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SUPPLEMENT: Developing the Informationscape Approach to Environmental Change Detection 

The main question that this research will pursue is: How does spatial propagation of 
information (i.e., signals passed from one state variable to another) in the environment reflect past 
trajectories and indicate future change? The work brings emerging statistical tools from information 
and network theory into the environmental sciences through a novel informationscape approach, which 
enables inductive determination of critical feedbacks, impending shifts in the underlying dynamics, and 
identification of key spatial and temporal scales of interaction from environmental observatory and 
remote sensing data. These powerful analysis tools have potentially transformative applications in 
environmental science (see pre-proposal and Table 1). I will continue advancing a diverse range of these 
applications, through mentorship, teaching, and evangelization to the broader scientific community. 
However, there are two key focus areas that I believe will have the most significant impact: 

• Emphasis 1.  Developing a spatially explicit, information-based early warning method of detecting 
impending critical transitions (i.e., between two system states with markedly different behavior or 
structure), testing its performance on systems that undergo well-documented critical transitions, and 
applying it to address management concerns in a high-stakes ecosystem restoration project. 

• Emphasis 2.  Establishing links between information-based process networks (i.e., how environmental 
systems are “wired”) and spatiotemporal indicators. Information transfer happens over a wide range of 
spatial and temporal scales, but environmental data are generally either spatially or temporally dense. 
This emphasis addresses the need to identify comprehensive mechanistic indicators from commonly 
available datasets. It will also provide guidance on ideal locations for multi-sensor deployment. 

Research need and novelty 
One of the defining challenges of modern environmental science is that of making predictions in 

an era of nonstationarity. Namely, correlative relationships derived from past observations do not 
necessarily apply to future conditions, due to shifts in underlying drivers (e.g., climate). Predictions 
instead need to be based on a mechanistic understanding of the interactions and feedbacks between 
system components. The proposed work produces this mechanistic understanding inductively, through 
data-driven statistics that resolve causative—rather than just correlative—relationships between variables. 
The result will be improved simulation models for prediction, new understanding of key drivers and 
sensitivities, and data-driven early warning metrics for critical transitions between different system states 
(e.g., vegetated vs. desert; oxygenated/biodiverse vs. oxygen depleted; retention phase vs. release phase). 

Critical transitions are diverse and often catastrophic (e.g., stock market crashes, disease 
outbreaks, onset of sepsis, governmental coups). Hence, they have garnered much interdisciplinary 
research interest. Leading techniques for predicting their proximity are based on statistical analyses of 
time series from a single system state variable (e.g., dissolved oxygen) at a point. However, these 
approaches rely on the assumption that the system’s potential function (describing its dynamical 
equilibrium) is smooth near the transition point, which limits their applicability. They have also exhibited 
false positives and negatives and have not been successful at predicting transitions from ordered to 
chaotic regimes or in heterogeneous systems1,2. Recent reviews3,4 have highlighted the potential for 
spatially rich datasets to warn of impending transitions but decry a lack of quantitative methods. 

I propose an alternate approach to the detection of impending transitions, grounded in direct 
delineation of the spatiotemporal scale and information exchange rates of the interactions and feedbacks 
that govern system behavior. Theory suggests that near catastrophic transitions, the total information 
transferred through feedback relationships may decline, while that transferred through forcing 
relationships may grow5. As large-scale negative feedbacks that tend to maintain resilience disappear near 
a transition6, the spatial scale of information coupling may decrease. My work will test and refine these 
hypotheses against existing datasets from systems undergoing well-understood transitions. It will also 
apply the refined methods to near real-time sensor data from the lower Owens River, a major water 
supply for Los Angeles and focus of a large-scale restoration effort. Recent fish kills and encroachment of 
vegetation on the main channel lead restoration managers to suspect that the river is near a critical 
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transition to a state characterized by excessive organic sediment accumulation and hypoxic conditions. 
The availability of sensor data, spatial nature of the feedbacks controlling organic carbon accumulation 
and water quality (i.e., linked to flow-vegetation interactions and channel-riparian connectivity), and 
urgent need for restoration decision support make this site an ideal application. 

The tools: Information entropy and network statistics 
Transfer entropy statistics (T) resolve directional information transfer (i.e., causal interactions) 

between pairs of variables that may interact nonlinearly. Specifically, transfer entropy measures the 
reduction in uncertainty in variable y that results from knowledge of variable x at a particular time lag L 
relative to the uncertainty reduction that results from knowing y at a previous time step (t-1; Table 1). 
Statistical significance can be assigned based on distributions of transfer entropy constructed through 
Monte Carlo shuffling of the input time series, and critical timescales of information exchange can then 
be defined as either the L that provides the earliest significant T or as the peak in significance1. A related 
quantity is mutual information (I), which assesses the extent to which x and y change synchronously. The 
relative values of I and T classify pairwise relationships as synchronous, feedback-dominated, or forcing-
dominated. By examining pairwise relationships between all sets of variables within a system, subsystems 
can be identified as components of the system that share similar types of interactions among themselves 
and to other variables and interact on similar timescales. In this way, a mechanistic “wiring” diagram—or 
process network—for complex environmental systems can be inductively produced from data7. Other 
quantities, such as total system transport (the balance of significant information exchange across nodes), 
directional information flows, or node centralities can then be computed8. 

Though the type of analysis described above has been applied in the environmental sciences to 
resolve soil-plant-atmosphere feedbacks at a flux tower7, many environmental processes involve spatial 
interactions between entities heterogeneously distributed in space. My work will build on at-a-point 
resolution of process networks by incorporating space, as elaborated in Table 1. Open-source code for all 
computations below will be freely available for other users, through the Environmental Systems 
Dynamics webpage (www.esdlberkeley.com) and through the Berkeley Institute for Data Sciences. 

Table 1. Proposed transfer entropy metrics, based on generic form 𝑻 = 𝒑 𝑨,𝑩,𝑪 log𝒕
𝒑 𝑨|𝑩,𝑪
𝒑 𝑨|𝑩

 

A B C Description  Use in environmental science (italic = novel use) 
yt,z yt-1, z xt-L,z Transfer entropy at a point Resolving process networks; in flow-through systems: 

determining limiting factors for biotic growth 
yt, z yt-1, z xt-L, z-Z Spatially explicit transfer 

entropy 
Resolving fine-scale spatial process networks, determining 
critical interaction length scales 

yt, z* yt-1, z* xt-L, z* Spatially averaged transfer 
entropy 

Resolving dominant system-scale interactions in spatially 
heterogeneous systems 

yt, z yt-1, z yt-D/v, z-D Self transport entropy Determining conservatively transported constituents 
yt, z yt-D/v, z-D yt-L, z-D Self delayed transport entropy Determining timescales of dispersion/tailing behavior of 

conservative constituents (L>D/v) 
yt, z yt-D/v, z-D xt-D/v, z-D Along-path transfer entropy Determining dominant interactions along a flow path 
t = current time, L = time lag, z = spatial position; Z = spatial lag; z* = compiled over all positions, D = distance 
between upstream and downstream sensors, v = mean flow velocity (i.e., of water) 
 

  The spatially explicit transfer entropy, a prime focus here, produces a 4D adjacency matrix of 
transfer entropies, in which the dimensions represent the information inflow and outflow nodes, time lag 
L, and spatial lag Z. Network visualization and statistics will be key for interpreting these matrices, and a 
major output products of this project will be open-source software for this purpose. The adjacency matrix 
will first be culled based on a user-selected significance threshold or a maximum number of links. Users 
will be able to plot significant transfer entropies between nodes as directional links, weighting link 
thickness by L and coloring links by type of pairwise interactions. Nodes may be depicted according to 
their centrality or by the total amount of information transfer. Users can zoom in on nodes, restrict the 
range of variables/interaction types plotted, or page between different process networks generated for 
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sequential periods of time. The software will also compute the difference between networks and compare 
physical networks (e.g., channel networks, vegetation corridors) or transition-based networks computed 
from remote sensing observables (e.g., greenness, turbidity) to process networks.  

Research steps and assessment of progress: 
Progress will be measured in terms of successful completion of the following phases of research: 
1. Development of code and software resources. Spatial entropy analysis codes and software for 

network visualization and statistics will be produced early, with the goal of making products available 
to the public as quickly as possible. In coordination with the Berkeley Institute for Data Science, 
project personnel, collaborators, and I will organize an annual summer “boot camp” to train users on 
the use and application of information and network theory statistics and the specific coding resources.  

2. Testing/refining spatial early warning signals: Process networks will be computed from existing 
simulation-generated data from several systems undergoing known transitions. Initial tests will be a 
wetland undergoing a shift between a patterned, heterogeneous state to a homogeneously vegetated 
state5 and a shear flow undergoing a spatial transition from a laminar (ordered) to turbulent (chaotic)9 
regime. Datasets consist of all state variables at all model time steps and at all cells in the gridded 
domain. The latter system9 will provide a test of whether the spatial early warning signals apply to a 
type of transition that at-a-point early warning signals have been unsuccessful at predicting.  

3. Linking process network statistics with mechanistic knowledge and spatial analysis: The focus of this 
step will be on identifying spatial locations and metrics indicative of critical landscape dynamics. 
Indicator locations from the process network analysis will be compared to node centrality statistics 
for physical networks generated from skeleton and edge features, as well as to changes in integrative 
spatial landscape characteristics, such as directional connectivity10. The process network structure 
relevant to early-warning signals will also be compared to synchronization networks (e.g., Boers et 
al.11) generated from the timing of transitions in gridded observables from remote sensing imagery.  

4. Expansion of scope: The methods developed above will be applied to a broader set of critical 
transitions in landscapes, using model data within the Community Surface Dynamics Modeling 
System database. Simulation data from models of coral reefs, deltas, and river networks are among 
the candidate systems available. Notably, the analyses proposed here may also point to measurements 
that can discriminate between different mechanisms that result in similar landscape structures. 

5. Application to natural system observations: Spatial early warning signals will be tested in the real 
world using remote sensing and available sensor data from parts of the world undergoing rapid 
change, including Gulf Coast wetlands, rivers prone to avulsion (e.g., the Brahmaputra), and arctic 
ecosystems experiencing effects of climate change. Techniques will also be applied to sensor data 
from the lower Owens River in an ongoing collaboration with Inyo County resource managers. 

Summary 
The informationscape approach is novel in 1) its expansion of applications of information- and 

network-based data analysis techniques in the environmental sciences and 2) its incorporation of space in 
information-based techniques. It addresses defining challenges in the fields of hydrology and ecology, 
including how to 1) make predictions in a nonstationary regime, 2) synthesize large environmental 
datasets to enhance our mechanistic understanding of environmental systems, and 3) make predictions of 
environmental change in poorly instrumented landscapes. Ironically, the test cases for method 
development are model simulation datasets that are extremely rich spatially and temporally. This rich 
information is needed, however, to identify critical scales for short-term sensor deployment or key 
statistics obtainable through remote sensing. An exciting future direction to emerge from successful 
completion of the above phases of research, together with the increasing availability of remote sensing 
products and near real-time data from environmental observatories, will be data-driven global mapping of 
regions most at risk of sudden change as a result of ongoing shifts in climatic and other drivers. Finally, 
advances in the detection of critical transitions, spatial entropy statistics, and network visualization 
methods are expected to be of broad utility in neurology, economics, epidemiology, biomedical 
engineering, and other fields that require complex-systems approaches to solving problems. 


