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Abstract

In this note we extend the necessary and sufficient conditions of Boyle-
Handleman 1991 and Kim-Ormes-Roush 2000 for a nonzero eigenvalue multiset
of primitive matrices over R+ and Z+, respectively, to irreducible matrices.

2010 Mathematics Subject Classification. 15A18, 15A29, 15A42, 15B36,
15B48.
Key words. Inverse eigenvalue problems for nonnegative matrices.

1 Introduction

Denote by Rn×n ⊃ Rn×n
+ the algebra of real valued n × n matrices and the cone

of n × n nonnegative matrices, respectively. For A ∈ Rn×n denote by Λ(A) =
{λ1(A), . . . , λn(A)} the eigenvalue multiset of A, i.e. det(zI−A) =

∏n
i=1(z−λi(A)).

An outstanding problem in matrix theory, called NIEP, is to characterize a multiset
Λ = {λ1, . . . , λn} which is an eigenvalue multiset of some A ∈ Rn×n. Denote by
ρ(Λ) := max{|λ|, λ ∈ Λ}, and by Λ(r) all elements in Λ satisfying |λ| = r ≥ 0.
For λ ∈ Λ denote by m(λ) ∈ N the multiplicity of λ in Λ. The obvious necessary
conditions for Λ = Λ(A) for some A ∈ Rn×n

+ are the trace conditions:

sk(Λ) :=
n∑

i=1

λk
i ≥ 0 for k = 1, . . . , (1.1)

since sk(Λ(A)) = tr Ak. The following theorem is deduced straightforward from [2,
Thm 2]. (See §2.)

Theorem 1.1 Let Λ = {λ1, . . . , λn} be a multiset of complex numbers. Assume
that the inequalities in (1.1) hold except for a finite number values of k. Then

1. Λ̄ = Λ.

2. ρ(Λ) ∈ Λ.

3. m(ρ(Λ)) ≥ m(λ) for all λ ∈ Λ(ρ(Λ)).

4. Assume that ρ(Λ) > 0 and let {λ1, . . . , λp} be all distinct elements of Λ such
that |λi| = ρ(Λ) and m(λi) = m(ρ(Λ)) for i = 1, . . . , p. Then ζΛ(ρ(Λ)) =

Λ(ρ(Λ)) for ζ = e
2π

√
−1

p .
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By considering the diagonal elements of Ak and comparing them with the diag-
onal elements of Akm Loewy and London added the following additional necessary
conditions [7].

Theorem 1.2 Let Λ = {λ1, . . . , λn} be an eigenvalue multiset of some A ∈
Rn×n

+ . Then in addition to the inequalities (1.1) the following inequalities hold.

skm(Λ) ≥ 1
nk−1

(sm(Λ))k for m, k − 1 = 1, . . . . (1.2)

In particular,
if sm(Λ) > 0 then skm(Λ) > 0 for k = 2, . . . . (1.3)

The inequalities (1.1) and (1.2) imply that Λ is an eigenvalue multiset of some
A ∈ Rn×n

+ in the following cases: n = 3; n = 4 and Λ is a multiset of real numbers.
For n = 4 and nonreal Λ = {λ1, λ2, λ3, λ4} the conditions (1.1) and (1.2) are not
sufficient [7]. The necessary and sufficient conditions are given in [9]. The inequality
ns4(Λ) ≥ (s2(Λ))2 in (1.2) can be improved to (n− 1)s4(Λ) ≥ (s2(Λ))2 if s1(Λ) = 0
and n is odd [8].

Definition 1.3 A multiset Λ = {λ1, . . . , λn} ⊂ C is called a Frobenius multiset
if the following conditions hold.

1. Λ̄ = Λ.

2. ρ(Λ) ∈ Λ.

3. m(λ) = 1 for each λ ∈ Λ(ρ(Λ)).

4. Assume that #Λ(ρ(Λ)) = p. Then ζΛ = Λ for ζ = e
2π

√
−1

p .

The Frobenius theorem for irreducible A ∈ Rn×n
+ , i.e. (I + A)n−1 is a positive

matrix, claims that ρ(Λ(A)) > 0 and Λ(A) is a Frobenius set. In particular, an
irreducible A ∈ Rn×n

+ is primitive, i.e. A(n−1)2+1 is a positive matrix, if and only if
Λ(ρ(Λ)) = {ρ(Λ)}, see [3, XII.§5] and [4, §8.5.9].

We say that a multiset Λ = {λ1, . . . , λn}, where λi ̸= 0 for i = 1, . . . , n, is a
nonzero eigenvalue multiset of a nonnegative matrix if there exists an integer N ≥ n
and A ∈ RN×N

+ , such that Λ is obtained from Λ(A) by removing all zero eigenvalues.
The following remarkable theorem was proved by Boyle and Handelman [1]. Namely,
a multiset Λ ⊂ C\{0} is a nonzero spectrum of a nonnegative primitive matrix if
and only if Λ(ρ(Λ)) = {ρ(Λ)}, and the inequalities (1.1) and (1.3) hold. See the
recent proof of Thomas Laffey [6] of a simplified version of this result. The aim
of this note is to extend the theorem of Boyle-Handelman to a nonzero eigenvalue
multiset of nonnegative irreducible matrices.

Theorem 1.4 Let Λ be a multiset of nonzero complex numbers. Then Λ is a
nonzero eigenvalue multiset of a nonnegative irreducible matrix if and only if Λ is
a Frobenius set, and (1.1) and (1.3) hold.

Similarly, we extend the results of Kim, Ormes and Roush [5] to a nonzero eigenvalue
multiset of nonnegative irreducible matrices with integer entries.
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2 Proofs of Theorems 1.1 and 1.4

Proof of Theorem 1.1. For Λ = {0, . . . , 0} the theorem is trivial. Assume that
ρ(Λ) > 0. Consider the function

fΛ(z) =
n∑

i=1

1
1 − λiz

=
∞∑

k=0

sk(Λ)zk.

Assume that sk(Λ) ≥ 0 for k > N . Then by subtracting a polynomial P (z) of degree
N at most, we deduce that f0(z) := f(z) − P (z) has real nonnegative MacLaurin
coefficients. So f0(z̄) = f(z). Hence Λ̄ = Λ. The radius of convergence of this
series is R(fΛ) = 1

ρ(Λ) . The principal part of f is f1 :=
∑

i,|λi|=ρ(Λ)
1

1−λiz
. So

π(fΛ(z)) = {(λ1,m(λ1), 1), . . . , (λq,m(λq), 1)}, where λ1, . . . , λq are all pairwise dis-
tinct elements of Λ(ρ(Λ)), see [2, Dfn. 1]. Then parts 2–4 follow from [2, Thm. 2].

Proof of Theorem 1.4. Assume first that Λ is a nonzero eigenvalue multiset of
a nonnegative irreducible matrix. The Frobenius theorem yields that Λ has to be
a Frobenius set, and (1.1) and (1.3) hold. Assume now that Λ is a Frobenius set,
and (1.1) and (1.3) hold. In view of the Boyle-Handelman theorem it is enough to
consider the case

Λ(ρ(Λ)) = {ρ(Λ), ζρ(Λ), . . . , ζp−1ρ(Λ)}, for ζ = e
2π

√
−1

p and 1 < p ∈ N. (2.1)

Observe first that sk(Λ) = 0 if p ̸ |k. Let ϕ : C → C be the map z 7→ zp. Since
ζΛ = Λ, it follows that for z ∈ Λ with multiplicity m(z) the multiplicity of zp in ϕ(Λ)
is pm(z). Hence ϕ(Λ) is a union of p copies of a Frobenius set Λ1, where ρ(Λ1) =
ρ(Λ)p and Λ1(ρ(Λ1)) = {ρ(Λ1)}. Moreover skp(Λ) = psk(Λ1). Hence Λ1 satisfies
the assumptions of the Boyle-Handelman theorem. Thus there exists a primitive
matrix B ∈ RM×M

+ whose nonzero eigenvalue multiset is Λ1. Let A = [Aij ]
p
i=j=1 be

the following nonnegative matrix of order pM .

A =


0n×n In 0n×n 0n×n . . . 0n×n

0n×n 0n×n In 0n×n . . . 0n×n
...

...
...

...
...

...
0n×n 0n×n 0n×n 0n×n . . . In

B 0n×n 0n×n 0n×n . . . 0n×n

 . (2.2)

Then A is irreducible and the nonzero part of eigenvalue multiset Λ(A) is Λ. 2

3 An extension of Kim-Ormes-Roush theorem

In this section we give necessary and sufficient conditions on a multiset Λ of nonzero
complex number to be a nonzero eigenvalue multiset of a nonnegative irreducible
matrix with integer entries. Recall the Möbius function µ : N → {−1, 0, 1}. First
µ(1) = 1. Assume that n > 1. If n is not square free, i.e. n is divisible by l2 for
some positive integer l > 1, then µ(n) = 0. If n > 1 is square free, let ω(n) be
the number of distinct primes that divide n. Then µ(n) = (−1)ω(n). The following
theorem is a generalization of the Kim-Ormes-Roush theorem [5].

3



Theorem 3.1 Let Λ be a multiset of nonzero complex numbers. Then Λ is a
nonzero eigenvalue multiset of a nonnegative irreducible matrix with integer entries
if and only if the following conditions hold.

1. Λ is a Frobenius set.

2. The coefficients of the polynomial
∏

λ∈Λ(z − λ) are integers.

3. tk(Λ) :=
∑

d|k µ(k
d )sd(Λ) ≥ 0 for all k ∈ N.

The case Λ(ρ(Λ)) = {ρ(Λ)} is the Kim-Ormes-Roush theorem.

Proof. Assume that Λ is a nonzero spectrum of a nonnegative irreducible matrix
with integer entries, i.e. A ∈ ZN×N

+ . Then part 1 follows from the Frobenius
theorem. Since det(zI − A) has integer coefficients we deduce part 2. It is known
that tk(Λ) = tk(Λ(A)) is the number of minimal loops of length k in the directed
multigraph induced by A, see [1]. Hence part 3 holds.

Suppose that Λ satisfies 1–3. In view of the Kim-Ormes-Roush theorem it is
enough to assume the case (2.1). We now use the notations and the arguments of the
proof of Theorem 1.4. First sk(Λ) = 0 if p ̸ |k. Second

∏
λ∈Λ(z−λ) =

∏
κ∈Λ1

(zp−κ).
Hence

∏
κ∈Λ1

(z − κ) has integer coefficients. A straightforward calculation shows
that tpk(Λ) = ptk(Λ1). Hence tk(Λ1) ≥ 0. Kim-Ormes-Roush theorem yields the
existence of B ∈ ZM×M

+ such that Λ1 is the nonzero eigenvalue multiset of B. Hence
Λ is the nonzero eigenvalue set of A ∈ ZpM×pM

+ given by (2.2). 2
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