Supporting Information

Sheathless Acoustic Fluorescence Activated Cell Sorting (aFACS) with High Cell Viability

Peixian Li ¹, Minhui Liang ¹, Xiaoguang Lu ¹, Joycelyn Jia Ming Chow ¹, Chrishan J.A.

Ramachandra ^{2,3} and Ye Ai *,1

¹ Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore

² National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore

³ Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore

* Corresponding author. Email: aiye@sutd.edu.sg; Tel: (+65) 6499 4553

Supplementary Figures

Figure S1 Forward scattering (FSC) measurement of particles with different sizes. (a) FSC signals between 10 and 15 μ m polystyrene particles without significant difference. (b) FSC signals between 10 and 20 μ m polystyrene particles with statistically significant difference. (c) FSC signals between 10 and 40 μ m polystyrene particles with statistically significant difference.

Figure S2 Superimposed image with 40 frames over 30 ms to show elasto-inertial focusing for cell alignment at a flow rate of 20 μ L/min. The scale bar is 100 μ m.

Figure S3 Superimposed image with 40 frames over 30 ms to demonstrate 3 μm fluorescent polystyrene particle sorting. The scale bar is 100 μm .

Figure S4 A representative microscopic image of sorted MCF-7 cells after culture for 24 hours.