## **Supporting Information**

## Highly efficient antimonate removal from water by pyrite/hematite bi-mineral:

## performance and mechanism studies

Xingyu He,<sup>†</sup> Xiaobo Min,<sup>†,‡</sup> Tianyu Peng,<sup>†</sup> Yong Ke,<sup>†,‡,\*</sup> Feiping Zhao,<sup>†,‡,§,\*</sup> Yunyan Wang,<sup>†,‡</sup>

Mika Sillanpää,§

<sup>†</sup> School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083,

China

<sup>‡</sup> Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan, 410083, China

§ Department of Green Chemistry, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland

\*Corresponding Author

\*E-mail: keyong000ke@csu.edu.cn (Y.K.).

\*E-mail: zhaofeiping1986@163.com (F.Z.).

**Characterization.** XPS measurements were conducted on a VG Scientific ESALAB Mark II spectrometer. FTIR analysis was carried out with a VERTEX 70 FTIR device using the KBr method. The morphology was characterized by SEM (JEOL JSM 7401). XRD analysis was done using a Max-IIIA X-ray diffractometer with Cu K $\alpha$  radiation ( $\lambda$ =1.5418 Å). The inductively coupled plasma (ICP) (Agilent, USA) was applied to determine the Sb concentration.

Data analyses. The Sb(V) removal efficiency was obtained by Eq. (S1):

Removal efficiency (%) = 
$$\frac{C_0 - C_t}{C_0} \times 100\%$$
 (S1)

where  $C_t$  (mg/L) and  $C_0$  (mg/L) are the residual and initial Sb(V) concentration, respectively.

The FeS<sub>2</sub>/
$$\alpha$$
-Fe<sub>2</sub>O<sub>3</sub>'s Sb(V) adsorption capacity ( $Q_e$ ) was obtained by Eq. (S2):  

$$Q_e = \frac{(C_0 - C_e) \times V}{W}$$
(S2)

where W (mg) is the FeS<sub>2</sub>/ $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> mass; V (mL) is the solution volume;  $C_e$  and  $C_0$  (mg•L<sup>-1</sup>) are equilibrium and initial Sb(V) concentration, respectively;  $Q_e$  (mg•g<sup>-1</sup>) is the equilibrium adsorption capacity.

The Freundlich and Langmuir isotherm models are shown in the following equations, respectively:

$$\lg Q_e = \frac{1}{n} \lg C_e + \lg K_f \tag{S3}$$

$$\frac{C_e}{Q_e} = \frac{C_e}{Q_{\text{max}}} + \frac{1}{K_L Q_{\text{max}}}$$
(S4)

where  $Q_e$  (mg•g<sup>-1</sup>) is the equilibrium Sb(V) adsorption capacity;  $C_e$  (mg•L<sup>-1</sup>) is equilibrium Sb(V) concentration;  $Q_{max}$  (mg•g<sup>-1</sup>) is the maximum sorption capacity;  $K_f$   $(mg^{(n-1)/n} \cdot L^{1/n} \cdot g^{-1})$  is Freundlich constant; *n* is a sorption intensity constant;  $K_L$  (L•mg<sup>-1</sup>) is Langmuir constant.

The Weber's intraparticle diffusion (Eq.(S5)), pseudo-second-order (Eq.(S6)) and pseudo-first-order (Eq.(S7)) models were employed to analyze the sorption data.

$$Q_t = k_i t^{0.5} + c \tag{S5}$$

$$\frac{t}{Q_t} = \frac{t}{Q_e} + \frac{1}{h_0}$$
, where  $h_0 = k_2 Q_e^2$  (S6)

$$\ln(Q_e - Q_t) = \ln Q_e - k_1 t \tag{S7}$$

where  $k_i \text{ (mg/g min}^{0.5)}$  is the Weber's intraparticle diffusion model's rate constant;  $h_0$ (mg•g<sup>-1</sup>•min<sup>-1</sup>) represents the initial sorption rate;  $k_2$  (g•mg<sup>-1</sup>•min<sup>-1</sup>) and  $k_1$  (min<sup>-1</sup>) are sorption rate constants;  $Q_e$  and  $Q_t$  (mg•g<sup>-1</sup>) are the amount of Sb(V) adsorbed on FeS<sub>2</sub>/ $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> or pyrite at equilibrium and t, respectively.

The linear equation of the D-R isotherm<sup>1</sup> model is given in Eq(S7):

$$\ln q_e = \ln q_m - \beta \varepsilon^2 \tag{S8}$$

where  $\varepsilon$  ( $\varepsilon = RTln(1+1/C_e)$ ) is the Polanyi potential;  $\beta$  (mol<sup>2</sup>/kJ<sup>2</sup>) is the activity coefficient;  $q_m$  (mol/g) and  $q_e$  (mol/g) are the maximum sorption capacity and the amount of metal ions adsorbed on adsorbent, respectively. The free energy (E; kJ/mol) is defined by Eq.(S8)<sup>2</sup>.

$$E = \frac{1}{\sqrt{2\beta}} \tag{S9}$$

The temperature-dependent adsorption isotherms can deduce the thermodynamic parameters for Sb(V) sorption on FeS<sub>2</sub>/ $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>, the  $\Delta G^0$ ,  $\Delta H^0$  and  $\Delta S^0$  are shown in the following equations (Eqs. (S9) and (S10)):<sup>3-5</sup>

$$\Delta G^0 = -RT\ln K \tag{S10}$$

$$\ln K = -\frac{\Delta H^0}{RT} + \frac{\Delta S^0}{R}$$
(S11)

where *K* is the dimensionless equilibrium coefficient; *T*(K) is temperature in Kelvin; *R* (8.314 J•mol<sup>-1</sup>•K<sup>-1</sup>) is the universal gas constant. *K* can be calculated from Eq. (S11)<sup>6</sup>:

$$K = K_L \times C_w \tag{S12}$$

where  $K_L$  is the Langmuir constant,  $C_w$  (1×10<sup>6</sup> mg•L<sup>-1</sup>) is the water concentration.

According to Eq. (S11), the  $\Delta S^0$  and  $\Delta H^0$  parameters can be calculated from the intercept and slope.



Figure S1. XRD of pyrite, Sb(V) containing pyrite (a),  $FeS_2/\alpha$ -Fe<sub>2</sub>O<sub>3</sub> and Sb(V)

containing  $FeS_2/\alpha$ -Fe<sub>2</sub>O<sub>3</sub> (b).



Figure S2. SEM (a) and corresponding EDS mapping images (b, c, d) of Sb(V) laden

 $FeS_2/\alpha$ - $Fe_2O_3$ .



Figure S3. Particle size distribution of FeS<sub>2</sub> (a),  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> (b) and FeS<sub>2</sub>/ $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> (c).



Figure S4. The Sb(V) adsorption isotherms of  $FeS_2/\alpha$ -Fe<sub>2</sub>O<sub>3</sub> and pyrite (25 °C).



Figure S5. Freundlich plots for Sb(V) removal by  $FeS_2/\alpha$ -Fe<sub>2</sub>O<sub>3</sub>.



Figure S6. The D-R isotherm plots of Sb(V) removal by  $FeS_2/\alpha$ -Fe<sub>2</sub>O<sub>3</sub> (a) and pyrite

(b), respectively.



Figure S7. Relationship of lnK vs 1/T obtain for the Sb(V) removal by  $FeS_2/\alpha$ -Fe<sub>2</sub>O<sub>3</sub>.



Figure S8. Adsorption of Sb(V) on  $FeS_2$  as a function of (a) contact time. The fitting plots of the (b) pseudo-first-order, (c) pseudo-second-order kinetic model and (d)

intraparticle diffusion model.



Figure S9. Zeta potential of  $FeS_2/\alpha$ -Fe<sub>2</sub>O<sub>3</sub>.



Figure S10. Iron leaching of  $FeS_2/\alpha\text{-}Fe_2O_3$  and  $FeS_2$  at different pH.



Figure S11. Efficiency of regeneration process of  $FeS_2/\alpha$ - $Fe_2O_3$ , under optimum conditions. (Initial Sb(V) concentration, 20 mg/L)

| and $FeS_2$ .              |                       |                       |          |                |  |  |
|----------------------------|-----------------------|-----------------------|----------|----------------|--|--|
| Adsorbent                  | $q_m$                 | β                     | Е        | R <sup>2</sup> |  |  |
|                            | (mol/g)               | (mol/g)               | (kJ/mol) |                |  |  |
| $FeS_2/\alpha$ - $Fe_2O_3$ | 5.09×10 <sup>-3</sup> | 3.14×10-9             | 12.62    | 0.9964         |  |  |
| $FeS_2$                    | 6.60×10 <sup>-3</sup> | 6.97×10 <sup>-9</sup> | 8.47     | 0.9959         |  |  |

Table S1. The calculated D-R model parameters of Sb(V) removal by  $FeS_2/\alpha$ -Fe<sub>2</sub>O<sub>3</sub>

d Eas

Table S2. Thermodynamic parameters of Sb(V) removal by  $FeS_2/\alpha$ -Fe<sub>2</sub>O<sub>3</sub>.

|                                                    |                | Thermodynamics parameters  |                       |                            |  |
|----------------------------------------------------|----------------|----------------------------|-----------------------|----------------------------|--|
| Adsorbent                                          | Temp.<br>(°C)  | $\Delta G_0$ (kJ/mol)      | $\Delta H_0$ (kJ/mol) | ⊿S <sub>0</sub><br>J/mol∙K |  |
| FeS <sub>2</sub> /a-Fe <sub>2</sub> O <sub>3</sub> | 25<br>35<br>45 | -26.31<br>-27.48<br>-28.58 | 5.00                  | 114.73                     |  |

Table S3. Kinetic parameters of Sb(V) removal by  $FeS_2/\alpha$ -Fe<sub>2</sub>O<sub>3</sub> (a) and FeS<sub>2</sub> (b).

|                            | pseudo-first-order kinetics |                |        | pseudo                | pseudo-second-order kinetics |                                 |        |
|----------------------------|-----------------------------|----------------|--------|-----------------------|------------------------------|---------------------------------|--------|
| Adsorbent                  | $K_1$                       | $Q_{ m e.cal}$ |        | $K_2$                 | $Q_{ m e.cal}$               | $h_0$                           |        |
| & Sb(V)                    | (min <sup>-1</sup> )        | (mg/g)         | $R^2$  | (g•mg <sup>-1</sup> • | (mg/g)                       | (mg•g <sup>-</sup>              | $R^2$  |
| concentration              |                             |                |        | $\min^{-1}$ )         |                              | <sup>1</sup> •min <sup>-1</sup> |        |
|                            |                             |                |        |                       |                              | )                               |        |
| $FeS_2/\alpha$ - $Fe_2O_3$ | 0.031                       | 23.41          | 0.9542 | 1.83×10-3             | 32.86                        | 1.97                            | 0.9925 |
| (15 mg/L)                  |                             |                |        |                       |                              |                                 |        |
| $FeS_2/\alpha$ - $Fe_2O_3$ | 0.031                       | 29.11          | 0.9542 | 1.15×10-3             | 54.59                        | 3.43                            | 0.9914 |
| (25 mg/L)                  |                             |                |        |                       |                              |                                 |        |
| $FeS_2/\alpha$ - $Fe_2O_3$ | 0.031                       | 54.58          | 09542  | 7.46×10 <sup>-4</sup> | 77.10                        | 4.43                            | 0.9935 |
| (35 mg/L)                  |                             |                |        |                       |                              |                                 |        |
| FeS <sub>2</sub>           | 0.021                       | 13.91          | 0.9642 | 6.14×10 <sup>-3</sup> | 18.62                        | 2.13                            | 0.9802 |
| (15 mg/L)                  |                             |                |        |                       |                              |                                 |        |
| FeS <sub>2</sub>           | 0.021                       | 22.44          | 0.9642 | 3.81×10-3             | 30.04                        | 3.43                            | 0.9804 |
| (25 mg/L)                  |                             |                |        |                       |                              |                                 |        |
| FeS <sub>2</sub>           | 0.021                       | 31.42          | 0.9642 | 2.72×10-3             | 42.05                        | 4.81                            | 0.9801 |
| (35 mg/L)                  |                             |                |        |                       |                              |                                 |        |

|                                                    | Intraparticle diffusion parameters |                 |                 |                 |  |
|----------------------------------------------------|------------------------------------|-----------------|-----------------|-----------------|--|
| Adsorbent<br>& Sb(V)<br>concentration              | <i>R</i> <sup>2</sup>              | K <sub>il</sub> | K <sub>i2</sub> | K <sub>i3</sub> |  |
| FeS <sub>2</sub> /a-Fe <sub>2</sub> O <sub>3</sub> |                                    |                 |                 |                 |  |
| (15 mg/L)                                          | 0.9962                             | 16.31           | 1.98            | 1.10            |  |
| $FeS_2/\alpha$ - $Fe_2O_3$                         |                                    |                 |                 |                 |  |
| (25 mg/L)                                          | 0.9962                             | 27.37           | 12.98           | 1.84            |  |
| $FeS_2/\alpha$ - $Fe_2O_3$                         |                                    |                 |                 |                 |  |
| (35 mg/L)                                          | 0.9963                             | 38.15           | 4.63            | 2.57            |  |
| $FeS_2$                                            |                                    |                 |                 |                 |  |
| (15 mg/L)                                          | 0.9746                             | 5.92            | 0.90            | 1.06            |  |
| $FeS_2$                                            |                                    |                 |                 |                 |  |
| (25 mg/L)                                          | 0.9506                             | 9.77            | 1.45            | 1.71            |  |
| $FeS_2$                                            |                                    |                 |                 |                 |  |
| (35 mg/L)                                          | 0.9950                             | 15.05           | 2.03            | 2.39            |  |

Table S4. Kinetic parameters of Weber's intraparticle diffusion model for Sb(V)

removal by  $FeS_2/\alpha$ -Fe<sub>2</sub>O<sub>3</sub> and FeS<sub>2</sub>.

## REFERENCES

(1) Chen, S.G.; Yang, R.T. Theoretical basis for the potential theory adsorption isotherms. The Dubinin-Radushkevich and Dubinin-Astakhov equations. *Langmuir* **1994**, 10, 4244-4249.

(2) Chakir, A.; Bessiere, J.; Kacemia, K.; Marouf, B. A comparative study of the removal of trivalent chromium from aqueous solutions by bentonite and expanded perlite. *J. Hazard. Mater.* **2002**, 95, 29-46.

(3) Kalavathy, M.H.; Karthikeyan, T.; Rajgopal, S.; Miranda, L.R. Kinetic and isotherm studies of Cu(II) adsorption onto H<sub>3</sub>PO<sub>4</sub>-activated rubber wood sawdust. *J. Colloid Interf. Sci.* **2005**, 292, 354-362.

(4) Kundu, S.; Gupta, A.K. Investigations on the adsorption efficiency of iron oxide coated cement (IOCC) towards As(V)-kinetics, equilibrium and thermodynamic studies. *Colloid. Surface. A.* **2006**, 273, 121-128.

(5) Sari, A.; Tuzen, M. Biosorption of As(III) and As(V) from aqueous solution by macrofungus (Inonotus hispidus) biomass: Equilibrium and kinetic studies. *J. Hazard. Mater.* **2009**, 164, 1372-1378.

(6) Milonjic, S.K. A consideration of the correct calculation of thermodynamic parameters of adsorption. *J. Serb. Chem. Soc.* **2007**, 72, 1363-1367.