antonakakis, M., Perdisci, R., Lee, W., Vasiloglou, II, N., Dagon, D.: Detecting malware

domains at the upper dns hierarchy. In Proceedings of the 20th USENIX Conference on

Security, SEC’11, pages 27–27, Berkeley, CA, USA, 2011. USENIX Association. URL

http://dl.acm.org/citation.cfm?id=2028067.2028094. Retrieved on April 21, 2014.

[Citations at pages 2, 42, 43, 44 and 55]

[3] Antonakakis, M., Perdisci, R., Nadji, Y., Vasiloglou, N., Abu-Nimeh, S., Lee, W., Dagon,

D.: From throw-away traffic to bots: Detecting the rise of dga-based malware. In Proceed-

ings of the 21st USENIX Conference on Security Symposium, Security’12, pages 24–24,

Berkeley, CA, USA, 2012. USENIX Association. URL http://dl.acm.org/citation.

cfm?id=2362793.2362817. Retrieved on April 21, 2014. [Citations at pages 23, 43, 48,

49, 55 and 56]

[4] Bailey, M., Cooke, E., Jahanian, F., Xu, Y., Karir, M.: A survey of botnet technology and

defenses. In Conference For Homeland Security, 2009. CATCH ’09. Cybersecurity Appli-

cations Technology, pages 299–304, March 2009. doi: 10.1109/CATCH.2009.40. [Citations

at pages 2 and 11]

[5] Bilge, L., Kirda, E., Kruegel, C., Balduzzi, M.: Exposure: Finding malicious domains

using passive DNS analysis. In Proceedings of NDSS, 2011. [Citations at pages 43, 44, 45,

47, 66, 104 and 111]

117

http://dl.acm.org/citation.cfm?id=2028067.2028094
http://dl.acm.org/citation.cfm?id=2362793.2362817
http://dl.acm.org/citation.cfm?id=2362793.2362817

CITED LITERATURE (Continued) 118

[6] Bilge, L., Balzarotti, D., Robertson, W., Kirda, E., Kruegel, C.: Disclosure: Detecting

botnet command and control servers through large-scale netflow analysis. In Proceedings

of the 28th Annual Computer Security Applications Conference, ACSAC ’12, pages 129–

138, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1312-4. doi: 10.1145/2420950.

2420969. URL http://doi.acm.org/10.1145/2420950.2420969. Retrieved on April 21,

2014. [Citations at pages 2, 43, 46 and 55]

[7] ENISA: ENISA Threat Landscape, Responding to the Evolving Threat Environment, 2012.

[Citation at page 1]

[8] ENISA: ENISA Threat Landscape, Mid-year 2013, 2013. [Citations at pages 1 and 11]

[9] Feily, M., Shahrestani, A., Ramadass, S.: A survey of botnet and botnet detection. In

Emerging Security Information, Systems and Technologies, 2009. SECURWARE ’09. Third

International Conference on, pages 268–273, June 2009. doi: 10.1109/SECURWARE.2009.

48. [Citations at pages 8 and 16]

[10] Grier, C., Ballard, L., Caballero, J., Chachra, N., Dietrich, C.J., Levchenko, K., Mavrom-

matis, P., McCoy, D., Nappa, A., Pitsillidis, A., et al.: Manufacturing compromise: the

emergence of exploit-as-a-service. In Proceedings of the 2012 ACM conference on Computer

and communications security, pages 821–832. ACM, 2012. [Citation at page 1]

[11] Haddadi, F., Zincir-Heywood, A.: Analyzing string format-based classifiers for botnet

detection: Gp and svm. In Evolutionary Computation (CEC), 2013 IEEE Congress on,

pages 2626–2633, June 2013. doi: 10.1109/CEC.2013.6557886. [Citations at pages 50, 51,

52 and 55]

http://doi.acm.org/10.1145/2420950.2420969

CITED LITERATURE (Continued) 119

[12] Haddadi, F., Kayacik, H.G., Zincir-Heywood, A.N., Heywood, M.I.: Malicious automati-

cally generated domain name detection using stateful-sbb. In Applications of Evolutionary

Computation, pages 529–539. Springer, 2013. [Citations at pages 43, 50, 69 and 70]

[13] Holz, T., Gorecki, C., Rieck, K., Freiling, F.C.: Measuring and Detecting Fast-Flux Service

Networks. In Symposium on Network and Distributed System Security, 2008. [Citation at

page 66]

[14] Hubert, L., Schultz, J.: Quadratic assignment as a general data analysis strategy. British

Journal of Mathematical and Statistical Psychology, 29(2):190–241, 1976. [Citation at

page 75]

[15] Jarvis, K.: CryptLocker Ransomware, 2013. URL http://www.secureworks.com/

cyber-threat-intelligence/threats/cryptolocker-ransomware/. Retrieved on April

21, 2014. [Citations at pages 30, 31, 34 and 35]

[16] Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classification

using string kernels. J. Mach. Learn. Res., 2:419–444, March 2002. ISSN 1532-4435. doi:

10.1162/153244302760200687. URL http://dx.doi.org/10.1162/153244302760200687.

Retrieved on April 21, 2014. [Citations at pages 4, 51, 70 and 71]

[17] McAfee Labs: McAfee Threats Report: First Quarter 2013, 2013. URL http:

//www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2013.pdf. Re-

trieved on April 21, 2014. [Citations at pages 1 and 29]

http://www.secureworks.com/cyber-threat-intelligence/threats/cryptolocker-ransomware/
http://www.secureworks.com/cyber-threat-intelligence/threats/cryptolocker-ransomware/
http://dx.doi.org/10.1162/153244302760200687
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2013.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2013.pdf

CITED LITERATURE (Continued) 120

[18] Neugschwandtner, M., Comparetti, P.M., Platzer, C.: Detecting Malware’s Failover C&C

Strategies with Squeeze. In Proceedings of the 27th Annual Computer Security Applications

Conference, ACSAC ’11, pages 21–30, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-

0672-0. doi: 10.1145/2076732.2076736. URL http://doi.acm.org/10.1145/2076732.

2076736. Retrieved on April 21, 2014. [Citation at page 2]

[19] Perdisci, R., Corona, I., Giacinto, G.: Early detection of malicious flux networks via large-

scale passive DNS analysis. Dependable and Secure Computing, IEEE Transactionson, 9

(5):714–726, 2012. [Citations at pages 43, 47, 48 and 55]

[20] Rossow, C., Dietrich, C.J., Bos, H., Cavallaro, L., van Steen, M., Freiling, F.C., Pohlmann,

N.: Sandnet: Network traffic analysis of malicious software. In Proceedings of the First

Workshop on Building Analysis Datasets and Gathering Experience Returns for Security,

BADGERS ’11, pages 78–88, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0768-0.

doi: 10.1145/1978672.1978682. URL http://doi.acm.org/10.1145/1978672.1978682.

Retrieved on April 21, 2014. [Citation at page 50]

[21] Sancho, D., Link, R.: Sinkholing Botnets, A Trend Micro Techni-

cal Paper, 2011. URL http://www.trendmicro.co.uk/media/misc/

sinkholing-botnets-technical-paper-en.pdf. Retrieved on April 21, 2014. [Citations

at pages 18 and 25]

[22] Schiavoni, S., Maggi, F., Cavallaro, L., Zanero, S.: Phoenix: DGA-based botnet tracking

and intelligence. In Proceedings of the International Conference on Detection of Intrusions

and Malware, and Vulnerability Assessment (DIMVA), London, UK, 2014. Springer-Verlag.

http://doi.acm.org/10.1145/2076732.2076736
http://doi.acm.org/10.1145/2076732.2076736
http://doi.acm.org/10.1145/1978672.1978682
http://www.trendmicro.co.uk/media/misc/sinkholing-botnets-technical-paper-en.pdf
http://www.trendmicro.co.uk/media/misc/sinkholing-botnets-technical-paper-en.pdf

CITED LITERATURE (Continued) 121

[Citations at pages viii, 2, 3, 11, 16, 18, 23, 43, 47, 50, 52, 53, 54, 55, 56, 67, 68, 88, 95,

99, 105 and 116]

[23] Shafer, G., Vovk, V.: A tutorial on conformal prediction. J. Mach. Learn. Res., 9:371–

421, June 2008. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=1390681.

1390693. Retrieved on April 21, 2014. [Citation at page 115]

[24] Sharifnya, R., Abadi, M.: A novel reputation system to detect dga-based botnets. In

Computer and Knowledge Engineering (ICCKE), 2013 3th International eConference on,

pages 417–423, Oct 2013. doi: 10.1109/ICCKE.2013.6682860. [Citations at pages 2, 43,

49, 50 and 55]

[25] Spagnuolo, M.: Bitiodine: Extracting intelligence from the bitcoin network. Master’s the-

sis, Politecnico Di Milano, Piazza Leonardo da Vinci 32, Milan, December 2013. [Citations

at pages 2, 9, 37 and 39]

[26] Stone-Gross, B., Cova, M., Cavallaro, L., Gilbert, B., Szydlowski, M., Kemmerer, R.,

Kruegel, C., Vigna, G.: Your botnet is my botnet: Analysis of a botnet takeover. In

Proceedings of the 16th ACM Conference on Computer and Communications Security,

CCS ’09, pages 635–647, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-894-0.

doi: 10.1145/1653662.1653738. URL http://doi.acm.org/10.1145/1653662.1653738.

Retrieved on April 21, 2014. [Citations at pages 2, 21, 25, 26, 27 and 28]

[27] Stone-Gross, B., Kruegel, C., Almeroth, K., Moser, A., Kirda, E.: Fire: Finding rogue

networks. In Computer Security Applications Conference, 2009. ACSAC’09. Annual, pages

231–240. IEEE, 2009. [Citation at page 47]

http://dl.acm.org/citation.cfm?id=1390681.1390693
http://dl.acm.org/citation.cfm?id=1390681.1390693
http://doi.acm.org/10.1145/1653662.1653738

CITED LITERATURE (Continued) 122

[28] Weimer, F.: Passive dns replication. In FIRST Conference on Computer Security Incident,

2005. [Citation at page 98]

[29] Xu, W., Wang, X.: Think you know fast-flux domains? think again, 2013. URL https://

media.blackhat.com/us-13/US-13-Xu-New-Trends-in-FastFlux-Networks-Slides.

pdf. Retrieved on April 21, 2014. [Citation at page 66]

https://media.blackhat.com/us-13/US-13-Xu-New-Trends-in-FastFlux-Networks-Slides.pdf
https://media.blackhat.com/us-13/US-13-Xu-New-Trends-in-FastFlux-Networks-Slides.pdf
https://media.blackhat.com/us-13/US-13-Xu-New-Trends-in-FastFlux-Networks-Slides.pdf

VITA

Edoardo Giovanni Colombo

EDUCATION

• Diploma di Liceo Scientifico (High School Diploma equivalent) at Liceo Scientifico Statale

Leonardo da Vinci, Milano.

Final grade: 100/100, year: 2008.

• Laurea (B.Sc. equivalent) in Ingegneria Informatica at Politecnico di Milano.

Final grade: 103/110, year: 2011.

• Attending Laurea Magistrale (M.Sc. equivalent) in Ingegneria Informatica at Politecnico

di Milano.

• Attending Master of Science in Computer Science at University of Illinois at Chicago.

Final GPA: 4.0/4.0.

123

	1 Introduction
	2 Botnets
	 What is a botnet?
	 Botnet Purposes

	 Botnet Topologies
	 Centralized
	 P2P
	 Unstructured

	 Communication Systems of DNS-based Botnets
	 Preliminary Concepts
	 Command & Control Channel
	 Rallying Techniques

	 Domain Generation Algorithms
	 The Idea
	 The Choice of the Seed
	 Migration Strategy
	 Side Effects and Weaknesses

	 Botnet Countermeasures
	 Sinkholing
	 Takeover

	 Botnets: a Modern Threat
	 Torpig
	 Cryptolocker

	 Summary

	3 Tracking down a Botnet
	 Problem Statement
	 State of the Art
	 Detecting Malware Domains at the Upper DNS Hierarchy
	 Detecting Malicious Activities by Passive DNS Analysis
	 Detecting C&C Servers by NetFlow data Analysis
	 Detecting FFSN by passive DNS data analysis
	 Leveraging NXDOMAIN and clients' IP addresses
	 Leveraging activity history to detect botnets
	 Using SVM and SSK to classify AGDs
	 Phoenix, Detecting DGA-based botnets

	 Goals and Challenges

	4 Introducing Cerberus
	 Cerberus Overview
	 Cerberus Details
	 The Bootstrap Phase
	 The Filtering Phase
	 The Detection Phase

	 Summary

	5 System Implementation
	 System Architecture
	 The Process
	 The Actors

	 System Details
	 The Configuration File
	 The Domain Data Structure
	 The Bootstrap Phase
	 The Filtering Phase
	 The Detection Phase

	 Summary

	6 Experimental Validation
	 Goals
	 Dataset
	 The Classifier
	 Accuracy
	 Analysis of Classification Errors
	 Training Speed

	 Cerberus in the Wild
	 The Bootstrap
	 Collecting Data
	 Producing New Knowledge
	 Summary

	7 Conclusions
	 Limitations
	 Future Works
	 Concluding Remarks

	 CITED LITERATURE
	 VITA

