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“The expert at anything was once a beginner.”
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Abstract

Insurance and reinsurance companies have to calculate solvency capital require-

ments in order to ensure that they can meet their future obligations to policy-

holders and beneficiaries. The solvency capital requirement is a risk management

tool essential when extreme catastrophic events happen, resulting in high number

of possibly interdependent claims. In this thesis, we study the problem of aggre-

gating the risks coming from several insurance lines of business and analyse the

effect of reinsurance in the level of risk. Our starting point is to use a Hierarchical

Risk Aggregation method, which was initially based on 2-dimensional elliptical

copulas. We use copulas from the Archimedean family and a mixture of different

copulas. The results show that a mixture of copulas can provide a better fit to

the data than the plain (single) copulas and consequently avoid overestimation

or underestimation of the capital requirement of an insurance company. We also

investigate the significance of reinsurance in reducing the insurance company’s

business risk and its effect on diversification. The results show that reinsurance

does not always reduce the level of risk but can reduce the effect of diversifica-

tion for insurance companies with multiple business lines. To extend the literature

on modelling multivariate distributions, we investigate the dependence structure

of multiple insurance business lines risks using C-vine copulas. In particular, we

use bivariate copulas, and aggregate the insurance risks. We employ three C-vine

models such as mixed C-vine, C-vine Gaussian and C-vine t-copula to develop a

new capital requirement model for insurance companies. Our findings suggest that

the mixed C-vine copula is the best model which allows a variety of dependence

structure estimated by its respective copula families.
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Chapter 1

Introduction

1.1 Background

Aggregation of risks from insurance companies perspective is a process of com-

bining risks from all insurance business lines. In particular, it is important to

understand the dependence structure between different insurance business lines.

In this regard, dependence structure for insurance companies is interpreted as the

behaviour or interaction of one business line to another business lines beyond linear

dependence. Generally, insurance companies are divided into two main categories:

general insurance and life insurance. These insurance companies are different from

one another in terms of the protection they provide. General insurance protects

against damages or losses to an asset while life insurance promises a lump sum or

regular payments to beneficiary of a life policy upon the death of the policyholder.

In this thesis, we focus on general insurance (hereafter referred to as insurance)

whose losses are highly exposed to extreme events. The focal point is loss ratio as

a proxy for insurance business risks. Risk managers and actuaries aggregate the

risk of losses from insurance business lines to determine the capital requirement.

Through a proper level of capital requirement, an insurance company is able to

reduce the risk of insolvency as a part of the company’s business continuity plans.

This thesis has a triple goal. First, we develop a new model to aggregate risks of an

insurance company. In particular, we use copulas as a tool to model the dependence

structure between insurance business lines risks. Second, by considering reinsur-

ance business in an insurance company, we investigate the effects of reinsurance

on the level of risks and analyse the influence of reinsurance on the dependence

1



Introduction 2

structure between different business lines. The first and second research goals are

addressed by the first aggregation approach, hierarchical risk aggregation. Finally,

we develop a new capital requirement estimation methodology for general insur-

ance companies. This model focuses on the second aggregation approach using

vine copula.

According to Embrechts et al. (2003), since it was introduced by Sklar (1959),

copula is widely accepted and covered in the finance and insurance literature.

(Darsow et al., 1992; Joe, 1996; Wang, 1998; Frees and Valdez, 1998; and Klugman

and Parsa, 1999) are among the first using copulas. In finance, Breymann et al.

(2003) investigate the dependence structure of two dimensional high-frequency FX

spots data between US Dollar/Deutsch Mark1 and US Dollar/Japanese Yen. Dias

and Embrechts (2009) and Fortin and Kuzmics (2002) introduce a new method

to model asymmetric dependence in asset returns. Jondeau and Rockinger (2006)

model dependence between two stock returns while Hofert and Scherer (2011) use

copula to model Collateralized Debt Obligation (CDO) prices.

Copulas are also frequently used in insurance. In the 1990s, the concept of copula

was relatively unknown to insurance and finance. Frees and Valdez (1998) intro-

duce basic properties of copulas and provide resources for future research. They

also investigate the relationship of multivariate outcomes from financial systems

and estimate joint life mortality and multi-decrement model. Wang (1998) pio-

neers the literature on risk aggregation of insurance business lines using Gaussian

copula. According to Wang (1998), insurance risks are determined by the loss

distribution of claims data. Then, these data are combined and the dependence

structure of loss distributions is modelled using a Gaussian copula to derive the

insurance company’s risk aggregation model. However, Embrechts et al. (2003)

highlight that Gaussian copulas are symmetric copulas and have a limited ability

to model insurance losses especially in extreme events where potential contem-

poraneous high losses from insurance claims are expected. To address this issue,

we propose in Chapter 4 to model the risk aggregation of an insurance company

using copulas from the Archimedean family, in addition to Gaussian and t-copula.

More precisely, we introduce hierarchical risk aggregation model to combine all

insurance business lines’ risks in general insurance companies using Archimedean

copulas. This study focuses on the risk of general insurance companies. In addition,

previous literature on copula in insurance predominately focus on claim data to

model insurance risks (Frees and Valdez, 1998, Wang, 1998, Klugman and Parsa,

1Deutsch Mark was replaced with the Euro since 1 January 1999.
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1999, among others). In this thesis, we explore a new method to model insurance

risk. Instead of using claim data directly, we use loss ratio which is derived by

claims per unit premiums. We discuss loss ratios in Section 2.3.

In general, insurance risks arising from large claims can be passed to reinsur-

ance companies. In this regard, it is crucial to measure the dependence structure

between insurance and reinsurance business. Using Dynamic Financial Analysis

(DFA), Eling and Toplek (2009) analyse the risk and return profile of reinsurance

contracts using copula models. They evaluate reinsurance contracts and use ruin

probability with expected policyholder’s deficit as benchmark for risk assessments.

In contrast to Eling and Toplek (2009), in our second objective, we investigate the

reinsurance effects on each insurance business line risk using loss ratio distributions

and measure the risk reduction effects from reinsurance to the insurance company

total risk in Chapter 4.

Modelling risk of multiple insurance business lines involves high dimensional dis-

tributions. This can be challenging and requires complex numerical computation.

Bivariate distributions are proposed in the literature to simplify the modelling

process. Due to its simpler implementation than high dimensional distributions,

bivariate distributions are widely used in the literature to model dependence struc-

ture (Aas et al., 2009; Kurowicka and Joe, 2010; Arbenz et al., 2012; Brechmann

and Schepsmeier, 2013; Côté and Genest, 2015; Mai and Scherer, 2012; and Cos-

sette et al., 2017). Based on bivariate distributions, Arbenz et al. (2012), Côté

and Genest (2015), Mai and Scherer (2012), and Cossette et al. (2017) decom-

pose high dimensional distributions into bivariate distributions using Hierarchical

copula models to model dependence. Similarly, Aas et al. (2009), Kurowicka and

Joe (2010), Brechmann and Schepsmeier (2013) use bivariate copulas through

vine copula models to model high dimensional distributions. Vine copulas reduce

modelling complexity by pairing two datasets (bivariate) at the time. We use hi-

erarchical copula models in Chapter 4 to model high dimensional insurance loss

distributions for risks aggregation. In Chapter 5 we use vine copula models to

model the capital requirement for insurance companies.

The research in this study focuses on two datasets. We use insurance data from

Australia and the United Kingdom (UK) in Chapter 4 and 5 respectively. We

investigate the dependence structure of insurance business lines from the risk per-

spective for both countries. We develop new models to aggregate risks and deter-

mine the capital requirement. In the UK and other European countries, Solvency
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II was introduced on 1st January 2016 to regulate insurance companies by three

different pillars. Pillar 1 concerns quantitative measures and relates to the capital

requirement which is the central interest of this study. This pillar is the technical

provision and includes guidelines for insurance companies to determine two level

of capital requirements. The first one is Solvency Capital Requirement (SCR), a

safe level for insurance companies, and the second one is Minimum Capital Re-

quirement (MCR), a critical level that need immediate attention from insurance

companies. Insurance companies with capital requirement below the MCR level

are reported as insolvents. On the other hand, Pillar 2 focuses on the qualita-

tive measures useful for risk management and governance while Pillar 3 details

the disclosure requirements for annual published solvency and financial condition

reports. Similarly, in the counterpart, Australia, the insurance companies are reg-

ulated by the Australian Prudential Regulatory Authority (APRA). Implemented

3 years earlier than Solvency II in the UK, the Life and General Insurance Capi-

tal (LAGIC) was introduced with similar objectives as Solvency II from its three

pillars.

1.2 Thesis outline

In Chapter 2, we introduce some definitions for risk measures and loss ratio of

an insurance company which are used in this thesis. We begin in Section 2.1 by

giving the definitions of different risk measures such as Value-at-Risk (VaR) and

Tail-Value-at-Risk (TVaR). We also discuss the importance of choosing a good

(coherent) risk measure for modelling insurance risks and provide the properties

of a coherent risk measure. In Section 2.2, we present methods for computing risk

measures, and introduce loss ratios as a proxy for insurance risk in Section 2.3. In

addition, we review the probability distributions, fitting distribution methods and

standard test of randomness that are useful to model the aggregation of risks in

this thesis.

Chapter 3 focuses on copulas and dependence measures. We first recall the defi-

nition of a copula in Section 3.1, and introduce the most commonly used copulas

from Elliptical and Archimedean family in Section 3.2. Then, we introduce the

statistical inference for copula in Section 3.3 including copula density, conditional

copula and its statistical inference. In Section 3.4, we give two types of dependence

measures such as linear dependence and non-linear dependence. We also provide a
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simple motivating example for choosing the best dependence measure. We end this

chapter by giving an overview of graph theory which is important for modelling

the aggregation of risk of an insurance company in this thesis.

Hierarchical risk aggregation model, one of the key methodologies in this thesis

is introduced in Chapter 4. The hierarchical risk aggregation model is developed

based on the application of graph theory as discussed in Section 3.5. This chap-

ter seeks to address the problem of modelling the dependence structure of losses

in general insurance companies. In Section 4.1, we highlights the importance of

aggregation of risks and discuss relevant literature on risks aggregation using cop-

ulas. We introduce the methods for aggregating risk using hierarchical aggregation

model in Section 4.2. This includes the conditions for constructing the aggregation

model, simulation of observations from the aggregation model, numerical approx-

imation algorithm and risk measures to estimate the risks of the aggregate losses.

In Section 4.3, we provide the data we use for analysis in this chapter. We use data

on general insurance from the Australia insurance industry. We use gross (from

reinsurance) incurred claims, gross earned premiums, net incurred claims and net

earned premiums variables to estimate the loss ratio distribution as a proxy for in-

surance risk. In this thesis, our second goal is to investigate the effect of reinsurance

on capital requirements. We use both the gross and the net variables to investigate

this effect. The results from the copula aggregation model and the effects of rein-

surance in the level of risk and diversification of the portfolio of different business

lines are presented in Section 4.4. In Section 4.5, we provide analysis of the results

from focusing on the effect of reinsurance business to insurance companies from

risk perspective. Conclusion is provided in Section 4.6. This chapter is based on

a working paper by Dias et al. (2018) and a similar version of this chapter has

been presented at the following international conferences: Institute & Faculty of

Actuaries (IFoA) Asia Conference 2018, Bangkok, Thailand, 10-11 May 2018; 21st

International Congress on Insurance: Mathematics and Economics, Vienna, July

6-7, 2017; 3rd Symposium on Quantitative Finance & Risk Analysis 2017, Corfu,

Greece, 15-16 June 2017.

Chapter 5 introduces pair-copula constructions or vine copula to model high di-

mension vectors. In particular, we apply a vine copula method in modelling aggre-

gation of multiple insurance business lines risks, to address the third research goal

of this thesis. We review significant contributions in the literatures on vine copula

in Section 5.2. Then, we develop theoretical foundations for vine copula construc-

tions in Section 5.3. This includes, the simplifying assumptions to construct the
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vine copula and h-function for solving high dimensional conditional distribution

functions. We particularly focus on C-vine copulas and discuss the procedures to

build its tree structure in Section 5.4. In addition, also in Section 5.4, we provide

the vine copula inference, a numerical example for C-vine model estimation, cop-

ula selection and simulation of a C-vine. It is important, from a statistical point of

view, to investigate the impact of dependence structures to insurance companies.

To this end, in Section 5.5, we introduce an empirical analysis on aggregation of

multiple insurance business lines risks in the UK using data sourced from the As-

sociation of British Insurers (ABI). The types of data used in this chapter to derive

loss ratios distributions is similar to Chapter 4. However, due to different reporting

format in the UK, we use written premiums instead of earned premiums as one of

the variables in this chapter. Statistical results including the C-vine structure and

simulations to obtain VaR and TVaR are also presented. Section 5.6 concludes

the chapter. A similar version of this chapter has been presented at Institute &

Faculty of Actuaries (IFoA) Asia Conference 2018, Bangkok, Thailand, 10-11 May

2018.

A summary of the thesis and further work are given in Chapter 6.



Chapter 2

Risk measures for general

insurance

2.1 Introduction

In this chapter we discuss risk measures that are particularly important and fre-

quently used in insurance industry. Although some of the risk measures can be

applied to life insurance business, we primarily focus on the application in the

general insurance businesses. We start in Section 2.1.1 by giving an overview of

Value-at-Risk (VaR) and its application in determining the capital requirement

for insurance companies. In addition, we also highlight the key challenges for VaR

as a risk measure. Properties for a good risk measure (coherent) are introduced

by Artzner et al. (1999) and details of these properties are explained in Section

2.1.2. We introduce in Section 2.1.3, Tail Value-at-Risk (TVaR), a coherent risk

measure to estimate the capital requirement. In Section 2.2 we discuss the two

different methods to compute a risk measure and define loss ratio from insurance

perspective. Moreover, we also introduce six different types of probability distri-

butions that are candidate distributions to be fitted to loss data in this thesis such

as Log-normal, Gamma, Weibull, Log-logistic, Pareto and Burr distribution. In

Section 2.3.2, we describe the procedure for selecting the best fitted distribution

for a dataset. Finally, in Section 2.3.3, we explain the standard tests of randomness

for testing the stationary and serial dependence of data sets.

7
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2.1.1 Value-at-Risk (VaR)

In practice, Value-at-Risk (VaR) is the most widely used risk measure in finan-

cial and insurance industry. The regulator for insurance industry in the European

Union (EU) countries implements Solvency II whereby VaR is used as a risk mea-

sure to determine the level of capital requirement. Generally, VaR can be defined

as the maximum loss that should not be exceeded during a specified time horizon

with a given confidence level. The loss or loss ratio in the context of insurance

risk is defined in Section 2.3. Rosenberg and Schuermann (2006), Dowd and Blake

(2006) and Ye and Li (2012) interpret VaR from the statistical perspective as a

quantile of the distribution of portfolio returns or losses. The quantile is subse-

quently used to determine the level of risk. Based on 95% confident level, VaR

is interpreted as the maximum loss that a company could receive on the “best”

95 days from the total of 100 days. Mathematically, VaRα of the loss X can be

written as

V aRα(X) = inf{x ∈ R : P (X > x) ≤ 1− α)},

= inf{x ∈ R : P (X ≤ x) ≥ α}

where α is the confidence level in (0,1).

Although VaR is considered a better way to measure risk or specifically downside

risk, it is also has its disadvantages as explained by Ye and Li (2012). VaR is only

useful in good states where a tail event is not present. In this case we may be able to

know the maximum of possible losses. However, no guidance is provided on possible

losses that may occur during bad states where a tail event does occur (Dowd

and Blake, 2006). VaR lacks of sub-additivity and as alternative risk measure,

TVaR has been introduced to overcome this issue. Numerous studies on VaR and

TVaR can be found in the literature. Acerbi and Tasche (2002) introduce risk

management strategy using both VaR and TVaR as risk measures. Emmer et al.

(2001) and Alexander and Baptista (2004) analyse on the optimal portfolio choices

with VaR and TVaR constraint in a single period. Tsai et al. (2010) extend the

application of TVaR by introducing Tail Value-at-Risk Minimization (TVaRM)

model to generate the optimal mix of insurance products.

We discuss the properties of a coherent risk measure and alternative risk measure

to VaR in the following sections.
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2.1.2 Coherent risk measures

It is important to distinguish and determine a good risk measure or in other

words a coherent risk measure. We refer to Artzner et al. (1999) which provide

properties of a coherent risk measure. Consider ρ(Xi) to denote as risk measure for

a set of possible outcomes Xi then the following are the properties of a coherent

risk measure:

• Sub-additivity: ρ(X1 +X2) ≤ ρ(X1) + ρ(X2).

Based on this property, the total risk of two added business lines is less than

the total risk of two business lines added separately. This property is suitable

for diversification. An insurance company with two business lines needs less

capital requirement than the sum of capital requirement for the two business

lines considered as separate business.

• Monotonicity: If X2 ≤ X1, then ρ(X1) ≤ ρ(X2).

If a business line has a better value than another business lines under all

scenarios, then its risk will be less than the other business lines as well.

• Positive homogeneity: For all λ ≥ 0, ρ(λX) = λρ(X).

This property says that if we double the size of the position, then we are

actually doubling the risk. From a business perspective, if we increase the

size of a business by 50%, then we are actually increasing the business risk

by 50%.

• Translation invariant: For all constant c, ρ(X + c) = ρ(X)− c.
Translation invariant property says that adding a certain amount constant

c will reduce risk by the same amount.

VaR is not sub-additive. Therefore, VaR is not a coherent risk measure. In the

next section, we consider TVaR as an alternative risk measure to VaR.

2.1.3 Tail Value-at-Risk (TVaR)

We estimate the risk of the aggregate loss ratio based on the distribution of the

aggregate loss X, obtained with the copula hierarchical model and C-vine copula

model in Chapters 4 and 5 respectively. We use a coherent risk measure, tail value



Risk measures for general insurance 10

at risk (TVaR) as introduced in Acerbi and Tasche (2002). The TVaR of the loss

represented by X at confidence level α, for α ∈ (0, 1), is defined by

TV aRα(X) =
1

1− α

∫ 1

α

V aRu(X) du,

where the V aRα of the loss X is given by

V aRα = inf {x ∈ R : P (X ≤ x) ≥ α} .

In risk management α typically takes values between 90% and 99%. In order

to estimate TVaR we use the nonparametric estimator (see Adam et al. (2008)

for details). Given n observations {x1, x2, . . . , xn} of the variable X, the TVaR

estimator is given by

T̂VaRα =
1

n(1− α)

bn(1−α)c∑
i=1

x(n−i+1) + (n(1− α)− bn(1− α)c)x(n−bn(1−α)c)

 ,

where {x(1), x(2), . . . , x(n)} is the ordered sample, bvc denotes the largest integer

not greater than v, and in our case α ∈ {0.9, 0.95, 0.99}.

2.2 Bootstrap methods for computing risk mea-

sures

We estimate the risk measure from the aggregate loss ratios in our empirical re-

search in Chapters 4 and 5 using bootstrapping method. In this section, we discuss

two possible bootstrapping methods. The first method is parametric bootstrap

method and the second one is non-parametric bootstrapping method. We summa-

rize these methods in the following sections.

2.2.1 Parametric bootstrap

In the parametric bootstrap method, we use the fitted distributions to respective

loss ratios and simulate according N simulations to obtain simulated losses for the

risk measure.
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Consider F̂ is the empirical cdf of loss ratios, X1, ..., Xd. The parametric bootstrap

to estimate the risk measures, VaR and TVaR in Chapters 4 and 5 is given by the

following steps

• Simulate N independent samples from F̂ ,

• Estimate the risk measure such as VaRα denoted as V̂aR
(i)

α , i = 1, 2, ..., N

and TVaRα denoted as T̂VaR
(i)

α , i = 1, 2, ..., N

• Determine the median and confident intervals of V̂aR
(i)

α , i = 1, 2, ..., N and

T̂VaR
(i)

α , i = 1, 2, ..., N respectively.

2.2.2 Non-parametric bootstrap

In non-parametric bootstrapping, the original loss ratios are treated as a com-

plete dataset representing the whole general insurance industry. In this regard,

this method simulates a new loss ratios data set, X∗1 , ..., X
∗
d by re-sampling with

replacement from the original loss ratios, X1, ..., Xd according to the bootstrap

distribution, given by

P (X∗ = xi) =
1

d
, (2.1)

where i = 1, 2, ..., d and x1, x2, ..., xd are elements of the drawn samples.

According to Pekasiewicz (2016), this method however does not allow to obtain

a good estimation of distribution tail and therefore is unable to provide a good

approximation for the quantile distribution.

2.3 Loss ratio and its distribution

In insurance industry, loss ratio has been widely used particularly by actuaries

and insurance managers to measure a company profitability, products’ pricing,

business strategies and also capital management. A loss ratio usually expresses

the relationship between insurance losses and premiums.

Generally, the loss ratio (LR) is defined as
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LR =
losses

premiums
, (2.2)

where the numerator is the losses from insurance claims and the denominator is the

premiums which can be from earned premium or written premium. The selection of

premium depends on the types of exposure. Earned premiums is a correct measure

if the data is recorded based on accident year exposure while written premiums

are used for policy year exposure data (Taylor, 1997).

We base our study on the variable loss ratios. For business line i and time period

t, we define the loss ratio as

LRi,t =
ICi,t
EPi,t

,

where ICi,t denotes the incurred claims corresponding to the earned premium EPi,t

based on accident year insurance company accounting principal; see Taylor (1997)

for details on the loss ratio variable. The loss ratio can be seen as a measure of

claims standardized by the risk exposure (given by the earned premium). Using

loss ratios eliminates temporal effects of business growth and inflation, and it

allows to make comparisons between business lines with different risk exposures.

The loss ratios are subsequently added up to form the aggregate loss ratio used

for capital requirement estimation.

The aggregate loss ratio at time t, LRt, can then be written as a weighted sum of

the loss ratios for each of the d lines of business as

LRt =
ICt
EPt

=

∑d
i=1 ICi,t∑d
i=1EPi,t

=

∑d
i=1

(
ICi,t
EPi,t

× EPi,t
)

∑d
i=1EPi,t

=
d∑
i=1

(
LRi,t ×

EPi,t∑d
i=1EPi,t

)

=
d∑
i=1

(
LRi,t × wi,t

)
, (2.3)

where ICt and EPt are the incurred claims and earned premium aggregated across

all lines of business, and wi,t is the weight of business line i in period t. In our
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work we consider gross loss ratios and net (of reinsurance) loss ratios. The gross

loss ratios are computed with gross claims and gross premiums. The net loss ratios

are based on net claims and net premiums.

2.3.1 Probability distribution

We only consider the families of heavy-tailed distributions since this research is

interested on analysing the tail part of distribution and according to the liter-

ature, insurance loss ratios are typically heavy-tailed. Heavy-tailed distributions

have been widely used in the literature (Dropkin, 1964, Bickerstaff, 1972, Kleiber,

2003, Mikosch, 2009, Klugman et al., 2012). To this end, we fit the following fam-

ilies of distributions: Lognormal, Gamma, Weibull, Loglogistic, Pareto and Burr

distribution.

Lognormal distribution

If a random variable Y follows a Log-normal distribution, then X = ln(Y ) is

normally distributed. Similarly, if X has a Normal distribution, then Y = eX is

Log-normally distributed. The cumulative distribution function (cdf) of a Log-

normal is given by

F (y;µ, σ) = Φ

(
ln(y)− µ

σ

)

=

∫ y

0

1√
2πσx

e−
1
2

(
ln(x)−µ

σ

)2
dx,

(2.4)

where µ is the mean, σ is the standard deviation and Φ is the cdf of a standard

Normal distribution with y, σ > 0 and µ ∈ R.

Gamma distribution

If a random variable X has a Gamma distribution then its cdf is given by

F (x;α, β) =

∫ x

0

1

Γ(α)βα
yα−1e−y/βdy, (2.5)

where α is the shape parameter and β is the scale parameter with α, β and x > 0.
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Weibull distribution

A random variable X has Weibull distribution if X ∈ [0,∞) has the following cdf

F (x;α, β) =

1− e−(x/β)α , if x > 0

0 otherwise,
(2.6)

where the shape parameter α > 0 and the scale parameter β > 0. This distribution

is heavy-tailed if α < 1 since

lim
x→∞

(
λx− (x/β)α

)
=∞

holds for every λ > 0.

Log-logistic distribution

If X has a Log-logistic distribution, we write X ∼ LL(α,β), then its cdf is

F (x;α, β) =
1

1 + (x/β)−α

=
(x/β)α

1 + (x/β)α

=
xα

βα + xα
,

(2.7)

where α > 0 is the shape parameter, β > 0 is the scale parameter and x ≥ 0.

Pareto distribution

A random variable X is said to have Pareto distribution if its cdf is given by

F (x;α, β) = 1−

(
β

β + x

)α

, α, β > 0, x ≥ 0, (2.8)

where α is the shape parameter and β is the scale parameter. The parameter

α controls the thickness of the tail of the distribution. A smaller α represents a

heavier tail.
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Burr distribution

F (x;α, τ, β) = 1−

(
βτ

βτ + xτ

)α

, (2.9)

where α is the shape parameters, β is the scale parameter and x, α, β, τ are positive.

The Burr distribution is a generalization of Pareto distribution and does have

greater flexibility than the Pareto distribution.

2.3.2 Fitting distribution

Univariate distributions are fitted by estimating its parameters using maximum

likelihood. We decide between distributions based on the Anderson and Darling

(1954) goodness of fit test.

Let x = (x1, x2, ..., xn) be a vector with n independent observations and probability

density function (pdf) f(x; θ
′
), where θ

′
= (θ1, θ2, ..., θq) is a vector of q unknown

parameters. The likelihood function, L(θ
′
;x) is defined by

L(θ
′
;x) =

n∏
j=1

f(xj; θ
′
). (2.10)

The maximum likelihood estimates, θ̂ = θ̂(x), are such that θ̂ is the value that

maximizes the likelihood function L(θ
′
;x).

Hypothesis testing

Consider X independent and identically distributed (i.i.d) random variables with

distribution function F . Then, the hypothesis test for Kolmogorov-Smirnov (Kol-

mogorov, 1933 and Smirnoff, 1939) and Anderson and Darling (Anderson and

Darling, 1954) is given by

H0: F = F0,

H1: F 6= F0,

where F0 is some specified distribution function.
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The Kolmogorov-Smirnov test (K-S test) measures dissimilarity between empirical

cumulative distribution Fn(x) of the data and the fitted cumulative distribution

F0(x). The test statistics is given by

dn = sup
x
|Fn(x)− F0(x)|, (2.11)

where n is the sample size.

The empirical cdf, Fn(x) is written as

Fn(x) =


0 for x < x1
i
n

for xi ≤ x < xi+1, i = 1, 2, ..., n− 1

1 for x ≥ xn,

(2.12)

where x1 ≤ x2 ≤ ... ≤ xn are the n-sample X values arranged based on ascend-

ing order. If dn is greater than the critical value (from K-S test table), the null

hypothesis is rejected.

The Anderson-Darling test is a modified K-S test. The test statistic is given by

AD2 = −n−

∑n
j=1

[
(2j − 1) ln(zj) + (2n+ 1− 2j) ln(1− zj)

]
n

, (2.13)

where n is the sample size and zj = Fn(xj) is the cdf for the specified distribution.

The null hypothesis is rejected if AD2 is greater than the critical value.

2.3.3 Standard tests of randomness

We test the data in this study using standard tests of randomness to check if the

data present trend, seasonality or serial dependence.

The Ljung-Box test was introduced by Ljung and Box (1978) to examine if resid-

uals derived from a time series model exhibit white noise. We regard a time series

with no serial dependence as i.i.d. The test statistic is given by

Q̂ = n(n+ 2)
m∑
k=1

r̂2k
n− k

, (2.14)
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where n is the length of the time series, m is the number of lags to test and r̂k

is the autocorrelation coefficient of residuals at lag k. Ljung-Box test is developed

by examining the following hypotheses

H0 : r̂1 = r̂2 =, ...,= r̂k = 0, Ha : at least one r̂k 6= 0. (2.15)

The hypothesis of zero dependence is rejected if

Q̂ > χ2
1−α,m, (2.16)

where χ2
1−α,m is the value of the chi-square distribution table with m degree of

freedom and significant level α.



Chapter 3

Copulas and dependence

measures

3.1 Copulas

As mentioned in the previous section, copula is very useful in modelling depen-

dence structures. The basic idea of copula is that every joint distribution from a

random vector can be translated into its marginal distribution and the dependence

structure can be described by its copula. By now, the theory of copula is well estab-

lished. In fact, for reference to copula, Joe (1997), Nelsen (2006) and McNeil et al.

(2015) provide excellent textbook references to understand the theoretical foun-

dations of copula. Generally, a n-dimensional copula is a multivariate distribution

function on [0, 1]n with standard uniform univariate marginal distribution.

Following copula definition by McNeil et al. (2015), we define n-dimensional copula

according to its properties in Definition 3.1.

Definition 3.1. A copula with n-dimensional is a function C : [0, 1]n→[0, 1] that

satisfies the following properties

• Groundedness: C(u1, ..., un) = 0 if ui = 0 for any i

• Normalize margin: C(1, ..., 1, ui, 1, ..., 1) = ui for all i ∈ 1, ..., n, ui ∈
[0, 1]. This means the marginal distributions need to be in uniform scale.

18



Copula and dependence measures 19

• n-increasingness: For all (a1, ..., an), (b1, ..., bn) ∈ [0, 1]n with ai ≤ bi we

have
2∑

i1=1

...

2∑
in=1

(−1)i1+...+inC(u1i1 , ..., unin) ≤ 0,

where uj1 = aj and uj2 = bj for all j ∈ 1, ..., n.

Copula is useful to measure dependence and its role is explained in theorem of

Sklar (1959). It explains the link between multivariate distribution function and

its univariate margins.

Theorem 3.2. (Sklar’s theorem). Let F be a joint distribution function with

univariate margins F1, ..., Fn. Then there exists a function C : [0, 1]n → [0, 1] such

that

F (x1, ..., xn) = P(X1 ≤ x1, ..., Xn ≤ xn) = C(F1(x1), ..., Fn(xn)). (3.1)

If the margins F1, ..., Fn are continuous, then C is unique. Conversely, if C is a

copula with univariate distribution functions F1, ..., Fn, then F (x1, ..., xn) defined

in (3.1) is a joint distribution function with univariate margins F1, ..., Fn.

Theorem 3.2 provides method for constructing a copula based on inverse dis-

tribution function. Consider a multivariate distribution function F and inverse

distribution functions F−11 , ..., F−1n , a copula C is given by

C(u1, ..., un) = F
(
F−11 (u1), ..., F

−1
n (un)

)
. (3.2)

The construction of Gaussian and t-copula are primarily based on Sklar’s Theorem

3.2 and (3.2).

In this thesis, we use copula to model the dependence structure of insurance loss

ratios. In particular, copula function is used to determine the marginal distri-

butions of each loss ratio and the dependence structure between loss ratios. To

obtain the joint distribution function of two loss ratios X and Y , these loss ratios

are transformed into random variables U1 and U2 respectively that is uniformly

distributed on [0, 1] by using the corresponding marginal distribution FX and FY
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as given by the following

U1 = FX(X)

U2 = FY (Y ).
(3.3)

Next, the multivariate distribution function can be derived by replacing (3.3) into

the copula function:

FXY (x, y) = P (X ≤ x, Y ≤ y)

= P (F−1X (U1) ≤ x, F−1Y (U2) ≤ y)

= P (U1 ≤ FX(x), U2 ≤ FY (y))

= C(FX(x), FY (y)),

(3.4)

where F−1X and F−1Y are the inverse functions of the univariate marginals FX and FY

respectively and this is hold when function F is continuous and strictly increasing.

Clearly (3.4) proves that from Sklar theorem, a bivariate join distribution can be

modelled by marginal distributions of each loss ratio FX , FY and a copula C. The

Sklar’s theorem in (3.1) can easily be extended to general case and its proof can

be derived following (3.3) and (3.4).

3.1.1 Copula density

If the joint cumulative distribution function F (x1, ..., xn) is absolutely continu-

ous and its marginal distribution functions F1, ..., Fn are strictly increasing and

continuous, then using (3.1), the copula density can be written as

c(F1(x1), ..., Fn(xn)) =
∂nC

(
F1(x1), ..., Fn(xn)

)
∂F1(x1), ..., ∂Fn(xn)

=
∂nF (x1, ..., xn)

∂F1(x1), ..., ∂Fn(xn)

=
f(x1, ..., xn)∏n

j=1 fj(xj)
.

(3.5)

Finally, we can re-write (3.5) as



Copula and dependence measures 21

f(x1, ..., xn) =
n∏
j=1

fj(xj)c
(
F1(x1), ..., Fn(xn)

)
. (3.6)

3.1.2 Invariance properties

Another important property of copula is invariance under strictly monotone trans-

formation. We state this property in the following proposition.

Proposition 3.3. Let X = (X1, ..., Xd) be a random vector with continuous uni-

variate marginal distributions and copula C. Then C is invariant under strictly,

monotone increasing transformations of the component X.

3.2 Relevant families of copulas

In this section, we review five copulas from the family of Elliptical copulas and

Archimedean copulas. More precisely, Gaussian and t-copula from the family of

Elliptical copulas and Clyton, Gumbel and Frank copulas from the family of

Archimedean copulas. For other types of copulas see Joe (1997). In this thesis, we

primarily focus on bivariate copulas to address issues on modelling high dimen-

sional copulas. Hence, the following explanations are based on bivariate copulas.

3.2.1 Elliptical copulas

Elliptical copulas have been widely studied in finance and insurance. As discussed

in Section 3.1, this copula is derived from multivariate distribution function us-

ing Skalar’s theorem. Although elliptical copula has been widely used in finance

and insurance, however Embrechts et al. (2003) highlighted that it has certain

drawbacks such as its inability to capture different dependence structures and are

restricted to radial symmetry. Especially in extreme events, the dependence of big

losses from different lines of business can not be modelled by elliptical copula. The

examples of Elliptical copulas are Gaussian and t-copula.
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Example 3.1. (Gaussian Copula)

Gaussian copula is derived from Sklar theorem. We get bivariate Gaussian copula

with parameter ρ ∈ (−1, 1), by applying Sklar theorem to the bivarate standard

normal cdf. The Gaussian copula is given by

C(u1, u2) = Φ2

(
Φ−1(u1),Φ

−1(u2), ρ
)
, (3.7)

where Φ2 is the bivariate distribution with two random variables normally (stan-

dard) distributed, ρ is the dependence and Φ−1 is the inverse function of Φ of

standard normal distribution. The density of bivariate Gaussian copula is written

as

c(u1, u2) =
1√

1− ρ2
exp

[
− ρ2(x21 + x22)− 2ρx1x2

2(1− ρ2)

]
, (3.8)

where x1 = Φ−1(u1) and x2 = Φ−1(u2). Φ−1 is the inverse function of the standard

normal distribution.

Example 3.2. (t- copula)

t-copula is also constructed by Sklar theorem. The distribution function is given by

C(u1, u2) = tθ,v(t
−1
v (u1), t

−1
v (u2)), (3.9)

where tθ,v denotes the distribution function of the bivariate t-distribution with pa-

rameters θ ∈ (−1, 1) and degree of freedom, v > 0. t−1v represents the inverse

distribution function of a standard univariate t-distribution with v degree of free-

dom. Then, the density is defined as

c(u1, u2) =
Γ(v+2

2
)/Γ(v

2
)

vπdtv(x1)dtv(x2)
√

1− θ2

[
1 +

x21 + x22 − 2θx1x2
v(1− θ2)

]− v+2
2

, (3.10)

where x1 = t−1v (u1) and x2 = t−1v (u2). dtv is the density of a standard univariate

t-distribution with v degree of freedom.

Figure 3.1 presents the scatter plots (left) and density plots (right) for Gaussian

and t-copula.
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Figure 3.1: Scatter plots of Gaussian copula (top-left) and t-copula (bottom-
left). The top-right is the density plot for Gaussian copula and at the bottom-
right is the density plot for t-copula.

3.2.2 Archimedean copulas

Another popular copula family is called Archimedean copulas. A bivariate Archimedean

copula is given by

C(u1, u2) = ϕ−1
(
ϕ(u1) + ϕ(u2)

)
, (3.11)
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where function ϕ : [0, 1] → [0,∞] is the generator and has to be continuous and

strictly monotonic decreasing convex with ϕ(0) = 1 and limd→∞ ϕ(d) = 0. The

pseudo-inverse ϕ−1 is defined as

ϕ−1(u) =

{
ϕ−1(u) for 0 ≤ u ≤ ϕ(0)

0 for ϕ(0) < u <∞.
(3.12)

Archimedean copula family is asymmetric copula. It is capable to capture variety

of different dependence structures. In other words, this copula is suitable for mod-

elling risk of extreme events such as catastrophe and earth quakes which incur big

losses for insurance companies (Embrechts et al. (2003)).

The following are three examples of the most commonly used copulas from the

Archimedean family.

Example 3.3. (Clayton copula)

Clayton copula is also known as Cook-Johnson copula (Cook and Johnson, 1981)

and the generator can be defined by

ϕ(u) =
1

θ
(u−θ − 1). (3.13)

Then the Clayton copula can be described by the following

C(u1, ..., un) =

[ n∑
i=1

u−θi − n+ 1

]−1/θ
, (u1, ..., un) ∈ [0, 1]n, (3.14)

and by considering bivariate copula, the above can be re-defined as

C(u1, u2) =
[
u−θ1 + u−θ2 − 1

]−1/θ
. (3.15)

Another important element of Clayton copula is the dependence which is present

heavier in the lower tail than the upper tail and suitable for modelling negative de-

pendence. The dependence structure can be visualised from scatter plot and density

plot in Figure 3.2.
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Figure 3.2: Scatter plot (left) and the density plot (right) of bivariate Clayton
copula with Kendall’s tau =0.5 and number of simulations, N=1000.

Example 3.4. (Gumbel Copula)

Gumbel copula or also known as Gumbel-Hougaard copula (Hutchinson and Lai,

1990) is another type in Archimedean copula family. Unlike Clayton copula, Gum-

bel copula has greater dependence in the upper tail than the lower tail. The gener-

ator for Gumbel copula is given by

ϕ(u) = (− lnu)θ, (3.16)

for θ ≥ 1 Then, Gumbel copula can be described as

C(u1, u2) = ϕ−1
(
ϕ(u1) + ϕ(u2)

)
= exp

(
−
[
(− lnu1)

θ + (− lnu2)
θ
]1/θ)

.
(3.17)

Figure 3.3 shows the scatter plot of Gumbel copula on the left and its density plot

on the right. We can also observe heavy upper tail.
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Figure 3.3: Scatter plot (left) and the density plot (right) of bivariate Gumbel
copula with Kendall’s tau =0.5 and number of simulations, N=1000.

Example 3.5. (Frank Copula)

The third type of Archimedean copula family is Frank copula. This copula exhibits

symmetric dependence structure and can be seen in Figure 3.4. Its generator is

given by:

ϕ(u) = − ln

(
e−θu − 1

e−θ − 1

)
. (3.18)

Hence, the Frank copula with n-dimension can be expressed as

C(u1, ..., un) = −1

θ
ln

[
1 +

∏
n
i=1(e

−θui − 1)

(e−θ − 1)n−1

]
, (3.19)

and for bivariate Frank copula

C(u1, u2) = −1

θ
ln

[
1 +

(e−θu1 − 1)(e−θu2 − 1)

e−θ − 1

]
, (3.20)

where θ ∈ (−∞,∞)\{0}. If θ → ∞, the Frank copula presents completely positive

dependence and if θ →-∞, it exhibits negative dependence.
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Figure 3.4: Scatter plot (left) and density plot (right) of bivariate Frank copula
with Kendall’s tau =0.5 and number of simulations, N=1000.

Copula Parameter range λL λU Kendall’s tau

Clayton θ 6 −1 2
−1
θ 0 θ

θ+2

Gumbel θ 6 1 0 2-2
1
θ 1- 1θ

Frank θ ∈ (−∞,∞) \ {0} 0 0 1-4 θ+4D1(θ) θ

Table 3.1: Copula properties for Clayton, Gumbel and Frank copula. λL and
λU are the lower and upper tail dependence respectively. The Debey function is
used to estimate the Kendall’s tau for Frank copula. Debey function D1(θ) =∫ θ
0

x/θ
exp(x)−1dx

.

The summary of copula properties include the tail dependence and Kendall’s tau

for Clayton, Gumbel and Frank copula are given in Table 3.1.

3.2.3 Survival copula

Another important type of copula is survival copula. We discuss the properties of

survival copula in the following proposition.

Proposition 3.4. Given X = (X1, ..., Xd) random vector with distribution func-

tion F and marginal distribution function F1, ..., Fd. Then, there exist a survival

copula Ĉ such that
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F̄ (x1, ..., xd) = Ĉ(F̄ (x1), ..., F̄d(xd)),

= P (X1 > x1, ..., Xd > xd)

= P (1− F1(X1) ≤ F̄1(x1), ..., 1− Fd(Xd) ≤ F̄d(xd),

where F̄i = 1 − Fi, i = 1, ..., d. Generally, survival copula Ĉ of a copula C with

random vector U = (U1, ..., Ud) is used to denotes the distribution function of

1 − U where U := (F1(X1), ..., Fd(xd)).

Note that copulas are simply multivariate distribution functions. In particular,

copulas have survival functions C̄. If U has distribution function C and the survival

copula of C is Ĉ, then the relationship between a survival copula Ĉ and a survival

function C̄ is given by,

C̄(u1, ..., ud) = P (U1 > u1, ..., Ud > ud)

= P (1− U1 ≤ 1− u1, ..., 1− Ud ≤ 1− ud)

= Ĉ(1− u1, ..., 1− ud).

Similarly, the relationship between a copula and its survival copula in the bivariate

case can be expressed as

Ĉ(1− u1, 1− u2) = 1− u1 − u2 + C(u1, u2)

3.3 Copula inference

3.3.1 Method-of-moments estimator (MME)

The estimation of copulas can be based on an empirical rank correlation coefficient,

which are scalar dependence measures. This method is similar to the well-known

method of moments in the sense that the method of moments equates the em-

pirical moments to the parameters of the distribution while the rank correlation

estimator equates the empirical rank correlation, Kendall’s τ or Spearman’s ρ, to

the parameter of the copula. Given that these two rank correlation measures do

not depend on the distribution of the margins but only on the distribution of the

copula, this estimation method does not require modelling the margins in order
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to fit the copula model. This method is considered a simpler method than the

maximum likelihood estimator (MLE).

3.3.2 Maximum likelihood estimator (MLE)

Consider a random sample (x1, y1), (x2, y2), ..., (xd, yd) from a bivariate distribution

F with marginal distributions FX and FY and copula C. Then, assuming fX , fY ,

and c are the density for marginal distributions and copula respectively, we derive

the joint density (xt, yt), t = 1, ..., d by taking the partial derivatives with respect

to xt and yt and is given by

∂2

∂xt∂yt
F (xt, yt; θx, θy, δ) = f(xt, yt; θx, θy, δ)

=
∂2

∂xt∂yt
C(FX(xt; θx), FY (yt; θy); δ)

= c
(
FX(xt; θx), FY (yt; θy); δ

)
fX(xt; θx)fY (yt; θy),

(3.21)

where δ is the parameter of the copula and θx and θy are the parameters of the

marginal distributions FX and FY respectively. The log-likelihood function is given

by

L(δ;x, y) =
d∑
t=1

(
ln c
(
FX(xt; θx), FY (yt; θy); δ

)
+ ln fX(xt; θx) + ln fY (yt; θy)

)
.

(3.22)

Then, the MLE is written as

δ̂MLE = arg max
δ
L(δ;x, y). (3.23)

Based on MLE, the parameters for marginal distributions θx and θy are estimated

jointly with the copula parameter δ. In particular, the MLE estimation is per-

formed by one-stage. However, this method is computationally challenging for

high dimensional copula. To solve this issue, one may consider the inference for

margin (IFM). We discuss this method in the following section.
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3.3.3 Inference function for margin (IFM)

Based on this method, the estimation of parametric copulas is derived in two

steps. The first step is performed by estimating marginal distribution F1, ..., Fd

and denote as F̂1, ..., F̂d. Then, given estimates F̂1, ..., F̂d, we construct the pseudo-

observation Ût consist of the vectors Û1, ..., Ûn from the original data vectors

X1, ..., Xn where

Ût = (Ut,1, ..., Ut,d)
′ =
(
F̂1(Xt,1), ..., F̂d(Xt,d)

)′
, t = 1, ..., n. (3.24)

In the second step, consider Cθ a parametric copula where θ is the parameter

vector to be estimated by the MLE, that is the maximizer of the log-likelihood

function

L(θ; Û1, ..., Ûn) =
n∑
t=1

ln cθ(Ût;θ), (3.25)

with respect to θ where cθ is the copula density and Ût is the pseudo-observation

of the copula.

3.4 Dependence measures

Dependence measures are used in financial industry to quantitatively evaluate the

dependence structure across risk distributions or loss distributions for insurance

case. There are three most commonly used dependence measures: Linear depen-

dence or also known as Pearson correlation, rank dependence, and the coefficient of

tail dependence. Both rank dependence and the coefficient of tail dependence are

non-linear dependence. Rank dependence includes Spearman’s ρ and Kendall’s τ .

We discuss the concept of these dependence measures in the following subsection.

3.4.1 Linear dependence

Linear dependence is a well known theory and widely used to measure dependences.

In fact, the Solvency II propose to use linear dependence to determine the capital

requirement. However, it has certain pitfalls and only true for multivariate normal
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or elliptical model. In other words, this measure can be applied to bivariate normal

random variables X1 and X2. Linear dependence can be defined as

Definition 3.5. Given two random variables X1 and X2 with E(X2
j ) < ∞ and

j ∈ {1, 2}, the Pearson’s linear correlation is defined by

ρ12 =
Cov(X1, X2)√

V ar(X1)
√
V ar(X2)

=
E
[(
X1 − E(X1)

)(
X2 − E(X2)

)]√
E
(
X1 − E(X1)

)2√E
(
X2 − E(X2)

)2 . (3.26)

3.4.2 Non-linear dependence

Non-linear dependence is suitable to measure non-linear dependence structure. We

discuss three types of non-linear dependence measures in the following definitions:

Spearman’s ρ

Definition 3.6. Spearman’s ρ measures the association of the ranks between two

random variables X1 and X2 and its corresponding marginals F1 and F2 respec-

tively. It is defined as

ρs = ρ
(
F1(X1), F2(X2)

)
, (3.27)

where ρ is the linear correlation. In the multivariate random vector X case, the

Spearman’s ρ matrix is given by

ρs(X) = ρ
(
F1(X1), ..., Fn(Xn)

)
, (3.28)

where ρ refers to the correlation matrix.

Kendall’s τ

Definition 3.7. Kendall’s τ is also a measure of dependence of the ranks be-

tween two random variables X1 and X2. Now, let consider two additional random

variables X̃1 and X̃2 for comparison. Both of the additional variables have the

same joint distribution but independent from the previous variables. Thus, using
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expectation, we define Kendall’s τ by

ρτ (X1, X2) = E
(
sign

(
(X1 − X̃1)(X2 − X̃2)

))
, (3.29)

where sign(x)=1(0,∞)(x)− 1(−∞,0)(x).

Tail dependence

Tail dependence is also known as a fat-tail which is very useful in measuring and

describing a copula. It is important to distinguish between upper (right upper

corner) and lower (lower left corner) tail dependence.

According to Denuit et al. (2006), considering two random variables Xi and Xj the

concordance between the two extreme events of the random variables is measured

by tail dependence. More precisely, the concern is on the probability that loss for

Xi exceeds a limit d given that loss for Xj has exceeded the same level. On the

other hand, if the level recorded is lower than the limit given, then tail dependence

does not present. The coefficient of upper tail dependence can be defined by

λu := λu(Xi, Xj) = lim
d→1

P (Xj > F−1j (d) | Xi > F−1i (d)), (3.30)

provided that the limit λu ∈ [0, 1] exists. Analogously, the coefficient of lower tail

dependence can be defined by

λl := λl(Xi, Xj) = lim
d→0

P (Xj ≤ F−1j (d) | Xi ≤ F−1i (d)), (3.31)

provided that the limit λl ∈ [0, 1] exists.

If both Fi and Fj are continuous dfs, simple expressions are derived for the coeffi-

cient in terms of copula C using Bayes’ rule and we have

λl = lim
d→0

P
(
Xj ≤ F−1j (d), Xi ≤ F−1i (d)

)
P (Xi ≤ F−1i (d))

= lim
d→0

C(d, d)

d
,

(3.32)

and similarly for upper tail dependence, we have



Copula and dependence measures 33

λu = lim
d→1

C(d, d)− 2d+ 1

1− d
. (3.33)

3.4.3 A simple motivating example

Having the concept and theory of dependence as explained in the Section 3.4.1 and

3.4.2 in mind, we now consider the following examples as introduced by Hofert.

et al. (2017) to further understand the importance of dependence.

Figure 3.5: Scatter plots of random variables X1 and X2 on the left side and
Y1 and Y2 on the right side.

In Figure 3.5, the left panel shows the scatter plot of dependence between bivariate

random vectors (X1, X2), while the right figure shows the dependence between

bivariate random vectors (Y1, Y2). We can clearly distinguish that these scatter

plots show different dependence structures and values. However, this might not be

the case for this example. To further analyse the dependence between these scatter

plots, consider to analyse the empirical marginal distribution for each dataset.

Figure 3.6 illustrates the estimated marginal distribution functions for bivariate

random vectors (X1, X2) on the left and (Y1, Y2) on the right. Bivariate random vec-

tors (X1, X2) is best fitted by standard normal distribution N(0, 1) while (Y1, Y2) is

best fitted by standard exponential distribution Exp(1). At this stage, we conclude

that the two datasets in Figure 3.5 differ by the marginal distribution.

However, the comparison in terms of dependence between the two datasets can be

done on fairer grounds. Given the marginal distributions of the underlying vectors

(X1, X2) and (Y1, Y2), we transform them to a similar underlying marginals known

as standard uniform distribution using probability integral transformation (PIT).

We define the PIT in the following.
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Definition 3.8. (Probability integral transformation)

Let F be a cumulative distribution function and X ∼ F . Then F (X) is a standard

uniform random variable, satisfying F (X) ∼ U(0, 1).

Figure 3.6: (Left) Empirical standard normal distribution, N(0, 1) with Kernel
density estimates of X1 and X2. (Right) Standard exponential distribution,
Exp(1) with Kernel density estimates of Y1 and Y2.

In Figure 3.7, similar dependence structure can be observed in both datasets. To

this end, we confirm that the dependence structures for both datasets are identical

and only differ by its corresponding marginal.

Figure 3.7: Scatter plots of bivariate random vectors (F1(X1), F2(X2)) on the
left and (G1(Y1), G2(Y2)) on the right.

.

3.5 Application of graph theory

In this section, we introduce the fundamentals of graph theory which is essential

for constructing hierarchical aggregation models in Chapter 4 and C-vine copula

models in Chapter 5 of this thesis. In particular, we use notation from graph theory
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such as nodes, edges and trees to represent random variables, bivariate copulas and

aggregation levels respectively.

Arbenz et al. (2012) and Côté and Genest (2015) use graph theory to construct hi-

erarchical aggregation tree structures. Similarly, Dißmann et al. (2013) and Kraus

and Czado (2017) use graph theory to develop structures of vine copula by repre-

senting random variables and copulas with nodes and edges respectively.

The aggregation modelling using copula utilises the application of graph theory.

In this section, following Diestel (2017), we explain the concepts of graph theory

important for modelling aggregation of risks.

3.5.1 Graph, nodes and edges

Definition 3.9. A graph G is a pair of non-empty set N(G) of vertices (or nodes)

and a set E(G) of unordered pairs of edges. For example, a graph can be written

as G = (N,E) where

N = {x1, x2, x3, x4, x5},
E = {(x1, x2), (x1, x3), (x3, x4), (x3, x5), (x2, x5)}.

To futher understand the above definition, we now consider the diagram in Figure

3.8.

x1 x2

x5x4

x3

��
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��
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��
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��
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��
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��

Figure 3.8: Graph G=
(
N(G),E(G)

)
consists of 5 nodes N = {x1, x2, x3, x4, x5}

and 5 edges (x1, x2), (x2, x5), (x1, x3), (x3, x4) and (x3, x5).

Each point is represented by x1, x2, x3, x4, x5 and is called a node and each line

linking between 2 nodes is called an edge. Figure 3.8 consist of 5 nodes with 5

edges.
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3.5.2 Cycle, trees and forest

Definition 3.10. A cycle in a Graph, G =
(
N(G), E(G)

)
is a sequence of nodes

x1, x2, x3..., xk,

and edges

{x1, x2}, {x2, x3}, ..., {xk−1, xk},

where x1 is the start node and the same as the end node, xk(x1 = xk) and {xi, xi+1}
is an edge of G for all i where 1 ≤ i ≤ k.

Definition 3.11. A graph without any cycles is called acyclic graph and a forest

is an acyclic graph. A connected forest is called a tree. In other words, a forest

can be defined as a graph whose components are trees.

Definition 3.12. If each of the connected components of a graph G is a tree, then

G is a forest.

Example
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��
x6

Figure 3.9: A forest consists of 2 component trees with 6 nodes N =
{x1, x2, x3, x4, x5, x6}. This graph is not connected and therefore do not con-
sidered as a tree.
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Figure 3.10: A tree connecting 5 nodes, N = {x1, x2, x3, x4, x5}.

In Figure 3.9 we can observe two components of a forest. Each component is also

known as a tree but the 6-nodes graph (whole graph) is not a tree since the two

components (trees) are not connected. To further understand the concept of a tree,

consider another 6-nodes graph presented in Figure 3.10. All 6 nodes are connected

by edges and therefore the graph itself is a tree.



Chapter 4

Copula-based hierarchical

aggregation

4.1 Introduction

Determining the level of capital required for business continuity is essential for

insurance companies. This capital requirement can help an insurance company to

minimize the risk of insolvency and to serve its obligation to the policyholders.

In extreme events, such as floods, earthquakes, hurricanes and other catastrophic

events, the number of claims to be paid by an insurance company can be extremely

high even though part of the claims can be passed to reinsurance companies. In

some cases these large number of claims can originate not just from one business

line but involve other products as well. In other words, some insurance business

lines are dependent on each other, in the sense that an increase on the number

of claims being filled in one business line is accompanied by a higher number of

claims in other business lines too. Hence, there is a need to properly model the

aggregate risk of losses across a broad range of insurance products.

Aggregating the risk of losses for insurance companies is challenging where the

most crucial aspect of the aggregation process is modelling the dependence struc-

ture between the risks of losses across different business lines. Linear correlation is

the classic approach to model risk dependence but fails to incorporate all possible

dependence structures. The appropriate method to model the dependence struc-

ture is using copulas, which have received increasing interest from researchers and

practitioners in recent years.

38
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This chapter is twofold. First we focus on modelling the aggregation of risks of

an insurance company. Second, we explore the effect of reinsurance on the level

of risk and how this relates with the dependence structure between the different

business lines. As a technique for aggregating the risks of an insurance company,

this chapter focusses on an hierarchical risk aggregation method which is based

on two dimensional copulas.

The hierarchical risk aggregation approach has been recently adopted by Côté and

Genest (2015) and was previously developed by Arbenz et al. (2012) and refer-

ences therein. The hierarchical aggregation procedure, developed by Arbenz et al.

(2012), is based on rooted trees that include branching and leaf nodes, and uses

the elliptical copula family for each aggregation step. However, as highlighted, for

instance, in Embrechts et al. (2003), this copula family has certain drawbacks,

such as its inability to capture dependence structures, which are not radially sym-

metric. Especially in the case of extreme events, the dependence of large losses

from different business lines cannot be modelled by the elliptical copula family

(see Nguyen and Molinari, 2011). To overcome this problem, we propose to use

copulas from the Achimedean family in the construction of the hierarchical model.

Archimedean copulas can be asymmetric and capture a variety of dependence

structures. We also include the mixture of rotated Archimedean copulas, which

are the most appropriate copulas in some cases, based on the goodness of fit tests.

In this chapter, we use data from the Australian Prudential Regulation Authoruty

(APRA) as in Tang and Valdez (2006). Tang and Valdez (2006) analyse 19 semi-

annual gross incurred claims and earned premiums data from December 1992 to

June 2002. In contrast, we choose a more recent time horizon and quarterly fre-

quency in order to increase the sample size and improve the estimation of the risk

aggregation model. As a result, a total of 28 observations, consisting of quarterly

premium earned and incurred claims, gross and net of reinsurance, for five busi-

ness lines, were selected for the period between September 2010 and June 2017.

The quarterly incurred claims and premium earned are then used to build loss

ratios for five different business lines, which will be used to investigate the risk

aggregation. The gross and net of reinsurance loss ratios are used to examine the

change in the level of risk for each business line and for the aggregate risk.

Research on risk aggregation with copulas applied to insurance was pioneered by

Wang (1998). This research introduces the concept of copula and chooses Gaussian

copula as one of the useful tools in determining the risk aggregation of an insurance
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company by combining correlated loss distributions. More precisely, the aggregate

loss distribution is determined by the combination between the effect from claim

frequency and claim severity distribution. By contrast, Tang and Valdez (2006)

use copula models to aggregate risks in order to determine the economic capital

as well as the diversification benefits focusing on the insurance industry. Using

multiple insurance business lines data, they analyse the importance of selecting an

appropriate copula model to avoid underestimation or overestimation of capital

required, which consequently may affect the level of capital for insurance products.

Further, Bürgi et al. (2008) highlight that modelling the dependence between risks

is important as it is a form of rule for risk aggregation. Their research also considers

various methods to model dependencies, which subsequently affect the diversifica-

tion benefits and show that overestimation of diversification may cause inaccurate

computation of risk-based capital (RBC). Also, Nguyen and Molinari (2011) use

copula to cover the loopholes of Solvency II which among others relies on linear

correlation to measure the dependence structure of correlated risks. However, lin-

ear correlation may not be suitable for modelling dependence structure and may

not be able to capture all information of a tail distribution. To overcome this prob-

lem, the authors proposed method of risk aggregation via copula, which allows to

determine completely the dependence structure between risks. Nevertheless, they

mainly focus on analysing the concept of the Solvency II rather than modelling

copula using real data.

Modelling risk aggregation for high dimensional copula can be very challenging and

requires more parameters to be estimated than the traditional two dimensional

copulas or bivariate copula models (Bürgi et al., 2008). With this in mind, we

consider hierarchical aggregation as an alternative modelling technique based on

two dimensional copula. This model, introduced by Arbenz et al. (2012), does not

requires specification of copula for all business lines. Instead, a copula and the

joint dependence between the aggregated sub-business lines will be determined

in each aggregation step. The aggregation model is represented by a rooted tree,

which consists of branching nodes and leafs based on graph theory.

In addition, we also investigate the significance of reinsurance from the risk man-

agement perspective. Previous research by Cummins et al. (2008) proves that

insurance companies purchase reinsurance for the benefits of reducing the loss ra-

tio measured by its volatility. It also provides protection against catastrophes by
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limiting the liability on specific risks. The drawback of reinsurance is that insur-

ers’ cost for production is increased. Furthermore, reinsurance also provides other

benefits, such as for capital relief as well as flexible financing. Insurance companies

are able to transfer risks to reinsurance and as a result capital is saved from being

allocated to these risks (Baur et al., 2004).

The remaining of this chapter is organized as follows. Section 4.2 discusses the

methods for aggregating risk using hierarchical copula aggregation model, copula

simulations and determination of capital requirement. Section 4.3 describes the

estimation of the hierarchical aggregation copula model. In Section 4.4 we analyse

the results of the copula aggregation model and the effects of reinsurance in the

level of risk and diversification of the portfolio of different business lines. Section

4.5 concludes the chapter.

4.2 Copula-based hierarchical aggregation mod-

els

In finance and insurance popular models for problems involving a large number of

random variables have been based on copula functions. Different models have been

proposed. These include Archimedean and elliptical copula models (Genest and

Nešlehová, 2012), vine copula models (Aas et al., 2009; Kurowicka and Joe, 2010),

and hierarchical copula models (Mai and Scherer, 2012; Côté and Genest, 2015;

Cossette et al., 2017). Some of these models impose a more restrictive dependence

structure than others more flexible which in turn imply more difficult inference.

This chapter adopts the hierarchical copula model with the goal of achieving a

good compromise between flexibility and ease of estimation.

4.2.1 Copula functions

Bivariate copulas are the main building block of hierarchical aggregation copula

models. Here we only give the definition in order to introduce the notation and

we refer the readers to Nelsen (2006) and McNeil et al. (2015) for an introduction

to copulas and the definition of specific copula families. Given a d-dimensional

random vector (X1, X2, . . . , Xd)
′, from Sklar (1959) there exists a function C :
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X∅ = (Xm +Xf ) +Xh

Xm +Xf
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Figure 4.1: Illustration of an hierarchical loss aggregation copula model built
by allocating each of three individual business lines, represented by Xm, Xf and
Xh, to a leaf node of a rooted tree. The structure of the tree in this example
is determined by the assumption that the pair (Xm, Xf ) have the strongest
dependence among the three possible pairs of individual business lines.

[0, 1]d → [0, 1] such that

P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xd) = C(F1(x1), F2(x2), . . . , Fd(xd)),

where Fi(xi) = P(Xi ≤ xi) for i = 1, 2, . . . , d and C is a copula function. In fact, a

copula is a multivariate joint cumulative distribution function (cdf) with uniform

margins. If the univariate cdf’s Fi are continuous then the copula function C is

unique.

4.2.2 Hierarchical aggregation copula models

Hierarchical copula models draw on results from graph theory on rooted trees

(Diestel, 2017). Following the notation used in Arbenz et al. (2012), a rooted tree

τ is composed by leaf nodes and branching nodes where one of the branching nodes

is the root. The subset of branching nodes is denoted by B (τ), the subset of leaf

nodes is denoted by L (τ), and the root node by ∅. Naturally, B (τ)∪L (τ) = τ

and B (τ)∩L (τ) = ∅. In order to use rooted trees to aggregate the losses of

several business lines we assume the following:

• Each leaf node in the rooted tree is associated with the loss of business line

i, represented by a random variable Xi.

• Each branching node is associated with the sum of the business lines mapped

to that node’s children.

In Figure 4.1 we illustrate the mapping to a rooted tree of three insurance loss

variables Xm, Xf and Xh representing the business lines Motor, Fire and House-

hold respectively. Each leaf node corresponds to a business line and each branching
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node corresponds to the sum of the variables associated with its children nodes.

We assume that each branching node has two children, although the results on

rooted trees used in this chapter are valid for branching nodes with any number

of children (see Arbenz et al., 2012). Assuming that each branching node has only

two children keeps the construction and estimation of the model simpler as only

bivariate copulas are necessary. In order to define the aggregation model we de-

note by (Xi)
′
i∈τ = (X1, X2, . . . , Xd)

′ the vector of random variables, where each Xi

represents the loss in the business line i. The rooted tree aggregation model for

the random vector (Xi)i∈τ is determined by

• a rooted tree structure τ ,

• univariate cdf’s Fi : R→ [0, 1] for all leaf nodes i in L (τ), and

• bivariate copula functions Cj : [0, 1]2 → [0, 1] for the two children of each

branching node j in B (τ).

We denote the tree aggregation model by (τ, (Fi)i∈L(τ), (Cj)j∈B(τ)). Using this

modelling approach we obtain the distribution of the root node which represents

the aggregate total loss

X∅ = X1 +X2 + . . .+Xd =
∑
i∈L(τ)

Xi

based on the univariate cdf’s for the business lines associated with the leaf nodes,

and the bivariate copulas associated with the branching nodes.

Existence and uniqueness of a joint distribution

The existence and uniqueness of the joint distribution of the hierarchical aggre-

gation copula model for the vector (X1, X2, . . . , Xd)
′ has been studied in Arbenz

et al. (2012). Here we summarise the conditions and the main results necessary

in this chapter. Given a rooted tree aggregation model (τ, (Fi)i∈L(τ), (Cj)j∈B(τ))

where each branching node j ∈ B (τ) is the sum of its children, the random

vector (Xi)i∈τ is called a mildly tree dependent. A mildly tree dependent random

vector (Xi)i∈τ is called tree dependent if for each branching node i ∈B (τ), given

Xi, its descendants (Xj)j∈D (i), where D (i) is the set of descendent nodes, are

conditionally independent of the remaining nodes (Xj)j∈τ\D (i),

(Xj)j∈D (i) ⊥ (Xj)j∈τ\D (i) | Xi for all i ∈B (τ).
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This conditional independence condition does not imply that (Xj)j∈D (j) is inde-

pendent of (Xj)j∈τ\D (i) rather that their dependence comes from Xi.

Theorem 4.1. Given a rooted tree aggregation model
(
τ, (Fi)i∈L(τ), (Cj)j∈B(τ)

)
,

a tree dependent random vector exists and its joint distribution is unique.

For the proof of this result see Arbenz et al. (2012). For the example illustrated in

Figure 4.1 the joint distribution of the hierarchical aggregation copula model for

the vector (Xm, Xf , Xh)
′ exists and is unique if and only if

(Xm, Xf ) ⊥ (X∅, Xh) | Xm +Xf ,

where X∅ = Xm + Xf + Xh. This means that all the information in Xm and Xf

that influences Xh is contained in Xm +Xf .

Under the above theorem, if all the univariate and copula distributions are abso-

lutely continuous then the joint density function is given by the following propo-

sition showed in Côté and Genest (2015).

Proposition. Given a rooted tree aggregation model (τ, (Fi)i∈L(τ), (Cj)j∈B(τ)) with

d leaf nodes associated with the vector X = (X1, X2, . . . , Xd)
′, the joint density

function of the vector X is given by

fX(x1, . . . , xd) =
d−1∏
j=1

cj

FLD (j1)

 ∑
i∈LD (j1)

xi

 , FLD (j2)

 ∑
i∈LD (j2)

xi

 d∏
i=1

fi(xi),

for all x1, . . . , xd ∈ R, where LD (ji) represents the leaf nodes in the set of

descendants of child node i of the branching node j, FLD (jk) is the cdf of the sum

of the leaf nodes in LD (jk), f1, . . . , fd are the univariate density functions of

X1, X2, . . . , Xd respectively, and cj is the copula density function of the children of

Xj for j ∈B (τ).

As an example, for the business lines represented by the random vector (Xm, Xf , Xh)
′

associated with the rooted tree τ illustrated in Figure 4.1 the joint density function

is given by

fX(xm, xf , xh) = cm,f (Fm(xm), Ff (xf )) cm+f,h (Fm+f (xm + xf ), Fh(xh))

.fm(xm)ff (xf )fh(xh),
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for all (xm, xf , xh), where Fi is the cdf of the univariate random variable Xi with

density function fi, Fm+f is the cdf of Xm+Xf , cm,f is the copula density function

of (Xm, Xf ) and cm+f,h is the bivariate copula density function of ((Xm+Xf ), Xh).

Simulation of joint distribution

Given the set of d business lines represented by the random variablesX1, X2, . . . , Xd

we determine the tree structure by aggregating iteratively the pair of variables with

the strongest dependence. We use Kendall’s tau to measure the dependence be-

tween pairs of random variables in the hierarchical aggregation procedure. We refer

to Côté and Genest (2015) for the motivation and justification for using Kendall’s

tau in this setting.

After defining the structure of the tree we proceed with selecting the probability

distribution for each random variable allocated to a leaf node and the copula family

for the two children of each branching node in order to specify the hierarchical

aggregation model. We use maximum likelihood to estimate the parameters, and

Anderson and Darling (1954) and Genest et al. (2009) goodness-of-fit methods to

select the best distributions.

The hierarchical aggregation model allows to estimate measures of risk on the sum

of the individual variables considered. We estimate these risk measures based on

the simulation of observations from the aggregation model. We follow the algorithm

introduced in Arbenz et al. (2012) that consists of a numerical approximation

procedure where sample reordering induces the dependence structure, a technique

that goes back to the work of Iman and Conover (1982).

We present below the algorithm for the case when all branching nodes have two

children and the functional that produces the aggregation is a weighted sum of the

branching nodes. This later aspect is a straightforward generalization of the case

of a sum presented by Arbenz et al. (2012). A generalization for the case when the

aggregation functionals are Kendall functions can be found in Brechmann (2014).

Sample reordering numerical approximation algorithm:

1. Define the number of simulations N ∈ N.
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2. Simulate N independent samples from the univariate variables Xi (i ∈
L (τ)) associated with the d leaf nodes: Xk

i ∼ Fi for k = 1, . . . , N and

i = 1, . . . , d. Fi is the pre-determined univariate cdf for i.

3. Simulate N independent samples from the bivariate copula Cj (j ∈B (τ))

associated with each of the d− 1 branching nodes: Uk
j = (Uk

j1, U
k
j2) ∼ Cj for

k = 1, . . . , N and j = 1, . . . , d− 1.

4. Following a bottom-up approach, recursively (beginning at the branching

nodes closer to the leaf nodes and ending at the root node) define the ap-

proximation for the cdf of each branching node j ∈B (τ) as

FN
j (x) =

1

N

N∑
k=1

1

{
wj1 x

(rkj1)

j1 + wj2 x
(rkj2)

j2 ≤ x
}
,

where 1 is the indicator function given by

1{sj ≤ x} =

{
1, if sj ≤ x

0, otherwise,

xkj1 and xkj2 are (simulated) sample values of the variables associated with

the two nodes children of the branching node j, wji is the weight given to

variable Xji, r
k
ji is the (componentwise) rank of ukji, and {x(1)ji , x

(2)
ji , . . . , x

(N)
ji }

is the ordered sample for i = 1, 2.

To better understand the above algorithm, in the following we present a reworked

example from Arbenz et al. (2012) illustrating the estimation of the distribution of

a variable representing the aggregate loss using the sample reordering algorithm.

Example. Consider the hierarchical copula model associated with the rooted tree

depicted in Figure 4.1. Suppose that the results from simulating N = 3 samples

of Xk
i and Uk

j are

x1m = 0.2, x2m = 0, x3m = 0.1,

x1f = 1, x2f = 0, x3f = 2,

x1h = 20, x2h = 10, x3h = 0,

u1
m+f = (0.5, 0.2), u2

m+f = (0.3, 0.9), u3
m+f = (0.7, 0.4),

u1
∅ = (0.9, 0.5) u2

∅ = (0.6, 0.8), u3
∅ = (0.1, 0.4).
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The componentwise ranks (ordered from smallest to largest) of the copula samples

are

r
(1)
m+f = (2, 1), r

(2)
m+f = (1, 3), r

(3)
m+f = (3, 2),

r1∅ = (3, 2), r2∅ = (2, 3), r3∅ = (1, 1).

For simplicity we assume unit weights, ωj1 = ωj2 = 1 for all branching nodes j.

The approximation given by the sample reordering algorithm for the cfd of the

variable Xm+f is

F 3
m+f (x) =

1

3

(
I{x(2)m + x

(1)
f ≤ x}+ I{x(1)m + x

(3)
f ≤ x}+ I{x(3)m + x

(2)
f ≤ x}

)
=

1

3
(I{0.1 + 0 ≤ x}+ I{0 + 2 ≤ x}+ I{0.2 + 1 ≤ x})

=
1

3
(I{0.1 ≤ x}+ I{2 ≤ x}+ I{1.2 ≤ x}) .

Hence, the atoms {x1m+f , x
2
m+f , x

3
m+f} of the distribution F 3

m+f are

x1m+f = 0.1, x2m+f = 2 and x3m+f = 1.2.

Now we can derive the approximation for the cdf of the total aggregate loss rep-

resented by the variable X∅ which is

F 3
∅(x) =

1

3

(
I{x(3)m+f + x

(2)
h ≤ x}+ I{x(2)m+f + x

(3)
h ≤ x}+ I{x(1)m+f + x

(1)
h ≤ x}

)
=

1

3
(I{2 + 10 ≤ x}+ I{1.2 + 20 ≤ x}+ I{0.1 + 0 ≤ x})

=
1

3
(I{12 ≤ x}+ I{21.2 ≤ x}+ I{0.1 ≤ x}) .

Once we have the estimate for the cdf of the total aggregate loss we can estimate

the risk based on the estimated cdf. We will now turn to the risk estimation.

4.2.3 Risk estimation of the aggregate loss

After building the model for the aggregate loss, using the hierarchical copula model

we can estimate the risk of the aggregate loss. As a coherent measure of risk we use

the tail value at risk (TVaR) introduced by Acerbi and Tasche (2002). The TVaR

of the loss represented by the variable X at the confidence level α, for α ∈ (0, 1),
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is defined as

TVaRα(X) =
1

1− α

∫ 1

α

VaRu(X) du,

where the VaRα of the loss X is given by

VaRα(X) = inf {x ∈ R : P (X ≤ x) ≥ α} .

For risk measurement in finance and insurance α typically takes the values 90%,

95% or 99%. In order to estimate the TVaR we use the following nonparamet-

ric estimator that can be found in more detail in Adam et al. (2008). Given n

observations {x1, x2, . . . , xn} of the variable X the TVaR estimator is given by

T̂VaRα =
1

n(1− α)

bn(1−α)c∑
i=1

x(n−i+1) + (n(1− α)− bn(1− α)c)x(n−bn(1−α)c)

 ,

(4.1)

where {x(1), x(2), . . . , x(n)} is the ordered sample, bvc denotes the largest integer not

greater than v, and in our case α ∈ {0.9, 0.95, 0.99}. In our setting, we estimate the

TVaR by applying (4.1) to the N observations simulated by the sample reordering

algorithm. Given its wide use, notably in Solvency II, we also report the VaR

estimates at the three confidence levels given by the empirical quantile of the N

simulations.

4.3 Empirical analysis on Australia insurance in-

dustry

4.3.1 The data

In this chapter we use data on general insurance obtained from the Australian Pru-

dential Regulation Authority - APRA (https://www.apra.gov.au/) as in Tang

and Valdez (2006). However, we use a more recent time period and quarterly

data instead of annual data to increase the sample size. Our preference for the

Australian insurance case is due to the data being freely available and its large in-

surance industry market share within developed countries. According to the data

published by OECD (see OECD, 2017), Australia’s general insurance is above the

70th percentile in terms of total gross premiums in 2016. This shows the relevance
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of our results. In September 2010 a change in the reporting format was intro-

duced. Therefore we focus on the period after September 2010 until June 2017.

This gives us 28 observations. We are interested in four variables: gross incurred

claims (this includes movements in outstanding claims Liability during the pe-

riod); gross earned premium; net incurred claims (net of reinsurance recoveries

revenue); net earned premium (net of outwards reinsurance expense). We consider

both the gross and the net variables as one of our goals is to evaluate the effect of

reinsurance on the capital requirements. We source data for five insurance business

lines, namely domestic Motor vehicle (hereafter referred to as Motor), houseown-

ers/households (House from here onwards), Fire and ISR1 (Fire), Liability, and

compulsory third party Motor vehicle (CTP). According to the data collected

from the APRA webpage these five business lines encompass more than 85% of

the Australian general insurance market in terms of net earned premiums as at

June 2017. In the process of cleaning the data we removed the observations from

two quarters where there are two negative observations of gross incurred claims

leading to counter intuitive negative loss ratios. Hence, our final data set has 26

observations per business line.

Loss ratios

We base our study on the variable loss ratio. For business line i and time period

t, we define loss ratio as

LRi,t =
ICi,t
EPi,t

,

where ICi,t denotes the incurred claims corresponding to the earned premium EPi,t

based on accident year insurance company accounting principal; see Taylor (1997)

for details on the loss ratio variable. The loss ratio can be seen as a measure of

claims standardized by the risk exposure (given by the earned premium). Using

loss ratios eliminates temporal effects of business growth and inflation, and it

allows to make comparisons between business lines with different risk exposures.

The loss ratios are subsequently added up to form the aggregated loss ratio for

capital requirement estimation.

1ISR stands for Industrial Special Risk
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The aggregate loss ratio at time t, LRt, can then be written as a weighted sum of

the loss ratios for each of the d business lines as

LRt =
ICt
EPt

=

∑d
i=1 ICi,t∑d
i=1EPi,t

=

∑d
i=1

(
ICi,t
EPi,t

× EPi,t
)

∑d
i=1EPi,t

=
d∑
i=1

LRi,t ×
EPi,t∑d
i=1EPi,t

=
d∑
i=1

LRi,t × wi,t, (4.2)

where ICt and EPt are the incurred claims and earned premium aggregated across

all business lines, and wi,t is the weight of business line i in period t. In our study

we consider gross loss ratios and net (of reinsurance) loss ratios. The gross loss

ratios are computed with gross claims and gross premiums. The net loss ratios are

based on net claims and net premiums.

House Fire Motor CTP Liability Aggregate loss
Gross loss ratios

Mean 0.5849 0.7820 0.7211 0.8172 0.7024 0.7005
Standard deviation 0.2981 0.8334 0.0682 0.3100 0.1566 0.1971
Skewness 2.6290 3.6449 0.9729 -0.7432 -0.2392 2.8759
Excess kurtosis 8.0694 13.819 0.0075 0.0036 0.0671 9.6254
Average weight, w̄i,t 0.25 0.14 0.33 0.11 0.18 1
Weight at June 2017, wi,T 0.26 0.12 0.33 0.13 0.16 1

Net loss ratios
Mean 0.6272 0.6549 0.7394 0.8051 0.6499 0.7018
Standard deviation 0.2105 0.2639 0.0454 0.3333 0.1907 0.1659
Skewness 2.0440 1.4870 0.3835 -0.8458 -0.6556 1.3425
Excess kurtosis 5.6319 2.2074 -0.9542 0.0960 1.5980 2.4629
Average weight, w̄i,t 0.22 0.10 0.36 0.13 0.18 1
Weight at June 2017, wi,T 0.24 0.09 0.36 0.13 0.17 1

Table 4.1: Summary statistics of the loss ratios. The five columns of values
labelled with the individual business lines have the statistics for LRi,t defined in
equation (4.2) for all business lines i and t from September 2010 to June 2017.
The right column has the statistics for the aggregate loss ratio, LR, as defined
in (4.2).

Table 4.1 lists descriptive statistics for the loss ratios obtained from the data

on the five business lines. The column ‘Aggregate loss’ has the statistics for the

aggregate loss ratio calculated as in equation (4.2). The first observation from
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Table 4.1 concerns the mean. We observe that for all the business lines the average

loss ratios gross and net of reinsurance are not statistically different. Although

reinsurance is essentially a risk transfer (or sharing) tool, loss distributions tend

to be positively skewed and hence we would expect the average loss ratio to reduce

from gross to net of reinsurance. But reinsurance seems to have no strong effect on

the average loss ratio. We explore later in the chapter how this may result from the

interplay between the premium ceded to and claim recoveries from reinsurance.

The standard deviation is higher for Fire. While for House, Motor an especially

Fire standard deviation reduces, it actually increases for CTP and Liability when

reinsurance is taken into account. The values estimated for the skewness show that

the loss ratios for House and Fire do not have symmetric distributions. There is

also significant excess kurtosis for House and Fire both reducing with reinsurance.

In terms of the aggregate loss ratio, reinsurance has a larger effect on the skewness

and kurtosis than on the mean and standard deviation of the loss ratio. Most

notably, reinsurance reduces the excess kurtosis of the aggregate loss ratio by

74%.

4.4 Estimation of the hierarchical aggregation

copula model

In this section we implement the estimation of the hierarchical copula model for

the aggregate loss from the individual business lines as presented in Section 4.2.2.

4.4.1 Tree structure of the hierarchical copula model

The first element of the hierarchical copula model is the rooted tree τ associated

with the variables representing the loss ratio for each business line. As explained in

Section 4.2.2 to build the tree we start by allocating the loss ratio of each business

line to one leaf node and then aggregate the two random variables, representing

loss ratios, with the highest dependence measured by Kendall’s tau. Table 4.2

shows the Kendall’s tau estimates for each pair of business lines.

After allocating each business line to a leaf node, as in the bottom row of the

tree depicted in Figure 4.2, we aggregate the two business lines with the strongest

dependence. We first address the gross loss ratios and after building a new tree
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Stage 1
House Fire Motor CTP Liability

House 1 – – – –
Fire 0.5262 1 – – –
Motor 0.4338 0.2308 1 – –
CTP 0.0154 -0.0523 -0.1815 1 –
Liability 0.0585 -0.1323 0.1446 0.3662 1

Stage 2
House + Fire Motor CTP Liability

House + Fire 1 – – –
Motor 0.3169 1 – –
CTP -0.0400 -0.1815 1 –
Liability -0.0338 0.1446 0.3662 1

Stage 3
House + Fire Motor CTP + Liability

House + Fire 1 – –
Motor 0.3169 1 –
CTP+Liability 0.0154 -0.0523 1

Table 4.2: Sequential aggregation of the gross loss ratios for the five business
lines. At each stage we aggregate the two loss ratio random variables with the
strongest Kendall’s tau estimate.

for the net loss ratios. From Table 4.2 we observe that House and Fire have the

largest Kendall’s tau. Hence, at this first stage, we aggregate these two business

lines. In the second panel of Table 4.2, labelled stage 2, the largest Kendall’s tau

observed is between CTP and Liability. We then aggregate CTP and Liability

defining the second row, from the bottom, of the rooted tree in Figure 4.2. In

stage 3 the strongest dependence is between Motor and Fire plus House. Finally,

aggregating Motor plus Fire plus House with CTP plus Liability defines the root

node and completes the tree in Figure 4.2. The Kendall’s tau between the gross

loss ratios House plus Fire plus Motor and CTP plus Liability is 0.0154.

Table 4.3 contains the Kendall tau values for the case of the net (of reinsurance)

loss ratio for the five business lines. The variables are more strongly dependent,

at the different stages of the construction of the tree. The same scenario observed

for the gross loss ratios. As a consequence the structure of the rooted tree for the

net loss ratios hierarchical copula model is the same as for the gross loss ratios

shown in Figure 4.2. In the last stage of the aggregation model the Kendall’s tau

between the net loss ratios for House, Fire, Motor, CTP and Liability together is

-0.0892.
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Xm Xf Xh Xl Xc

Xf +Xh (Stage 1) Xl +Xc (Stage 2)

Xm + (Xf +Xh) (Stage 3)

X∅ = [Xm + (Xf +Xh)] + (Xl +Xc)
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Figure 4.2: Hierarchical loss aggregation copula model for the gross (and net)
loss ratio of the the five business lines Motor, Fire, House, Liability and CTP,
represented by Xm, Xf , Xh, Xl and Xc, respectively. The structure of the
tree is determined by aggregating iteratively the two nodes with the strongest
dependence.

Stage 1
House Fire Motor CTP Liability

House 1 – – – –
Fire 0.5446 1 – – –
Motor 0.4338 0.2492 1 – –
CTP -0.0154 -0.0031 -0.2369 1 –
Liability 0.0092 -0.0646 -0.0523 0.4954 1

Stage 2
House + Fire Motor CTP Liability

House + Fire 1 – – –
Motor 0.3969 1 – –
CTP -0.0400 -0.2369 1 –
Liability -0.0523 -0.0523 0.4954 1

Stage 3
House + Fire Motor CTP + Liability

House + Fire 1 – –
Motor 0.3969 1 –
CTP+Liability -0.0523 -0.2123 1

Table 4.3: Sequential aggregation of the net loss ratios for the five business
lines.

4.4.2 Determination of univariate distributions

At this point we select a family of univariate distributions for the loss ratio of

each business line. We use maximum likelihood to fit parametric families of dis-

tributions and decide between possible distributions according to the Anderson

and Darling (1954) goodness of fit test. As we are primarily interested in esti-

mating measures of risk, which are based on the tail of the distributions, it is
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important to use an appropriate test. It is known that the Anderson and Darling

(A-D) test is more powerful and sensitive to the tails of the distribution (see En-

gmann and Cousineau, 2011) than other alternative tests such as the commonly

used Kolmogorov-Smirnov2 goodness-of-fit test. Hence, we choose the distribution

giving the highest p-value according to the A-D test. For each business line we

fit the following families of distributions: lognormal, gamma, Weibull, loglogistic,

Pareto and Burr.

The results for the distribution with the highest A-D test p-value and correspond-

ing parameter estimates in Table 4.4. The selection of families for the loss ratio of

each business line falls into the set of log-logistic, Burr and Weibull distributions.

These selections are also visualised in Figure 4.3 and Figure 4.4 for gross and net

loss ratios respectively.

2(Kolmogorov, 1933; Smirnov, 1948).
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Figure 4.3: Subplots of empirical cumulative distribution with theoretical dis-
tributions corresponding to respective fitted distributions for gross loss ratios.
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Figure 4.4: Subplots of empirical cumulative distribution with theoretical dis-
tributions corresponding to respective fitted distributions for net loss ratios.
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4.4.3 Copula selection

In the construction of the hierarchical copula aggregation model for the loss ratios

we have to select a copula family for (the two children of) each branching node of

the tree structure determined in Section 4.4.1. As possible families of copulas we

consider the most commonly used copulas, such as, Gaussian copula, the Student-t,

the Frank, the Clayton, the Gumbel, the mixtures of Clayton and Gumbel copulas

and corresponding survival copulas. To help informing the choice of copula family

we calculate, and report in Table 4.5, non-parametric estimates of the upper and

lower tail dependence coefficient (see Sibuya, 1960, and Schmid and Schmidt, 2007)

for the pair of loss ratios associated with the children of each branching node. As

the risk of extreme events is one of the main concerns when it comes to capital

requirements, it is important to pay particular attention to the tails of the copula

distributions in the modelling process. Table 4.5 summarizes the results of the

copula selection process related to the four branching nodes for gross and net loss

ratios. For the gross loss ratios the first node we consider is House and Fire, as

shown in Figure 4.2. From Table 4.5 we can see that both lower (λL) and upper

(λU) tail coefficient estimates are different from zero. The copula with the highest

p-value (using the goodness of fit test statistic Sn from Genest et al., 2009) is a

mixture of 40% Clayton and 60% survival Clayton copulas. As the Clayton copula

allows for tail dependence the mixture model seems to be a reasonable choice.

The p-value of the Sn goodness of fit test, the parameters and standard errors

estimates are also listed Table 4.5. For the business lines CTP and Liability the

best copula is a mixture of 25% Clayton and 75% survival Clayton copulas. The

same copula mixture is again the best for Motor and Fire plus House but with

only 10% weight on the Clayton component of the mixture. The estimates for the

tail coefficients for the two root node children, Motor plus Fire plus House and

CTP plus Liability, are zero. Indeed the best copula, according to the goodness of

fit test, is the Gaussian copula which has no tail dependence.

For the net loss ratios the best copula for the House and Fire pair is 60% Gumbel

plus 40% survival Gumbel. The resulting copula has both upper and lower tail

dependence which is in line with the non-parametric estimates. CTP and Liability

is best modelled by a Student-t which also allows for both upper and lower tail

dependence. A mixture of 70% survival Gumbel with 30% survival Clayton has

the highest p-value for Motor and Fire plus House. The estimate for the Kendall’s

tau for the pair Motor plus Fire plus House and CTP plus Liability is close to

zero but negative. Hence we flip the variable Motor plus Fire plus House after
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transforming it into the [0, 1] interval. By flipping we mean subtract the variable

from one. The best copula for the resulting pair is then a Gumbel copula which

allows for tail dependence between low values of Motor plus House plus Fire and

high values of CTP and Liability.

4.4.4 Simulation of the aggregate loss ratios

In order to estimate VaR and TVaR from the hierarchical copula aggregation

model we can now simulate observations of aggregate loss ratios using the model

constructed in the previous sections. We implement the sample reordering algo-

rithm from Section 4.2.2 for the gross and net loss ratios using N = 1, 000. Using

the estimator from equation (4.1) we estimate the TVaR for each business line,

gross and net, loss ratios for the confidence levels of 90%, 95% and 99%. The VaR

estimate for a given confidence level is the corresponding empirical quantile. We

repeat the process 1, 001 times and obtain parametric bootstrap estimates for the

VaR, TVaR and corresponding confidence intervals. The results are presented in

Table 4.6 and its analysis follows in the next sections.
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4.5 Analysis of the results: effect of reinsurance

From Table 4.6 we can see that Fire has the largest VaR and TVaR among the

five business lines for the gross loss ratios, followed by CTP except for the 99%

TVaR, where House has the second largest. When we consider reinsurance, CTP

has the largest risk measure values while Fire has the second largest except for

the 99% TVaR where Fire still has the largest value. Nevertheless the 99% TVaR

for Fire has a staggering reduction after reinsurance. Overall Motor has the lowest

values for the risk measures in terms of both gross and net loss ratios, implying the

least risky business line. The VaR and TVaR 95% confidence intervals for gross

and net losses overlap in the cases of House, CTP and Liability. For Fire, Motor

and (copula) aggregate losses the confidence intervals for gross and net losses do

not overlap. We conclude that reinsurance is effectively reducing the level of risk

only for Fire and Motor. And this reduction is strong enough to carry on to the

(copula) aggregate loss. The effect of reinsurance in changing the risk level for

House, CTP and Liability is much less pronounced. We come back to this point

later in this thesis. It is worthwhile recalling here that the average loss is also not

significantly different with and without reinsurance.

Comparing the two right columns of Table 4.6 we can see that the weighted sum

of the risk measures, VaR and TVaR, is larger than the value obtained using

the hierarchical aggregation copula model. This is true both for VaR and TVaR

at all the probability levels considered, and for gross and net loss ratios. The risk

measures obtained using the hierarchical copula model incorporate the dependence

between the different business lines while the weighted sum of VaR and TVaR

does not. Hence, the result obtained is clear evidence that there is a risk reduction

effect in the tail when combining the five business lines. This reduction of risk by

pooling different business lines (risks) corresponds to the notion of diversification

well known in financial portfolio selection and allocation.

Our goal in the following is to explore the effect of reinsurance on the diversification

effect by drawing some parallel between a portfolio of financial assets and the set

of business lines. When addressing diversification in terms of portfolio selection

we can think of two aspects. First, the risk reduction due to the effect of the

interaction between the different components, or due to the dependence structure

in terms of multivariate probability distributions. Second, for the same components

risk reduction is also due to different weights hold by each component. We address

these two aspects below separately.
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4.5.1 Reinsurance and (dependence) diversification

In order to analyse the effect of reinsurance in the risk reduction due to the depen-

dence structure we calculate the percentage risk reduction from the weighted sum

of the risk measures for each business line and the risk of the weighted sum of the

business lines. The risk measures for the weighted sum of business lines loss ratios

are the ones obtained by the hierarchical aggregation copula model. The weights

are fixed and based on the premiums as at June 2017. The results are reported in

Table 4.7.

Weighted Sum of Risk measure of
risk measures aggregate loss, LRt ∆ (%)

Gross loss ratios
90% VaR 0.9603 0.8806 8.30
95% VaR 1.1377 1.0184 10.49
99% VaR 1.8101 1.5937 11.96
90%TVaR 1.4060 1.2644 10.07
95%TVaR 1.7755 1.5895 10.48
99%TVaR 3.4412 3.1437 8.65

Net loss ratios
90% VaR 0.8821 0.8010 9.19
95% VaR 0.9563 0.8440 11.74
99% VaR 1.1271 0.9443 16.22
90%TVaR 0.9916 0.8651 12.76
95%TVaR 1.0674 0.9098 14.76
99%TVaR 1.2516 1.0210 18.42

Table 4.7: Weighted sum of risk measures for the five business lines compared with
the risk measure of the weighted sum of business lines obtained by the hierarchical
copula model. The last column of the table gives the percentage reduction, ∆, of the
risk measures.

The difference of the VaR and TVaR between the weighted sum and the copula

aggregated loss ratios is most striking for the net loss ratios. Note that, from Ta-

ble 4.6, the 90% confidence intervals for the net loss ratio risk measures of the

weighted sum and the copula aggregated sum do not even overlap. The difference

in the risk reduction gross and net loss ratios is larger for higher probability risk

measures. This indicates that, from a multivariate or portfolio point of view, rein-

surance is reducing the upper tail dependence of some of the loss ratios across

the different business lines (the estimates for λU in Table 4.5 do not contradict

this assertion) and consequently is increasing the diversification effect. As far as

we know this effect of reinsurance on the multivariate overall portfolio of business

lines has not been previously reported in the literature.
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4.5.2 Reinsurance and (weighted premiums) diversifica-

tion

Here we evaluate the effect of reinsurance in the diversification due to unequal

weights between the different business lines. We compare the risk measure obtained

by the copula aggregation model for the equally weighted aggregated loss ratios

and the loss ratios aggregated using the weights as at June 2017. The weights as at

June 2017 are reported in Table 4.1 where we can see that reinsurance reduces the

proportion of the business line Fire (mainly) and House, and increases the weight

of Motor.

We quantify a measure of (weights) diversification as the percentage reduction

in risk between an equally weighted portfolio, in this case of business lines, and

the portfolio we want to measure the level of diversification. Using this notion

we estimate the VaR and TVaR of an equally weighted sum of the five business

lines. This corresponds to assume equal premiums across the five business lines.

The results, reported in Table 4.8, are striking. Reinsurance vastly reduces the

diversification originated from having different weights on the different business

lines. As we can see in Table 4.1 reinsurance does not have such a strong effect on

the change of weights. But on the other hand, reinsurance changes the multivariate

dependence structure making the aggregated loss ratios much less sensitive, in

terms of risk, to changes in the relative proportions of each business line.

4.5.3 Cession ratio and risk

The cession ratio is the outwards reinsurance expense divided by the gross earned

premium. Our goal here is to explore the relation between the cession rate and

the change in the risk implied by reinsurance and measured on the loss ratios.

We would expect reinsurance to have the effect of reducing the VaR and TVaR

for individual business lines. If we calculate the percentage change for the risk

measures at each probability level we can see in Table 4.9 that this is indeed the

case for House, Fire and Motor. But remarkably reinsurance increases VaR and

TVaR at almost all probability levels for CTP and Liability. We plot in Figure 4.5

the cession rate versus the reduction in risk for each business line. There is a

clear positive relation between the two. Remarkably for low cession rates the risk

increases with reinsurance.
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Aggregate loss, LRt Aggregate loss, LRt (%)
Equal Weights June 2017 Weights ∆ (%)

Gross loss ratios
90% VaR 0.9364 0.8806 5.96
95% VaR 1.1204 1.0184 9.10
99% VaR 1.9901 1.5937 19.92
90%TVaR 1.4782 1.2644 14.46
95%TVaR 1.9429 1.5895 18.19
99%TVaR 4.1556 3.1437 24.35

Net loss ratios
90% VaR 0.8380 0.8010 4.42
95% VaR 0.8918 0.8440 5.36
99% VaR 1.0163 0.9443 7.08
90%TVaR 0.9187 0.8651 5.83
95%TVaR 0.9748 0.9098 6.67
99%TVaR 1.1178 1.0210 8.66

Table 4.8: Comparison between the risk measures for the loss ratio aggregated
using the copula model. In the second column of the table the business lines
have been aggregated using equal weighs, while in the third column the business
lines have been aggregated using the weights as at June 2017. The right column
of the table gives the percentage reduction of the risk measures.

House Fire Motor CTP Liability
90% VaR -0.80 35.43 3.89 -3.29 0.81
95% VaR 3.20 51.94 8.44 -4.96 -0.48
99% VaR 11.45 75.84 18.44 -7.87 -1.96
90%TVaR 6.05 71.40 11.03 -5.55 -0.65
95%TVaR 9.63 78.97 15.35 -6.85 -1.41
99%TVaR 17.01 89.84 24.50 -9.11 -2.22
Average ∆ (%) 7.76 67.24 13.61 -6.27 -0.99
Average cession ratio (%) 30.65 43.50 16.95 11.00 20.34

(2.83) (3.90) (1.35) (7.35) (6.83)
Average recovery ratio (%) 21.01 37.73 11.81 13.47 23.33

(10.37) (18.88) (2.80) (16.52) (16.74)

Table 4.9: Percentage reduction (∆) on the risk measures from gross to net
loss ratios. The cession ratio is outwards reinsurance expense divided by the
gross earned premium averaged across the sample period. The recovery ratio
is the reinsurance recoveries revenue divided by the gross incurred claims. The
values in parenthesis are the standard deviation of the corresponding rates.

4.6 Conclusion

It is important for every insurance company to determine and maintain the right

amount of capital to keep as a solvency margin against the risk of not being able
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Figure 4.5: Cession rate versus the reduction on risk measures caused by
reinsurance for each business line. The dashed line results from regressing risk
reduction from reinsurance on the cession rate.

of covering the insurance company’s liabilities. This calls for adequate methods

of aggregating all risks and the use of appropriate risk measures to determine the

capital requirement. In this chapter we use a hierarchical aggregation copula model

to address the dependence structure of the different insurance business lines. We

use several copula families to model the aggregated loss with particular emphasis

on the tail dependence. We consider a range of copulas asymmetric, symmetric,

with and without tail dependence as the Gaussian and Student-t, and Archimedian

copulas Clayton, Gumbel, and Frank. Selecting the best copula families for the

hierarchical aggregation model is crucial as it influences the estimated level of risk

and consequently avoids overestimation or underestimation of the capital required.

A very important tool for risk management is reinsurance. Insurance companies

diversify away part of its underwriting risk to reinsurance companies. In this chap-

ter we investigate the effect and relevance of reinsurance on the risk of individual

business lines and importantly on the aggregate risk. These effects are measured

in this chapter by considering both gross and net loss ratios, where gross loss ra-

tios are used to measure the insurance risk without considering the reinsurance

business, while the net loss ratios are used to determine the insurance risk taking

into account the reinsurance business.

Reinsurance can increase the risk even when measured by the standard deviation
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as we can see in Table 4.1. Unless there is a positive shift in the relation between the

premium cession rate and the risk reduction from reinsurance, it is less risky to have

a higher cession rate or not to have reinsurance at all than to have a low cession

rate. For House, Fire and Motor the reinsurance premium cession rate is higher

than the claims recovery rate. We would assume that this is to compensate for the

expenses of the reinsurance company. But interestingly for CTP and Liability the

recovery rate is higher is than the cession rate which counteracts the increase in

risk brought by reinsurance for these two business lines.

Another aspect of reinsurance has to do with diversification. Reinsurance increases

the diversification due to the dependence between the business lines and reduces

the sensitivity of the aggregate risk to changes in the proportions of the different

business lines. Hence, if the goal is to manage risk by changing the proportion

of premiums between business lines, reinsurance might mitigate the reduction of

risk of the aggregated loss ratio. Instead, a risk management strategy focussed on

the dependence structure between the business lines should be more successful in

reducing the risk of the aggregated loss ratio when reinsurance is present.



Chapter 5

Vine copula

5.1 Introduction

In the search for a flexible copula model for a high dimension, one might want to

consider the Pair-Copula Construction (PCC) or also known as vine copula. Vine

copula can be used for high dimensional data sets and can incorporate complex

dependence structures. These include negative dependence and different types of

copula dependence such as 90%, 180% and 270% rotated copulas. The building

block of vine copula is bivariate copulas which is similar to hierarchical model in

Chapter 4.

In this chapter, we develop a new model to determine the capital requirement for

general insurance companies in the United Kingdom (UK) using a vine copula.

We develop the model by incorporating the most commonly used copulas from the

Archimedean copula family such as Clayton copula, Gumbel copula, and Frank

copula. The results from these analysis are presented in Section 5.5. The rest of

this chapter is organised as follows. In Section 5.2, we discuss the recent literature

on vine copula and highlight the key contribution of vine copula to the financial

and insurance industries. In Section 5.3, we discuss and provide a comprehensive

explanation on the concepts of vine copula which are useful in developing the vine

copula model for capital requirement. The modelling procedures are explained in

Section 5.4 and the empirical analysis to determine the capital requirement for

UK general insurance industry is presented in Section 5.5. We end this chapter

with the Conclusion in Section 5.6.

68
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5.2 The growing literature on vine copula

The Pair-Copula Construction (PCC), also known as vine copula, has been evolv-

ing in the recent years. Vine copula was first introduced by Joe (1996) and later

developed by Bedford and Cooke (2001), Bedford and Cooke (2002) and more

recently by Aas et al. (2009), Hobæk Haff et al. (2010), Czado et al. (2012),

Brechmann and Schepsmeier (2013), Dißmann et al. (2013), Killiches et al. (2017).

Motivated from the first research on vine copula by Joe (1996), Bedford and

Cooke (2001) analyse the construction of the copula based on its density func-

tion and present vine copula in a graphical form with two of its subclasses known

as Drawable-vine (D-vine) and Canonical-vine (C-vine). These vine copulas are

different from one another by their respective tree structures. In a D-vine, each

node in a tree has a maximum of two edges while in a C-vine, each tree has a

unique node that connects with other remaining nodes by an edge. Bedford and

Cooke (2001) show that, the structure of a vine copula is developed by general-

izing the concept of Markov trees. However, the conditional independence in vine

copula structure is weakened in order to allow for different kind of conditional

dependence.

According to Acar et al. (2012), vine copulas are graphical models and through

systematic procedures a high dimensional copula can be decomposed into a lower

dimensional copula (bivariate copula). Unlike the hierarchical model in Chapter

4, the decomposition of vine copula includes conditional copulas. As mentioned in

the previous section, vine copula has the advantage over other multivariate copula

models due to its high flexibility. Specifically, it is adequate to model a range of

complex dependencies such as asymmetric dependence or strong joint tail depen-

dence (Joe et al., 2010). In particular, Aas et al. (2009) provide a comprehensive

studies on the superiority of vine copula against Nested Archidemedean Copula

(NAC). NAC is originally proposed by Joe (1997) and also studied by Embrechts

et al. (2003), Whelan (2004), Nelsen (2006), Mcneil (2008), and Hofert (2008).

The results of Aas et al. (2009) suggest that vine copula is preferable to model

high dimensional multivariate data as it is more efficient than NAC. Moreover,

vine copula provides more flexibility by allowing free specification of d(d − 1)/2

copulas for the d-dimensional case and provide a wide selection of copula families.

These results match those observed in the earlier study by Fischer et al. (2009).

The key concept of vine copula is on the simplifying assumption. In vine copula

model, it is assumed that every conditional bivariate copula is independent of
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the conditioning variable unless through its own marginal distributions (Hobæk

Haff et al., 2010). This assumption is important so that it is possible to get a

good inference. In fact, a growing literature on vine copula recently have been

focusing on this assumption (Hobæk Haff et al., 2010; Acar et al., 2012; Kraus

and Czado, 2017 and Killiches et al., 2017). Hobæk Haff et al. (2010) show that

the simplifying assumption on vine copula model is a good approximation and

propose the conditions for a multivariate distribution to be in this simplified form.

On the contrary, Acar et al. (2012) graphically prove that a pair of variables are

mistakenly considered as conditionally independent although otherwise. However,

it is important to note that Acar et al. (2012) mainly rely on a graphical tool for

the study. This shows that more work is needed to confirm this claim. Interestingly,

a recent study by Killiches et al. (2017) provide evidence that vine copula with

simplifying assumption is preferable to model high dimensional data with the

view to avoid over fitting without failing to accurately measure the dependence

structure. Further details on this assumption are discussed in Section 5.3.1.

The superiority of vine copula also relies on its statistical inference which has re-

ceived great attention in the recent literature (Barthel et al., 2018; Hobæk Haff and

Segers, 2015; Gruber and Czado, 2015; Erhardt et al., 2015; Vaz De Melo Mendes

and Accioly, 2014; Schmidl et al., 2013; Brechmann and Schepsmeier, 2013; Hobæk

Haff, 2013; Czado et al., 2012; Min and Czado, 2010, and many others). However,

the main inference methods discussed in the literature are centrally focused on

maximum likelihood and sequential estimation. In this chapter, we use the impro-

vised sequential estimation method proposed by Czado et al. (2012). This method

allows for two-step parameter estimation in each vine copula tree structure. In the

first step, the parameters for the marginal distribution of each random variable

in the first tree are estimated. Then, the copula parameters linking two random

variables are estimated accordingly. This method proceeds sequentially to the next

step by estimating the parameters for marginals and copulas for the next tree using

the estimates from the previous tree. This sequential estimation method, which

was originally introduced by Aas et al. (2009), provides a good starting value for

the maximum likelihood estimation in vine copulas. From the computational per-

spective, this method is the best fitting estimation as confirmed by the algorithm

developed by Brechmann and Schepsmeier (2013).

Vine copula has great flexibility in modelling high dimensional problem making

it suitable for solving statistical problems not just in Finance and Insurance but

also in sociology (Cooke et al., 2015), biology (Barthel et al., 2018; Schellhase
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and Spanhel, 2018) and hydrology (Erhardt and Czado, 2018; Hobæk Haff and

Segers, 2015; Killiches and Czado, 2015). In Finance, Czado et al. (2012) study

the inference of mixed C-vines using maximum likelihood (ML) estimation and

apply the model to solve the problem involving the USD exchange rate. Dißmann

et al. (2013) use R-vines and develop a new algorithm to investigate the joint-

density of financial asset classes returns from equity, fixed income and commodity

indices.

The past literature in insurance applications of vine copula mainly focus on indi-

vidual business line, e.g., Shi and Yang (2018) investigate the property insurance

claims using mixed D-vine copula to model the temporal dependence among recur-

ring observations. The result is used to incorporate policyholders’ past experience

into future premiums. In addition, Erhardt and Czado (2012) analyse the depen-

dence between yearly claim totals and different coverages. These include age, sex,

and other factors. It is noticed that there have been limited applications in mod-

elling capital requirement and dependence structure for insurance, especially the

general insurance segment in the UK. This chapter provides a new contribution to

the literature by empirically analyse and subsequently model the capital require-

ment for UK general insurance industry. We begin our research by providing a

comprehensive overview of the vine copula key concepts in the following sections.

5.3 Vine copula

Let F be the joint probability distribution function with marginals F1, F2, ..., Fn

of the vector X = (X1, X2, ..., Xn) of n random variables. According to Theorem

3.2 of Sklar (1959) in Section 3.1, the joint probability function is given by

F (x1, x2, ..., xn) = C(F1(x1), F2(x2)..., Fn(xn)), (5.1)

where C is the n-dimensional copula with the following expression

C(u1, ..., un) = F
(
F−11 (u1), ..., F

−1
n (un)

)
. (5.2)
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The F−1 denotes the inverse distribution function of the marginals. Consequently,

the joint density function of vector X is

f(x1, x2, ..., xn) = c12...n(F1(x1), F2(x2), ..., Fn(xn)) · f1(x1) · · · fn(xn), (5.3)

assuming that the copula density function c12...n exists. We decompose the density

function in Equation (5.3) as

f(x1, x2, ..., xn) = fn(xn) · f(xn−1|xn) · f(xn−2|xn−1, xn) · · · f(x1|x2, ..., xn). (5.4)

For 2-dimensional (n = 2), we write

f(x1, x2) = f2(x2) · f(x1|x2). (5.5)

Similarly, we can re-write Equation (5.5) as

f(x1|x2) =
f(x1, x2)

f2(x2)
, (5.6)

and by Sklar Theorem we can write

f(x1|x2) =
c12[F1(x1), F2(x2)] · f1(x1) · f2(x2)

f2(x2)

= c12[F1(x1), F2(x2)] · f1(x1).
(5.7)

For further example consider 3-dimensional (n = 3) and using Equation (5.4), we

write

f(x1, x2, x3) = f3(x3) · f(x2|x3) · f(x1|x2, x3), (5.8)

and we decompose the conditional density function as in the following equation

f(x1|x2, x3) =
f(x1, x3|x2)
f(x3|x2)

=
c13|2[F (x1|x2), F (x3|x2);x2] · f(x1|x2) · f(x3|x2)

f(x3|x2)
= c13|2[F (x1|x2), F (x3|x2);x2] · f(x1|x2)

= c13|2[F (x1|x2), F (x3|x2);x2] · c12[F (x1), F (x2)] · f1(x1).

(5.9)
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Finally, by replacing the conditional density function for 2-dimensional in Equation

(5.7) and 3-dimensional in Equation (5.9) into Equation (5.8), we get

f(x1, x2, x3) = f1(x1) · f2(x2) · f3(x3)

· c12[F (x1), F (x2)]

· c23[F (x2), F (x3)]

· c13|2[F (x1|x2), F (x3|x2);x2].

(5.10)

Note that the joint density function is decomposed into marginal terms, uncondi-

tional pairs and also conditional pair. The general formula

f(x|v) = cxvj |v−j [F (x|v−j), F (vj|v−j); v−j] · f(x|v−j), (5.11)

where vj is a component, arbitrary chosen from a d-dimensional vector v and v−j

denotes the (d− 1)-dimensional vector v excluding vj.

5.3.1 The simplifying assumptions

To model a vine copula, it is important to assume that the bivariate copula

C(θ1, θ2) does not depend on the conditional variables but only through its distri-

bution function F (Hobæk Haff et al., 2010).

For illustration, consider the conditional bivariate copula of 3-dimensional case

from Equation (5.9). The conditional copula density is given by

c13|2
[
F1|2(x1|x2), F3|2(x3|x2);x2

]
= c13|2

[
F1|2(x1|x2), F3|2(x3|x2)

]
. (5.12)

Generally, the conditional bivariate copula density from Equation (5.11) becomes

as

cxvj |v−j [F (x|v−j), F (vj|v−j); v−j] = cxvj |v−j [F (x|v−j), F (vj|v−j)]. (5.13)

Clearly, we assume that the families of each bivariate copulas are constant or

independent over the values of its corresponding conditioning variables. These
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assumptions are important for fast and robust vine copula inference. We discuss

vine copula inference in Section 5.4.3.

5.3.2 Conditional distribution function for modelling vine

copulas

From the previous section, it is clear that the conditional distribution function

(cdf) in the form F (x|v) involves in modelling the PCC. To resolve the cdf, Joe

(1996) proves that for every vj from the vector v, F (x|v) is given by

F (x|v) =
∂Cxvj |v−j(F (x|v−j), F (vj|v−j))

∂F (vj|v−j)
, (5.14)

where Cxvj |v−j is the bivariate copula distribution function. In the case of univariate

distribution where v is univariate and for simplification consider x = x1 and v =

vj = x2, it follows that

F (x1|x2) =
∂Cx1x2(F (x1), F (x2))

∂F (x2)
. (5.15)

5.3.3 h-function

For uniform margin where x, v ∼ U(0, 1), we can get f(x1) = f(x2) = 1, F (x1) =

x1 and F (x2) = x2. Subsequently, following h-function introduced by Aas et al.

(2009), Equation (5.15) is written as

h(x1, x2) =
∂Cx1x2(x1, x2)

∂x2
. (5.16)

To explain the importance of solving the conditional distribution functions, we

consider a multivariate distribution with d=4. In this case x1, x2, x3, x4 ∼ U(0, 1)

and using Equation (5.14) and the h-function described in (5.16), we have

F (x1|x2, x3, x4) =
∂Cx1x2|x3x4(F (x1|x3, x4), F (x2|x3, x4))

∂F (x2|x3, x4)
= hx1x2|x3x4

(
F (x1|x3, x4), F (x2|x3, x4)

)
.

(5.17)



Vine copula 75

Equation (5.17) is one possible outcome for a 4-dimensional case. In total, d!/2

can be constructed from a d-dimensional random vector (Aas et al., 2009). Based

on Equation (5.17) to derive F (x1|x2, x3, x4) we need to evaluate the conditional

distribution function of F (x1|x3, x4) and F (x2|x3, x4). These are

F (x1|x3, x4) =
∂Cx1|x3x4

(
F (x1|x3), F (x1|x4)

)
∂F (x1|x4)

,

= hx1|x3x4
(
F (x1|x3), F (x1|x4)

) (5.18)

F (x2|x3, x4) =
∂Cx2|x3x4

(
F (x2|x3), F (x2|x4)

)
∂F (x2|x4)

.

= hx2|x3x4
(
F (x2|x3), F (x2|x4)

) (5.19)

Next, following the same procedure, we need to evaluate the univariate distribution

functions: F (x1|x3), F (x1|x4), F (x2|x3), F (x2|x4). We get the following

F (x1|x3) =
∂Cx1x3

(
F (x1), F (x3)

)
∂F (x3)

,

= hx1x3
(
F (x1), F (x3)

) (5.20)

F (x1|x4) =
∂Cx1x4

(
F (x1), F (x4)

)
∂F (x4)

,

= hx1x4
(
F (x1), F (x4)

) (5.21)

and

F (x2|x3) =
∂Cx2x3

(
F (x2), F (x3)

)
∂F (x3)

,

= hx2x3
(
F (x2), F (x3)

) (5.22)
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F (x2|x4) =
∂Cx2x4

(
F (x2), F (x4)

)
∂F (x4)

.

= hx2x4
(
F (x2), F (x4)

) (5.23)

Then, we summarize the above equations as a nested h-functions

F (x1|x2, x3, x4) =
∂Cx1x2|x3x4

(
F (x1|x3, x4), F (x2|x3, x4)

)
∂F (x2|x3, x4)

= hx1x2|x3x4
[
F (x1|x3, x4), F (x2|x3, x4)

]
= hx1x2|x3x4

[
hx1|x3x4

(
F (x1|x3), F (x1|x4)

)
, hx2|x3x4

(
F (x2|x3), F (x2|x4)

)]
= hx1x2|x3x4

[
hx1|x3x4

(
hx1x3

(
F (x1), F (x3)

)
, hx1x4

(
F (x1), F (x4)

))
,

hx2|x3x4

(
hx2x3

(
F (x2), F (x3)

)
, hx2x4

(
F (x2), F (x4)

))]
.

(5.24)

For d = 5, using the same procedure we have the following

F (x1|x2, x3, x4, x5) =
∂Cx1x5|x2x3x4

[
F (x1|x2, x3, x4), F (x5|x2, x3, x4)

]
∂F (x5|x2, x3, x4)

= hx1x5|x2x3x4
[
F (x1|x2, x3, x4), F (x5|x2, x3, x4)

]
.

(5.25)

Then using Equation (5.24) we have

F (x1|x2, x3, x4) =
∂Cx1x2|x3x4

(
F (x1|x3, x4), F (x2|x3, x4)

)
∂F (x2|x3, x4)

= hx1x2|x3x4
[
F (x1|x3, x4), F (x2|x3, x4)

]
= hx1x2|x3x4

[
hx1|x3x4

(
F (x1|x3), F (x1|x4)

)
, hx2|x3x4

(
F (x2|x3), F (x2|x4)

)]
= hx1x2|x3x4

[
hx1|x3x4

(
hx1x3

(
F (x1), F (x3)

)
, hx1x4

(
F (x1), F (x4)

))
,

hx2|x3x4

(
hx2x3

(
F (x2), F (x3)

)
, hx2x4

(
F (x2), F (x4)

))]
.

(5.26)

Similarly,
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F (x5|x2, x3, x4) =
∂Cx5x2|x3x4

(
F (x5|x3, x4), F (x2|x3, x4)

)
F (x2|x3, x4)

= hx5x2|x3x4
[
F (x5|x3, x4), F (x2|x3, x4)

]
= hx5x2|x3x4

[
hx5|x3x4

(
F (x5|x3), F (x5|x4)

)
, hx2|x3x4

(
F (x2|x3), F (x2|x4)

)]
= hx5x2|x3x4

[
hx5|x3x4

(
hx5x3

(
F (x5), F (x3)

)
, hx2x4

(
F (x2), F (x4)

))
,

hx2|x3x4

(
hx2x3

(
F (x2), F (x3)

)
, hx2x4

(
F (x2), F (x4)

))]
.

(5.27)

Finally, we get

F (x1|x2, x3, x4, x5) =
∂Cx1x5|x2x3x4

[
F (x1|x2, x3, x4), F (x5|x2, x3, x4)

]
∂F (x5|x2, x3, x4

= hx1x5|x2x3x4
[
F (x1|x2, x3, x4), F (x5|x2, x3, x4)

]
= hx1x5|x2x3x4

[
hx1x2|x3x4

[
hx1|x3x4

(
hx1x3

(
F (x1), F (x3)

)
, hx1x4

(
F (x1), F (x4)

))
,

hx2|x3x4

(
hx2x3

(
F (x2), F (x3)

)
, hx2x4

(
F (x2), F (x4)

))]
,

hx5x2|x3x4

[
hx5|x3x4

(
hx5x3

(
F (x5), F (x3)

)
, hx2x4

(
F (x2), F (x4)

))
,

hx2|x3x4

(
hx2x3

(
F (x2), F (x3)

)
, hx2x4

(
F (x2), F (x4)

))]]
.

(5.28)

5.3.4 h-function of selected copula families

Here we present the h-function of Clayton, Gumbel and Frank copula.

Clayton copula

Recall that

C(u, v) = (u−θ + v−θ − 1)−
1
θ . (5.29)
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Then, we have

h(u1 , u2 ; θ12) =
∂C(u1, u2; θ12)

∂u2

=
∂

∂u2
(u−θ121 + u−θ122 − 1)

− 1
θ12

= − 1

θ12
(u−θ121 + u−θ122 − 1)

− 1
θ12
−1

(−θ12u−θ12−11 )

= −(θ−112 )(−θ12u−θ12−11 )(u−θ121 + u−θ122 − 1)
− 1
θ12
−1

= u−θ12−11 (u−θ121 + u−θ122 − 1)
− 1
θ12
−1
.

(5.30)

Gumbel copula

Recall that

C(u1, u2; θ12) = exp
[
−
(
(− log u1)

θ12 + (− log u2)
θ12
) 1
θ12

]
, (5.31)

then h-function is given by

h(u1 , u2 ; θ12) =
∂C(u1, u2; θ12)

∂u2

=
∂

∂u2

(
exp

[
−
(
(− log u1)

θ12 + (− log u2)
θ12
) 1
θ12

])

=

{(
exp

[
−
(
(− log u1)

θ12 + (− log u2)
θ
12

) 1
θ12

])

·

(
1

u2
(− log u2)

θ12−1

)

·

(
(− log u1)

θ
12 + (− log u2)

θ
12

) 1
θ12
−1}

.

(5.32)

Frank copula

Recall that

C(u1, u2) = −1

θ
log
[
1 +

(
exp(−θu1)− 1

)(
exp(−θu2)− 1

)
exp(−θ)− 1

]
, (5.33)
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then the h-function is given by

h(u1 , u2 ; θ12) =
∂C(u1, u2; θ12)

∂u2

= −1

θ

[
exp(−θ)− 1(

exp(−θ)− 1
)

+
(

exp(−θu1)− 1
)(

exp(−θu2)− 1
)]

·
(

exp(−θ)− 1
)

exp(−θu2)(−θ)(
exp(−θ)− 1

)
=

(
exp(−θu1)− 1

)
exp(−θu2)(

exp(−θ)− 1
)

+
(

exp(−θu1)− 1
)
(exp(−θu2)− 1)

) .
(5.34)

5.4 Vine copula models

Vine copula has been very useful in constructing multivariate distribution involving

high dimensional random variables. In this regard, Bedford and Cooke (2001)

introduce three different vine copulas and the constructions of these vine copulas

are in the graphical form. The first type of vine copula with broad range of possible

pair-copula decompositions is known as Regular-Vine (R-Vine). The structure of

a R-vine is quite complex. However, to simplify the multivariate modelling using

vine copula, R-vine can be further divided into two simpler types: Canonical-vine

(C-vine) and Drawable-vine (D-vine). As discussed in Section 5.2, C-vine and D-

vine are different by their respective structure and construction method. D-vine

limits number of edges to every node to a maximum of two edges while in a C-vine,

all nodes are connected with a root node to form a pairwise of random variables. In

this chapter, we concentrate on C-vine copula to model the dependence structure

of losses from multiple insurance business lines. We choose C-vine due to the fact

that it is relatively new in insurance application especially in modelling insurance

risks.

5.4.1 C-vine

To build a C-vine tree structure, we need to determine the root node of each tree

through sequential estimation tree-by-tree. In a d-dimensional C-vine, each root

node in every tree, Tn, n = 1, ..., d − 1 is connected to d − n edges. The density

function for d-dimensional C-vine is given by
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f(x1, ..., xd) =
d∏

k=1

f(xk)
d−1∏
n=1

d−n∏
m=1

cn,n+m|1,...,n−1

[
F (xn|x1, ..., xn−1), F (xn+m|x1, ..., xn−1)

]
.

(5.35)

For the 5-dimensional case we have the following density function

f(x1, x2, x3, x4, x5) = f1(x1) · f2(x2) · f3(x3) · f4(x4) · f5(x5)

· c12[F (x1), F (x2)] · c13[F (x1), F (x3)]

· c14[F (x1), F (x4)] · c15[F (x1), F (x5)]

· c23|1[F (x2|x1), F (x3|x1)] · c24|1[F (x2|x1), F (x4|x1)]

· c25|1[F (x2|x1), F (x5|x1)] · c34|12[F (x3|x1, x2), F (x4|x1, x2)]

· c35|12[F (x3|x1, x2), F (x5|x1, x2)]

· c45|123[F (x4|x1, x2, x3), F (x5|x1, x2, x3)].
(5.36)

Figure 5.1 shows a complete structure of a C-vine based on 5-dimensional random

variable (X1, X2, X3, X4, X5)
′. In the first tree, C12, C13, C14, C15 are the uncon-

ditional bivariate copulas for pairwise (X1, X2), (X1, X3), (X1, X4) and (X1, X5)

respectively. The conditional bivariate copulas are presented in the second, third

and forth tree only with notation C23|1, C24|1, C25|1 for the second tree, C34|12, C34|12

for third tree and C45|123 for the forth (final) tree. We explain step-by-step in Sec-

tion 5.4.2 the procedure to construct the structures.
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Final Tree X3X4|X1X2 X3X5|X1X2

C45|123

Third Tree X2X3|X1

X2X4|X1

X2X5|X1

c34|12

c35|12

Second Tree X1X2

X1X3

X1X4

X1X5

c23|1

c24|1

c25|1

First Tree X1

X2

X3

X4

X5

c12

c13

c14

c15

Figure 5.1: Illustration of a complete structure of a 5-dimensional C-vine

.
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5.4.2 Building a C-vine tree

Here we explain the main procedure to build a tree structure of a C-vine copula. A

C-vine copula model is different from a hierarchical model, discussed in Chapter 4.

In a vine copula model, each stage is considered as a tree and the number of trees

is determined by the total number of dimension, d, minus 1 or specifically, d− 1.

Each variable in every tree is represented by a node. Each tree consists of a root

node which is paired to other remaining nodes by an edge and a copula. A root

node is the key node which is linked to other remaining nodes. The basic concept

of building a C-vine goes back to the Graph Theory discussed in Section 3.5. As

explained in Section 5.3, two types of copulas are considered in vine copula. The

first type is unconditional copula and only present in the first tree. The second

type is conditional copula for the remaining trees. At this point, it is important

to note that, the conditional copulas are assumed to be independent from the

conditioning variables except through its marginal distribution.

The first step to build a C-vine model is to choose a variable which represents the

root node of the first tree. The selection of the root node is performed by selecting

the variable with the highest sum of absolute value of Kendall’s tau against other

variables. In order words, we estimate the pairwise Kendall’s tau value for all

possible pairs (Xm, Xn), and select the variable Xm that maximizes the following

T̂m :=
d∑

n=1

|τ̂m,n|, (5.37)

where τ̂m,m = 1 for m = 1, 2, ..., d. Once Xm is identified, we rearrange the order

of all variables. In this way, the variable Xm as the root node will be the first

variable and can be linked to other variables. Then we need to select the appropri-

ate unconditional bivariate copulas ck,n with n = 1, ..., d − 1 for each pair before

estimating the next root node for the second tree. At this stage, we also estimate

the bivariate copula parameter θSE1,0 . We denote θSEn,0 as the bivariate copula param-

eter at Tn, n = 1, ..., d − 1 using sequential estimation (SE). The selection of the

bivariate copula is based on Akaike Information Criterion(AIC) of Akaike (1974).

We discuss the bivariate copula selection later in Section 5.4.4.

We proceed using the same procedure to determine the root node in the second

tree. However, the root node is determined using bivariate copula parameter θ̂SE1,0

chosen in the first tree and the transformed variables using h-function as explained
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earlier in Section 5.3.3 and 5.3.4. The (d− 1)th transformed variables and sample

t for the second tree are determined by

v̂n+2,t := h(un+2,t|uk,t; θ̂SEn+1,0), (5.38)

where n = 0, ..., d − 2 and t = 1, ..., T . Now, we re-arrange the order so that the

variable maximizes Equation (5.37) assuming l becomes the first variable followed

by the remaining variables. Then we select the bivariate conditional copula cl,n+2|k

for n = 1, ..., d− 2 with single conditioning variable.

Following the same procedure, we continue sequentially to determine the next tree

until we have all root nodes for every tree together with its corresponding bivariate

copulas and associated sequential estimates θ̂SE.

Example. Consider C-vine trees depicted in Figure 5.1 with five random variables:

X1, X2, X3, X4 and X5. Now assume X1 is the variable that maximizes Equation

(5.37) and therefore chosen as the root node for the first tree. We re-arrange the

order for all remaining variables with X1 as the first variable . We get the pairwise

and the first tree structure as follows

First Tree:

C1,2︷ ︸︸ ︷
(X1, X2),

C1,3︷ ︸︸ ︷
(X1, X3),

C1,4︷ ︸︸ ︷
(X1, X4),

C1,5︷ ︸︸ ︷
(X1, X5)

The copulas, C1,2, C1,3, C1,4 and C1,5 are determined based on Akaike Information

Criterion (AIC). As mentioned earlier, we discuss further the copula selection in

Section 5.4.4. The structure for the first tree is illustrated in Figure 5.2.
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First Tree X1

X2

X3

X4

X5

C12

C13

C14

C15

Figure 5.2: The first tree with X1 is chosen as the root node linked to re-
maining nodes, X2, X3, X4, X5. The dependence structures between each pair-
wise (X1, X2), (X1, X3), (X1, X4) and (X1, X5) are modelled by bivariate copula
C12, C13, C14 and C15 respectively

.

To build the second tree, we transform all variables using h-function as in Equation

(5.24) and (5.38). Then, using the copulas selected in the first tree together with

its corresponding parameters, we determine the root node for the second tree that

maximizes Equation (5.37). For simplicity, we assume the chosen variable for the

root node in the second tree is X2. The copulas used in this tree are conditional

copulas with distribution functions conditioning on X1 (the root node of the first

tree). Now we re-arrange the order of the remaining variables as follows

Second Tree:

C2,3|1︷ ︸︸ ︷
(X2, X3|X1),

C2,4|1︷ ︸︸ ︷
(X2, X4|X1),

C2,5|1︷ ︸︸ ︷
(X2, X5|X1)

Once we have determined the variables order and the corresponding bivariate

copula, we get the tree structure for the second tree as presented in Figure 5.3.

Following the same procedures as in building the second tree, we proceed sequen-

tially to determine the root node for the third and forth tree. The number of tree

for a C-vine is defined based on d − 1 and since in this example d = 5, therefore

the maximum number of tree is only 4. The pairwise and tree structure for the

third tree are as follows:
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Second Tree X1X2

X1X3

X1X4

X1X5

C23|1

C24|1

C25|1

Figure 5.3: The second tree with X2 is chosen as the root node linked to remaining
pairwise nodes. Given X1 as the conditional variable, the dependence structures be-
tween each pairwise (X1, X2) and (X1, X3) is modelled by bivariate conditional copula
C23|1, (X1, X2) and (X1, X4) by C24|1, (X1, X2) and (X1, X5) by C25|1.

Third Tree:

C3,4|1,2︷ ︸︸ ︷
(X3, X4|X1, X2),

C3,5|1,2︷ ︸︸ ︷
(X3, X5|X1, X2)

Third Tree X2X3|X1

X2X4|X1

X2X5|X1

C34|12

C35|12

Figure 5.4: The third tree with X3 is chosen as the root node linked to re-
maining pairwise nodes. Given X2 as the conditional variable, the dependence
structures between each pairwise (X2, X3|X1) and (X2, X4|X1) is modelled by
bivariate conditional copula C34|12 The remaining pairwise (X2, X3|X1) and
(X2, X5|X1) is modelled by C35|12.
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And finally the forth (last) tree we only left with two nodes and root node is not

required. The pairwise for the forth tree is as follows

Third Tree:

C4,5|1,2,3︷ ︸︸ ︷
(X4, X5|X1, X2, X3)

Figure 5.5 show the final tree structure for the 5-dimensional vine copula.

Final Tree X3X4|X1X2 X3X5|X1X2

C45|123

Figure 5.5: Illustration of the final tree of a C-Vine with conditional bivariate copula
C45|123 is chosen to model the dependence structure of pairwise (X3, X4|X1, X2) and
(X3, X5|X1, X2)

.
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5.4.3 Vine copula inference

In this section, we discuss the methods for statistical inference of a C-vine copula.

We focus on two widely used methods in the literatures (Czado et al., 2012). We

start by introducing the method that we will use later in our empirical analysis

called the sequential estimation (SE). For comparison we also discuss the second

method known as maximum likelihood estimation (MLE).

C-vine copula consists of of bivariate copulas in each tree. The bivariate copulas in

the first tree are unconditional bivariate copulas followed by conditional bivariate

copula with single conditioning variable in the second tree, conditional bivariate

copula with two conditioning variables in the third tree and so on. The number

of conditioning variable increases according to number of dimension. The cop-

ula parameters are estimated sequentially, with the parameters of unconditional

copulas in the first tree to be used for estimation of conditional copulas parame-

ters in second tree and these procedures continue until all copula parameters are

estimated.

Consider independent and identically distributed (i.i.d) vector ut := (u1,t, ...ud,t)
′

for sample size, t = 1, ..., T . In the first tree, the parameter θ1,n of unconditional

bivariate copula c1,n is estimated using pairwise (u1,t, un+1,t) with t = 1, ..., T for

n = 1, ..., d− 1. Having θ̂SE1,n as the estimated parameter for the first tree, then for

the second tree we estimate the parameter θ2,n of conditional bivariate copula with

single conditioning variable c2,n+2|1 for n = 1, ..., d − 2. Using h-function defined

in Section 5.3.3, we write

v̂2|1,t : = F (u2,t|u1,t; θ̂SE1,1 ),

= h(u2,t|u1,t; θ̂SE1,1 )
(5.39)

and

v̂n+2|1,t : = F (un+2,t|u1,t; θ̂SE1,n+1),

= h(un+2,t|u1,t; θ̂SE1,n+1)
(5.40)

where n = 1, ..., d−2. We use pairwise (v̂2|1,t, v̂n+2,|1,t) with t = 1, ..., T to estimate

the parameter of bivariate conditional copula in tree 2 denoted as θ̂SE2,n for n =

1, ..., d− 2.



Vine copula 88

For the third tree, we follow the same procedure as in the second tree to estimate

the parameter θ3,n of the conditional bivariate copula with 2 conditioning variables

c3,n+3|1,2 where n = 1, ..., d−3. We also use the following the transformed pairwise

variables v̂3|1,2,t and v̂n+3|1,2,t, t = 1, ..., T to estimate θ3,n. The transformed pairwise

are given by

v̂3|1,2,t : = F (v̂3|1,t|v̂2|1,t; θ̂SE2,1 ),

= h(v̂3|1,t|v̂2|1,t; θ̂SE2,1 )
(5.41)

v̂n+3|1,2,t : = F (v̂n+3|1,t|v2|1,t; θ̂SE2,n+1).

= h(v̂n+3|1,t|v̂2|1,t; θ̂SE2,n+1)
(5.42)

The estimation procedures explained earlier proceed sequentially until all parame-

ters for unconditional and conditional bivariate copulas in a C-Vine are estimated.

In summary, the general case to estimate the parameters of a C-vine θm,n where

n = 1, ..., d− 2 can be derived by the estimation of the following pairwise:

v̂n+1|1,...,n,t := F (v̂n+1|1,...,n−1,t|v̂n|1,....n−1,t; θ̂SE1,n), (5.43)

v̂n+m+1|1,...,n,t := h(v̂m+n+1|1,...,n−1,t|v̂m+1|1,...,m−1,t; θ̂
SE
n+1,m−1). (5.44)

We discussed earlier the sequential estimation procedures for bivariate uncondi-

tional and conditional copulas of a C-vine model. This estimation provides starting

values of parameters for numerical maximisation of the log-likelihood for a C-vine.

To complete discussion on inference and estimation of a C-vine model, we now

explain the MLE procedure.

Consider a random vector xm = (xm,1, ..., xm,T )
′

where m = 1, ..., d with sample

size T to be independent over time and uniformly distributed on [0, 1].

The log-likelihood of a C-vine introduced by Aas et al. (2009) can be written as
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d−1∑
n=1

d−n∑
m=1

T∑
t=1

log
[
cn,n+m|1,...,n−1

{
F (xn,t|x1,t, ..., xn−1,t), F (xn+m,t|x1,t, ..., xn−1,t)

}]
.

(5.45)

The conditional distributions, F (xn,t|x1,t, ..., xn−1,t) and F (xn+m,t|x1,t, ..., xn−1,t) in

Equation (5.45) are determined using Equation (5.14) and h-function in (5.16).

5.4.4 Copula selection

We consider the same copula families as in Chapter 4. However, the copula for each

pairwise loss ratio in every C-vine tree is selected based on Akaike Information

Criterion (AIC) proposed by Joe (1997). The AIC is defined as

AIC = −2l(xn,1, xn,2; θ̂) + 2p, (5.46)

where

l(xn,1, xn,2; θ̂) =
d∑

n=1

[
log c{(FXn,1(xn,1), FXn,2(xn,2);θ)}

]

=
d∑

n=1

[
log c(un,1, un,2;θ)

]

is the log-likelihood, p denotes the number of parameters θ. For a bivariate copula

with p = 1 indicates one parameter bivariate copula (θ = θ1) and p = 2 indicates

a bivariate copula with 2 parameters (θ = (θ1, θ2)
′
), which avoid over-fitting by

penalizing the log-likelihood. Based on this test, the copula with the lowest AIC

value is chosen.

The AIC for a C-Vine is given by

AIC = −2
d−1∑
n=1

d−n∑
m=1

T∑
t=1

log
[
cn,n+m|1,...,n−1

{
F (xn,t|x1,t, ..., xn−1,t), F (xn+m,t|x1,t, ..., xn−1,t)

}]
+2p,

(5.47)

where p denotes the number of bivariate copula parameters.
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An alternative to AIC is Bayesian Information Criterion (BIC) proposed by Schwarz

(1978). BIC has a stronger penalty term than the AIC and can be written as

BIC = −2l(xn,1, xn,2; θ̂) + log(d)p, (5.48)

We can see the similarity between AIC and BIC from the first term of Equation

(5.47) and (5.48) that both AIC and BIC use maximum likelihood. The second

term of these equations is the penalty term. It consists of the number of parameters

for both AIC and BIC and number of observations for only BIC. Therefore, BIC

depends on sample size and penalty for additional parameters is stronger. It is also

proved by Burnham and Anderson (2004) that AIC is practically superior to BIC.

Hans (2007) tests on copula fitting by considering both the upper and lower tail

dependence and concludes that AIC has the highest accuracy in most of the tests.

Hence, AIC is used in this study to determine the appropriate bivariate copula for

every pairwise loss ratios.

5.4.5 Simulation of a C-vine

We folllow the algorithm introduced by Aas et al. (2009) that provide procedure for

sampling a C-Vine copula in a simplified way, based on earlier algorithm discussed

in Bedford and Cooke (2001), Bedford and Cooke (2002) and Kurowicka and Cooke

(2007).

Algorithm 2:

1. Define the number of simulations N ∈ N.

2. Sample s1, ..., sN independent uniform observations on [0,1].

3. Set:

x1 = v1,1 = s1

x2 = F−1(s2|x1)
x3 = F−1(s3|x1, x2)
... = ...

xN = F−1(sN |x1, ..., xN−1)

4. Compute the conditional distribution functions, F (xj|x1, ..., xj−1) for sam-

pling (N + 1)th variable using h-function defined in Equation 5.16 and 5.14
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recursively. We obtain the F (xj|x1, ..., xj−1) for every j recursively using the

following

F (xi|x1, ..., xj−1) =
∂Cj,j−1|1,...,j−2(F (xj|x1, ..., xj−2), F (xj−1|x1, ..., xj−2)

∂F (x1|x2, ..., xj−1)
.

(5.49)

Example:

To illustrate example for Algorithm 2 above, consider the following steps:

1. For a 3-dimensional dataset, x1, x2, x3, we first sample 3 independent uniform

on [0,1], s1, s2, s3.

2. Then we set x1 = s1.

3. Next we have the first conditional distribution function with x1 as the first

conditional variable F (x2|x1) = h(x2, x1, θ11). This give us x2 = h−1(s2, x1, θ11).

4. F (x3|x1, x2) = h{h(x3, x1, θ12), h(x2, x1, θ21), θ21} and give us

x3 = h−1[h−1{s3, h(x2, x1, θ11), θ21}, x1, θ21]
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5.5 Empirical analysis on the UK general insur-

ance industry data

5.5.1 Analysis of the data

To investigate the real impact of capital requirement for insurance companies,

we require real data from insurance industry. In particular, we use the UK gen-

eral insurance incurred claims and written premiums. We select 5 major business

lines in the UK general insurance industry such as Motor, Property, Accident

& Health, Liability and Miscellenous insurance. Miscellenous insurance includes

other insurance business lines such as assistance, creditor, extended warranty, legal

expenses, mortgage indemnity, pet, other personal financial loss, fidelity and con-

tract guarantee, all ”bond” business, credit, suretyship, commercial contingency,

trade indemnity, special indemnity, licence business, foot and mouth and finally

rainfall (pluvius).

The type of these data are similar to the data used in Chapter 4. We are using data

on incurred claims. However, for premiums data, we use written premiums instead

of earned premiums due to a different reporting format used in the UK versus its

counterpart in Australia. In this chapter, we focus on practical insurance business

with reinsurance exposure. In other words, we use net data for both incurred claims

and written premiums to derive the loss ratios.

We also consider availability of the insurance data in the UK as one of our research

limitations. Historical data for net incurred claims is only available from 2001 to

2015 and limited to annual frequency. Therefore, the data used in this chapter

comprise of 15 observations from 2001 to 2015. These data are not publicly avail-

able and were purchased from the Association of British Insurers (ABI)1 with the

rights to use for our research.

Since our main objective in this chapter is to develop a new capital requirement

model for insurance companies in the UK, we derive the loss ratios using the

incurred claims and written premiums data as explained in Section 2.3.

Table 5.1 provides descriptive statistics of the loss ratios for each business line.

1ABI is an association established in 1985 made up of insurance companies in the UK. This
association collects extensive data from insurance companies covering all insurance business lines
in the UK.
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Motor Property Accident & Liability Miscellaneous Aggregate
Health

Mean 0.7999 0.5656 0.7064 0.7393 0.4199 0.6693
Standard deviation 0.0627 0.0779 0.1396 0.1037 0.0786 0.0372
Skewness 1.8617 1.3771 2.6628 0.1470 0.6708 0.6233
Excess kurtosis 1.9770 1.5825 6.7306 0.6450 -0.8842 -0.5654

Table 5.1: Summary statistics of Motor, Property, Accident & Health, Miscel-
laneous and Aggregate Loss ratio.

In this chapter, we start modelling the capital requirement by testing if the loss

ratios are stationary. As mentioned earlier, the data sourced from ABI are limited

to annual frequency. In other words, this type of data do not present seasonal

factor therefore does not affect all 5 business lines loss ratios. However, trend can

be seen in Accident & Health, Liability and Miscellaneous. We conclude that these

three loss ratios are non-stationary and require further time-series adjustments.

We eliminate the trend by a fitting linear regression model. (see Montgomery et al.

(2007) for details on time-series adjustments).

We further examine if the loss ratios present serial dependence. The data consist

of five different insurance business lines and we treat each business line as univari-

ate time series data. The plots for each loss ratio are given in Appendix A. We

test for serial dependence of each business line following procedures outlined in

Section 2.3.3. The test on Motor and Property business lines are based on origi-

nal observations while Accident & Health, Liability and Miscellaneous are based

on residuals from the respective linear regression model. We refer to Ljung-Box

test in Table 5.2 to confirm if the loss ratio exhibits serial dependence. The test

hypothesis is rejected if the p-value is less than 0.05. All business lines loss ratios

recorded p-values of greater than 0.05.

Motor Property Accident & Liability Miscellaneous
Health

Observations 0.2332 0.7120 - - -
Residuals - - 0.9976 0.6430 0.8925

Table 5.2: Ljung-Box test with p-values for all business lines. Observations on the
left column represent the original loss ratio data and residuals obtained from de-trended
time-series from the respective linear regression model.

From Table 5.3, we can see that Accident & Health, Liability and Miscellaneous

business line is modelled by linear regression with respective parameters for the

three business lines loss ratios. At 0.05 significant level, the linear regression models
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are statistically significant which provide low p-values of 0.0026, 0.0476 and 0.0045

for residuals of Accident & Health, Liability and Miscellaneous respectively. These

tests show fitting the linear regression models to the residuals of loss ratios for the

three business lines provide a satisfactory fit.

Business line Linear regression model p-value
Accident & Health LRaht=-5.1002+0.0026t+εah,t 0.0026
Liability LRlt = 2.2616 + 0.0011t+ εl,t 0.0476
Miscellaneous LRmit = −2.9873 + 0.0015t+ εmi,t 0.0045

Table 5.3: Linear regression models for Accident & Health, Liability and Mis-
cellaneous loss ratios. LRaht , LRlt , LRmit are the loss ratio for Accident &
Health, Liability and Miscellaneous respectively. The p-values are for the slope
parameter of the linear regression.

Then, following (A-D) test, Normal distribution is best fitted to the residuals of

the three business lines loss ratio. However, the remaining business lines loss ratios,

Motor and Property do not present any serial dependence and trend. The selection

of univariate distribution for these business lines is similar to family distribution

and method used in Section 4.4.2. We fit a Burr distribution to these loss ratios

following similar (A-D) test.

Business Line Distribution Parameters (s.e)
Motor Burr Shape 1=0.3870 (0.1921)

Shape 2= 47.8949 (17.4649)
Scale* = 0.2890 (0.0542)

Property Burr Shape 1=0.3133 (0.2011)
Shape 2 =28.9751 (12.6449)
Scale* = 0.1477 (0.2637)

Accident & Health (residual) Normal εah,t ∼ N(µ = 0, σ = 1.1731e−2)
Liability (residual) Normal εl,t ∼ N(µ = 0, σ = 7.7834e−3)
Miscellaneous (residual) Normal εmi,t ∼ N(µ = 0, σ = 6.3582e−3)

Table 5.4: Family of distributions selected for each business line loss ratios. The
parameter and corresponding standard errors estimates are listed for each business
line. ∗In the case of the Burr distribution the value listed in the table as being the scale
is in fact the estimate for the rate which is 1/scale.

5.5.2 The mixed C-vine tree structure

In building the C-vine tree structure to model the capital requirement for general

insurance companies in the UK, we follow the procedure explained in Section 5.4.2.
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At this point, we develop a mixed C-vine tree structure allowing for a mixture of

copula families. The copulas are determined based on AIC as discussed in Section

5.4.4. Recall that a C-vine tree structure consists of trees with a root node linked

to other nodes in each tree. Table 5.5 summarizes the sum of absolute value of

Kendall’s tau for each loss ratio and loss ratio pairs.

The first step to build mixed C-vine is to determine the root node for the first tree

based on the highest sum of absolute value of Kendall’s tau.

First tree
LRm LRp LRah LRl LRmi Sum

1 LRm 1.0000 -0.0667 -0.2952 -0.2381 -0.2381 1.8381
2 LRp -0.0667 1.0000 0.5048 -0.1238 -0.0095 1.7048
3 LRah -0.2952 0.5048 1.0000 -0.0476 0.2571 2.1048
4 LRl -0.2381 -0.1238 -0.0476 1.0000 0.3524 1.7619
5 LRmi -0.2381 -0.0095 0.2571 0.3524 1.0000 1.8571

Second tree
LRah, LRm LRah, LRp LRah, LRl LRah, LRmi Sum

1 LRah, LRm 1.0000 -0.1238 0.3333 -0.1238 1.5810
2 LRah, LRp -0.1238 1.0000 -0.0286 0.1238 1.2762
3 LRah, LRl 0.3333 -0.0286 1.0000 -0.2571 1.6190
4 LRah, LRmi -0.1238 0.1238 -0.2571 1.0000 1.5048

Third tree
LRah,LRl,LRm LRah,LRl,LRp LRah,LRl,LRmi Sum

1 LRah,LRl,LRm 1.0000 -0.3333 -0.0667 1.4000
2 LRah,LRl,LRp -0.3333 1.0000 0.2000 1.5333
3 LRah,LRl,LRmi -0.0667 0.2000 1.0000 1.2667

Table 5.5: Dependence structure estimated using empirical Kendall’s tau and the
corresponding sum of absolute value of Kendall’s taus on the right table denote as
Sum. The highest sum of each tree is highlighted in bold and chosen as the root note
for the first, second and third C-vine tree. LRm, LRp, LRah, LRl, LRmi represent loss
ratio for Motor, Property, Accident & Health, Liability and Miscellaneous respectively.

As reported in Table 5.5, Accident & Health has the highest sum of absolute

value of Kendall’s tau of 2.1048 and therefore is selected as the root node for

first tree. Then, Accident & Health is linked to the remaining nodes as can be

visualised from top left panel of Figure 5.6. We use copula or specifically bivariate

copula (represent by edges in Figure 5.6.) to model the dependency between the

root node and other nodes. The selection of bivariate copula is based on AIC test

explained in Section 5.4.4. Pairwise (Accident & Health, Motor) presents no upper

and lower tail dependence and suitable for Frank copula. This selection is also

confirmed by the selection criteria, AIC which provides the lowest test value. With
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strong non-parametric lower tail dependence of 0.73, Clayton copula is selected for

pairwise (Accident & Health, Property). The best copula for pairwise (Accident

& Health, Liability) is Gumbel while Survival Clayton for pairwise (Accident &

Health, Miscellaneous). The copulas selected and its estimated parameters for each

tree is presented in Table 5.6.

Pairwise Copula θ̂ (s.e.) τ λu λl
First tree (No conditional variable)

(LRah, LRm) Frank -3.44 (1.79) -0.34 - -
(LRah, LRp) Clayton 2.18 (1.51) 0.52 - 0.73
(LRah, LRl) Gumbel 1.13 (0.59) 0.12 0.16 -
(LRah, LRmi) Survival Clayton 1.33 (0.87) 0.40 0.59 -

Second tree (One conditional variable)
(LRl, LRm|LRah) Frank -2.66 (1.52) 0.28 - -
(LRl, LRp|LRah) Frank -1.28 (1.41) -0.14 - -
(LRl, LRmi|LRah) Gumbel 1.58 (0.88) 0.37 0.45 -

Third tree (Two conditional variables)
(LRp, LRm|LRah, LRl) Clayton 0.22 (0.49) 0.10 - 0.04
(LRp, LRmi|LRah, LRl) Frank -2.12 (1.55 ) -0.23 - -

Forth tree (Three conditional variables)
(LRm, LRmi|LRah, LRl, LRp) Gumbel 1.16 (0.29) 0.13 0.18 -

Table 5.6: C-vine copula and the estimated parameters θ̂ with the correspond-
ing standard error in parentheses. τ is the value of estimated Kendall’s tau and
λu and λl are the upper and lower copula tail dependence respectively. LRm,
LRp, LRah, LRl, LRmi represent loss ratio for Motor, Property, Accident &
Health, Liability and Miscellaneous respectively.

The root node for the second tree is more complicated and involves one condi-

tional variable. To facilitate the process, root node is determined using estimated

bivariate copula parameter chosen in the first tree and transformed variables using

h-function explained in Section 5.3.3. We also discuss earlier in Equation (5.39),

(5.40), (5.41) and (5.42) of Section 5.4.3 procedures to transform the loss ratio.

Referring to the second tree of Table 5.5 , pairwise (Accident & Health, Liabil-

ity) has the highest sum of absolute value of Kendall’s tau and selected as the

root node. Given Accident & Health as the conditional variable, Frank copula is

selected to model the dependence between pairwise (Liability, Motor) and (Lia-

bility, Property). For simplification, these pairwise notation can also be presented

as (Liability, Motor | Accident & Health) and (Liability, Property | Accident &

Health) respectively. Also, given Accident & Health as the conditional variable,

pairwise (Liability, Miscellaneous) is best modelled by Gumbel copula which also

exhibits upper tail dependence.
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We proceed sequentially following the same procedures to determine the root node

for third tree. In the third tree, given Accident & Health and Liability as the two

conditional variables, the pairwise (Property, Motor) is best modelled by Clayton

copula while pairwise (Property, Miscellaneous) is best modelled by Frank copula.

The forth tree is the final tree leaving only two pairwise with one edge. Therefore

the procedures stop at the third tree. Pairwise in the forth tree consist of three

conditional variables and Gumbel copula is selected as the best copula to model

the dependence between the pairwise.

The C-vine model can be presented in graphical form. Figure 5.6 illustrates four

different structures of a C-vine model. Each structure is represented by a tree of

different level following bottom-up approach. Tree 1 is the bottom level while tree

4 is the top level. The boxes contain numbers to represent the variables and nodes.

Each node is linked to other node (pairwise) by an edge and represent the bivariate

copula for every pairwise.

Figure 5.6: First to forth tree of C-vine model. Node 1,2,3,4 and 5 represent
the loss ratio Motor, Property, Accident & Health, Liability and Miscellenous
respectively. The nodes are connected by edge with corresponding copula. F,
C, SC, and G is the bivariate copula for Frank, Clayton, Survival Clayton, and
Gumbel copula respectively.
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5.5.3 Models comparison

We test the robustness of the mixture of C-vine copula model constructed in the

previous sections. To put things into perspective, we include additional models

consisting of C-vine Gaussian copula and C-vine t-copula. Unlike the mixture of

C-vine copula model, the C-vine Gaussian copula model and C-vine t-copula model

are constructed with the same copula in all C-vine trees. Table 5.7 summarizes

the models used to investigate the performance of all models.

Model Copula Selection criteria Tail dependence
Mixed C-vine Mixed Sequential estimation λL and λU
C-vine Gaussian Gaussian Sequential estimation No tail dependence
C-vine t-copula t Sequential estimation λL = λU

Table 5.7: Summary of three possible models to determine the capital require-
ment for insurance companies. The possible underlying copula in Mixed copula
includes Gaussian copula, t-copula, Clayton copula, Gumbel copula and Frank
copula. The selection of the copula is based on AIC. λL and λU represent the
upper tail and lower tail dependence respectively.

5.5.4 Estimation of risks

At this point, we simulate new random observations from the aggregate loss ratios

using c-vine model developed in the previous sections and estimate the VaR and

TVaR to determine the level of risk in an insurance company. We follow Algorithm

2 for simulation procedures described in Section 5.4.5. We include VaR estimates

as a comparison to TVaR which is determined by the empirical quantile of the

new simulate random observations. We use parametric bootstrap to estimate both

VaR and TVaR at confidence levels of 90%, 95%, and 99%.

The VaR and TVaR estimates from the simulation of the aggregate risk are re-

ported in Table 5.8. The results provide evidence of the importance of dependence

structure and proper practical model to determine the capital requirement. Specif-

cally, in Table 5.8, we observe that C-vine Gaussian copula provides the lowest

value both in VaR and TVaR. However, Embrechts et al. (2003) argues the rele-

vancy of Gaussian copula as a symmetrical copula to model dependence structure

of heavy tailed distribution especially insurance loss ratios. Further, the remaining

copula models, Mixed C-vine and C-vine t-copula provide non-significant differ-

ence.



Vine copula 99

Mixed C-vine C-vine Gaussian copula C-vine t-copula
90% VaR 0.5059 0.5021 0.5033
95% VaR 0.5248 0.5169 0.5217
99% VaR 0.5631 0.5565 0.5688
90% TVaR 0.5321 0.5258 0.5318
95% TVaR 0.5498 0.5430 0.5525
99% TVaR 0.5913 0.5868 0.6048

Table 5.8: VaR and TVaR estimates each at 90%, 95% and 99% confidence
levels.

To further investigate C-vine models discussed earlier, we perform comparison

based on AIC criterion. The results are presented in Table 5.9. We observe that

the smallest AIC is recorded by mixed C-vine copula although the highest log-

likelihood is recorded by C-vine t-copula. Clearly, based on these results, mixed

C-vine copula is preferred over other models. It is also important to note that, C-

vine Gaussian copula proves to be a better option than C-vine t-copula to model

the dependence structure for insurance risks. This result is counter-intuitive with

the fact that Gaussian copula is a symmetrical copula and does not present any

tail dependence while t-copula has the ability to model both lower and upper tail

dependence. However, this is justifiable by the following: as discussed in Section

5.5.1, the original observations of three business lines (Accident & health, Liability,

and Miscellaneous) present trend component of time-series analysis. After filtering

these data by first differencing, the residuals are best fitted by Normal distribution

and consequently changed the best fitted bivariate copula for the pairwise that

present Accident & Health, Liability and Miscellaneous. In other words, filtering

process mentioned earlier caused the changes in the dependence structures of these

three business lines. Consequently, we observed lower AIC criterion of -4.91 for C-

vine Gaussian copula versus 5.51 recorded by C-vine t-copula.

Mixed C-vine C-vine Gaussian copula C-vine t-copula
AIC -10.71 -4.91 5.51
Loglikelihood 15.35 12.45 17.25

Table 5.9: AIC and Loglikelihood values for Mixed C-vine, C-vine Gaussian
copula and C-vine t-copula.
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5.6 Concluding remarks

In this chapter, we introduce the theoretical foundation for vine copula. This

includes the assumptions, statistical inference and method to build a C-vine copula

model. C-vine copula is a type of vine copula and with bivariate copulas as the

main building block a similar concept presented in Chapter 4. Bivariate copulas are

selected based on AIC criterion from the list of copulas discussed in the previous

sections to model the dependence structures of all pairwise. It is also important

to note that C-vine copula is significantly different from Hierarchical aggregation

model in terms of the type of copula used. In a C-vine copula, both conditional

and unconditional copulas are used to build the tree structures.

To build a C-vine copula, we implement sequential estimation procedures where

the first root node and copula parameter in the first tree are used to determine the

second tree structure. The process proceed sequentially until all copula parameters

and trees structures are estimated.

The choice of copulas used to model the dependence structures of insurance busi-

ness play the central role to determine the capital requirement of an insurance

company. The risk estimates determine by VaR and TVaR are highly influenced

by types of copula used. For example, in this study, C-vine Gaussian copula pro-

vides the lowest risk estimates among other C-vine models. However, this model

is not the best copula as Gaussian copula is a symmetrical copula and does not

suitable to model dependence structure of insurance risks. We perform comparison

study based on AIC criterion proposed by Joe (1997) to analyse the robustness

of C-vine models with different underlying copula. A model constructed by mixed

C-vine copula satisfies the test and selected as the best candidate to determine

the capital requirement for insurance companies.



Chapter 6

Conclusions and future work

6.1 Conclusion

In this PhD thesis, we show that modelling multivariate distribution of insurance

risks using copulas is practically useful for insurance companies to estimate the

total risk exposure. In this context, insurance risks are determined by claims per

unit of premium paid by policyholders and represented by loss ratios. More impor-

tantly, copula can be used to aggregate different marginal of insurance business

line losses with any possible dependence structure.

From risk management perspective, it is important to estimate the insurance busi-

ness losses. In particular, Chapter 2 introduces risk measures and the properties

for a coherent risk measure that is important element to get a good estimate of in-

surance risk. We also discuss two possible methods for computing risk measures. In

addition, we define loss ratios and discuss its application to multivariate modelling.

In Chapter 3, we present the fundamentals of copulas and its statistical properties.

We further define dependence measures and provide a simple motivating example

to understand the importance of copulas in measuring dependence structure. We

conclude this chapter by giving an overview of Graph Theory which is an important

concept that we used to build our hierarchical risk aggregation and vine copula

models in Chapter 4 and 5 respectively.

The hierarchical risk aggregation model is introduced in Chapter 4 to address the

complex multivariate insurance losses distributions and dependence structure of

101
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different insurance business lines. Based on this model, a multivariate distribu-

tion is decomposed into bivariate distribution on each aggregation level to avoid

complex numerical computation. In building risk aggregation model, we consider

loss of each insurance business line as a node to form a tree structure based on

Graph Theory. Also, guided by respective tail dependence, insurance business lines

losses are aggregated using the best copulas determined by the highest p-value of

goodness-of-fit tests from Genest et al. (2009). As already mentioned in Chapter

1, insurance companies need to determine the level of capital requirement. We

propose in Chapter 4 to use hierarchical risk aggregation model for aggregating

insurance risk and determine the capital requirement using appropriate risk mea-

sures.

On the other hand, in Chapter 4, we also provide a comprehensive analysis on

the effect of reinsurance to the insurance company’s total risk. Theoretically, in-

surance companies share premiums collected from its policyholders to reinsurance

companies. In returns, reinsurance companies absorb part of insurance companies

underwriting risks. More importantly, reduce insurance companies total risks. We

investigate the risk reduction effect in the tail dependence of aggregated gross and

net loss ratios. In this regard, gross loss ratios are used to determine insurance risk

without considering the reinsurance business, while the net loss ratios are used to

determine insurance risk taking into account the reinsurance business. Risk reduc-

tion effect in the tail or diversification effect can be observed once all loss ratios

are aggregated. Reinsurance can prevent the reduction of risk if risk is managed by

changing the proportion of premiums between business lines. However, risk reduc-

tion is more prominent if risk is managed by focusing on the dependence structure

between the business lines using the hierarchical risk aggregation model.

We extend the literature on risk aggregation in Chapter 5 by introducing pair-

copula construction or also known as vine copula with special focus on developing

a new capital requirement model for insurance companies. Even though the main

building block is still using bivariate distribution as used in hierarchical aggrega-

tion model in Chapter 4, however, we incorporate both unconditional and con-

ditional copulas to construct vine copula. Chapter 5 starts with reviews on past

literatures on vine copula, followed by comprehensive overview of vine copula con-

cepts. This includes assumptions on its conditional copulas, statistical inferences

as well as copula selection and simulation of a C-vine. In this chapter, we use

real data sourced from the Association of British Insurers (ABI) to investigate the

dependence structure of multiple insurance business lines risks. In particular, we
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model the dependence structure of insurance business line losses using bivariate

copula and aggregate the risks using C-vine copula. Further, we select the best

C-vine copula models among mixed C-vine copula, C-vine Gaussian copula and

C-vine t-copula using AIC criterion to represent the capital requirement model for

insurance companies in the UK.

In general, our results show that mixed copulas models, used in hierarchical aggre-

gation and vine copulas method are the key to adequately model the dependence

structure of different insurance business lines. In particular, insurance business

risks represented by loss ratios are suitable to model by mixture of copulas from

the Archimedean copula families. This includes Clayton, Gumbel and Frank cop-

ula. The mixed models can incorporate variety of tail dependence of the insurance

losses and consequently avoid underestimation or overestimation of capital re-

quirement. Hence, these models are suitable for insurance companies to legally

remain solvent. In addition, we show that the risk of aggregated losses can be

successfully reduced by modelling the dependence structure of multiple insurance

business lines risks. In this regard, we assume that reinsurance is present as part

of insurance companies strategy to reduce their business risks. However, it is im-

portant to highlight that, reinsurance might not benefit an insurance company if

the risk management strategy is by changing premium allocation between business

lines. In other words, based on this strategy, reinsurance might mitigate the risk

reduction of risk of the aggregate insurance losses.

6.2 Limitations and future research

We consider data availability as the main limitation for this study. Diers et al.

(2012) highlight that the availability of insurance data are very limited, unlike data

in finance which is publicly available especially the stocks market data. Data for

the UK insurance industry are not publicly available and require subscription. If a

research is funded by a research grant, this data could be purchased and extended

for longer time series. However, data providers are not many and historical data

are very limited which are limiting capabilities for real data analysis. Real data

analysis is very important to investigate the practical impact from the research.

It is also important to model insurance risk with appropriate data to reflect and

observe real implication to insurance company. To this end, the analysis in this
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study use loss ratio as the proxy to insurance risk. However, we may also consider

other factors to represent insurance risks such as ruin probability.

In this thesis, we show that the dependence structure of multiple insurance business

lines in Australia and the UK are modelled by hierarchical risk aggregation and

vine copulas respectively. However, we do not intend to make comparison between

these models. This will be addressed in our future work.

While we do not estimate the level of capital requirement for insurance compa-

nies, our models can be applied with respective insurance company loss data for

insurance companies to estimate the level of capital requirement. The capital re-

quirement of an insurance company is different from one company to another and

highly influenced by the total premium size of the insurance company. Generally,

a big size insurance company requires higher capital requirement than a smaller

size insurance company.



Appendix A

Figure A.1, A.2, A.3, A.4 and A.5 are the plots of the five business

lines loss ratios in Chapter 5.

Figure A.1: Plot of Motor loss ratio.
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Figure A.2: Plot of Property loss ratio.

Figure A.3: Plot of Accident & Health loss ratio.
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Figure A.4: Plot of Liability loss ratio.

Figure A.5: Plot of Miscellaneous loss ratio.
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