

Responsible conduct of research

Enrico Glerean, DSc, @eglerean, www.glerean.com

Outline of today's workshop

- 1. What is responsible conduct of research (RCR)?
- 2. What is research misconduct?
- 3. Why do we care? And why do researchers engage with unethical research practices?
- 4. How can we fix things?

Focus is on researchers at organizations following TENK guidelines. Similar considerations affect students, teachers, policy makers, company researchers, etc...

Let's start with the references

Aalto University School of Science

Where to read and learn

From TENK:

https://www.tenk.fi/en/responsible-conduct-of-research

Reproducibility (quantitative methods):

https://www.slideshare.net/deevybishop/what-is-the-reproducibility-crisis-in-science-and-wh at-can-we-do-about-it

Reproducibility (qualitative methods):

https://openworking.wordpress.com/2019/02/11/what-does-reproducibility-mean-for-qualitat ive-research/

When in doubt, ask! <u>researchdata@aalto.fi</u> or your dept. lawyer or data agent

...and also (not covered today)

Research ethics at Aalto

https://www.aalto.fi/en/research-art/research-ethics-and-research-integrity

https://mycourses.aalto.fi/course/view.php?id=23138 (needs Aalto login)

TENK guidelines to work with human subjects:

https://www.tenk.fi/sites/tenk.fi/files/lhmistieteiden_eettisen_ennakkoarvioinnin_ohje_2019. pdf

How to handle personal data in research

https://www.aalto.fi/en/services/how-to-handle-personal-data-in-research

Again, when in doubt, ask! <u>researchdata@aalto.fi</u> or your dept. lawyer or data agent

1. What is responsible conduct of research?

Aalto University School of Science

Responsible Conduct of Research

• RCR touches ethics, law, and philosophy of science.

Ethics is not Law

Responsible Conduct of Research

- RCR touches ethics, law, and philosophy of science.
- I find it challenging to define RCR ("Do unto others as you would have them do unto you"), it is easier to define by stating what it is not
- Research misconduct and questionable research practices: once we all agree on what is deemed as research misconduct, we can identify ways to fix it, prevent it, and incentivise researchers towards practices that are against it.

2. What is research misconduct?

Aalto University School of Science

Research misconduct

- According to TENK 2012 guidelines
 - **1. Fabrication** (false data)
 - 2. Falsification (false results)
 - **3. Plagiarism** (stealing of other's materials)
 - **4. Misappropriation** (scooping, not acknowledging work done by others)

Research misconduct as disregarding RCR

- Harming others' works for profit (ignoring literature, unethical peer review, manipulating citation metrics, conflicts of interest)
- Misleading the general public (false findings excessively advertised)
- Questionable research practices (p-hacking, harking, publication bias, analysis bias)

Research misconduct exercise

- **1. Fabrication** (false data)
- 2. Falsification (false results)
- 3. Plagiarism (stealing of other's materials)
- 4. Misappropriation (scooping)

Exercise: Which one is the worst? How can you detect them?

FFPM

- Falsification, Fabrication, Plagiarism, Misappropriation
- They can be detected with current technologies although tools and other researchers can be also tricked.
- I think Falsification and Fabrication are the worst
- Solution: don't do it

Funny recent plagiarism example from machine learning:

https://www.reddit.com/r/learnmachinelearning/comments/dh38x9/siraj_raval_has_a_new_paper_the_neural_qub it_its/

E.g. the GRIM test:

https://medium.com/@jamesheathers/the-grim-test-a-method-for-evaluating-published-research-9a4e5f05e870

More about Brown and Heathers:

https://www.sciencemag.org/news/2018/02/meet-data-thugs-out-expose-shoddy-and-questionable-research

Taxonomy of the types of misconduct

- Research misconduct is more than FFPM
- It touches all aspects of research activities
- We can define a continuum of good/bad practices

https://link.springer.com/article/10.1007/s10805-019-09342-4

2.b What <u>should</u> be considered research misconduct in 2019?

Aalto University School of Science

René Bekkers https://slideplayer.com/slide/7787128/

Honest mistakes

• Reporting *r* = 0.816 while...

https://en.wikipedia.org/wiki/Anscombe%27s_quartet

Honest mistakes

• Reporting a significant group difference while...

https://journals.plos.org/plosbiology/article?id =10.1371/journal.pbio.1002128

Honest mistakes

- Reporting a negative correlation while...
- Solution: visualize all data & share visualization code

https://en.wikipedia.org/wiki/Simpson%27s_paradox

Problems caused by researchers 1

- Unconscious bias / Confirmatory bias / Seeing patterns that are not there / HARKing
- ... which leads to irreproducible findings, publication bias or to the file drawer effect
- Solution: eradicate the subjectivity from methods, automate data collection and analysis, make data and methods open, pre-register hypothesis, replication dataset

https://www.slideshare.net/deevybishop/what -is-the-reproducibility-crisis-in-science-and-w hat-can-we-do-about-it

Problems caused by researchers 2

- Failure to understand statistics
- ... which often leads to p-hacking (trying multiple analysis and report only those that reached statistical significance): huge bias for false positives
- Solutions: simulated data, separate replication dataset, blind analysis with masked data, pre-registration of analysis, replication dataset

https://www.slideshare.net/deevybishop/what -is-the-reproducibility-crisis-in-science-and-w hat-can-we-do-about-it

Problems caused by researchers 3

• **Data secrecy** (data privacy / confidentiality as an excuse)

https://www.slideshare.net/deevybishop/what-is-the-reproducibility-crisis-in-science-and-what-can-we-do-about-it & https://blogs.lse.ac.uk/impactofsocialsciences/2015/07/03/data-secrecy-bad-science-or-scientific-misconduct/

3. Why do we care?

...and why do researchers cheat?

Aalto University School of Science

What is the problem?

2005. PLoS Medicine, 2(8), e124. doi: 10.1371/journal.pmed.0020124

"There is increasing concern about the reliability of biomedical research, with recent articles suggesting that up to 85% of research funding is wasted."

Bustin, S. A. (2015). The reproducibility of biomedical research: Sleepers awake! *Biomolecular Detection and Quantification*

THE LANCET

Online First Current Issue All Issues Special Issues Multimedia - Information for Authors
All Content - Search Advanced Search

Research: increasing value, reducing waste

Published: January 8, 2014

No Cure

When Bayer tried to replicate results of 67 studies published in academic journals, nearly two-thirds failed.

NATURE | NEWS

First results from psychology's largest reproducibility test

Replicability crisis

Research misconduct and questionable research practices are at the basis of the reproducibility crisis

Economics (2015) 22 of 67 (33%)

Experimental economics (2016) 11 of 18 (61%)

Experimental philosophy (2018) 28 of 40 (70%)

Microarray gene expression analysis (2009) 8 of 18 (44%)

Oncology & cardiovascular medicine (2011) 14 of 67 (20%)

<u>RP: Cancer Biology</u> (mixed results) 11%-25%

Neuroscience ~6%

https://osf.io/ykfcq/ & https://tinyurl.com/hkujamoviworkshop

https://figshare.com/articles/Publishing_a_reproducible_paper/5440621/1

3.b ...but why do researchers engage with unethical research practices?

Aalto University School of Science

Researchers cut corners because of "the incentives"

- A sensational story is more important than honest results to get it published on Nature or Science
- QRP are often justified in the "publish or perish" culture
- Null results are still not welcomed by peer review

Incentives must not justify misconduct. Nothing justifies misconduct. https://www.talyarkoni.org/blog/2018/10/02/no-its-not-the-incentives-its-you/

https://osf.io/ykfcq/ & https://tinyurl.com/hkujamoviworkshop

4. How can we fix things?

Aalto University School of Science

Transparency in science

Transparency is the principle that should lead us towards the sweet spot of ethical, lawful, reproducible science

- Transparency towards data subjects
 - What data are collected; why they should consent on data reuse; what are the risks of re-identification vs benefits for society
- Transparency towards other scientists
 - Sharing data, processes, code, results
- Transparency towards authorities
 - **GDPR** is here to help us and **WE** decide the **best practices!**

The (brain) experiment pipeline

- The most simple and generic pipeline of an experimental work
- From very rich data formats (M/EEG, fMRI, behaviour) to documents containing 2D colourful pictures, tables and text

• Some bits are always shared (research output)

Should we just trust other scientists for all the other bits?

Younger me: yes! Current me: no!

- Some bits are always shared (research output)
- Sometimes **code/methods** are shared (reusing methods)

- Some bits are always shared (research output)
- Sometimes **code/methods** are shared (reusing methods)
- Stimulus and models are less frequently shared (rerunning experiments)

- Some bits are always shared (research output)
- Sometimes code/methods are shared
- Stimulus and models are less frequently shared (rerunning experiments)
- Very rarely derivatives files are shared (meta-analysis!)

- Some bits are always shared (research output)
- Sometimes code/methods are shared
- Stimulus and models are less frequently shared (rerunning experiments)
- Very rarely derivatives files are shared (meta-analysis!)
- Raw brain data never shared in Finland (full re-analysis, novel analyses)

Sharing everything should be at the basis of the scientific process

Why sharing is not happening? Understanding the causes

Why sharing is not happening?

• Lack of incentives

...actually sharing increases citations

 Lack of requirements from journals/agencies/universities

...actually this is changing

Lack of tools for sharing

...actually there are places for sharing each part of the process

- Lack of resources (time&money) ...actually Aalto is happy to help your team to share each part of the process and streamline the process
- Lack of training ... e.g. licensing of code
- Ethical concerns ...and that's why we are here
- **Fear** from impostor syndrome to fear of being "scooped"

How can we share?

Know your tools and share all the parts

How to share and get benefits from it

• Papers/figures/posters

Scientific journals, preprint servers (arXiv, biorxiv), storage services that provide a DOI (zenodo, figshare)

• Code and process

GitHub and similar + zenodo for github DOI integration

• Experiment/models

Zenodo, figshare, eudat

• Derivatives

Zenodo, figshare, eudat

• **Raw data** sometimes you can't share raw data because of privacy, keep them safe and aim at finding an open dataset to replicate your findings

Transparency in science needs to be rewarded

Transparency is the principle that should lead us towards the sweet spot of ethical, lawful, reproducible science.

(NOTE, MY OPINION): Openness and transparency in research should be the most important metric that research and funding institutions should use to evaluate the work of researchers.

Bonus

Make literature research reproducible

Systematic literature reviews (e.g. PRISMA guidelines)

https://en.wikipedia.org/wiki/Preferred_Reporting_Items_for_S ystematic_Reviews_and_Meta-Analyses

