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Abstract: Information about the uncertainty associated with Earth science observational data is 

fundamental to use, re-use, and overall evaluation of the data being used to produce science 

and support decision making. The associated uncertainty information leads to a quantifiable 

level of confidence in both the data and the science informing decisions produced using the 

data. The current breadth and cross-domain depth of understanding and application of 

uncertainty information, however, are still evolving as the practices associated with quantifying 

and characterizing uncertainty across various types of Earth observation data are diverse. Since 

its re-establishment in 2015, the Information Quality Cluster (IQC) of the Earth Science 

Information Partners (ESIP) has convened numerous sessions within the auspices of ESIP and 

the American Geophysical Union (AGU) to help collect expert-level information focusing on key 

aspects of uncertainty of Earth science data and addressed key concerns such as: 1) how 

uncertainty is quantified (UQ) and characterized (UC), 2) understanding the strengths and 

limitations of common techniques used in producing and evaluating uncertainty information, 3) 

implications using uncertainty information as a quality indicator 4) impacts of uncertainty on data 

fusion/assimilation, 5) various methods for documenting and conveying the uncertainty 

information to data users, and 6) understanding why certain user communities care about 

uncertainty and others do not. A key recommendation and action item from the ESIP Summer 

Meeting 2017 was for the IQC to develop a white paper to establish a clearer understanding of 

the concept of uncertainty and its communication to data users. The information gathered for 

this white paper has been provided by Earth science data and informatics experts spanning 

diverse disciplines and observation systems in the cross-domain Earth sciences. The intention 

of this white paper is to provide a diversely sampled exposition of both prolific and unique 

policies and practices, applicable in an international context of diverse policies and working 

groups, made toward quantifying, characterizing, communicating and making use of uncertainty 

information throughout the diverse, cross-disciplinary Earth science data landscape.  
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1. Introduction 

 

Earth Science Information Partners (ESIP) was established in 1998 as a non-profit, 

volunteer and community-driven organization. ESIP partners include federal data centers and 

university repositories, federal and academic research facilities, nonprofit and commercial 

enterprises. With over 140 partner organizations, ESIP aims to advance the use of Earth 

science data for societal applications like disaster response, climate, energy (i.e., 

commercial/industrial sources) and agriculture. An up-to-date list (note: this is periodically 

updated) of ESIP partner organizations is maintained here: https://www.esipfed.org/partners. 

Through its work, ESIP promotes open data and data sharing utilizing community best practices 

for data management, data stewardship, and information technology. Furthermore, ESIP 

provides “clusters” which function as open-membership groups to work together on more 

focused challenges pertaining to Earth science data informatics. The Information Quality Cluster 

(IQC) is one such cluster. IQC focuses on identifying solutions and best practices to address the 

overall quality of data and associated information throughout the data product lifecycle.  

 

The creation and representation of Earth science data quality information is a significant 

and daunting challenge because “it is not uniquely defined, user dependent, difficult to be 

quantified, handled differently by different teams and perceived differently by data providers and 

data users” (Vicente, 2014). Moreover, different perspectives on "quality" are justifiable in 

different contexts, notably with regard to how the uncertainty of data is more strictly defined in a 

mathematical framework, yet disparately interpreted and applied in a user-centric, practical 

framework.  

 

The IQC, re-established in 2015 by ESIP, published its seminal paper in July 2017 

(Ramapriyan et al., 2017) that formally laid out the terminologies and paradigms of Information 

Quality. Ramapriyan et al. (2017) built on years of research, the efforts of the NASA Earth 

Science Data Systems Working Groups (ESDSWG) Data Quality Working Group (DQWG) from 

2014 to 2016, and extensive discussions and collaborations within the ESIP IQC in subsequent 

years. Two primary components of information quality as described therein are: 1) scientific 

quality and 2) product quality. The scientific quality has been formally defined as “accuracy, 

precision, uncertainty, validity and suitability for use (fitness for purpose)” (Ramapriyan et al., 

2017) for a given dataset or product of data. The product quality depends on the information 

provided from the scientific quality, but moreover it covers the following aspects of data and 

information quality: “the degree to which the scientific quality is assessed and documented; how 

accurate, complete and up-to-date the metadata and documentation are; the manner in which 

the data and metadata are formatted; the degree to which the associated information including 

provenance are published and traceable throughout the data lifecycle” (Ramapriyan et al., 

2017).  

 

In its attempts to place a greater emphasis on the scientific quality of Earth science data 

and information, the IQC has convened numerous sessions within the auspices of ESIP and the 

American Geophysical Union (AGU) to help collect expert-level information with regard to the 

https://www.esipfed.org/partners
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following topics and challenges: 1) uncertainty quantification (UQ) and characterization (UC), 2) 

limitations of common techniques used in producing and evaluating uncertainty information, 3) 

using uncertainty information as a quality indicator, 4) various methods for documenting and 

conveying the uncertainty information to data users, and 5) understanding the overall lifecycle of 

uncertainty information, beginning with programmatic and inter-governmental initiatives and 

culminating in the dissemination and end user uptake of the uncertainty information.  

 

The purpose and motivation for this white paper was cemented by a key 

recommendation and action item from the ESIP Summer Meeting 2017, which requested that 

the IQC develop and publish a paper to establish a clear understanding of the concept of 

uncertainty, and how it is generally evaluated via UQ/UC for Earth System Data Records 

(ESDRs) and leveraged by data producers and end users. The information gathered for this 

paper has been provided by science data and informatics experts spanning diverse disciplines 

and observation systems within the Earth science domain. This paper intends to provide an 

exposition of collective policies, practices and advances made toward quantifying, 

characterizing, communicating and making use of uncertainty information throughout the 

diverse, cross-disciplinary Earth science data landscape.  

 

In the following sections, we present a variety of perspectives on uncertainty that are 

intended to paint a clear and comprehensive picture of the following: 1) foundational and 

advanced mathematical concepts and methods for UQ and UC (via the Mathematical section), 

2) research and applications examples for how uncertainty information is used (via the User 

section), 3) institutional/agency/international drivers and policies for implementing UQ and UC 

for their data (via the Programmatic section), and 4) understanding the methods of UQ and UC 

employed across observational data covering diverse Earth science disciplines (via the 

Observational section). This paper will conclude with an assessment of both the differences and 

commonalities of these high-level perspectives. While use cases and discussion regarding 

uncertainty of computational model data were considered for both prognostic and diagnostic 

models, it was decided best to conserve the limited authorship resources committed to this 

paper and focus existing expertise on perspectives of observational data and digital products 

derived from them. While this paper primarily focuses on statistics-based techniques of 

evaluating uncertainty information, there are also knowledge-based techniques that are 

regularly used, but for the scope of this paper, such knowledge-based techniques were not 

earnestly explored. 
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2. Perspectives: Historical and Current  

 

All measured values have a degree of uncertainty. Understanding the nature and degree 

of that uncertainty is important to users of that measurement, from scientists who need to 

understand how that uncertainty impacts their data products or models and predictions, to 

decision makers who need to understand the likelihood of various outcomes. The manner in 

which uncertainty information is derived, characterized, disseminated, and ultimately consumed 

and interpreted by the end user is quite diverse, yet there are shared commonalities. The 

international metrological community, which defines and promulgates measurement standards, 

has been a focus of philosophical, mathematical and practical developments in measurement 

science (JCGM, 2008) which increasingly informs observational practices in Earth sciences. 

There are clearly changes in practices that have evolved as a function of time due to 

technological advancements, more advanced computational methods and algorithms, discipline-

specific observations, advancements in standardized specifications for representing science 

data information within formatted data files, progress within government and agency-specific 

priorities on Earth science programs, and variations in observing systems. To better assess 

both the differences and commonalities with regard to Earth science data uncertainty 

informatics, this paper contains an exposition of perspectives broken down as follows: a) 

Mathematical, b) User, c) Programmatic, and d) Observational. These four perspectives are 

discussed in more detail in the following subsections.  

 

2.1 Mathematical  

 

In this section, we will review the academic and computational foundations for the 

manner in which uncertainty information is estimated and interpreted from a statistical 

framework, noting that statistical evaluation is not the only means by which uncertainty may be 

quantified. Uncertainty characterization, hereafter referred to as UC, is the process of describing 

the functional dependencies, correlations, and distributions of errors for one or more quantities 

of interest (QOIs). UC is often aided by statistical, scientific, and/or engineering based analysis 

of potential sources of random and systematic errors in estimating a QOI, particularly when the 

QOI is estimated through a complex procedure and its behavior changes under different 

geophysical conditions. Uncertainty quantification, hereafter referred to as UQ, refers to the 

numerical description of the uncertainty or remaining lack of knowledge of the true value of a 

QOI. This description is often a summary of a probability distribution. Probability is foundational 

to UQ and offers a concise and coherent mathematical framework for UC. In this context, it is 

important to distinguish between a QOI (which in metrological parlance is a “measurand”) and 

an observation (i.e., a datum from which is obtained a “measured value” attributed to a 

measurand). In what follows we denote a QOI as 𝑋 and an associated observation (or 

numerous observations) as 𝑌. An Earth System Data Record (ESDR) will usually include routine 

processing of the observation into an estimate of the QOI. We denote this estimate 𝑋̂ =  𝑅(𝑌), 

where 𝑅 is a function. For some in situ climate data records, it is reasonable to assume that the 
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best estimate of the QOI is the instrument’s observation itself, that is, 𝑋̂ ≅ 𝑌. In most cases, 

even for in situ datasets, there is some type of 𝑅(𝑌) function that translates from the 

observations to the estimate. For data records derived from remote sensing instruments (space-

based, sub-orbital, or ground based optical/lidar/radar/sonar) the observations relate indirectly 

to the QOI; the function 𝑅(𝑌) can then be complex and the task of estimating 𝑋 can be 

appropriately cast as an inverse problem. 

 

In any of these contexts, formal UQ can be viewed from a probabilistic perspective. 

Formally, the observation and often the QOI are viewed as random variables and are 

characterized with probability distributions. From here, the uncertainty can be viewed through 

the probability distribution as a way to provide additional knowledge about the range of values 

that can be reasonably attributed to the QOI given the observation (JCGM, 2008). This can be 

summarized through a conditional probability distribution, 𝑝(𝑋|𝑌), where 𝑝 is a generic 

representation of a probability density function. Alternatively, in some settings, it can be 

convenient to instead summarize the estimation of the marginal error distribution, 𝑝(𝑋̂ − 𝑋). 

Connections between these distributions are described below. When appropriate, 𝑝 is 

characterized as a parametric distribution, 𝑝(𝜃). That is, the full distribution is represented 

through a known mathematical form that may be a function of a small set of free parameters 𝜃. 

 

There are two key types of uncertainty that can be represented probabilistically. 

Aleatoric (or aleatory) uncertainty represents uncertainty associated with chance, and epistemic 

uncertainty represents uncertainty arising from lack of knowledge (Smith, 2014). Aleatoric 

uncertainty has been classically treated probabilistically with terms like “random error”. Sources 

of uncertainty such as instrument measurement noise and computational artifacts in estimation 

algorithms fall into this category. Replication, or multiple observations of the same QOI, can 

reduce the impact of these sources of uncertainty on the evaluation of the QOI. However, in 

Earth science, the continuous change with time of the system being observed commonly 

excludes true replicate measurements. Nonetheless, techniques such as taking differences 

between two or more coincident observations of the same variable are used to approximate 

replicate measurements, with the need to account for imperfect colocation and changing 

variability in space and/or time. Further, the often mismatched spatial and temporal scales 

between the QOI and observations considered for validation can also contribute to the 

uncertainty. In contrast, epistemic uncertainty is realized through lack, or imprecision, of 

knowledge about the processes that relate the QOI and observation; the QOI and the 

observation itself may be directly affected by epistemic uncertainty. This can include incorrect 

specification of the true mathematical relationship, or forward model, that governs the 

relationship, as well as imperfect knowledge of validation data and ancillary parameters, such 

as calibration constants, that impact this relationship (Rodgers, 2000). These epistemic sources 

can contribute to either random or systematic errors in estimating the QOI. 

 

Including uncertainty metric(s) in ESDRs has been an emerging goal for scientists, data 

archive managers, and agency administrators, and reducing uncertainty in key Earth system 

processes motivates long-term planning for future observing systems. The Joint Committee for 

Guides in Metrology (JCGM, 2008) has provided guidance on reporting uncertainty in a succinct 
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manner for direct measurements of QOIs, and the principles outlined there can be extended to 

inferences involving inverse methods often encountered in ESDRs. In mathematical terms, UQ 

can be achieved by extracting appropriate summaries of the conditional error distribution 𝑝(𝑋|𝑌) 

or the marginal error distribution 𝑝(𝑋̂ − 𝑋). We will focus here on the latter. A minimal 

description of the distribution includes the mean 𝜇 and standard deviation 𝜎. The mean is the 

expected value of the error distribution,  

𝜇 = 𝐸(𝑋̂ − 𝑋). 

 

The mean of the error distribution is often called the bias. The standard deviation of the error 

distribution is 

𝜎 = √𝐸[(𝑋̂ − 𝐸(𝑋))2] 

 

In situations where a single parameter is associated with a QOI’s uncertainty, the 

standard deviation is very often selected to characterize the distribution of possible values of the 

QOI 𝑋 given the observation 𝑌and is formally the “standard uncertainty”. This succinct summary 

of the distribution is reasonable when the QOI is univariate and the error distribution can be 

reasonably approximated by a Gaussian (or, “normal”) distribution. Such a summary of the error 

distribution becomes increasingly problematic as the error distributions become more skewed.  

 

Increasingly, ESDRs, particularly those produced from satellite remote sensing 

instruments, involve estimates of geophysical QOIs X that combine indirect observations Y with 

physical and/or statistical models. For example, Level 2 satellite data products result from 

processing Level 1 radiance spectra through operational retrieval algorithms, such as expressed 

by the Aquarius Salinity Retrieval ATBD (Meissner et al., 2017) and the MODIS Terra Land 

Surface Temperature ATBD (Hulley et al., 2016). These are examples of inverse problems 

which present several challenges for uncertainty characterization, including a tendency to be ill-

posed and highly sensitive, particularly when the relationship between the QOI and the 

observation is nonlinear on scales finer than the uncertainty (NRC, 2012). 

 

Bayesian inference represents an appealing framework for uncertainty quantification for 

inverse problems. In this context, the focus is on the conditional distribution of the QOI given the 

observation, which is constructed through Bayes’ theorem, 

𝑝(𝑋|𝑌)  =  
𝑝(𝑌|𝑋) 𝑝(𝑋)

𝑝(𝑌)
. 

The conditional distribution 𝑝(𝑋|𝑌), often called the posterior distribution, is proportional to the 

product of a prior distribution for the QOI, 𝑝(𝑋), and a likelihood, 𝑝(𝑌|𝑋), that characterizes the 

conditional distribution of the observation given the QOI. Figure 1 illustrates this composition of 

information from the data and the prior distribution into a probabilistic description of the QOI 

given the observation. 
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Figure 1: Schematic implementation of Bayes’ theorem for a univariate QOI. The prior distribution is combined with 

information from an observation (via the likelihood) to produce a posterior distribution. 

Some atmospheric remote sensing retrievals and their resulting data products adopt this 

Bayesian approach (Rodgers, 2000), although usually with the assumptions of normality and at 

most moderate nonlinearity. Products derived from data assimilation systems adopt the 

Bayesian paradigm, often with similar assumptions. While the construction is conceptually 

simple, challenges outlined above, particularly in formally representing aleatoric and epistemic 

uncertainty through probability distributions, remain in the Bayesian approach to inverse 

problems. In particular, the prior and likelihood may be characterized by additional statistical 

parameters that are unknown and need to be estimated. Further, the posterior distribution 

cannot be interrogated directly where normal and nearly linear assumptions do not hold; in such 

cases it is sampled with Monte Carlo methods (Gelman et al., 2014). 

 

In either the case of direct, but uncertain, measurement of a QOI or in an inverse 

problem, the resulting distribution for the QOI may be complex and deviate from normality. This 

is a particular issue when the QOI is discrete or otherwise physically constrained or when the 

relationship between the QOI and observation is nonlinear. These situations are fairly common 

for geophysical variables and summarizing the QOI distribution may require additional 

information. In this general situation, the mean and standard deviation are two of many possible 

moments of the underlying distribution. Additional moments, particularly those describing, 

skewness and kurtosis, can be reported. Alternatively, the error or posterior distribution can be 

summarized by providing a set of quantiles or a collection of random draws from the distribution 

(Gelman et al., 2014). These generalizations are also applicable if the QOI is multivariate. 
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Many complex Earth system datasets, such as those from remote sensing instruments, 

are the result of multiple levels of data processing algorithms and quality control. Further, 

additional processing to combine, improve the observational stability of and standardize the 

format of multiple observation records of the same QOI can provide more usable data records. 

When possible, the data processing pipeline should be represented probabilistically to properly 

characterize the cascade of uncertainty (Mittaz et al., 2019). For example, Cressie (2018) 

discusses these issues in the context of a processing pipeline for greenhouse gas estimates 

from satellite data. In addition, a sensible probabilistic framework for a QOI that is informed by 

multiple observation records can exploit opportunities for shared and complementary 

information to reduce uncertainty on the QOI. Examples include fusion of data from multiple 

satellites to estimate atmospheric properties (Nguyen et al., 2012). 

 

2.2 User  

The user perspective is afforded by effective interpretation and communication of 

uncertainty information to facilitate understanding and applications of Earth observations and 

other Earth science data. Sufficient understanding of the uncertainty associated with Earth 

science data can enable applications of the data within different contexts. Communicating 

uncertainty information effectively can improve understanding and enable applications of Earth 

science data for both experts and non-experts, especially when offered with appropriate 

graphical representations, definitions, and guidance documentation. Considerations of human 

factors and differences among users and their applications also can contribute to effective 

communication of uncertainty information. Furthermore, the development of standards, tools, 

and services also offers opportunities to improve understanding of uncertainty information for 

using Earth science data.  

 

Each application has its own context. Earth observations have time and space 

characteristics associated with them. It can be challenging to map observational uncertainty into 

the time and space context of user’s applications when various spatio-temporal error 

characteristics are present. 

 

Without sufficient information about the reasons why data were interpreted in a particular 

manner, users will not necessarily know how the findings were interpreted or be able to 

understand the practical implications of data, models, graphs, and other information that are 

presented in scientific products and services. Information about the evaluation of uncertainty 

can help to facilitate such understanding if communicated effectively. Graphical representations, 

such as figures and charts, could be used to communicate quantitative uncertainty to users in a 

manner that can be understood qualitatively (Morgan & Henrion, 1993). Similar approaches can 

be used to show the user particular characteristics of the data (e.g., spatial and temporal 

resolution) that help a user reduce errors related to assumptions, and to aggregate that data in 

a manner tuned to the user’s application.  
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Communicating uncertainty measures can be valuable, even for non-expert populations 

that use such information. In a survey study of perceptions of the general population regarding 

precipitation probability as reported in weather forecasts, Murphy et al. (1980, p. 697) found that 

most participants recognized that numerical probabilities are reported to describe "uncertainty 

regarding the occurrence of precipitation". These authors also concluded that "participants not 

only understood but strongly preferred forecasts of precipitation occurrence in which uncertainty 

is expressed in probabilistic terms" (Murphy et al., 1980, p.699). 

  

When communicating uncertainty measures, it would be valuable to use and refer to 

precise definitions of such measures, particularly those formally developed within the 

metrological community, and to provide guidance and examples of use for the uncertainty 

measures. This can facilitate correct interpretation of the data through proper use of the 

uncertainty information.  

 

Earth science data obtained through crowdsourcing or citizen science (CS) initiatives 

comes under particularly harsh scrutiny from users who are suspicious of its quality. Numerous 

attempts have been made to evaluate and characterize the errors in volunteered data (e.g., 

Gardiner et al., 2012) with a number of recent studies concluding that sampling protocol can be 

more influential than expertise in delivering consistency and quality (Theobald et al., 2015; Van 

de Velde et al., 2017) and a consequent attention to standardized protocols and training (e.g. 

Tweddle et al., 2012). 

  

Kinkeldey et al. (2014) reviewed user studies that evaluated methods and tools for 

communicating and visually analyzing (Kinkeldey, 2014) uncertainty of geospatial information. 

They concluded that such studies should employ methods that foster systematic evaluation and 

should pay attention to the types of tasks being performed by the users of uncertainty 

visualizations. Subsequently, reviewing user studies of uncertainty visualization to support 

decision-making, Kinkeldey et al. (2017, p. 8) noted that, when decision makers use uncertainty 

information, "they have to accept the additional effort of incorporating it into decision-making". In 

an extensive web-based user survey, Senaratne et al. (2012) tested understanding of 

uncertainty visualization with users predominantly from five different domains: GIS, map 

visualization, statistics, decision-support and urban planning. Based on the results of their 

survey, the authors proposed a model of uncertainty visualization selector, a tool which aids 

producers to select the appropriate visualization technique, depending on the nature of QOI. In 

addition, the authors share their usability study design as a generic approach to help assessing 

usability of uncertainty visualization methods in the future (Senaratne et al., 2012). Sacha et al. 

(2016) analyzed the uncertainty propagation through visual analytical systems, its perception 

and understanding by the users, and implication of uncertainty understanding on users’ trust in 

the results of visual analytics. The authors provide several guiding principles to avoid 

misconfiguration of uncertainty communication systems, which include: analysis of human 

factors involved in uncertainty communication, quantification of uncertainty at each stage of data 

processing (source, model building and usage, data processing and visualization of results), 

visualization of propagated uncertainty and enable users’ interaction with uncertainty (Sacha et 

al., 2016).  
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There is no comprehensive standard for documenting and communicating uncertainty of 

ESDRs except for several well-known statistical measures included in the ISO 19157 data 

quality standard (ISO, 2013). UncertML is a markup language for documenting uncertainty 

information and its “descriptive capabilities range from summaries, such as simple statistics 

(e.g. the mean and variance of an observation), to more complex representations such as 

parametric distributions at each point of a regular grid, or even jointly over the entire grid” 

(Williams et al., 2009, p. 8). The Open Geospatial Consortium (OGC) proposes standards 

(“UncertML”) for parametric distributions that may be used to characterize uncertainty (Williams 

et al., 2009), but does not refer to metrological standards for communicating uncertainty in 

measurement. UncertML has been published as an OGC discussion paper (ibid.), and its 

effective use has been demonstrated in various implementation efforts in communicating 

uncertainty of an ESDR. One successful example is the Image Quality and Accuracy 

Engineering Report, published as part of OGC’s Testbed-12 innovation program (Masó and 

Zabala, 2017). In this report, the authors describe how to encode image quality (often 

represented by uncertainty measures) to aid decision on an ESDR’s fitness for use. The 

proposed quality information communication model is based on ISO 19157, UncertML and 

QualityML, with the latter being an extended XML profile of ISO19157 (Masó and Zabala, 2017). 

The implication of such studies is that there is a trade-off that can be beneficial for decision-

making if uncertainty is communicated effectively to facilitate understanding and interpretation 

by the intended users. 

 

Tools and services are also another avenue for increasing the user uptake of uncertainty 

information, while also minimizing the effort required in applying pre-analyzed uncertainty 

estimates to multivariate geophysical data analysis. For example, the International Atomic 

Energy Agency (IAEA) Ocean Acidification International Coordination Centre (OA-ICC; 

https://www.iaea.org/services/oa-icc) has recently produced a consistent set of software tools 

released as public software packages to assist in the utilization of propagated uncertainty 

estimates in marine CO2 system variables (Orr et al., 2018). Orr et al. (2018) point out that 

these packages use a unique “error-space diagram” to assess the propagated uncertainty 

variations as a function of changes in the input uncertainty estimates. These tools are referred 

to as “uncertainty propagation add-ons” made available in the following four packages:   

1. CO2SYS-Excel (https://github.com/jamesorr/CO2SYS-Excel); 

2. CO2SYS-MATLAB (https://github.com/jamesorr/CO2SYS-MATLAB); 

3. seacarb (https://cran.r-project.org/web/packages/seacarb/index.html); 

4. mocsy (https://github.com/jamesorr/mocsy).  

 

 

 

 

 

https://www.iaea.org/services/oa-icc
https://github.com/jamesorr/CO2SYS-Excel
https://github.com/jamesorr/CO2SYS-MATLAB
https://cran.r-project.org/web/packages/seacarb/index.html
https://github.com/jamesorr/mocsy
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2.3 Programmatic 

 

Programs at global, national and agency levels (see Figure 2) have emphasized the 

need for UQ and UC, as well as provision of such information to users of data and derived 

information. Examples of global entities stressing the importance of UQ and UC are the Group 

on Earth Observations (GEO, 2015), the Committee on Earth Observing Satellites (CEOS) 

Working Group on Calibration and Validation (WGCV), the International Panel on Climate 

Change (IPCC) (Mastrandrea et al., 2010), the World Meteorological Organization (WMO), and 

the Working Group on Climate (WGClimate), a joint working group of CEOS and Coordination 

Group for Meteorological Satellites (CGMS). The GEO discusses the need for UC in the context 

of the Data Management Principles (DMP) on data traceability (DMP-5) and data quality control 

(DMP-6). The CEOS WGCV functions via smaller sub-working groups that focus on 

standardizing the UQ and UC for satellite observations within specific disciplinary frameworks. 

The IPCC provides detailed guidance to authors of the fifth Assessment Report (AR5) to 

communicate the degree of certainty in their key findings. Uncertainty requirements within WMO 

are mainly found in the context of requirements with respect to systematic observations 

(UNFCCC, 2008; GCOS, 2016). They call for the inclusion of measures of uncertainty for 

Essential Climate Variables (ECVs). This is not consistently defined for other types of data 

products. WGClimate has recently developed an inventory of ECVs (WGClimate, 2017) from 

various agencies around the world. The degree of maturity of uncertainty information is 

considered as a contributing criterion for overall maturity of the data production system (Schultz 

et al., 2016). 

 

 
Figure 2: Examples of global, national and agency level entities with documented emphasis on UC/UQ. 

 

The participation in the aforementioned global organizations is much broader than it 

would appear on the surface. For example, a broad set of organizations contribute to the 
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activities of the IPCC with over 800 contributing authors from many countries around the world. 

The synthesis report (IPCC, 2014) lists 51 individuals from 24 different countries as the “Core 

Writing Team”. Likewise, over 20 organizations around the world have contributed 496 entries to 

the ECV inventory mentioned above. 
 

Many agency programs in the U.S. owe their existence to legislative and executive 

mandates (e.g., 91st U.S. Congress, 1970; 94th U.S. Congress, 1976) as well as internal 

frameworks which reflect various science and application needs.   An example of a 

Congressional mandate to improve accuracy in predictions, and reduce uncertainty by 

implication, is the Weather Research and Forecasting Innovation Act (115th U.S. Congress, 

2017) that initiated an advanced weather forecasting program in NOAA. This mandate calls for 

increasing the lead-time for tornado warnings among others. Inherently, the forecasting of 

weather involves quite a bit of uncertainty due to spatial and temporal variations in model scale, 

atmospheric physics and parameterization. The resolution of such questions is in part 

responsible for the race to improve weather models. 

 

Federal agencies and standards bodies have also recognized the importance of 

uncertainty quantification. The Guide for Uncertainty in Metrology (JGCM, 2008) establishes 

guidelines for evaluating and expressing measurement uncertainty. The National Research 

Council recently published a report on Verification, Validation and Uncertainty Quantification 

(VVUQ) of complex models (NRC 2012) that identifies the importance and best practices for 

VVUQ across a range of disciplines, including remote sensing and Earth Sciences. 

 

A series of European Union (EU) projects has considered quality assurance, including 

uncertainty aspects, for Earth observation geophysical products and essential climate variables 

(e.g., http://www.qa4ecv.eu). The EU H2020 project, FIDUCEO (www.fiduceo.eu) demonstrated 

a metrological framework for including uncertainty in level 1 radiance products as a basis for 

propagating uncertainty across satellite data processing levels (Merchant et al., 2019; Mittaz et 

al., 2019). From 2006-2009, the FP6 INTAMAP project (Pebesma et al., 2011) developed 

automated real-time interpolation services for critical environmental variables such as radiation, 

with particular attention to calculation and communication of uncertainties associated with the 

interpolated maps. Uncertainty measures were standardized and exchanged in a machine-

readable fashion using UncertML (Williams et al., 2009). In the 7th Framework Programme 

(FP7) UncertWeb project (Bastin et al., 2013) these standardized approaches to exchange of 

uncertainty information between models were extended to support a framework in which 

uncertainty-aware web-services underpinned workflows for integrated environmental modeling. 

Another FP7 project, GeoViQua (http://www.geoviqua.org/Overview.htm) developed rigorous 

data quality and provenance representations specifically for the GEOSS Common 

Infrastructure, including a GEOLabel which has been adopted to give visibility to dataset 

compliance with the GEO Data Management Principles (http://geolabel.info/facets.htm). Within 

the European Space Agency (ESA), uncertainty characterization has received close attention 

within the Climate Change Initiative (cci.esa.int). Eight general principles for inclusion of 

uncertainty information in climate data records were distilled from experience across a diverse 

set of ECVs, as summarized in Merchant et al. (2017). ESA is supporting the establishment of in 

http://www.qa4ecv.eu/
http://www.qa4ecv.eu/
http://www.fiduceo.eu/
http://www.geoviqua.org/Overview.htm
http://cci.esa.int/
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situ Fiducial Reference Measurements across (presently) 8 key measurement types to help 

improve the SI traceability, validation and long-term stabilization of Earth Observation (EO) 

based geophysical records (https://earth.esa.int/web/sppa/activities/frm). National metrology 

services in Europe are collaborating within a framework called MetEOC to support the 

metrologically sound use of EO data for climate applications (http://www.meteoc.org). 

 

Federal agencies in the U.S. are governed by information quality guidelines issued by 

the Office of Management and Budget (OMB) in response to the U.S. Information Quality Act 

(US Public Law 106-554 2001, Section 515), and are required to issue their own, agency-

specific, implementing guidelines for ensuring the quality of disseminated information. A prime 

example of this implementation is for instances in which scientific conclusions are considered 

highly influential (i.e., having high societal and/or economic impact), thereby requiring federal 

agencies to be extra-vigilant in ensuring the quality of information that has been publicly 

disseminated. For instance, the NASA guidelines (NASA, 2002) state: "NASA requires a higher 

standard of quality for information that is considered influential. Influential scientific, financial, or 

statistical information is defined as NASA information that, when disseminated, will have or does 

have a clear and substantial impact on important public policies or important private sector 

decisions." Ensuring a high standard of information quality implies communication of information 

about errors and uncertainties to users. The National Climate Assessment (NCA) Reports are 

considered Highly Influential Scientific Assessments (HISA) and follow a rigorous set of rules 

about information quality. Expression of uncertainties with each of the findings in the reports is a 

key requirement. As indicated in the Climate Science Special Report, which is the Volume 1 of 

the Fourth NCA (NCA4), the uncertainties are expressed using two metrics (Wuebbles et al., 

2017): 

 

● "Confidence in the validity of a finding based on the type, amount, quality, strength, and 

consistency of evidence (such as mechanistic understanding, theory, data, models, and 

expert judgment); the skill, range, and consistency of model projections; and the degree 

of agreement within the body of literature. 

 

● Likelihood, or probability of an effect or impact occurring, is based on measures of 

uncertainty expressed probabilistically (based on the degree of understanding or 

knowledge, e.g., resulting from evaluating statistical analyses of observations or model 

results or on expert judgment)." 

 

This is consistent with the IPCC guidance referred to above (Mastrandrea et al., 2010). 

 

Regarding HISA, the NASA guidelines state: “NASA requires the highest standard of 

quality for publication of information that is considered highly influential scientific assessments, 

which are a subset of influential scientific information delineated in the OMB Bulletin. A scientific 

assessment is an evaluation of a body of scientific or technical knowledge that typically 

synthesizes multiple factual inputs, data, models, assumptions, and/or applies best professional 

judgment to bridge uncertainties in the available information.” Other U.S. agencies have 

https://earth.esa.int/web/sppa/activities/frm
http://www.meteoc.org/
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developed guidelines covering information quality as well, calling out uncertainty explicitly (EPA 

2002; NOAA 2014). 

 

Agency programs generally reflect the needs of the scientific and applications user 

communities, and a fundamental requirement is to understand the fitness of the data for their 

specific user needs. Inclusion of uncertainty information along with the measurements or 

derived parameters is essential for determining fitness for use. As such, many measurement 

programs require specification of error bounds for instrument measurements and require that 

quality information including uncertainty be included along with derived data products. As a 

prime example, targeted error bounds to meet scientific performance requirements of NASA’s 

Earth observing missions are required to be specified within the Level 1 Requirements; a fairly 

recent example of this can be found for the ICESat-2 Mission (NASA, 2013). Other situations 

may call for competitive science proposals to target UQ and UC research for specified historical 

data records. For example, NASA had a call for proposals (NASA, 2010) for analysis of 

uncertainty in Earth System Data Records (ESDRs). Other NASA programs such as Making 

Earth System Data Records for Use in Research Environments (MEaSUREs) include a 

requirement to "Characterize uncertainties and quantify errors associated with the proposed 

ESDRs" (NASA, 2012). Similarly, NOAA requires producers of Climate Data Records (CDRs) to 

provide both the analytic details of their uncertainty estimation as well as affirmation of their 

application for each extension of the time series records. 

 

While the importance of UQ and UC is recognized by agency programs, a consideration 

is how to spend the limited budgets – whether to estimate uncertainty, improve resolution, 

latency, update frequency, validation, access interface, quality assurance/quality control 

(QA/QC), metadata and documentation, etc. or add new features, extensions, or whole new 

products. Clearly, the answers to these concerns vary depending on the user community 

interests, existing user uptake of UQ and UC information, as well as the priority for and impact 

of the data products under consideration. Some of the other programmatic considerations are 

that often uncertainty information is ignored or misunderstood by users, and that it can be 

difficult to convince agencies to invest funds into UQ/UC when competed against other, and 

often more urgent, user needs. From a space-based remote sensing perspective, the majority of 

budgeted expenditures to support such missions has traditionally been focused on ensuring 

successful design, deployment, and operational function of the platform and sensor(s) for a 

particular mission. With improved and lower-cost launch vehicles and space-platform/sensor 

technologies (e.g., smallsat technology), it is a reasonable expectation that increasing 

opportunities will arise to support more comprehensive and standardized UQ/UC activities for 

Earth observing missions. 

 

2.4 Observational   

This section intends to explore and discuss the common, foundational approaches of 

UQ, UC, and the overall utilization of uncertainty information throughout the primary approaches 

to Earth observation. Throughout this section, the term “uncertainty” may be used in a broad 
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interpretive context, from which we rely on the more specific definitions as established in the 

preceding Mathematical section; all other terminologies and concepts introduced in this section 

are generally unique to the observational perspective, and as such, those will be defined and/or 

explained in contextual detail. Many approaches exist for observing the Earth system’s 

numerous components. These fall into one of two categories: point-based studies--invariant in 

space but not in time (e.g., Eulerian Specifications) – and those that conduct observations 

varying in both space and time (e.g., Lagrangian Specifications). Observations may either take 

place from within a system (i.e., in situ) or from a remote observation platform (i.e., remote 

sensing). UC is often tailored and dependent upon the artifacts particular to the specific 

approach of the observing technique used.  

 

Satellite observations of geophysical quantities are, of course, remotely sensed 

estimates that are obtained through retrieval algorithms that invert the information available to a 

sensor (usually radiance across a number of wavelengths) to infer the quantities of interest1.  

Algorithms may use a combination of physical simulations, parameterizations and/or empirical 

relationships. They may be trained on in situ measurements referred to as ground “truth”.  The 

term “truth” in this expression is often a first-order approximation of the valid state of a physical 

system and the physical quantities that comprise that system, is commonly used with an 

unprescribed degree of both practical and interpretive latitude, and is typically characterized 

with its own level of uncertainty that is directly associated with the observations (or lack thereof) 

used to provide the requisite approximation which facilitates the calibration and validation 

(Cal/Val) of retrieval algorithms. It is a common practice for uncertainty estimation in algorithm 

results to be co-designed with initial algorithm determination. Any algorithm development on the 

basis of adequately comprehensive simulations can establish an associated uncertainty 

estimate (e.g., Merchant & Embury, 2014), and the uncertainty model will likely be able to 

discriminate between either more or less uncertain retrievals when this approach is taken. An 

often-used alternative has involved estimating generic uncertainties for retrieval algorithms from 

validation activities. This alternative approach, although more simplistic and less costly, has 

been shown to provide a more limited understanding of the variability of uncertainty in the 

retrieval process; more adequate quantification of retrieval uncertainty requires detailed 

knowledge of the uncertainty in the ground ”truth” and of “point-to-pixel” differences (Immler et 

al., 2010). For bounded observations (e.g., wind speed must be greater than zero) knowledge of 

uncertainty is needed to explain the artificial appearance of large biases near the boundary 

(Freilich, 1997). Some algorithm retrieval methods have well established uncertainty estimates 

associated with their formulation – for example, optimal estimation and similar techniques 

(Rodgers, 2000), although these tend not to include uncertainties arising from the first 

validity/classification step and require good knowledge of uncertainty in their inputs for the 

output uncertainties to be realistic. Such methods also enhance understanding of the 

propagation of uncertainty throughout the retrieval process and understanding the constituents 

of the retrieval system and algorithms that provide varying degrees of uncertainty. 

 
1 A typical high-level structure would involve a first step towards establishing the suitability of the 
collected satellite data (at Level 1) for a retrieval algorithm (for example, cloud screening), 
followed by applying the inversion algorithm to the suitable cases (retrieving the Level 2). 
Additional processing such as gridding may subsequently occur, creating Level 3 data.  
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The uncertainty in a retrieval arises from the effects of uncertainty in the input quantities 

to the retrieval, which are the satellite measured values (such as radiances) and the retrieval 

parameters (all retrievals have some, even if implicit). These input-quantity uncertainties 

propagate to the result through a model imparting additional uncertainties, and this can be 

estimated by well-established conventional error analysis or Monte Carlo simulation methods 

(JGCM, 2008). The theoretical underpinning of uncertainty analysis is long established, but 

proper application in Earth observation has been limited. The development of uncertainty 

estimates for many algorithms has been hindered by the typical lack of uncertainty information 

in the input products, including the Level 1 data curated by space agencies, where Level 1 data 

is characterized as time-ordered, geospatially referenced and calibrated engineering data that is 

generated prior to being transformed into geophysical quantities, the latter of which is referred to 

as Level 2 data. Level 1 data should routinely be distributed with enough uncertainty information 

at a granule or pixel level to support useful propagation of uncertainty through the algorithms 

which use them to derive geophysical quantities as expressed by Level 2 data; at present this is 

rarely done (an example is Gorroño et al., 2017). This would enable algorithm developers to 

more efficiently and robustly develop and provide useful uncertainty estimates, and would be a 

significant step towards a more metrologically sound practice of Earth Observation (Mittaz et al., 

2019). 

 

Regarding errors in input data, one potential source of ‘uncertain ground-truth’ is 

crowdsourcing of field observations, photos or online image interpretation (Fonte et al. 2015; 

e.g., https://www.cocorahs.org/ or https://www.geo-wiki.org/). These approaches can boost the 

density and representativeness of validation points, but variation in individual contributors’ skill 

can lead to different interpretations at the same location. Such inconsistencies can be tackled 

by requiring multiple user classifications at each sample location, or by eliciting an estimate of 

confidence from the volunteer along with their label (See et al., 2013). In the case of a rapidly 

changing variable (e.g., daily accumulated precipitation), the uncertainty related to volunteer 

observations can be far less than sampling errors associated with low Earth orbit satellites.  

 

Case study example: In 2010, the NASA/NOAA Sea Surface Temperature (SST) 

Science Team prepared an SST Error Budget white paper (Cornillon et al., 2010 and 

summarized in Wu et al., 2017) detailing the various contributions to the SST error budget from 

Level 1 through Level 4 products. Although this error budget was prepared for SST products, 

the resulting framework applies equally well to most other geophysical parameters derived from 

satellite-borne sensors. A particularly important observation which emerged from this effort is 

that errors introduced to the SST values are often characterized by two spatial scales - a pixel-

to-pixel scale resulting from instrument errors and classification errors and a longer wavelength 

scale resulting from atmospheric contamination. This distinction becomes increasingly important 

as the resolution of the products increases - for products with a sampling interval greater than, 

say 25 km, the pixel-to-pixel scale and the scale associated with atmospheric contamination are 

similar. For higher resolution (i.e., smaller sampling interval) products this is not the case. The 

reason that the distinction between these scales is important is that gradients of the derived 

products are becoming of increasing interest to, at least in the ocean, sub-mesoscale studies 

https://www.cocorahs.org/
https://www.geo-wiki.org/
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and air-sea coupling (Shi and Bourassa, 2019). The long wavelength variability introduced by 

atmospheric contamination has little impact on the small-scale gradient in high resolution spatial 

fields, hence the standard error measures, which include contributions from both scales, tend to 

overestimate the error in the gradient field. One would be led to believe that SST fields obtained 

from most infrared sensors are inadequate to study the gradient field for gradients weaker than 

order 0.3 degrees K/km - the vast majority of SST gradients in the ocean. This is in fact not the 

case as estimates of pixel-to-pixel errors needed to determine this are generally not available; 

what is more prevalent in such cases are the bias and variance of the pixel values, generally 

when compared with in situ observations. These tend to range from 0.3 to 0.5 degrees K for 

most SST products obtained from infrared sensors, while the pixel-to-pixel uncertainty appears 

to range from 0.05 to 0.2 degrees K for the same suite of sensors (Wu et al., 2017). Although 

this discussion is presented in the context of SST observations, we believe that it applies 

equally well to other parameters obtained from high resolution (<10 km) satellite-borne sensors 

for which atmospheric corrections are critical. 

2.4.1 Cal/Val 

Where uncertainty estimates are provided with Earth science measurements including 

satellite retrievals, the process of validation (comparison of measurements with independent 

ground truth) informs both the estimates and their estimated uncertainties, provided some 

understanding is available about the ground-truth uncertainties and the bridging of scales 

between different measurements (Immler et al., 2010). 

 

Estimates of instrument measurement uncertainty at the beginning of a new satellite 

mission are based on models, pre-flight instrument characterization and surrogate data 

(laboratory experiments, heritage instruments and in situ data, including tower, aircraft and 

balloon data). Alternatively, satellite to satellite comparisons can be extremely effective for wide 

swath instruments that have temporally and spatially coincident observations several times a 

day. Such a situation produces vastly more colocations than seen from point in situ 

observations (Wentz et al., 2017). On-orbit calibration uncertainty is dependent on the 

characteristics and knowledge of the accuracy of any internal calibration sources (e.g. 

blackbody, solar diffuser) as well as external calibration sources (e.g. moon and sun) and in situ 

data. Pre-launch error budgets based on all of these factors are developed based on expert 

knowledge and prior experience, including modeling, and updated during the design, pre-launch 

testing and on-orbit checkout phase. Many of the calibration uncertainty requirements are driven 

by the needed accuracy of the derived geophysical parameters, including requirements for 

spatial resolution, sampling and accuracy, as well as temporal resolution, sampling, and 

stability. 

 

After the post-launch check-out phase, the mission calibration team monitors the 

instrument using on-orbit calibration sources and by comparing the Level 1 data to independent 

in situ measurements and data collected from other remotely-deployed instruments. Note that 

each of these independent calibration sources will have their own uncertainty in addition to 

those embedded in the inter-comparison process itself. For example, spatial variability causes 
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Root Means Square (RMS) differences (often used as a first-order quantification metric of 

uncertainty but assumes a Gaussian error distribution) to grow as spatial constraints in 

colocation are relaxed. Feedback from retrievals of Level 2 geophysical parameter retrievals are 

also key to understanding the Level 1 data uncertainty. In addition, modeling activities (through 

assimilation or direct comparison with model output) may be used to determine the Level 1 data 

uncertainty. In some cases, these uncertainty estimates will be estimated as a function of some 

instrument characteristic (e.g. scan angle) and/or as a function of time on-orbit. In addition, 

there may be periods of time when the instrument is in a non-nominal state (e.g. attitude 

maneuvers, black-body warm-up/cool-down) when the uncertainty could be larger. Furthermore, 

even when the platform/instrument is in a stable state, there may be properties outside of the 

control of the instrument(s) that could further impact uncertainty, such as fluctuations in 

terrestrial radiation within the wavelength of the instrument (i.e., noise floor variability), 

cloud/aerosol/rain contamination, and differences in atmospheric attenuation due to fluctuations 

in the vertical column of air mass (i.e., controlled by mostly temperature and water vapor). Due 

to the complexities that comprise uncertainty in remote sensing, the initial uncertainty estimates 

are generally not well characterized a priori. Through careful analysis of more continuous 

observations over time, the knowledge as well as confidence in the uncertainty estimates 

typically improves, and it is through this iterative process that instrument and algorithm 

calibration teams are expected to provide their best estimates in final products, beginning with 

improvements in the Level 1 calibration and associated uncertainties; when various 

reprocessing events occur over time, these estimates are typically updated. 

 

The uncertainty requirements for Cal/Val are usually very different from those for wider 

applications. For Cal/Val, it is usually preferred to reject all data for which the observations are 

overly uncertain (i.e., outside of the threshold of science quality as typically defined by science 

teams). For example, many remotely sensed surface observations are adversely impacted by 

rain. Consequently, such types observations through rain are often removed from 

intercalibration datasets, except where rain is the observable and thus correctable in a manner 

that minimizes the impact of rain on the targeted observation (Hilburn et al., 2006; Stiles and 

Dunbar, 2010; Weissman et al., 2012). In many cases this quality control is done to remove 

concerns about systematic errors; however, it should be kept in mind that most uncertainties are 

estimated for typical conditions rather than adverse conditions. If biases related to adverse 

conditions can be accounted for, then additional uncertainty can be added for adverse 

conditions. Such efforts are complicated by the difficulty in determining such systematic errors, 

and in obtaining a sufficiently large sample of observations from adverse conditions. 

 

Case study example: The Land Product Validation (LPV) sub-group of the CEOS WGCV 

was established in 2000 to provide an international forum for developing protocols for 

quantifying accuracies of Land bio- and geophysical products (Justice et al., 2000). The term 

'validation' is now commonly used by the observational community to describe the process of 

quantifying the observational product accuracy, and inversely uncertainty. The first of several 

protocols published by this group describes the 'validation good practices' for the global Leaf 

Area Index (LAI) products (Fernandes et al., Version 2.0.1, Aug. 2014). This document first 

defines the measurement and other key terms related to validation so that it is clear what is 
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being measured and how the measurements are made. It also describes how different 

comparison approaches and stratified spatial sampling can be used to quantify product 

uncertainty. It also discusses how the measurement frequency and continuity affects the 

knowledge of the measurement of LAI. This detailed approach to validation of Land products is 

an excellent example of how the international research community can develop a common 

understanding of uncertainty for a particular global measurement. This approach has since been 

replicated for other Land products. 

 

2.4.2 Product Development 

Earth science and satellite data products should be available to users already “uncertainty 

quantified”, that is, with useful uncertainty information included in the products and their 

metadata. The preceding User Perspectives section goes into more detail on examining a 

variety of use cases and studies on the considerations behind what makes uncertainty 

information useful. This could be as simple as a single number in cases where uncertainty (or 

fractional uncertainty) is adequately invariant across the data set, but a common situation would 

be that uncertainty is variable, and needs to be provided per datum (i.e., for each unique 

observation) or otherwise parameterized. This is particularly important with large and 

heterogeneous databases, such as OpenStreetMap, Weather Underground or the Global 

Biodiversity Information Facility; these databases are aggregated from multiple sources and 

whose individual granules or observations are usually filtered, selected and assembled into 

many different ‘datasets’ depending on user requirements. In such cases, a single summary of 

uncertainty is of little value, and per-datum quality records offer more flexibility.  

 

Uncertainty of data products is not always probabilistic or expressed in a quantified manner, 

but may be constrained to only include qualitative or categorical factors which can be tested 

against standard assertions of quality to assess the usefulness of each individual record. An 

example of such an approach is the list of assertion codes used by Atlas of Living Australia to 

label georeferenced data according to their geographic and attribute validity (Belbin et al., 

2018). In another example, Bell et al. (2015) combine data from two volunteered weather station 

networks with authoritative measurements from the UK Met Office’s official observing stations, 

identifying bias and sensor errors on the ‘unofficial’ data which permit it to be corrected to a 

sufficient standard to be used to improve interpolations and local-scale forecasts. This is a case 

where, for each volunteered dataset as a whole, there is no meaningful single summary of 

uncertainty because of the wide variation between instruments and the microclimates in which 

they are placed. However, characterizing the particular uncertainty at each amateur weather 

station permits a reduction in the variability across the network to a more comparable residual 

uncertainty at each sampling location. In addition to quantifying uncertainty, as defined more 

thoroughly in the preceding Mathematical section, there may be a need to provide information in 

products characterizing the correlations of errors (Bell et al., 2015). This could arise when a 

multivariate dataset is jointly estimated, such that errors in one variable are linked to errors in 

others. Where a product may be used on a number of spatio-temporal scales, users are likely to 

prefer to average or otherwise aggregate data. Propagation of uncertainty correctly to coarser 
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scales requires information from the quantifying or parameterizing of the spatio-temporal error 

correlation in the product to be available. More complete information about uncertainty and error 

correlation is commonly expressed through the error covariance matrix of the data. However, 

providing this for a product of any significant size is infeasible. Therefore, fairly complex choices 

have to be made regarding what it is most important to provide and how to do so (e.g., 

Merchant et al., 2017). 

 

3. Discussion 

All of the above perspectives demonstrate a collective interest and need for UQ/UC 

information for ESDRs, spanning a variety of observational data and approaches to data 

uncertainty. Foundationally, the mathematical perspective establishes a common and robust 

framework for UQ and UC, providing clarity on often misconstrued and mis-applied metrics and 

definitions for all of the constituents that define and characterize the overall uncertainty for a 

QOI. The mathematical approach is generally applied to ESDRs through both data production 

and in Cal/Val phases. However, there are significant differences in the way geophysical 

algorithm developers (i.e., those developing transfer functions and geophysical model functions) 

and Cal/Val teams apply the mathematical approach. Examples of differences are in: 

● Whether the PDF is considered; 

● Assumptions of Gaussian vs. non-Gaussian; 

● When to start UQ/UC in the data processing workflow (i.e., Level 1, Level 2, etc.); 

● Whether or not to provide uncertainty estimates for every observational data point; 

● Whether or not to include uncertainty information as part of the primary ESDR dataset; 

and  

● Consistency in representation of uncertainty information in data, metadata and 

documentation. 

UQ/UC implementation is generally applied to data once it has been transformed into 

geophysical quantities, or Level 2 data. Rarely is UQ/UC done for Level 1 data, but it is 

nonetheless considered to be a critical step in understanding the propagation of uncertainty 

from Level 1 to Level 2. Since many of the calibration uncertainty requirements are driven by the 

needed accuracy of the derived geophysical parameters (i.e., requirements for spatial 

resolution, sampling and accuracy, as well as temporal resolution, sampling, and stability), this 

can lead to differences in the approach for instrument design, which is much more complex for 

space-based remote sensing than for in situ observational platforms. In situ platforms are 

generally assumed to be ubiquitous enough for there to be a higher level of confidence and 

consistency based on the sheer numbers of instruments deployed throughout the globe; this 

assumption often leads to a very optimistic presumption that all in situ observation networks are 

consistently calibrated, continually validated and well-coordinated internationally, which is 

generally not the case across disparate observation networks. Even where in situ platforms are 

large in number, the sparsity of coverage coupled with lack of cross-network coordination leaves 

much to be desired with regard to a more coordinated, assessment sharing of uncertainty for 

more uniform UQ and UC assessment. Even though the number of space-based platforms are 
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few and far between compared to in situ, spatial and temporal coverage for even a single 

space-based platform is enormous. However, in many cases the space-based deployments 

represent brand new technology in which the QOI estimated by the deployed instrument at pre-

launch can only be simulated through models or estimated by proxy with similar instruments; 

while there may be more cross-network and international coordination in the space-based 

remote sensing domain, UQ/UC challenges still remain, namely for cutting edge technological 

design of the instrumentation intended to either improve upon existing remotely sensed QOI 

estimation or to estimate an entirely new QOI never before acquired from space. Aside from 

technological challenges, there are challenges associated with the prescribed deployment 

(timing and orbital placement) of select sensors/platforms that are often not part of a 

coordinated constellation to provide more adequate spatial and temporal coverage.   

 

As a result of this higher level of complexity for space-based remote sensing compared 

to in situ observations, the UQ and UC during the pre-launch phase often takes a back seat to 

the overall health and quality of the instrumentation itself, and a priori uncertainty estimation is 

often the easiest solution that allows for pre-launch constraints to be met. In the post-launch 

phase, instrument health is still a consideration, but the Cal/Val period is typically when UQ/UC 

is assessed and leveraged to help ensure that the instrument coupled to the downstream data 

processing is meeting the mission requirements. Since there is no standardized implementation 

for UQ/UC across the disparate disciplines and domains of Earth observation, notably within the 

Cal/Val phase for space-based remote sensing, particularly at the Level 1 stage of data 

production, there is plenty of room for diverging approaches. What often results in such cases is 

a prescribed implementation for UQ/UC that is determined by a select group of experts who 

specialize in that particular domain unique to the instrument and platform; that guidance is often 

what is sought after by data producers and Cal/Val teams. Data producers tend to put a lot of 

thought into leveraging UQ/UC for their own iterative algorithm development (e.g., improving the 

performance accuracy and removing bias produced by the geophysical model function), but this 

does not always translate into making the UQ/UC information available for the data users. The 

traditional approach in such cases is publishing a Cal/Val paper to summarize the overall data 

uncertainty and performance of the algorithm(s). Only in recent years has there been a stronger 

push to make the UQ/UC information more accessible, such as including it in the data files.  

 

Programmatically, there seems to be a growing trend in requesting or even requiring the 

presence of uncertainty information for specific types of ESDRs, particularly those that contain 

an ECV. The CEOS WGCV is arguably leading the way in developing these types of 

requirements in the international Earth observation community, at least from a space-based 

remote sensing perspective. Sub-orbital and in situ observations have their own smaller niche 

communities, and it is less clear how well organized these groups are with regard to developing 

international standards and requirements for UQ and UC in their data collections. The ESIP IQC 

appears to be the first instance of any concerted effort to bring together the space-based remote 

sensing, sub-orbital and in situ communities in one common venue to discuss these topics. 

While this is encouraging to see, it is also recognized that there remain differences in thought 

and approach as a result of the historical “stove-piping” of the information that is exchanged 

within these observational data communities. From the U.S. national perspective, there are 
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numerous laws on the books at the federal level that have promulgated as a result of the need 

for more open data and open science. While this can be perceived as progress at least 

legislatively, there appears to be a lot of room for interpretation and application of these laws at 

the agency level (e.g., NOAA, NASA, DOE, etc.). The majority of the progress toward UQ/UC 

implementation and standardization at the U.S. agency level is currently driven by cross-agency 

and international organizations, such as CEOS, ESIP, OGC, and others.  

 

In examining the user perspective, we find that communication and interpretation of UQ/UC 

information go hand-in-hand, and that differences in communication styles may likewise lead to 

differences in interpretation. For instance, many times uncertainty is communicated using error 

bars, which often do not include a probability-based estimate of the confidence that can be 

attributed to those error estimates, thus leading to what may be an overconfident interpretation 

of the uncertainty. This consistent disconnect may help explain why studies have demonstrated 

a considerable lack of understanding among users of UQ/UC information of how probability 

relates to uncertainty. Standards for representing UQ/UC information within data files and as 

metadata are quickly emerging and gaining steam in the Earth science data informatics and 

stewardship communities, particularly with regard to ISO 19157 and OGC’s UncertML 

standards. The area for opportunistic community adoption in this regard is with the data 

producers themselves, as these informatics approaches tend to be focused more on 

communicating UQ/UC in a post-hoc containerized sense, rather than something that is directly 

integrated with the data production workflow. Just as important to these standards are the even 

more recent emergence of analytics and visualization tool kits and software packages that 

provide a relatively consistent user experience in both analyzing and visualizing UQ/UC 

information. The sentiment at this stage is that these toolkits and software packages are still 

relatively new to the data informatics and data science world, so it is too early to assess user 

uptake, let alone, whether or not they are operationally mature enough to be used directly by 

data producers and Cal/Val teams. Despite these early stages of maturity in common solutions, 

we expect significant value and impact to the users if these informatics approaches to 

communicating UQ/UC were to be more thoroughly evaluated for wider adoption by data 

producers to help assess the potential for direct integration with the data production and 

publication workflow. 
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4. Conclusions  

 

The manner in which uncertainty information is derived, characterized, disseminated, 

and ultimately consumed and interpreted by the end user is quite diverse, yet there are shared 

interests and growing commonalities of approach. While this paper primarily focuses on 

statistics-based techniques of evaluating uncertainty information, there are also knowledge-

based techniques that are regularly used. But, for the scope of this paper, such knowledge-

based techniques were not earnestly explored. Regardless of the observation, whether remotely 

sensed or in situ, UQ/UC is ubiquitously recognized as a fundamental step toward providing 

vital information that helps characterize the scientific quality of the Earth science data being 

collected, evaluated, assimilated, and applied. Despite the differences in the approach of 

estimation, interpretation, dissemination, and utilization of uncertainty information, there are 

compelling opportunities within the cross-domain and cross-discipline Earth observation 

communities to work more closely together toward adopting a more uniform implementation of 

this valuable information. Effective utility of UQ/UC information depends primarily on effective 

communication and dissemination of that information. When it comes to expressing uncertainty 

in a probabilistic framework, very few users (perhaps depending on their level of expertise) have 

a proper understanding of that framework to correctly interpret the data; this user limitation may 

be overcome by improved visualization coupled with consistent packaging of the UQ/UC 

information, such as at the pixel level (i.e., 1:1 uncertainty:observation availability) and with the 

inclusion of ancillary information such as probability-based confidence levels.  

 

Since the summer of 2017, the ESIP IQC has undergone an extensive collection effort of 

expert-level information focusing on key aspects of scientific quality of Earth science data and 

addressed key concerns regarding uncertainty. This collection of information has been 

summarized and discussed at a foundational, expository level that is intended to be ubiquitously 

applicable to producers, managers, and users of data across all domains of Earth science 

observation; such information is also meant to be helpful for fundamental researchers and 

decision/policy makers. This paper provides foundational information on the ways in which Earth 

science data uncertainty information is estimated, characterized, and ultimately communicated. 

A natural and expected next step beyond this white paper will be a continued analysis of 

historical and ongoing practices (as discovered through this paper) to provide a set of 

recommended best practices that we expect will serve the interests of all interested parties 

noted above. Through these efforts, it is the hope of the ESIP IQC that more cross-domain and 

cross-discipline coordination can be achieved for the continued advancement of science 

through Earth observation and the study of Earth’s complex processes.  
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