## Is charge transfer doping possible at the interfaces of monolayer VSe<sub>2</sub> with MoO<sub>3</sub> and K?

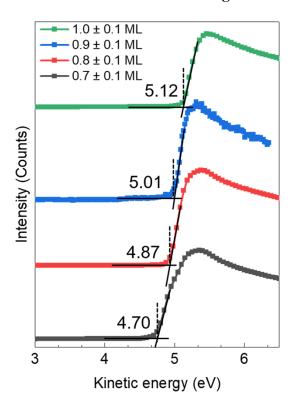
Lei Zhang, † Xiaoyue He, †,§ Kaijian Xing,% Wen Zhang, † Anton Tadich,¹,% Ping

Kwan Johnny Wong,\*,‡ Dong-Chen Qi,\*,#,% and Andrew T. S. Wee\*,†,‡

<sup>†</sup>Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore

<sup>‡</sup>Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore

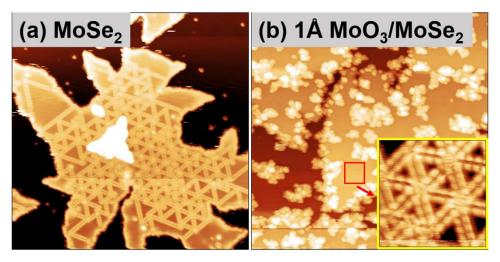
§Songshan Lake Materials Laboratory, Dongguan 523808, China


<sup>%</sup>Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia

<sup>I</sup>Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia

\*ARC Centre of Excellence in Future Low-Energy Electronics Technologies, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia

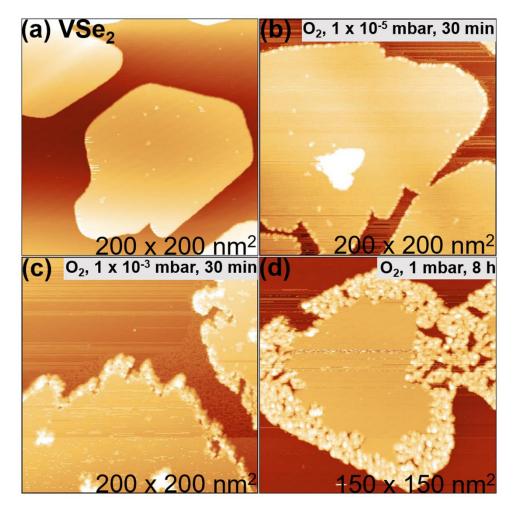
\*E-mail: pingkwanj.wong@gmail.com; dongchen.qi@qut.edu.au; phyweets@nus.edu.sg


## 1. The work function of VSe<sub>2</sub> as a function of coverage.



**Figure S1.** The work function of VSe<sub>2</sub>/HOPG as a function of VSe<sub>2</sub> coverage. The work function increases from ~4.70 to ~5.10 eV with the increasing coverage from 0.7  $\pm$  0.1 monolayer (ML) to 1.0  $\pm$  0.1 ML.

## 2. The control experiment of MoO<sub>3</sub> deposition on monolayer MoSe<sub>2</sub>:


The STM of monolayer MoSe<sub>2</sub> in Figure S2a shows the dense mirror twin grain boundaries (MTGBs). Deposition of 1 Å MoO<sub>3</sub> on MoSe<sub>2</sub> is shown in Figure S2b. The inset of Figure S2b is the zoom-in image of the red square, showing the MTGBs. Although MoO<sub>3</sub> tends to adsorb on MoSe<sub>2</sub> edges, no preferential adsorption of MoO<sub>3</sub> on MTBs was observed, demonstrating that the VSe<sub>2</sub> edges are more chemically reactive than MoSe<sub>2</sub> grain boundaries.



**Figure S2**. STM images of (a) MoSe<sub>2</sub> and (b) 1 Å MoO<sub>3</sub> on MoSe<sub>2</sub>. (Scan size:  $100 \times 100 \text{ nm}^2$  for both (a) and (b) and  $13 \times 13 \text{ nm}^2$  for the inset of (b); Setpoints: a, 1.5 V, 10.0 pA; b, -2.8 V, 11.0 pA; Inset of (b), -0.7 V, 100.0 pA)

## 3. Oxygen-exposure experiment of monolayer VSe2.

The oxygen-exposure experiment of monolayer VSe<sub>2</sub> indicates that the VSe<sub>2</sub> edges are locally and easily oxidized by O<sub>2</sub>, verifying its high chemical activity.



**Figure S3**. STM images of monolayer VSe<sub>2</sub> exposed to O<sub>2</sub>. (a) Pristine VSe<sub>2</sub>; (b) – (c) VSe<sub>2</sub> exposed to an O<sub>2</sub> partial pressure of ~  $1 \times 10^{-5}$  mbar for 30 min, ~  $1 \times 10^{-3}$  mbar for 30 min and ~ 1 mbar for 8 hours, respectively. (Setpoints: a, -1.4 V, 20.0 pA; b, -1.0 V, 24.0 pA; c, -1.4 V, 19.0 pA; d, -2.0 V, 21.0 pA)