A NEwW LOWw-PASS FIR FILTER FOR SIGNAL PROCESSING

A PREPRINT

Alex Pierrefeu
Sevilla, Dos Hermanas, 41700
shaddol1070@gmail.com

November 3, 2019

ABSTRACT

In this paper a new digital low-pass FIR (finite impulse response filter) for the purpose of low-phase
shift signal smoothing is proposed. The filter is implemented via convolution, by using a kernel
calculated from a sine wave series and introduce a degree N parameter that allow for a better fit to
the signal. The filter will be applied to several signals in order to test for reactivity.

Keywords FIR - Filter - Digital Filter - Filtering - Kernel - Digital Signal Processing

1 Introduction

Low-pass filters are widely used in signal processing in order to remove the noise from a specific signal, the most
common FIR filter is the simple moving average (SMA) who return good performance in the time domain, however
the SMA tend to respond slowly to abrupt change in a signal and have a relatively high phase-shift, the SMA also has
difficulties retaining the original shape of the signal, therefore other filters must be used when shape conservation and
reactivity are required . The proposed filter will use a kernel designed from a sine wave series and aim to have quick
reactivity while filtering noise and conserving the original shape of the signal..

2 Filter Design

The proposed low-pass filter of period window M and degree N posses a kernel h defined as h = A f(N) where :

N
1
N) =22 § —sin(x;
f(N) ==z +j=0 nsm(az nm)
1,2,3,4--- M

ithn=1,2,3,4---Nandx =
with n ,2,3, and x i

Then the filter is calculated via convolution with : x[n] * h[n]. An higher degree N provide a better fit to the signal.
The step response of the filter is equal to f(N) and is shown in ﬁgure



A PREPRINT - NOVEMBER 3, 2019

30 35 40

2.0 1
1.8
1.6
- \X/
1.2 A
1.0
0.8 4 —— Step Function
—— 5tep Response : N =1
0.6 —— 5tep Response : N =2
—— Step Response : N =3
T
25

Figure 1: Step response of the proposed filter using kernel h

3 Filtering Using The Proposed Filter

The proposed filter posses the following frequency response for N = 1,2 and 3 :

Frequency Response Of The Proposed Filter

T
5 b, — N=1
1A —_— N=2 |
LA H=2
e S, oy — N=3

Amplitude [dB]
.
wun
——
____}-::})

—30

_35 Il
20 50 100 200 500 1K 2K 5K 10K 20K
Frequency [Hz]

Figure 2: Frequency Response Of The Proposed Filter With Period Window M = 50 And Different Degrees N

From the frequency response it can be seen that the filter amplify certain frequencies before the transition band, which
is the cause of its reduced phase shift, this amplitude increase as N increase. The reactivity of the proposed filter is
tested by using a noisy sinusoidal signal in in figure 3]and a random signal generated by a random walk in figure 4],
higher values of NV provide a better fit to the signal at the cost of reduced smoothness.



A PREPRINT - NOVEMBER 3, 2019

—— Signal
1.0 — F!Iter: N=1
—— Filter: N =2
—— Filter: N =3
0.5 4
0.0 1
_05 -
—1.0 A

T
0 20 40 60 80 100

Figure 3: Proposed Filter With Period Window M = 100 And Different Degrees N

15 A

10 4

T T T T T
100 200 300 400 500

o -

Figure 4: Proposed Filter With Period Window M = 100 And Different Degrees N

4 Conclusion

In this paper a new low-pass filter based on a sine wave series has been proposed. Fields requiring low phase shift filters
for signal denoising might get advantage of the proposed filter, one field in particular being technical analysis which
make use of a wide variety of filters (SMA, EMA, VWMA...) with some of them requiring a low phase shift in order to
better fit with the input price (DEMA [\, TEMA [2l], HMA [3], ZLEMA [4]) .



A PREPRINT - NOVEMBER 3, 2019

S Python Code

import numpy as np

def kernel (M, order)
n = np.linspace (0, 1, M)
x =0
for i in range(1,order+1):
X += 1/1 % np.sin(n * i * np.pi)
a = n*n + X
return np.diff(a)

def filt(src, M, order)
return np.convolve(src, kernel(M, order))

6 Pinescript Code

kernel (x, order) =>
sum = 0.
b =0.
pi = atan(1)*4
a = X*X
for i = 1 to order
b := 1/i * sin(x*ixpi)
sum := sum + b
pol = a + sum
//--=-
F(src, M, order) =>
sum = O.
for i =1 to M
w = kernel(i/M,order) - kernel((i-1)/M,order)
sum := sum + srcl[i-1] * w
sum

References

[1] Mulloy, P. G. (1994a). “Smoothing Data With Faster Moving Averages”, Technical Analysis of Stocks and
Commodities, 12 (1), 11-19.

[2] Mulloy, P. G. (1994b). “Smoothing Data With Less Lag”, Technical Analysis of Stocks and Commodities, 12 (2),
72-80

[3] Hull, A. (2005). “How to Reduce Lag in a Moving Average”, http://www.alanhull.com/ hull-moving-average.

[4] Ehlers, J. F. and Way, R. (2010). “Zero Lag (Well, Almost)”, Technical Analysis of Stocks and Commodities, 28
(12), 30-35.



	Introduction
	Filter Design
	Filtering Using The Proposed Filter
	Conclusion
	Python Code
	Pinescript Code

