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Abstract

The BEK family of flows have many important practical applications such as centrifugal

pumps, steam turbines, turbo-machinery and rotor-stator devices. The Bödewadt, Ekman

and von Kármán flows are particular cases within this family. The convective instability of

the BEK family of rotating boundary-layer flows has been considered for generalised New-

tonian fluids, power-law and Carreau fluids. A linear stability analysis is conducted using a

Chebyshev collocation method in order to investigate the effect of shear-thinning and shear-

thickening fluids for generalised Newtonian fluids on the convective Type I (inviscid cross-

flow) and Type II (viscous streamline curvature) modes of instability. The results reveal that

shear-thinning power-law fluids have a universal stabilising effect across the entire BEK fam-

ily of flows. However, the convective instability characteristics for the shear-thinning and

shear-thickening Carreau fluids are affected by the value of the relaxation parameter k. The

results reveal that Shear-thinning Carreau fluids have a small destabilising effect, while shear

-thickening fluids have a slight stabilising effect on the Type I and Type II mode for the BEK

family of flows when k = 100. On the other hand, shear-thinning and shear-thickening Carreau

fluids are found to have stabilising and destabilising effect, respectively for optimal relaxation

value ko. The results are presented in terms of neutral curves and growth rates. Further-

more, an energy analysis is presented to gain insight into the underlying physical mechanisms

behind the stabilising effects of generalized Newtonian fluids. In conclusion, the use of shear-

thinning power-law and Carreau fluids with optimal value ko can be recommended to reduce

skin-friction drag in enclosed rotor-stator devices for the entire BEK family of flows.
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Chapter 1

Introduction

1.1 Literature review

There has been significant interest in the stability and transition from laminar to turbulence

of the three-dimensional boundary-layer flow due to the rotating-disk (that is the von Kármán

flow) in recent decades. von Kármán (1921) was the first to investigate the three-dimensional

problem theoretically. He considered the cylindrical Navier-Stokes equations for steady mean

flow of an incompressible fluid induced by the rotation of an infinite plane with uniform an-

gular velocity. These governing Navier-Stokes equations are transformed from partial differ-

ential equations to a set of ordinary differential equations using similarity variables that are

referred to as the von Kármán similarity variables. von Kármán (1921) solved the equations

numerically in order to obtain the solutions of steady mean velocity profiles of the flow. The

problem was then verified by Cochran (1934) to obtain more accuracy for the results of mean

velocity flow. Batchelor (1951) showed that the von Kármán flow is one particular case of a

family of rotating flows that arises when the lower disk rotates under a stationary fluid. The

other particular cases are the Ekman (1905) and Böedewadt (1940) flows.

The seminal study of the stability properties of the Newtonian rotating-disk boundary-layer

was performed theoretically and experimentally by Gregory et al. (1955), and there the first
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theoretical stability analysis are presented. However, Smith (1947) and Gray (1952) gave the

first experimental observation of stationary cross-flow vortices for the flows of rotating-disk

and flows over a swept wing, respectively. Gregory et al. (1955) used a china-clay technique

and observed approximately 30 vortices on the disk surface in order to study the transition

from laminar to turbulent flow where the angle between the normal of vortices and outward

drawn radius was 14 degrees. It is found that cross-flow vortices appear at the Reynolds num-

ber of around R ≈ 430, whilst R ≈ 530 is reported in this experiment to initiate the transition

to turbulence. Stuart conducted the theoretical part of the study by applying “a linear stability

analysis” for high Reynolds numbers. Broad agreement between the theoretical and experi-

mental parts was found for the angle of the vortices. However, he predicts that the number of

stationary vortices was approximately 4 times the experimental observation, this is expected

to be due to the neglect of viscous effects in the theoretical study. Work continues to this day

in an attempt to clarify the full stability mechanics at play in this deceptively simple boundary

layer.

Figure 1.1 shows the three main regions of the flow: laminar flow, spiral vortices and

fully turbulent flow. This visualisation presents the spiral vortices as a transition process from

laminar and turbulent flow caused by the appearance of an inviscid cross-flow instability or

the mode that is referred to as the Type I mode. The occurrence of this mode is due to the

inflectional point in the laminar radial velocity profile, under the well know Rayleigh inflection

point rule.

The majority of this thesis is concerned with the stability characteristics for the family of

boundary-layer flows attributed to a differential rotation rate between a lower disk and upper

fluid in rigid-body rotation. Particular arrangements of this dual rotating system include the

von Kármán (1921), Ekman (1905) and Böedewadt (1940) boundary-layer flows. The von

Kármán layer arises when the lower disk rotates under a stationary fluid, the Ekman layer

occurs when the disk and fluid rotate with approximately the same angular velocity, and the
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Figure 1.1: Experimental visualisation of the flow over a rotating-disk, taken from Kohama
(1984).

Bödewadt layer occurs when the fluid rotates above a stationary disk. There is a continuum of

intermediate cases between these standard configurations and collectively these form a wide

class of boundary-layer flows is known to as “the BEK family”.

The flows of BEK family for rotating-disk problem have many important practical applic-

ations such as centrifugal pumps, gas and steam turbines, turbo-machinery and rotor-stator

devices and other machines related to rotating fluids. The rotating-disk in the von Kármán

flow acts as a centrifugal fan, where the fluid at the disk surface is pulled circumferentially

into azimuthal direction around the disk due to viscous stresses. Nevertheless, the fluid is

thrown radially outwards caused by the centrifugal forces and the radial pressure gradient.

Therefore, the radial and azimuthal components U and V , respectively play an important role

to produce the flow in a spiral pattern, while the axial velocity W leads to replace fluid thrown

away at the edge of the disk by an axial downward flow into all the disk surface as shown in

Figure 1.2.

With regards to the Ekman flow, some investigations in meteorology and oceanography
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Figure 1.2: A sketch of the velocity profiles for the von Kármán boundary-layer on a rotating-
disk, taken from Imayama et al. (2014).

use the Ekman boundary-layer. For example, the interaction of the oceans and atmosphere,

hurricanes and typhoons. Ekman (1905) was the first to describe this flow and make the link

to geophysical flows. He revealed that the earth’s rotation affected the way that the currents of

the ocean responded to the force of the wind. The effects of the radial pressure, Coriolis and

viscous forces are balanced in the Ekman flow. The first investigation to study the stability

analysis for the Ekman flow was performed experimentally by Faller (1963). A large cyl-

indrical rotating tank was used to produce the Ekman layer and investigate the inviscid Type I

instability mode noticed at Reynolds number of approximately R ≈ 125. The Type I mode was

also detected analytically by the study of Faller and Kaylor (1966) for Reynolds number of

about R ≈ 118. Furthermore, a viscous Type II instability mode attributed to the Coriolis force

and streamline curvature effects was found to occur for R ≈ 55. Further investigations of Type

I and II modes for Ekman flow are conducted experimentally by Tatro and Mollo-Christensen

(1967) and theoretically by Lilly (1966), Faller (1991) and Lingwood (1997).

The Bödewadt flow has a number of applications similar to the Ekman flow in the area of



1.1 Literature review 5

meteorology and oceanography. Böedewadt (1940) was the first to obtain the solution of the

steady mean flow profiles for a fluid rotates above a flat plate. The first experimental study

of the Bödewadt flow was accomplished by Savaş (1987) who found that the structure of the

laminar flow was in the form of circular waves with a critical Reynolds number for instability

at R = 25. Further experimental study was performed by Lingwood and Alfredsson (2000)

on the stability of the Bödewadt flow arising on the stator of an enclosed rotor-stator system.

In general, the critical Reynolds number for Bödewadt flow is extremely small compared to

critical values for the von Kármán and Ekman flows.

Malik (1986) presented an inclusive numerical study of the neutral stability curves for

convective stationary disturbances using the sixth-order system of linear stability perturbation

equations by utilising “a parallel-flow approximation”. Malik identified the two distinct modes

mentioned in the previous literature: inviscid Type I and viscous Type II instability modes that

explain the numerical results as well as the regions of instability. The Type I mode was shown

to be the dominant with a critical Reynolds number of 285.36, compared to 440.88 for the

Type II mode. In the same year, Hall (1986) approached the problem rigorously and presented

a high Reynolds number linear asymptotic analysis. Complete agreement between Hall and

Malik’s studies is found in the appropriate parameter limit.

Following these important milestones the seemingly simple system has continued to at-

tract attention and it remains under active investigation to this day. The Type III mode that

propagating energy towards the centre of the disk was discovered by Mack (1985); this mode

was not observed in the previous stability investigations due to it being spatially damped. The

Type III mode was investigated for the von Kármán flow by the study of Lingwood (1995).

Lingwood discovered that the rotating-disk boundary-layer is locally absolutely unstable and

suggested that the turbulent transition may be caused by absolute instability. Lingwood (1995)

showed that the absolute instability in the rotating-disk flow is caused by the coalescence of

the Type I and Type III for a complex frequency with positive imaginary part and non-zero real
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Figure 1.3: Space-time sketches of (i) stable, (ii) convectively unstable and (iii) absolutely
unstable disturbances.

part by using “the Briggs-Bers method” (Bers, 1975; Briggs, 1964). This coalescence leads to

pinch-points that exist within the region of the absolute instability. Lingwood (1995) reported

the critical Reynolds number for the onset of absolute instability to be R = 510 which shows

good agreement with the experimental value of Lingwood (1996) of R = 513.

A flow is absolutely unstable when unbounded localised disturbances for large time and

propagate both upstream and downstream. However, in the case of convective unstable, the

disturbances are swept away from the location where it generated either downstream or up-

stream. Figure 1.3 illustrates the concepts of (i) stable, (ii) convectively unstable and (iii)

absolutely unstable. The two edges of the disturbance are propagating away from the source

in the same direction for the convectively unstable, while the edges are propagating in the

opposite direction toward infinity for the absolutely unstable.

Davies and Carpenter (2003) studied the global behaviour of the absolute instability for the

rotating-disk problem. They showed by using direct numerical simulations of the linearised
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governing equations that the local absolute instability does not produce a linear global instabil-

ity. Furthermore, Davies and Carpenter (2003) found that the convective behaviour dominates

at all Reynolds numbers. The interested reader is referred to the literature for full informa-

tion on the latest developments concerning the transition to turbulence via the generation of a

non-linear global mode (Appelquist et al., 2015; Imayama et al., 2014; Pier, 2003).

The study of the wider BEK family of flows has attracted the attention of many researchers

in the last decades. The work of Lingwood (1997) is an important study that presented the local

convective and absolute instability analyses for the BEK family of flows. Lingwood revealed

that all flows of the BEK family are absolutely unstable. The critical Reynolds numbers of

Type I mode for convective instability are reported for the von Kármán, Ekman and Bödewadt

flow to be R = 290.1, 116.3, and 27.4, respectively. More recently, Lingwood and Garrett

(2011) discussed the use of mass flux through the lower disk as a potential flow-control mech-

anism. Various experimental studies concerning the stability, transition and control of these

types of flows has been an area of more recent active research (Imayama et al., 2014, 2016;

Lingwood, 1996).

As explained below, the intention here is to generalise the original study by Lingwood

(1997) of BEK family of flows to incorporate the effects of non-Newtonian fluids. The motiv-

ation in this thesis is to explore the potential for using such fluids to optimise the performance

of rotor-stator systems in engineering applications by reducing skin-friction drag by maxim-

ising the region of laminar flow (that is, delaying the onset of instability).

The mechanisms of skin-friction drag reduction are interested by numerous researchers for

the rotating-disk boundary-layer. Cooper and Carpenter (1997) presented the effects of wall

compliance on the stability of the von Kármán flow theoretically. They revealed that there

is a stabilizing effect the inviscid Type I mode, while the viscous Type II mode is found to

be destabilizing. Recently, Cooper et al. (2015) studied the effects of anisotropic (concent-

ric grooves and radial grooves) and isotropic roughness on boundary-layer flows applying a
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partial-slip approach in order to delay the transition from laminar to turbulence. The effect

of surface roughness leads to a stabilisation of the Type I and Type II mode with the excep-

tion of a disk with concentric grooves that has a strongly destabilizing effect on the Type II

mode. The results of Cooper et al. (2015) are confirmed by the study of Garrett et al. (2016)

using two different modelling approaches, MW (Miklavčič and Wang, 2004) and YHP (Yoon

et al., 2007) models. More recently, Alveroglu et al. (2016) investigated the effect of both

anisotropic and isotropic roughness on the BEK family flows.

Further research interests have related to the stability and the transition of the boundary-

layer flow over rotating sphere and cones. Garrett and Peake (2002) showed that the cross-flow

instability mode for the rotating sphere boundary-layer dominates below θ = 66°, while the

stream curvature mode is dominated above this latitude. The stability of the rotating cone

boundary-layer have been investigated by Garrett et al. (2009). They reveal a convenient

agreement with experimental results for half-angle ψ > 40°. An alternative formulation that

focuses on centrifugal effects has been considered by Hussain et al. (2014) to study the stability

of the rotating cone for half-angle ψ < 40°.

With regards to prior studies of the non-Newtonian boundary-layer flow over a rotating-

disk, Mitschka (1964) was the first to extend the von Kármán similarity solution to incorporate

fluids that adhere to a power-law governing viscosity relationship. One year later, Mitschka

and Ulbrecht (1965) obtained steady mean flow solutions for both shear-thickening and shear-

thinning fluids. That study was later verified by Andersson et al. (2001) in order to test the

reliability of their numerical solutions. However, further to this, Denier and Hewitt (2004)

readdressed the problem showing that asymptotic matching considerations need to be taken

into account in order to able to accurately describe the flow of shear-thinning power-law fluids.

In the shear-thickening regime it transpires that the boundary-layer solutions are complicated

by a region of zero viscosity away from the wall. For these reasons, in the study of power-

law fluids, we will restrict our attention to moderately shear-thinning fluids only. Ming et al.
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(2011) extended the study of Andersson et al. (2001) in order to investigate the heat transfer

supposed the thermal conductivity follows the same function as the power-law viscosity of

fluid. For full details regarding the asymptotic structure of the solutions the interested reader

is refereed to Denier and Hewitt (2004).

Much more recently, Griffiths et al. (2014b) considered a rigorous asymptotic stability

analysis of the shear-thinning boundary-layer flow over a rotating-disk. This work was then

extended by the same authors Griffiths et al. (2014a) to compute the neutral curves of convect-

ive instability (working under the boundary-layer approximation) and complete agreement

was found with their prior asymptotic analysis. These two papers can be considered as the

non-Newtonian generalisations of Hall (1986) and Malik (1986), respectively.

The Carreau fluid has been given less attention in the rotating-disk problem comparing

to other rheological models of generalized Newtonian fluids. Carreau (1972) was the first

to describe this type of fluid. Griffiths (2015) later extends the power-law studies to include

the Bingham (1916) and Carreau (1972) models of non-Newtonian viscosity. He finds that

a generalisation of the von Kármán similarity solution is applicable for a variety of different

inelastic and viscoplastic non-Newtonian models. The convective instability analysis for Carr-

eau model for shear-thinning and shear-thickening fluids was discussed in Griffiths (2016) for

Kármán flow.

1.2 Contributions and Outline of thesis

The main aim of this thesis is to generalize the non-Newtonian study of Griffiths (2016) to the

entire BEK family of rotating boundary-layer flows, as considered by Lingwood (1997) in the

Newtonian case. A Chebyshev polynomial method is used after applying the linear convective

instability to consider the effects of power-law and Carreau fluids on the Type I and Type

II modes. In Chapter 2 an overview of the generalized Newtonian fluids is presented as a

special case of non-Newtonian fluids. Furthermore, the governing boundary-layer equations
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are considered for this problem by using boundary-layer approximation. These equations are

solved to present the steady mean flow profiles of the BEK family for power-law and Carreau

fluids in Chapter 3. The convective instabilities for the BEK family of flows of power-law

and Carreau fluids are presented in Chapters 4 and 5, respectively. In these chapters, the

linear perturbation equations are formulated by applying parallel-flow approximation and then

solved them using Chebyshev collocation method in order to present the convective neutral

curves. These curves are confirmed by presenting the growth rates and conducting an energy

balance analysis. Finally, the conclusions of the findings are discussed in Chapter 6 including

the comparison between the two generalised Newtonian fluid models. A view towards future

work for the study is also presented.

The work related to power-law fluids has been published and appears in the literature as:

Abdulameer, M., Griffiths, P., Alveroğlu, B., Garrett, S. J., 2016. On the stability of the

BEK family of rotating boundary-layer flows for power-law fluids. Journal of Non-Newtonian

Fluid Mechanics, 236, 63–72.



Chapter 2

Formulation of the problem

In this chapter, the governing equations for non-Newtonian fluids over a rotating-disk have

been derived in order to describe the boundary-layer flow and its stability properties. The

behaviour of the fluid flow is affected by several physical properties, for instance, the viscosity

which is the most important property for the nature of the fluid. There are many variables that

determine the viscosity such as shear rate, temperature and pressure (Barnes et al., 1989).

The change of the viscosity with the shear rate of the flow is represented by non-Newtonian

fluids (generalised Newtonian fluids) in §2.1. The governing boundary-layer equations for

generalized Newtonian fluids are derived in §2.2.

2.1 Generalised Newtonian fluids

In many industrial applications and flow problems such as lubrication and polymer processing,

it was found that the shear rate dependence of fluid viscosity has several useful empiricisms

summarized by Bird et al. (1977) as the generalised Newtonian fluids. The flow of a New-

tonian fluid can be considered as a special case of the generalised Newtonian fluids. The

constitutive relationship for a Newtonian fluid in a simple flow with velocity uuu = (u(y) ,0,0)

is defined by
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τ = µn
du
dy

, (2.1)

where τ is the shear stress tensor and µn is the constant viscosity.

The viscosity of the Newtonian fluid is constant at all shear rates, hence the shear stress is

a linear function of the shear rate du/dy. However, the viscosity of a generalised Newtonian

fluids is not constant and can be described as a function of the shear rate.

The fundamental relationship (2.1) can be extended for generalised Newtonian fluids to

any arbitrary flow field in an arbitrary coordinate system uuu = uuu(x,y,z, t)as follows

τττ = µγ̇̇γ̇γ, (2.2)

where γ̇̇γ̇γ =∇u∇u∇u+(∇u∇u∇u)T is the rate-of-strain tensor and µ is a scalar viscosity function depend-

ing on the invariants of the tensor γ̇̇γ̇γ . In other words, the generalised Newtonian viscosity can

be written as µ = µ (γ̇). The invariants of the tensor γ̇̇γ̇γ are independent under a rotation of the

coordinate system. Three invariants are defined in Bird et al. (1977) by selecting the following

tensor component combinations:

I = trγ̇̇γ̇γ = ∑
i

γ̇ii, (2.3a)

II = trγ̇̇γ̇γ2 = ∑
i

∑
j

γ̇i jγ̇ ji = ∑
i

∑
j

γ̇
2
i j, (2.3b)

III = trγ̇̇γ̇γ3 = ∑
i

∑
j
∑
k

γ̇i jγ̇ jkγ̇ki. (2.3c)

It is clear to show that the first invariant I = 2(∇.u∇.u∇.u), and hence I, is identically zero for

incompressible fluids. The third invariant III vanishes to zero for shearing flow such as tube

flow, axial annular flow and the flow between rotating disks. Therefore, the first and third

invariants do not play a role in these flows (Bird et al., 1977). Thus, µ depends only on the

second invariant which can be expressed in terms of γ̇ , the magnitude of γ̇̇γ̇γ:
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γ̇ =

√
γ̇γγ : γ̇γγ

2
, (2.4)

where the double dot operation is defined by Griffiths (2016) to be

(γ̇̇γ̇γ : γ̇̇γ̇γ) =

[(
∑

i
∑

j
δiδ jγ̇i j

)
:

(
∑
k

∑
l

δkδl γ̇kl

)]
= ∑

i
∑

j
∑
k

∑
l

(
δiδ j : δkδl

)
γ̇i jγ̇kl

= ∑
i

∑
j
∑
k

∑
l

(
δ j.δk

)
(δi.δl) γ̇i jγ̇kl = ∑

i
∑

j
∑
k

∑
l

δilδ jkγ̇i jγ̇kl

= ∑
i

∑
j

γ̇i jγ̇ ji = ∑
i

∑
j

γ̇
2
i j = II.

In the generalised Newtonian fluids, there are several empiricisms for the non-Newtonian

viscosity depending on the relation between the viscosity and the rate-of-strain tensor as fol-

lows (Bird et al., 1977)

Ostwald-de Waele model µ = m(γ̇)n−1 , (2.5a)

Carreau-Yasuda model µ = µ̄∞ +(µ̄0 − µ̄∞) [1+(λ γ̇)a](n−1)/a , (2.5b)

Powell-Eyring model µ = µ̄∞ +(µ̄0 − µ̄∞)(λ γ̇)−1 arcsinh(λ γ̇) , (2.5c)

Bingham model µ =


∞ for τ < τy,

µ̄p + τy (γ̇)
−1 for τ ≥ τy.

(2.5d)

Here m is the consistency coefficient and n is the dimensionless power-law index for the

Ostwald-de Waele or power-law model. For the Carreau-Yasuda model, µ̄∞ is the infinite-

shear-rate viscosity, µ̄0 is the zero-shear-rate viscosity, λ is the characteristic time constant

(relaxation time) and a is the power-law scale factor. By setting a = 2, the Carreau-Yasuda

model that can reduces to the known Carreau model. For the Bingham model, µ̄p plastic-

shear-rate viscosity, the magnitude of the shear stress tensor is τ =
√

(τ : ττ : ττ : τ)/2, and τy is the

yield stress. These models are discussed at length in Bird et al. (1977).

The power-law and Carreau fluids are called shear-thinning (pseudoplastic) for n < 1
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where the viscosity of these models decreases with increasing the shear rate. For the power-

law index n > 1, the fluids are called shear-thickening (dilatant) where the viscosity increases

with increasing shear rate of the fluids. The classical Newtonian viscosity relationship is re-

covered by setting n = 1 in (2.5) such that m = µn for power-law model, µ̄0 = µ̄∞ for Carreau

and Eyring models, and τy = 0 for Bingam model. The viscosity of the Newtonian fluid flow

is constant at all share rates as was mentioned before.

The power-law model was firstly defined by a British chemist Armand de Waele (De Waele,

1923) and then by the German biologist and chemist Friedrich Wilhelm Ostwald (Ostwald,

1925). The behaviour of the viscosity for the power-law fluids is described as follows

lim
γ̇→0

µ (γ̇)→ ∞, lim
γ̇→∞

µ (γ̇)→ 0 for n < 1,

lim
γ̇→0

µ (γ̇)→ 0, lim
γ̇→∞

µ (γ̇)→ ∞ for n > 1.

It is clear to note that this behaviour is unphysical. Therefore, the relationship of power-law

model is convenient for only finite shear rates.

The behaviour of the viscosity for the Carreau fluids, first introduced by a modern rheolo-

gist Pierre Carreau (Carreau, 1972) is expressed by

lim
γ̇→0

µ (γ̇)→ µ0, lim
γ̇→∞

µ (γ̇)→ µ∞ for n < 1,

lim
γ̇→0

µ (γ̇)→ µ0, lim
γ̇→∞

µ (γ̇)→ ∞ for n > 1.

2.2 The governing boundary-layer equations for generalised

Newtonian fluids

In this section the governing equations of the boundary-layer flow for both power-law and Car-

reau fluids are derived. The boundary-layer flow of an incompressible generalised Newtonian
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fluid is considered above an infinite rotating-disk located at z∗ = 0.

The continuity and Navier–Stokes equations in the frame of reference rotating with the

angular velocity of the lower disk Ω∗
D can be considered as

∇.u∗∇.u∗∇.u∗ = 0, (2.6a)

∂u∗u∗u∗

∂ t∗
+u∗.∇u∗u∗.∇u∗u∗.∇u∗+2Ω

∗
DΩ
∗
DΩ
∗
D ×u∗u∗u∗ =− 1

ρ∗∇p∗+
1

ρ∗∇∇∇.τ∗τ
∗

τ
∗. (2.6b)

Here u∗u∗u∗ = (u∗,v∗,w∗) are the steady velocity components in cylindrical polar coordinates

(r∗,θ ,z∗), t∗ is time and Ω∗
DΩ∗
DΩ∗
D = (0,0,Ω∗

D) is the angular velocity of the disk. Furthermore, ρ∗

is the fluid density and p∗ is the fluid pressure. The stress tensor τ∗τ∗τ∗ for generalised Newtonian

models, is defined by

τ
∗

τ
∗

τ
∗ = µ

∗
γ̇
∗

γ̇
∗

γ̇
∗ with µ∗ = µ∗ (γ̇∗),

where γ̇∗γ̇∗γ̇∗ = ∇u∗∇u∗∇u∗+(∇u∗∇u∗∇u∗)T is the rate-of-strain tensor and µ∗ (γ̇∗) is the non-Newtonian vis-

cosity. The magnitude of the rate-of-strain tensor is given by

γ̇
∗ =

√
γ̇∗ : γ̇∗γ̇∗ : γ̇∗γ̇∗ : γ̇∗

2
.

The system (2.6) can be written without using vector notation as follows

1
r∗

∂ (r∗u∗)
∂ r∗

+
1
r∗

∂v∗

∂θ
+

∂w∗

∂ z∗
= 0, (2.7)

∂u∗

∂ t∗
+u∗

∂u∗

∂ r∗
+

v∗

r∗
∂u∗

∂θ
+w∗∂u∗

∂ z∗
− v∗2

r∗
−2Ω

∗
Dv∗ =− 1

ρ∗
∂ p∗

∂ r∗

+
1

ρ∗

[
1
r∗

∂ (r∗τ∗r∗r∗)

∂ r∗
+

1
r∗

∂τ∗r∗θ

∂θ
+

∂τ∗r∗z∗

∂ z∗
−

τ∗
θθ

r∗

]
, (2.8a)
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∂v∗

∂ t∗
+u∗

∂v∗

∂ r∗
+

v∗

r∗
∂v∗

∂θ
+w∗∂v∗

∂ z∗
+

u∗v∗

r∗
+2Ω

∗
Du∗ =− 1

r∗ρ∗
∂ p∗

∂θ

+
1

ρ∗

[
1

r∗2

∂
(
r∗2τ∗

θr∗
)

∂ r∗
+

1
r∗

∂τ∗
θθ

∂θ
+

∂τ∗
θz∗

∂ z∗

]
, (2.8b)

∂w∗

∂ t∗
+u∗

∂w∗

∂ r∗
+

v∗

r∗
∂w∗

∂θ
+w∗∂w∗

∂ z∗
=− 1

ρ∗
∂ p∗

∂ z∗

+
1

ρ∗

[
1
r∗

∂
(
r∗τ∗z∗r∗

)
∂ r∗

+
1
r∗

∂τ∗z∗θ

∂θ
+

∂τ∗z∗z∗

∂ z∗

]
. (2.8c)

The components of the stress tensor in (2.8) are expressed as

τ
∗
r∗r∗ = 2µ

∗
(

∂u∗

∂ r∗

)
, (2.9a)

τ
∗
θθ = 2µ

∗
(

1
r∗

∂v∗

∂θ
+

u∗

r∗

)
, (2.9b)

τ
∗
z∗z∗ = 2µ

∗
(

∂w∗

∂ z∗

)
, (2.9c)

τ
∗
r∗θ = µ

∗
[

r∗
∂

∂ r∗

(
v∗

r∗

)
+

1
r∗

∂u∗

∂θ

]
= τ

∗
θr∗, (2.9d)

τ
∗
r∗z∗ = µ

∗
(

∂u∗

∂ z∗
+

∂w∗

∂ r∗

)
= τ

∗
z∗r∗, (2.9e)

τ
∗
θz∗ = µ

∗
(

∂v∗

∂ z∗
+

1
r∗

∂w∗

∂θ

)
= τ

∗
z∗θ . (2.9f)

The rate-of-strain tensor γ̇∗ can be written to be

γ̇
∗ =

√
II
2 =

{
2

[(
∂u∗

∂ r∗

)2

+

(
1
r∗

∂v∗

∂θ
+

u∗

r∗

)2

+

(
∂w∗

∂ z∗

)2
]

+

[
r∗

∂

∂ r∗

(
v∗

r∗

)
+

1
r∗

∂u∗

∂θ

]2

+

(
∂u∗

∂ z∗
+

∂w∗

∂ r∗

)2

+

(
∂v∗

∂ z∗
+

1
r∗

∂w∗

∂θ

)2
}1/2

,(2.10)

where II = ∑i ∑ j γ̇∗2
i j = γ̇∗2

r∗r∗ + γ̇∗2
θθ

+ γ̇∗2
z∗z∗ +2

(
γ̇∗2

r∗θ
+ γ̇∗2

r∗z∗ + γ̇∗2
θz∗
)
.

The dimensionless analysis for the system of equations (2.7) and (2.8) is organized into
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two parts that dealing separately with the two models of the generalised Newtonian fluids used

in this thesis; the power-law and Carreau fluids.

2.2.1 Power-law fluids

Now, the variables of the system (2.7) and (2.8) are defined for power-law fluids in non-

dimensional form

r =
r∗

l∗
, z =

z∗

Re−1/(n+1)l∗
, U (r,θ ,z) =

u∗ (r∗,θ ,z∗)
l∗Ω∗

D
, V (r,θ ,z) =

v∗ (r∗,θ ,z∗)
l∗Ω∗

D
,

W (r,θ ,z) =
w∗ (r∗,θ ,z∗)

Re−1/(n+1)l∗Ω∗
D
, t = Ω

∗
Dt∗, P(r,θ ,z) =

p∗ (r∗,θ ,z∗)

ρ (l∗Ω∗
D)

2 , (2.11)

where Ω∗
D is the angular velocity of the disk, l∗ is length scale, l∗Ω∗

D is the natural velocity

scale and Re is the dimensionless parameter referred to as the Reynolds number defined in

(2.19).

Substituting (2.11) into (2.7) and (2.8) leads to the following dimensionless continuity and

Navier-Stokes equations

1
r

∂ (rU)

∂ r
+

1
r

∂V
∂θ

+
∂W
∂ z

= 0, (2.12)

∂U
∂ t

+U
∂U
∂ r

+
V
r

∂U
∂θ

+W
∂U
∂ z

− V 2

r
−2V =−∂P

∂ r

+
1

ρ∗ (l∗Ω∗
D)

2

[
1
r

∂ (rτrr)

∂ r
+

1
r

∂τrθ

∂θ
+

∂τrz

∂ z
− τθθ

r

]
, (2.13a)
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∂V
∂ t

+U
∂V
∂ r

+
V
r

∂V
∂θ

+W
∂V
∂ z

+
UV

r
+2U =−1

r
∂P
∂θ

+
1

ρ∗ (l∗Ω∗
D)

2

[
1
r2

∂
(
r2τθr

)
∂ r

+
1
r

∂τθθ

∂θ
+

∂τθz

∂ z

]
, (2.13b)

Re−1/(n+1)
(

∂W
∂ t

+U
∂W
∂ r

+
V
r

∂W
∂θ

+W
∂W
∂ z

)
=− 1

Re−1/(n+1)
∂P
∂ z

+
1

ρ∗ (l∗Ω∗
D)

2

[
1
r

∂ (rτzr)

∂ r
+

1
r

∂τzθ

∂θ
+

∂τzz

∂ z

]
, (2.13c)

and the rate-of-strain tensor becomes

γ̇
∗ = Ω

∗
D

{
2

[(
∂U
∂ r

)2

+

(
1
r

∂V
∂θ

+
U
r

)2

+

(
∂W
∂ z

)2
]
+

[
r

∂

∂ r

(
V
r

)
+

1
r

∂U
∂θ

]2

+

(
Re

1
(n+1)

∂U
∂ z

+Re
−1

(n+1)
∂W
∂ r

)2

+

(
Re

1
(n+1)

∂V
∂ z

+
Re

−1
(n+1)

r
∂W
∂θ

)2
1/2

. (2.14)

In order to obtain the non-dimensional forms of the components of the stress tensor τi j,

The dimensionless of the rate-of-strain tensor is written as follows

γ̇ = γ̇
∗

(
Re−1/(n+1)

Ω∗
D

)
. (2.15)

Substituting (2.15) into (2.14) we have

γ̇
2 =

(
∂U
∂ z

)2

+

(
∂V
∂ z

)2

+Re−4/(n+1)

[
1
r

(
∂W
∂θ

)2

+

(
∂W
∂ r

)2
]

+ Re−2/(n+1)

{
2
(

∂U
∂ r

)2

+2
(

1
r

∂V
∂θ

+
U
r

)2

+2
(

∂W
∂ z

)2

+

[
r

∂

∂ r

(
V
r

)
+

1
r

∂U
∂θ

]2

+
2
r

∂V
∂ z

∂W
∂θ

+2
∂U
∂ z

∂W
∂ r

}
.

Therefore, the non-dimensional viscosity function of the power-law fluids is defined in the

following form
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µ
∗ = m∗

(
Ω∗

Dγ̇

Re−1/(n+1)

)n−1

= m∗
(

Ω∗
D

Re−1/(n+1)

)n−1

µ. (2.16)

Substituting (2.16) and (2.11) into the components of the stress tensor (2.9), we obtain that

τrr = 2m∗
Ω

∗
D

(
Ω∗

D

Re−1/(n+1)

)n−1

µ

(
∂U
∂ r

)
, (2.17a)

τθθ = 2m∗
Ω

∗
D

(
Ω∗

D

Re−1/(n+1)

)n−1

µ

(
1
r

∂V
∂θ

+
U
r

)
, (2.17b)

τzz = 2m∗
Ω

∗
D

(
Ω∗

D

Re−1/(n+1)

)n−1

µ

(
Re1/(n+1)∂W

∂ z

)
, (2.17c)

τrθ = m∗
Ω

∗
D

(
Ω∗

D

Re−1/(n+1)

)n−1

µ

[
r

∂

∂ r

(
V
r

)
+

1
r

∂U
∂θ

]
= τθr, (2.17d)

τrz = m∗
Ω

∗
D

(
Ω∗

D

Re−1/(n+1)

)n−1

µ

(
Re1/(n+1)∂U

∂ z
+Re−1/(n+1)∂W

∂ r

)
= τzr, (2.17e)

τθz = m∗
Ω

∗
D

(
Ω∗

D

Re−1/(n+1)

)n−1

µ

(
Re1/(n+1)∂V

∂ z
+

Re−1/(n+1)

r
∂W
∂θ

)
= τzθ . (2.17f)

Hence (2.13) become

∂U
∂ t

+U
∂U
∂ r

+
V
r

∂U
∂θ

+W
∂U
∂ z

− V 2

r
−2V =−∂P

∂ r

+
m∗Ω

∗n−2
D

ρ∗l∗2Re−1

{
∂

∂ z

[
µ

(
∂U
∂ z

+Re
−2

(n+1)
∂W
∂ r

)]
+Re

−2
(n+1)

[
2
r

∂

∂ r

(
µr

∂U
∂ r

)
+

1
r

∂

∂θ

(
µr

∂

∂ r

(
V
r

)
+

µ

r
∂U
∂θ

)
− 2µ

r

(
1
r

∂V
∂θ

+
U
r

)]}
, (2.18a)

∂V
∂ t

+U
∂V
∂ r

+
V
r

∂V
∂θ

+W
∂V
∂ z

+
UV

r
+2U =−1

r
∂P
∂θ

+
m∗Ω

∗n−2
D

ρ∗l∗2Re−1

{
∂

∂ z

[
µ

(
∂V
∂ z

+Re
−2

(n+1)
1
r

∂W
∂θ

)]
+Re

−2
(n+1)

[
1
r

∂

∂θ

[
µ

(
1
r

∂V
∂θ

+
U
r

)]
+

1
r2

∂

∂ r

(
µr3 ∂

∂ r

(
V
r

)
+ rµ

∂U
∂θ

)]}
, (2.18b)
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∂W
∂ t

+U
∂W
∂ r

+
V
r

∂W
∂θ

+W
∂W
∂ z

=−Re
2

(n+1)
∂P
∂ z

+
m∗Ω

∗n−2
D

ρ∗l∗2Re−1

{
1
r

∂

∂ r

(
rµ

∂U
∂ z

+Re
−2

(n+1) rµ
∂W
∂ r

)
+2

∂

∂ z

(
µ

∂W
∂ z

)
+

1
r

∂

∂θ

[
µ

(
∂V
∂ z

+Re
−2

(n+1)
1
r

∂W
∂θ

)]}
. (2.18c)

Now, the Reynolds number for power-law fluids is defined in the following form

Re =
ρ∗Ω

∗2−n
D l∗2

m∗ . (2.19)

By setting n = 1, the classical form of the Reynolds number for Newtonian fluid flow is

recovered.

Therefore, by substituting the Reynolds number (2.19) into (2.18), the scaled governing

Navier-Stokes equations are obtained for power-law fluids

∂U
∂ t

+U
∂U
∂ r

+
V
r

∂U
∂θ

+W
∂U
∂ z

− V 2

r
−2V = −∂P

∂ r
+

∂

∂ z

(
µ

∂U
∂ z

)
+ O

(
Re

−2
(n+1)

)
, (2.20a)

∂V
∂ t

+U
∂V
∂ r

+
V
r

∂V
∂θ

+W
∂V
∂ z

+
UV

r
+2U = −1

r
∂P
∂θ

+
∂

∂ z

(
µ

∂V
∂ z

)
+ O

(
Re

−2
(n+1)

)
, (2.20b)

∂W
∂ t

+U
∂W
∂ r

+
V
r

∂W
∂θ

+W
∂W
∂ z

= −Re
2

(n+1)
∂ p
∂ z

+
1
r

∂

∂ r

(
µr

∂U
∂ z

)
+

1
r

∂

∂θ

(
µ

∂V
∂ z

)
+2

∂

∂ z

(
µ

∂W
∂ z

)
+ O

(
Re

−2
(n+1)

)
, (2.20c)

where

µ =

[(
∂U
∂ z

)2

+

(
∂V
∂ z

)2

+O
(

Re
−2

(n+1)
)
+O

(
Re

−4
(n+1)

)](n−1)/2

, (2.20d)

is the dimensionless viscosity function defined by
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µ =

(
Re1/n+1Ω∗

D

)1−n
µ∗

m∗ .

The boundary-layer approximation is applied to the system of equations in order to neglect

the terms that include inverse powers of the Reynolds number by considering Re ≫ 1. There-

fore, the components of velocity, pressure and viscosity in the Navier-Stokes equations (2.20)

and the continuity equation (2.12) are assumed to have the asymptotic expansions as follows

U (r,θ , z̄) =U0 (r,θ ,z)+Re
−2

(n+1)U1 (r,θ ,z)+ · · · ,

V (r,θ , z̄) =V0 (r,θ ,z)+Re
−2

(n+1)V1 (r,θ ,z)+ · · · ,

W (r,θ , z̄) =W0 (r,θ ,z)+Re
−2

(n+1)W1 (r,θ ,z)+ · · · ,

P(r,θ , z̄) = P0 (r,θ ,z)+Re
−2

(n+1) P1 (r,θ ,z)+ · · · ,

µ (r,θ , z̄) = µ0 (r,θ ,z)+Re
−2

(n+1) µ1 (r,θ ,z)+ · · · ,

where z̄ = z∗/l∗ = Re−1/(n+1)z is the outer region coordinate that corresponding to the region

outside of the boundary-layer.

Thus, the zero-order boundary-layer equations are

1
r

∂ (rU0)

∂ r
+

1
r

∂V0

∂θ
+

∂W0

∂ z
= 0, (2.21a)

∂U0

∂ t
+U0

∂U0

∂ r
+

V0

r
∂U0

∂θ
+W0

∂U0

∂ z
−

V 2
0
r
−2V0 = −∂P0

∂ r
+

∂

∂ z

(
µ0

∂U0

∂ z

)
,

∂V0

∂ t
+U0

∂V0

∂ r
+

V0

r
∂V0

∂θ
+W0

∂V0

∂ z
+

U0V0

r
+2U0 = −1

r
∂P0

∂θ
+

∂

∂ z

(
µ0

∂V0

∂ z

)
,(2.21b)

∂W0

∂ t
+U0

∂W0

∂ r
+

V0

r
∂W0

∂θ
+W0

∂W0

∂ z
= −∂P1

∂ z
+

1
r

∂

∂ r

(
µ0r

∂U0

∂ z

)
+

1
r

∂

∂θ

(
µ0

∂V0

∂ z

)
+ 2

∂

∂ z

(
µ0

∂W0

∂ z

)
, (2.21c)

where
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µ0 =

[(
∂U0

∂ z

)2

+

(
∂V0

∂ z

)2
](n−1)/2

, (2.21d)

is the zero-order viscosity function of the power-law fluids.

The system of equations (2.21) is subject to the following boundary conditions

U0 (0) =V0 (0) =W0 (0) = 0, (2.22a)

U0 (z → ∞) = 0,V0 (z → ∞) = 1. (2.22b)

Equation (2.22a) reflects the no slip condition at the disk surface, while equation (2.22b)

represents the quiescent flow condition at the upper edge of the boundary-layer.

2.2.2 Carreau fluids

For this model of fluid, the dimensionless variables of the system (2.7)-(2.8) are defined in the

same way as the power-law model. However, the viscosity function for Carreau fluids defined

in equation (2.5b) can be scaled in two ways by either the infinite-shear-rate viscosity µ̄∗
∞ or

the zero-shear-rate viscosity µ̄∗
0 as follows, respectively

µ = 1+ c0

[
1+
(
r−1kγ̇

)2
](n−1)/2

, (2.23)

µ =
[
1+
(
r−1kγ̇

)2
](n−1)/2

, (2.24)

where c0 =
(
µ̄∗

0 − µ̄∗
∞

)
/µ̄∗

∞ is the viscosity ratio and k = r∗λ ∗Ω∗
D/l∗Re−1/2 is the dimension-

less relaxation time parameter which is equivalent of the constant λ ∗.

The viscosity function (2.24) scaled by µ̄∗
0 is used in this thesis in order to obtain the

complete agreement with the familiar Newtonian mean flow profiles considered in Chapter 3

when n = 1.
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Setting n = 1 and m = µ̄∗
0 in the system (2.18) in order to consider the flow of Carreau

fluids. Therefore (2.18) becomes

∂U
∂ t

+U
∂U
∂ r

+
V
r

∂U
∂θ

+W
∂U
∂ z

− V 2

r
−2V =−∂P

∂ r

+
µ̄∗

0 Re
ρ∗l∗2Ω∗

D

{
∂

∂ z

[
µ

(
∂U
∂ z

+
1

Re
∂W
∂ r

)]
+

1
Re

[
2
r

∂

∂ r

(
µr

∂U
∂ r

)
+

1
r

∂

∂θ

(
µr

∂

∂ r

(
V
r

)
+

µ

r
∂U
∂θ

)
− 2µ

r

(
1
r

∂V
∂θ

+
U
r

)]}
, (2.25a)

∂V
∂ t

+U
∂V
∂ r

+
V
r

∂V
∂θ

+W
∂V
∂ z

+
UV

r
+2U =−1

r
∂P
∂θ

+
µ̄∗

0 Re
ρ∗l∗2Ω∗

D

{
∂

∂ z

[
µ

(
∂V
∂ z

+
1

Re
1
r

∂W
∂θ

)]
+

1
Re

[
1
r

∂

∂θ

[
µ

(
1
r

∂V
∂θ

+
U
r

)]
+

1
r2

∂

∂ r

(
µr3 ∂

∂ r

(
V
r

)
+µr

∂U
∂θ

)]}
, (2.25b)

∂W
∂ t

+U
∂W
∂ r

+
V
r

∂W
∂θ

+W
∂W
∂ z

=−Re
∂P
∂ z

µ̄∗
0 Re

ρ∗l∗2Ω∗
D

{
1
r

∂

∂ r

(
rµ

∂U
∂ z

+
1

Re
rµ

∂W
∂ r

)
+2

∂

∂ z

(
µ

∂W
∂ z

)
+

1
r

∂

∂θ

[
µ

(
∂V
∂ z

+
1

Re
1
r

∂W
∂θ

)]}
. (2.25c)

Again, by fixing n = 1 and m = µ̄∗
0 in (2.19), the Reynolds number can be defined for

Carreau fluids scaled by the zero-shear-rate viscosity

Re =
ρ∗Ω∗

Dl∗2

µ̄∗
0

. (2.26)

Thus, by substituting the Reynolds number (2.26) into equations (2.25), the scaled gov-

erning Navier-Stokes equations for Carreau fluids are obtained as follows



2.2 The governing boundary-layer equations for generalised Newtonian fluids 24

∂U
∂ t

+U
∂U
∂ r

+
V
r

∂U
∂θ

+W
∂U
∂ z

− V 2

r
−2V = −∂P

∂ r
+

∂

∂ z

(
µ

∂U
∂ z

)
+ O

(
Re−1) , (2.27a)

∂V
∂ t

+U
∂V
∂ r

+
V
r

∂V
∂θ

+W
∂V
∂ z

+
UV

r
+2U = −1

r
∂P
∂θ

+
∂

∂ z

(
µ

∂V
∂ z

)
+ O

(
Re−1) , (2.27b)

∂W
∂ t

+U
∂W
∂ r

+
V
r

∂W
∂θ

+W
∂W
∂ z

= −Re
∂ p
∂ z

+
1
r

∂

∂ r

(
µr

∂U
∂ z

)
+

1
r

∂

∂θ

(
µ

∂V
∂ z

)
+2

∂

∂ z

(
µ

∂W
∂ z

)
+ O

(
Re−1) , (2.27c)

where

µ =

{
1+
(

k
r

)2
[(

∂U
∂ z

)2

+

(
∂V
∂ z

)2

+O
(
Re−1)+O

(
Re−2)]}(n−1)/2

, (2.27d)

is the dimensionless viscosity function of the Carreau fluids.

By the same procedure used for the power-law model, using the boundary-layer approx-

imation and considering Re ≫ 1 in order to eliminate the terms that include inverse powers

of the Reynolds number. The components of velocity, pressure and viscosity in the Navier-

Stokes equations (2.27) and the continuity equation (2.12) are supposed to have the asymptotic

expansions as follows

U (r,θ , z̄) =U0 (r,θ ,z)+Re−1U1 (r,θ ,z)+ · · · ,

V (r,θ , z̄) =V0 (r,θ ,z)+Re−1V1 (r,θ ,z)+ · · · ,

W (r,θ , z̄) =W0 (r,θ ,z)+Re−1W1 (r,θ ,z)+ · · · ,

P(r,θ , z̄) = P0 (r,θ ,z)+Re−1P1 (r,θ ,z)+ · · · ,

µ (r,θ , z̄) = µ0 (r,θ ,z)+Re−1
µ1 (r,θ ,z)+ · · · ,

where z̄ = z∗/l∗ = Re−1/2z is the outer region coordinate that corresponding to the region
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outside of the boundary-layer.

Thus the zero-order boundary-layer equations are

1
r

∂ (rU0)

∂ r
+

1
r

∂V0

∂θ
+

∂W0

∂ z
= 0, (2.28a)

∂U0

∂ t
+U0

∂U0

∂ r
+

V0

r
∂U0

∂θ
+W0

∂U0

∂ z
−

V 2
0
r
−2V0 = −∂P0

∂ r
+

∂

∂ z

(
µ0

∂U0

∂ z

)
, (2.28b)

∂V0

∂ t
+U0

∂V0

∂ r
+

V0

r
∂V0

∂θ
+W0

∂V0

∂ z
+

U0V0

r
+2U0 = −1

r
∂P0

∂θ
+

∂

∂ z

(
µ0

∂V0

∂ z

)
,(2.28c)

∂W0

∂ t
+U0

∂W0

∂ r
+

V0

r
∂W0

∂θ
+W0

∂W0

∂ z
= −∂P1

∂ z
+

1
r

∂

∂ r

(
µ0r

∂U0

∂ z

)
(2.28d)

+
1
r

∂

∂θ

(
µ0

∂V0

∂ z

)
(2.28e)

+ 2
∂

∂ z

(
µ0

∂W0

∂ z

)
, (2.28f)

where

µ0 =

{
1+
(

k
r

)2
[(

∂U0

∂ z

)2

+

(
∂V0

∂ z

)2
]}(n−1)/2

, (2.28g)

is the zero-order viscosity function.

The system of equations (2.28) is subject to the following boundary conditions

U0 (0) =V0 (0) =W0 (0) = 0, (2.29a)

U0 (z → ∞) = 0,V0 (z → ∞) = 1, (2.29b)

which again represent the non-slip and quiescent flow conditions, respectively.
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2.3 Summary

In this chapter, the generalized Newtonian fluids that describe the shear-rate dependence of the

viscosity have been considered. Different empiricisms for the non-Newtonian viscosity are

presented depending on the relation between the viscosity and the rate-of-strain tensor. The

zero-order boundary-layer equations for generalized Newtonian fluid, power-law and Carreau

fluids has been derived in order to describe the boundary-layer flow. The boundary-layer

approximation is applied in the formulation of the governing leading order equations. This is

by neglecting the terms that include inverse powers of the Reynolds number by considering

Re ≫ 1. These governing boundary-layer equations are important to obtain the steady mean

flow solutions and study the transition from laminar to turbulence with stability properties of

the flow.



Chapter 3

Steady mean BEK family flow solutions

In this chapter, the boundary-layer equations for the generalized non-Newtonian fluids have

been solved to determine the steady mean BEK family of flow profiles. There are numerous in-

vestigations that present numerical results for the generalized non-Newtonian fluids. Mitschka

and Ulbrecht (1965) was the first to obtain the solution of mean flow for the power-law fluids

that is equivalent to the solution for the Newtonian fluid flow given by von Kármán (1921)

when the power-law index n equal to unity. Andersson et al. (2001) revisited this study and

improved the reliability of the numerical solution of Mitschka and Ulbrecht (1965) with better

accuracy. Denier and Hewitt (2004) subsequently reconsidered the previous work to obtain

the numerical solutions for power-law fluids and clarified their asymptotic behaviour in the

far-field. Regarding Carreau models, Dabrowski (2009) studied the structure of the mean flow

profiles for both power-law and Carreau models including shear thickening and shear-thinning

fluids. Some years later, Griffiths (2016) presented a detailed solutions of the mean flow and

an analysis of their stability using both asymptotic and numerical approaches. All these prior

studies consider only the von Kármán flow within the more general BEK family.

Within this chapter, a brief description of the full BEK family of flows is introduced in

§3.1. The solutions of the steady mean BEK flows family of flows for power-law fluids are

given in §3.2. Steady mean BEK family of flows solutions for Carreau fluids are presented in
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§3.3 . Finally, §3.4 provides the details of the MATLAB function solver used to obtain the

steady mean flow profiles throughout this thesis.

3.1 BEK family of flows

The family of incompressible generalised Newtonian boundary-layer flows has been con-

sidered above an infinite rotating-disk located at the axis z∗ = 0. Distinct flows within this

family are generated by a differential rotation rate between this solid lower disk and an upper

fluid in rigid-body rotation (Lingwood, 1997; Lingwood and Garrett, 2011). Particular cases

within the family are Böedewadt (1940), Ekman (1905) and von Kármán (1921) boundary-

layer flows. This family is referred to as the BEK system (Lingwood, 1997). Both rotating

components (lower disk and upper fluid) are assumed to rotate in the same direction and about

the same vertical axis z∗ with angular velocities Ω ∗
D and Ω ∗

F indicating the disk D and upper

fluid F , respectively. The von Kármán layer appears when the upper fluid is stationary and the

lower disk rotates, i.e., Ω ∗
F = 0 and Ω ∗

D ̸= 0; the Ekman layer arises when both upper fluid and

lower disk rotates with the same angular velocity i.e., Ω ∗
F = Ω ∗

D ̸= 0; and the Bödewadt layer

occurs when the upper fluid is rotates and the lower disk stationary i.e., Ω ∗
F ̸= 0 and Ω ∗

D = 0.

Furthermore, there exists a continuum of cases between these three particular examples in

which both the disk and fluid rotate with different angular velocities.

The system rotation rate is given by Lingwood (1997) in the following form

Ω
∗ =

Ω∗
F

2−Ro
+

Ω∗
D

2+Ro
=

Ω∗
F +Ω∗

D
4

+

((
Ω∗

F +Ω∗
D

4

)2

+
(△Ω∗)2

2

)1/2

, (3.1)

where △Ω ∗ = Ω ∗
F −Ω ∗

D is the differential rotation rate and Ro is the Rossby number which

characterises each particular flow within the BEK family, .

The Rossby number Ro is defined in the following form
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Figure 3.1: Variation in Coriolis parameter Co with Rossby number Ro for the BEK family
flows

Ro =
△Ω∗

Ω∗ =
Ω∗

F −Ω∗
D

Ω∗ . (3.2)

The Coriolis parameter which is related to the Rossby number is also defined as follows

Co =
2Ω∗

D
Ω∗ = 2−Ro−Ro2. (3.3)

The frame of reference is assumed to be rotating with the lower disk Ω ∗
D. Therefore, the

Coriolis terms and centrifugal effects due to rotation appear in the governing equations.

The Rossby number Ro for BEK family of flows ranges from negative unity to positive

unity, i.e., Ro ∈ [−1,1]. The variation of the Coriolis parameter Co with the Rossby number

Ro is plotted in Figure 3.1.

These parameters leads to the particular flow cases being identified by
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Bödewadt flow: Ro = 1 Co = 0 Ω
∗ = Ω

∗
F

Ekman flow: Ro = 0 Co = 2 Ω
∗ = Ω

∗
F = Ω

∗
D

von Kármán flow: Ro =−1 Co = 2 Ω
∗ = Ω

∗
D.

3.2 Steady mean BEK family of flows for power-law fluids

Let us consider the governing boundary-layer equations obtained from (2.21) in dimensional

form and expressed in a cylindrical-polar coordinates system (r∗,θ ,z∗) as

1
r∗

∂ (r∗U∗
0 )

∂ r∗
+

1
r∗

∂V ∗
0

∂θ
+

∂W ∗
0

∂ z∗
= 0, (3.4a)

∂U∗
0

∂ t∗
+U∗

0
∂U∗

0
∂ r∗

+
V ∗

0
r∗

∂U∗
0

∂θ
+W ∗

0
∂U∗

0
∂ z∗

−
V ∗2

0
r∗

−2Ω
∗
DV ∗

0 =− 1
ρ∗

∂P∗
0

∂ r∗

+
1

ρ∗
∂

∂ z∗

(
µ
∗
0

∂U∗
0

∂ z∗

)
, (3.4b)

∂V ∗
0

∂ t∗
+U∗

0
∂V ∗

0
∂ r∗

+
V ∗

0
r∗

∂V ∗
0

∂θ
+W ∗

0
∂V ∗

0
∂ z∗

+
U∗

0 V ∗
0

r∗
+2Ω

∗
DU∗

0 =− 1
ρ∗r∗

∂P∗
0

∂θ

+
1

ρ∗
∂

∂ z∗

(
µ
∗
0

∂V ∗
0

∂ z∗

)
, (3.4c)

∂W ∗
0

∂ t∗
+U∗

0
∂W ∗

0
∂ r∗

+
V ∗

0
r∗

∂W ∗
0

∂θ
+W ∗

0
∂W ∗

0
∂ z∗

=− 1
ρ∗

∂P∗
1

∂ z∗
+

1
ρ∗r∗

∂

∂ r∗

(
µ
∗
0 r∗

∂U∗
0

∂ z∗

)
+

1
ρ∗r∗

∂

∂θ

(
µ
∗
0

∂V ∗
0

∂ z∗

)
+

2
ρ∗

∂

∂ z∗

(
µ
∗
0

∂W ∗
0

∂ z∗

)
, (3.4d)

where

µ
∗
0 = m∗

[(
∂U∗

0
∂ z∗

)2

+

(
∂V ∗

0
∂ z∗

)2
](n−1)/2

, (3.5)

is the viscosity function,
(
U∗

0 ,V
∗
0 ,W

∗
0
)

are the leading-order velocity components, and
(
P∗

0 ,P
∗
1
)
is

the zero -order and first-order pressure, respectively.
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A generalisation of von Kármán’s exact similarity solution (von Kármán, 1921) is required

in order to solve the steady mean flow equations relative to the lower disk. This is expressed

in non-dimensional form as

U(η) =
U∗

0
r∗△Ω∗ =

U∗
0

r∗Ω∗Ro
, (3.6a)

V (η) =
V ∗

0
r∗△Ω∗ =

V ∗
0

r∗Ω∗Ro
, (3.6b)

W (η) =
W ∗

0
χ∗ , (3.6c)

P(η) =
P∗

1

ρ∗ (χ∗)2 , (3.6d)

where

χ
∗ =

[
ν∗

(r∗)1−n (Ω∗)1−2n Ro−2n

]1/(n+1)

.

Here (U,V,W ) are the dimensionless radial, azimuthal and axial velocities, respectively,

P is the pressure, and ν∗ = m∗/ρ∗ is the kinematic viscosity. The dimensionless similarity

coordinate is defined by

η =
(r∗)(1−n)/(n+1) z∗

(L∗)2/(n+1)
, (3.7)

where

L∗ =

√
ν∗

(Ω∗)2−n Ro1−n
,

is the non-dimensional length scale.

The mean flow is assumed to be both steady and axisymmetric, i.e., the mean flow ve-

locities and pressure term are independent of time t and azimuthal direction θ , respectively,

i.e.,
∂U∗

0
∂ t∗

=
∂V ∗

0
∂ t∗

=
∂W ∗

0
∂ t∗

= 0,

∂U∗
0

∂θ
=

∂V ∗
0

∂θ
=

∂W ∗
0

∂θ
=

∂P∗
0

∂θ
= 0.
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The non-dimensional equations for the mean flow are obtained by substituting the dimen-

sionless mean flow variables (3.6) in the governing boundary-layer equations (3.4) as follows

2U +
1−n
n+1

ηU ′+W ′ = 0, (3.8a)

Ro
[
U2 −

(
V 2 −1

)
+

(
W +

1−n
n+1

ηU
)

U ′
]
−Co(V −1)−

(
µU ′)′ = 0, (3.8b)

Ro
[

2UV +

(
W +

1−n
n+1

ηU
)

V ′
]
+CoU −

(
µV ′)′ = 0, (3.8c)

Ro
{

P′+WW ′+
1−n
n+1

[
U
(
ηW ′−W

)]}
+

2(1−n)
n+1

µU ′+2µ
′U

−
(
µW ′)′ = 0, (3.8d)

where the primes denote derivatives with respect to η and µ =
[
(U ′)2 +(V ′)2

](n−1)/2
is the

viscosity of power-law fluids.

When n= 1, the mean flow equations (3.8) are entirely consistent with the non-dimensional

equations for the Newtonian mean flow given in Alveroglu et al. (2016); Lingwood (1997);

Lingwood and Garrett (2011).

As discussed by Lingwood (1997), the radial zero-order pressure gradient term −∂P∗
0 /∂ r∗

in equation (3.4b) is determined from the relative circumferential flow as η → ∞, i.e., V → 1

in order to formulate (3.8b). By considering the assumptions U(η) → 0, U ′(η) → 0 and

U ′′(η)→ 0, as η → ∞ gives

Ro+Co =
1

ρ∗Ω∗2r∗Ro
∂P∗

0
∂ r∗

, (3.9)

which is taken as constant in η . The non-dimensional pressure P is not required to conduct the
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Figure 3.2: Steady mean flow profiles U , V and W and viscosity function µ versus η of the
von Kármán flow, Ro = −1 for Newtonian (n = 1) and shear-thinning power-law fluids with
n = 0.9,0.8,0.7,0.6.

instability analysis discussed later. Thus, the results of U , V and W are only presented here,

and are completely defined by (3.8).

The system of equations (3.8) is subject to the following dimensionless boundary condi-

tions

U (0) =V (0) =W (0) = 0, (3.10a)

U (η → ∞) = 0,V (η → ∞) = 1. (3.10b)

The MATLAB function solver and the numerical method applied to solve the system of

equations (3.8) are explained later in §3.4. The initial values of mean velocity flow parameters

U ′ (0), V ′ (0) and W (η∞) are stated in Table 3.1 for various values of Ro.
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n −U ′ (0) V ′ (0) W (η∞)

1 0.5102 0.6159 0.8845

0.9 0.5069 0.6243 0.9698

0.8 0.5039 0.6362 1.0957

0.7 0.5017 0.6532 1.3051

0.6 0.5005 0.6778 1.7329

(a) von Kármán flow, Ro =−1

n −U ′ (0) V ′ (0) W (η∞)

1 0.8570 0.9073 1.0219

0.9 0.8687 0.9434 1.0241

0.8 0.8831 0.9885 1.0250

0.7 0.9013 1.0461 1.0241

0.6 0.9245 1.1221 1.0205

(b) Flow for Ro =−0.5

n −U ′ (0) V ′ (0) W (η∞)

1 1 1 1

0.9 1.0.189 1.0469 0.9814

0.8 1.0418 1.1050 0.9599

0.7 1.0697 1.1787 0.9348

0.6 1.1046 1.2755 0.9053

(c) Ekman flow, Ro = 0

n −U ′ (0) V ′ (0) W (η∞)

1 1.0176 0.9612 1.0853

0.9 1.0346 1.0057 1.0567

0.8 1.0550 1.0607 0.9882

0.7 1.0798 1.1304 0.9890

0.6 1.1108 1.2212 0.9468

(d) Flow for Ro = 0.5

n −U ′ (0) V ′ (0) W (η∞)

1 0.9420 0.7729 1.3494

0.9 0.9442 0.8021 1.3201

0.8 0.9475 0.8376 1.2855

0.7 0.9526 0.8821 1.2446

0.6 0.9599 0.9398 1.1962

(e) Bödewadt flow, Ro = 1

Table 3.1: Numerical values of the mean velocity flow parameters U ′,V ′ and W for Newtonian
(n = 1) and shear-thinning power-law fluids with n = 0.9,0.8,0.7,0.6 at various Ro.
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Figure 3.3: Steady mean flow profiles U , V and W versus η of the flow at Ro = −0.5 for
Newtonian (n = 1) and shear-thinning power-law fluids with n = 0.9,0.8,0.7,0.6.

The resulting steady mean flow profiles for shear-thinning power-law fluids are presented

in Figures 3.2-3.6 for various Ro. The results of shear-thickening fluids (n > 1) are not in-

cluded here because the trend of the viscosity function goes to zero at the outer-edge of the

boundary-layer as n increased.

Figure 3.2 shows that the steady mean flow profiles (U,V,W ) for the von Kármán flow

(Ro =−1) and the plot of µ versus η are identical to those obtained by (Griffiths et al.,

2014a,b).

There are several important properties that can be used to interpret the behaviour of the

mean flow velocities. For example, the oscillation of the flow components, the thickness of

the boundary-layer, the amount of fluid entrained into boundary-layer, and the size of the

radial wall jet.

The behaviour of the mean flow profiles is influenced by the effect of shear-thinning fluids.
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Figure 3.4: Steady mean flow profiles U , V and W versus η of the Ekman flow, Ro = 0 for
Newtonian (n = 1) and shear-thinning power-law fluids with n = 0.9,0.8,0.7,0.6.

The existence of inflectional points is crucial as this known to lead to the appearance of the

Type I instability mechanism (cross-flow velocity)(Saric and Reed, 2003).

Figure 3.2 shows that only the radial mean flow is inflectional for all values of power-law

index n. However, all mean flows (radial, azimuthal and axial) profiles become inflectional

with increasing Ro from minus unity to unity for all n.

Figures 3.2-3.6 reveal that the behaviour of the oscillation is amplified as the flow changes

from the von Kármán to the Bödewadt flows. Furthermore, it is interesting to note that the

oscillation of the mean flows is damped as the power-law index n is reduced for all values of

the Ro.

It is noted that the maximum value of the radial component U for all values of the Rossby

number is decreased due to increase the effect of shear-thinning power-law fluids, i.e., the

radial wall jet is reduced with decreasing n for all Ro. However, the radial wall jet is increased
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Figure 3.5: Steady mean flow profiles U , V and W versus η of the flow at Ro = 0.5 for
Newtonian (n = 1) and shear-thinning power-law fluids with n = 0.9,0.8,0.7,0.6 .

with increasing Ro from minus unity to unity for all n. Moreover, the location of the max-

imum value of U slightly approaches the disk surface as n reduced. Hence, the thickness of

the boundary-layer for all values of Ro decreases with increased the effect of shear-thinning

power-law fluids (n < 1).

In addition, Figure 3.2 demonstrates that the magnitude of the axial flow W in the far-field

is increased for the von Kármán flow, Ro =−1 as n decreased. However, the magnitude of W

is reduced for the flows at Ro ≥−0.5 as shown in Figures 3.3-3.6. In other words, the amount

of fluid entrained into boundary-layer is increased with increasingly shear-thinning power-law

fluids for the von Kármán flow, while this amount is reduced for the flows at Ro ≥−0.5 as n

is decreased. On the other hand, it can be clearly seen that the magnitude of both radial and

azimuthal flow in the far-field are unchanged.
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Figure 3.6: Steady mean flow profiles U , V and W versus η of the Bödewadt flow, Ro = 1 for
Newtonian (n = 1) and shear-thinning power-law fluids with n = 0.9,0.8,0.7,0.6.

3.3 Steady mean BEK family of flows for Carreau fluids

Using equations (2.28), the governing boundary-layer equations (3.4) are obtained in the di-

mensional form with the viscosity function for Carreau fluids given by

µ
∗
0 =

{
1+λ

∗2

[(
∂U∗

0
∂ z∗

)2

+

(
∂V ∗

0
∂ z∗

)2
]}(n−1)/2

. (3.11)

Again, using the extension of von Kármán’s exact similarity solution as Lingwood (1997)

did, the dimensionless steady and axisymmetric mean flow components take the following

form
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U(z) =
U∗

0
r∗△Ω∗ =

U∗
0

r∗Ω∗Ro
, (3.12a)

V (z) =
V ∗

0
r∗△Ω∗ =

V ∗
0

r∗Ω∗Ro
, (3.12b)

W (z) =
W ∗

0
L∗△Ω∗ =

W ∗
0

L∗Ω∗Ro
, (3.12c)

P(z) =
P∗

1
ρ∗L∗2△Ω∗2 =

P∗
1

ρ∗L∗2Ω∗2Ro2 , (3.12d)

where (U,V,W ) are the non-dimensional radial, azimuthal and axial velocities, respectively,

P is the pressure and L∗ = (ν∗/Ω∗)1/2.

By substituting the dimensionless mean flow variables (3.12) in the governing boundary-

layer equations (3.4) with the viscosity function (3.11), the dimensionless steady mean flow

equations are obtained as follows

2U +W ′ = 0, (3.13a)

Ro
(
U2 −

(
V 2 −1

)
+WU ′)−Co(V −1)−

(
µU ′)′ = 0, (3.13b)

Ro
(
2UV +WV ′)+CoU −

(
µV ′)′ = 0, (3.13c)

Ro
(
P′+WW ′)−qµU ′+2µ

′U −
(
µW ′)′ = 0. (3.13d)

Here the primes denote derivatives with respect to z, µ =
{

1+ k2
[
(U ′)2 +(V ′)2

]}(n−1)/2
,

k = r∗λ ∗Ω∗Ro(ν∗/Ω∗)−1/2 and q =
k2(n−1)(U ′2+V ′2)

1+k2(U ′2+V ′2)
.

The system of equations (3.13) is subject to the following dimensionless boundary condi-

tions

U (0) =V (0) =W (0) = 0, (3.14a)

U (z → ∞) = 0,V (z → ∞) = 1. (3.14b)

Tables 3.2-3.3 state the initial values of mean velocity flow parameters U ′ (0), V ′ (0) and

W (z∞) for shear-thinning and shear-thickening fluids for various values of Ro, respectively.
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n −U ′(0) V ′(0) W (z∞)

1 0.5102 0.6159 0.8845

0.9 0.6440 0.7968 0.7659

0.8 0.8355 1.0644 0.6603

0.7 1.1197 1.4785 0.5686

0.6 1.5606 2.1544 0.4912

(a) von Kármán flow, Ro =−1

n −U ′(0) V ′(0) W (z∞)

1 0.8570 0.9073 1.0219

0.9 1.1059 1.2028 0.8223

0.8 1.4701 1.6504 0.6457

0.7 2.0246 2.3607 0.4926

0.6 2.9092 3.5536 0.3631

(b) Flow for Ro =−0.5

n −U ′(0) V ′(0) W (z∞)

1 1.000 1.000 1.0000

0.9 1.2984 1.3340 0.7910

0.8 1.7378 1.8432 0.6093

0.7 2.4110 2.6568 0.4549

0.6 3.4930 4.0334 0.3272

(c) Ekman flow, Ro = 0

n −U ′(0) V ′(0) W (z∞)

1 1.0176 0.9612 1.0853

0.9 1.3198 1.2810 0.8538

0.8 1.7640 1.7679 0.6538

0.7 2.4433 2.5447 0.4848

0.6 3.5322 3.8565 0.3460

(d) Flow for Ro = 0.5

n −U ′(0) V ′(0) W (z∞)

1 0.9420 0.7729 1.3494

0.9 1.2093 1.0206 1.0661

0.8 1.5975 1.3936 0.8203

0.7 2.2165 2.0649 0.5933

0.6 3.1063 2.9606 0.4394

(e) Bödewadt flow, Ro = 1

Table 3.2: Numerical values of the mean velocity flow parameters U ′,V ′ and W for Newtonian
(n = 1) and shear-thinning Carreau fluids with n = 0.9,0.8,0.7,0.6 and k = 100 at various Ro.
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n −U ′(0) V ′(0) W (z∞)

1 0.5102 0.6159 0.8845

1.1 0.4137 0.4892 1.0148

1.2 0.3422 0.3975 1.1557

1.3 0.2880 0.3293 1.3062

1.4 0.2460 0.2775 1.4651

(a) von Kármán flow, Ro =−1

n −U ′(0) V ′(0) W (z∞)

1 0.8570 0.9073 1.0219

1.1 0.6812 0.7046 1.2436

1.2 0.5532 0.5608 1.4864

1.3 0.4578 0.4559 1.7489

1.4 0.3851 0.3774 2.0298

(b) Flow for Ro =−0.5

n −U ′(0) V ′(0) W (z∞)

1 1.000 1.000 1.0000

1.1 0.7903 0.7721 1.2360

1.2 0.6385 0.6113 1.4981

1.3 0.5258 0.4945 1.7854

1.4 0.4403 0.4076 2.0967

(c) Ekman flow, Ro = 0

n −U ′(0) V ′(0) W (z∞)

1 1.0176 0.9612 1.0853

1.1 0.8049 0.7427 1.3480

1.2 0.6508 0.5884 1.6411

1.3 0.5363 0.4763 1.9638

1.4 0.4493 0.3928 2.3148

(d) Flow for Ro = 0.5

n −U ′(0) V ′(0) W (z∞)

1 0.9420 0.7729 1.3494

1.1 0.7518 0.6021 1.6698

1.2 0.6127 0.4804 2.0265

1.3 0.5085 0.3913 2.4183

1.4 0.4287 0.3244 2.8436

(e) Bödewadt flow, Ro = 1

Table 3.3: Numerical values of the mean velocity flow parameters U ′,V ′ and W for Newtonian
(n = 1) and shear-thickening Carreau fluids with n = 1.1,1.2,1.3,1.4 and k = 100 at various
Ro.
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Figure 3.7: Viscosity function µ versus z for Carreau fluids.
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Figure 3.8: Steady mean flow profiles U , V and W versus z of the von Kármán flow, Ro =−1
for Newtonian (n = 1) and shear-thinning Carreau fluids with n = 0.9,0.8,0.7,0.6 and k =
100.

The steady mean flow profiles of shear-thinning and shear-thickening fluids for Carreau

model are presented in Figures 3.8-3.17 at various values of Ro. The value of relaxation time

parameter k is selected here as 100 for all cases. However, there is some sensitivity in the flows

resulting from the choice of k and, while this is not significant to the appearance of the steady

flows, it does have an effect on their stability behaviour. This is considered in Chapter 5. In

contrast to the solutions for shear-thinning power-law fluids, it can be noted that the results

for shear-thinning and shear-thickening fluids have converged on the boundary-layer region

0 ≤ z ≤ 20. Figure 3.7 presents the variation of the viscosity µ for both cases of Carreau fluids

versus z. It can be seen that the steady mean flow profiles are not consistent to those obtained

by Griffiths (2015) due to apply the viscosity function (2.24) scaled by µ̄∗
0 , while the viscosity

function (2.23) scaled by µ̄∗
∞ is used by Griffiths (2015). Therefore, the mean flow profiles
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Figure 3.9: Steady mean flow profiles U , V and W versus z of the flow at Ro = −0.5 for
Newtonian (n = 1) and shear-thinning Carreau fluids with n = 0.9,0.8,0.7,0.6 and k = 100.

for n = 1 in Figures 3.8-3.17 are identical to the Newtonian mean flow profiles in Lingwood

(1997).

It is interesting to note that the location of the maximum value of radial cross-flow pro-

file U for shear-thinning Carreau fluids clearly approaches the disk surface as n is reduced

as shown in Figures 3.8-3.12. This effect is more significant that for the radial profiles of

shear-thinning power-law fluids. On the other hand, the peak of U for shear-thickening Car-

reau fluids is shifted along the z-axis toward the far-field for all the values of Ro. In other

words, the thickness of the boundary-layer reduces with increased shear-thinning Carreau flu-

ids while, increasingly the effect of shear-thickening Carreau fluids lead to an increase in the

the thickness of the boundary-layer at all Ro. Furthermore, Figures 3.8-3.12 present that the

maximum value for the radial flow profile U (the radial wall jet) is reduced for increasingly

shear-thinning Carreau fluids, whereas it can be seen in Figures 3.13-3.17 it is increased for
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Figure 3.10: Steady mean flow profiles U , V and W versus z of the Ekman flow, Ro = 0 for
Newtonian (n = 1) and shear-thinning Carreau fluids with n = 0.9,0.8,0.7,0.6 and k = 100.

increasingly shear-thickening Carreau fluids.

The oscillation for both shear-thinning and shear-thickening Carreau fluids is increased for

all n as the Rossby number increased from minus unity to unity for all mean flows profiles. It

can be noted that the oscillation of the flow is dampened for increased shear-thinning Carreau

fluids, while it is amplified for increased shear-thickening Carreau fluids for all values of Ro.

Furthermore, the radial mean flow is inflectional for all n. Nevertheless, all mean flows radial,

azimuthal and axial velocities become inflectional with increasing Ro from minus unity to

unity for all n. This behaviour is consistent with that seen from power-law fluids.

The magnitude of axial flow W in the far-field is reduced for all Ro as n is decreased for

shear-thinning fluids. However, the magnitude of axial flow W for shear-thickening fluids in

the far-field is increased for all values of Ro as n is decreased. The magnitude of both radial

and azimuthal flows remain unchanged for all n.
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Figure 3.11: Steady mean flow profiles U , V and W versus z of the flow at Ro = 0.5 for
Newtonian (n = 1) and shear-thinning Carreau fluids with n = 0.9,0.8,0.7,0.6 and k = 100.
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Figure 3.12: Steady mean flow profiles U , V and W versus z of the Bödewadt flow, Ro = 1 for
Newtonian (n = 1) and shear-thinning Carreau fluids with n = 0.9,0.8,0.7,0.6 and k = 100.
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Figure 3.13: Steady mean flow profiles U , V and W versus z of the von Kármán flow, Ro =
−1 for Newtonian (n = 1) and shear-thickening Carreau fluids with n = 1.1,1.2,1.3,1.4 and
k = 100.
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Figure 3.14: Steady mean flow profiles U , V and W versus z of the flow at Ro = −0.5 for
Newtonian (n = 1) and shear-thickening Carreau fluids with n = 1.1,1.2,1.3,1.4 and k = 100.
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Figure 3.15: Steady mean flow profiles U , V and W versus z of the Ekman flow, Ro = 0 for
Newtonian (n = 1) and shear-thickening Carreau fluids with n = 1.1,1.2,1.3,1.4 and k = 100.
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Figure 3.16: Steady mean flow profiles U , V and W versus z of the flow at Ro = 0.5 for
Newtonian (n = 1) and shear-thinning power-law fluids with n= 1.1,1.2,1.3,1.4 and k = 100.
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Figure 3.17: Steady mean flow profiles U , V and W versus z of the Bödewadt flow, Ro = 1 for
Newtonian (n = 1) and shear-thinning power-law fluids with n= 1.1,1.2,1.3,1.4 and k = 100.

3.4 Matlab solver for the steady mean flow

The MATLAB solver function bvp4c is opted to obtain the solution of the non-linear steady

mean flow equations considered throughout this chapter. This solver function consists a finite

difference method implementing the 3-stage Lobatto IIIa formula that can be introduced as

one of the implicit Rung-kutta methods (Kierzenka and Shampine, 2001). The Lobatto IIIa

formula is a collocation method that provides a C1-continuous solution that is fourth-order

accurate uniformly in the interval of integration. This interval is divided into subintervals by

using mesh selection points. The error control and mesh selection are based on the residual of

the continuous solution. Furthermore, the points of the initial mesh and an initial approxima-

tion of the solution at the mesh points are used to solve the equations.

Firstly, to obtain the solution of the mean flow profiles U,V and W , it is important to

express the governing non-dimensional mean flow equations (3.8) and (3.13) for power-law
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and Carreau fluids, respectively, as a system of first order ordinary differential equations. This

system of equations is written as a five coupled first order equations in terms of the new five

dependent transformation variables φn (n = 1,2, ...5) where

φ1 =U, φ2 =U ′, φ3 =V, φ4 =V ′, and φ5 =W. (3.15)

The transformed first order ODE system with no-slip boundary conditions for power-law

fluids is given by

φ
′
1 = φ2,

φ
′
2 =

(
φ 2

2 +nφ 2
4
)

F − (1−n)φ2φ4G
nµ
[
φ 2

2 +φ 2
4
] ,

φ
′
3 = φ4, (3.16a)

φ
′
4 =

[
nφ 2

2 +φ 2
4
]

G+(1−n)φ2φ4F
nµ
[
φ 2

2 +φ 2
4
] ,

φ
′
5 = −2φ1 −

(
1−n
n+1

)
ηφ2,

φ1 (0) = φ3 (0) = φ5 (0) = 0,

φ1 (η → ∞) = 0,φ3 (η → ∞) = 1. (3.16b)

where

F = Ro
[

φ
2
1 −

(
φ

2
3 −1

)
+

(
φ5 +

(
1−n
n+1

)
ηφ1

)
φ2

]
−Co(φ3 −1) ,

G = Ro
[

2φ1φ3 +

(
φ5 +

(
1−n
n+1

)
ηφ1

)
φ4

]
+Coφ1,

µ =
[(

U ′)2
+
(
V ′)2

](n−1)/2
.

Regarding to Carreau model, the transformed first order ODE system with no-slip bound-

ary conditions for Carreau fluids is given by
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φ
′
1 = φ2,

φ
′
2 =

{
1+ k2 (φ 2

2 +nφ 2
4
)}

F − (1−n)k2φ2φ4G
µ
{

1+nk2
(
φ 2

2 +φ 2
4
)} ,

φ
′
3 = φ4, (3.17a)

φ
′
4 =

{
1+ k2 (nφ 2

2 +φ 2
4
)}

G+(1−n)k2φ2φ4F
µ
{

1+nk2
(
φ 2

2 +φ 2
4
)} ,

φ
′
5 = −2φ1,

φ1 (0) = φ3 (0) = φ5 (0) = 0,

φ1 (z → ∞) = 0,φ3 (z → ∞) = 1, (3.17b)

where

F = Ro
[
φ

2
1 −

(
φ

2
3 −1

)
+φ5φ2

]
−Co(φ3 −1) ,

G = Ro [2φ1φ3 +φ5φ4]+Coφ1,

µ =
{

1+ k2
[(

U ′)2
+
(
V ′)2

]}(n−1)/2
.

The procedure of the solver function bvp4c is outlined firstly by obtaining a solution guess

in an initial finite interval using the MATLAB function bvpinit, and then solving the system of

equations (3.16) and (3.17) for power-law and Carreau fluids, respectively resulting from the

boundary conditions in this interval. The solution is continued over larger intervals depending

on the mesh selection points. The solver function approximates the error of the numerical

solution on each interval. The process is repeated if the solution does not satisfy the tolerance

criteria until it applies for the entire domain.
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3.5 Summary

In this chapter, the profiles of steady mean BEK family of flows have been obtained by solving

the boundary-layer equations for generalized Newtonian fluid; power-law and Carreau fluids.

These governing equations are solved numerically by using fourth-order Runge-Kutta method.

The properties of the mean flow velocities has been interpreted in order to describe the beha-

viour of the boundary-layer flow. These properties are the oscillation of the flow components,

the thickness of the boundary-layer, the amount of fluid entrained into boundary-layer, and the

size of the radial wall jet.



Chapter 4

Convective instabilities for the BEK

family of flows for power-law fluids

In this chapter, the linear perturbation equations applicable to power-law fluids for the BEK

family of flows are formulated with a view to studying the occurrence of linear convective

instabilities. The Chebyshev collocation method described in Appendix B is applied to solve

these perturbation equations. Alveroglu et al. (2016) and Abdulameer et al. (2016) used this

numerical method to compute the neutral curves for the convective instability of Newtonian

and power-law fluids, respectively. Much of the content of this chapter has been previously

published in Abdulameer et al. (2016).

The derivation of the perturbation equations is given in §4.1. The neutral stability curves

are presented in §4.2 and the growth rates are discussed in §4.3. Finally, the results of an

energy analysis are presented in §4.4.

4.1 The perturbation equations

The dimensional governing boundary-layer equations (3.4) are used to derive the perturbation

equations for power-law fluids. A local linear stability analysis is applied at a local radius
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of the disk r∗a by imposing infinitesimally small disturbances on the steady-mean flow at that

position. Here the local Reynolds number is defined as

R = (r∗a)
2/(n+1)

[
(△Ω∗)2−n L∗

ν∗

]2/(n+1)

= (r∗a)
2/(n+1)

[
Ro2−n (Ω∗)2−n L∗

ν∗

]2/(n+1)

= (r∗a)
2/(n+1)

[
RoRo1−n (Ω∗)2−n L∗

ν∗

]2/(n+1)

=

(
r∗aRo
L∗

)2/(n+1)

(4.1)

= (raRo)2/(n+1) .

Note that this definition leads to negative Reynolds number for Newtonian flow (n = 1)

when the Rossby number is negative. However, this is simply a consequence of the formula-

tion and all results will be given in terms of positive R for all Ro and n. The Reynolds number

can be interpreted as the non-dimensional location of the local analysis, and increasing R in

magnitude corresponds to moving radially outwards from the axis of rotation (irrespective of

the sign of the Rossby number) (Lingwood, 1997).

The non-dimensionalised velocity, pressure and time scales are r∗aΩ∗Ro, ρ∗r∗2
a Ω∗2Ro2 and

L∗/(r∗aΩ∗Ro), respectively. The steady mean flows and small perturbing quantities are de-

noted by upper-case and lower-case symbols, respectively. The non-dimensional velocities

and pressure of a perturbed flow are defined as

U0(η ,r,θ , t) =
rRo

R(n+1)/2
U(η)+u(η ,r,θ , t), (4.2a)

V0(η ,r,θ , t) =
rRo

R(n+1)/2
V (η)+ v(η ,r,θ , t), (4.2b)

W0(η ,r,θ , t) =
r(n−1)/(n+1)Ro

R(n+1)/2
W (η)+w(η ,r,θ , t), (4.2c)

P0,1(η ,r,θ , t) =
r2(n−1)/(n+1)Ro2

R(n+1)
P(η)+ p(η ,r,θ , t), (4.2d)

where η = η(r,z) = r(1−n)/(n+1)z.

Note that the scalings used in equations (3.6), (3.7) and (4.2) are a generalisation of the
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similarity solution introduced by Mitschka and Ulbrecht (1965) and Griffiths et al. (2014a)

for the von Kármán flow under the power-law model. When Ro = −1, these expressions are

consistent with those used by Griffiths et al. (2014a,b) for all n and when n = 1, they are

consistent with those used in the Newtonian study of the BEK family of flows by Lingwood

(1997) for all Ro.

The dimensionless Navier-Stokes equations in cylindrical-polar coordinates are linearised

with respect to the perturbation quantities. The parallel-flow approximation is applied in the

same way as Lingwood (1997) to ensure that the linearised equations are separable in r, θ and

t. In practice, this involves ignoring variations in the Reynolds number with radius by repla-

cing the variable r with R(n+1)/2/Ro, and by neglecting all O((Ro/R)2) terms. Furthermore, it

has been necessary to set each factor Ro j that appear in disturbance equations to unity, where

j is some expression involving n−1 . This approximation is necessary to ensure continuity as

Ro is varied from −1 to 1. The derivation of the perturbation equations for power-law fluids

is presented in Appendix A. Therefore, the resulting linear disturbance equations are given by

R(n−1)/2 ∂u
∂ r

+
Ro
R

[
η
(1−n)
(n+1)

∂u
∂η

+u+
∂v
∂θ

]
+

∂w
∂η

= 0, (4.3a)

R(n−1)/2
(

∂u
∂ t

+U
∂u
∂ r

)
+

Ro
R

(
V

∂u
∂θ

+W
∂u
∂η

+Uu
)
+U ′w

−
(

2
Ro
R

V +
Co
R

)
v+

Ro
R

η
(1−n)
(n+1)

(
U

∂u
∂η

+U ′u+
∂ p
∂η

)
=−R(n−1)/2 ∂ p

∂ r
+

1
R

∂

∂η

[
µ

∂u
∂η

+ µ̂

(
U ′ ∂u

∂η
+V ′ ∂v

∂η

)
U ′
]
, (4.3b)



4.1 The perturbation equations 56

R(n−1)/2
(

∂v
∂ t

+U
∂v
∂ r

)
+

Ro
R

(
V

∂v
∂θ

+W
∂v
∂η

+Uv
)
+V ′w

+

(
2

Ro
R

V +
Co
R

)
u+

Ro
R

η
(1−n)
(n+1)

(
U

∂v
∂η

+V ′u
)

=−Ro
R

∂ p
∂θ

+
1
R

∂

∂η

[
µ

∂v
∂η

+ µ̂

(
U ′ ∂u

∂η
+V ′ ∂v

∂η

)
V ′
]
, (4.3c)

R(n−1)/2
(

∂w
∂ t

+U
∂w
∂ r

)
+

Ro
R

V
∂w
∂θ

+
Ro
R

W
∂w
∂η

+
Ro
R

W ′w

+
Ro
R

η
(1−n)
(n+1)

U
∂w
∂η

=− ∂ p
∂η

+
1
R

∂

∂η

(
µ

∂w
∂η

)
= 0, (4.3d)

where the viscosity and the disturbance viscosity functions of power-law fluids is given re-

spectively by

µ =
[
(U ′)2 +(V ′)2](n−1)/2

, (4.3e)

µ̂ =
(n−1)µ

[(U ′)2 +(V ′)2]
. (4.3f)

The perturbation quantities are supposed now to have the form consistent with the prior

Newtonian analysis (Alveroglu et al., 2016; Lingwood, 1997; Lingwood and Garrett, 2011)

u = û(η ;α,β ,ω;R,Ro)ei(αr+β̃ θ−ωt), (4.4a)

v = v̂(η ;α,β ,ω;R,Ro)ei(αr+β̃ θ−ωt), (4.4b)

w = ŵ(η ;α,β ,ω;R,Ro)ei(αr+β̃ θ−ωt), (4.4c)

p = p̂(η ;α,β ,ω;R,Ro)ei(αr+β̃ θ−ωt). (4.4d)

Here û, v̂, ŵ and p̂ are the spectral representations of the perturbation velocities and pres-

sure, respectively, α = αr + iαi and β̃ = β/Ro are the complex radial and real azimuthal

wavenumbers, and ω is the frequency of the disturbance in the frame rotating with the lower

disk. The perturbation equations now reduce to
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(
iᾱ +

Ro
R

)
û+ iβ̄ v̂+

Ro
R

η
(1−n)
(n+1)

∂ û
∂η

+
∂ ŵ
∂η

= 0, (4.5a)

[
i
(
ᾱU + β̄V − ω̄

)
+

Ro
R

U
]

û−
(

2
Ro
R

V +
Co
R

)
v̂+

Ro
R

W
∂ û
∂η

+U ′ŵ+
Ro
R

η
(1−n)
(n+1)

(
U

∂ û
∂η

+U ′û+
∂ p̂
∂η

)
+ iᾱ p̂

− 1
R

∂

∂η

[
µ

∂ û
∂η

+ µ̂

(
U ′ ∂ û

∂η
+V ′ ∂ v̂

∂η

)
U ′
]
= 0, (4.5b)

[
i
(
ᾱU + β̄V − ω̄

)
+

Ro
R

U
]

v̂+
(

2
Ro
R

V +
Co
R

)
û+

Ro
R

W
∂ v̂
∂η

+V ′ŵ+
Ro
R

η
(1−n)
(n+1)

(
U

∂ v̂
∂η

+V ′û
)
+ iβ̄ p̂

− 1
R

∂

∂η

[
µ

∂ v̂
∂η

+ µ̂

(
U ′ ∂ û

∂η
+V ′ ∂ v̂

∂η

)
V ′
]
= 0, (4.5c)

[
i
(
ᾱU + β̄V − ω̄

)
+

Ro
R

W ′
]

ŵ+
Ro
R

[
W

∂ ŵ
∂η

+η
(1−n)
(n+1)

U
∂ ŵ
∂η

]
+

∂ p̂
∂η

− 1
R

∂

∂η

(
µ

∂ ŵ
∂η

)
= 0, (4.5d)

where ᾱ = R(n−1)/2α , β̄ = β/R, ω̄ = R(n−1)/2ω . The frequency ω is setted to be zero in order

to study the occurrence of stationary instability in this thesis.

The modified wavenumber and orientation angle typically used in asymptotic analysis are

then given by Griffiths et al. (2014a) in the following form

κ =

√
ᾱ2 + β̄ 2 = r(n−1)/(n+1)

√
α2 +

β 2

r2 , (4.6)
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and

φ = tan−1
(

β̄

ᾱ

)
=

π

2
− tan−1

(
αr
β

)
. (4.7)

Note that additional viscous terms µ̂U ′
(

U ′ ∂ û
∂η

+V ′ ∂ v̂
∂η

)
and µ̂V ′

(
U ′ ∂ û

∂η
+V ′ ∂ v̂

∂η

)
appear

in the perturbation equations (4.5) and these are due to the first-order terms of the cross-

product associated with the generalised binomial expansion of the perturbed viscosity func-

tion. The study of Griffiths et al. (2014a) neglects these terms along with other η/R terms.

However, the solution method used here is such that all µ̂U ′
(

U ′ ∂ û
∂η

+V ′ ∂ v̂
∂η

)
, µ̂V ′

(
U ′ ∂ û

∂η
+V ′ ∂ v̂

∂η

)
and η/R terms can be retained. This represents a small deviation from Griffiths’ prior study

of the von Kármán flow (Ro =−1) but should be considered an improvement.

Consistent with Griffiths’ analyses, it is noted that the perturbation equations when n =

1 are not entirely consistent with the Newtonian set of transformed perturbation equations

used by Lingwood (1997); Lingwood and Garrett (2011) for Newtonian flow. This minor

discrepancy is due to the boundary-layer approximation used to construct the steady mean

flow solutions in this general non-Newtonian formulation. Further details on this are given in

the literature (Griffiths et al., 2014a).

In much the same way as presented by Alveroglu et al. (2016), the perturbation equations

(4.5) are written as the eigenvalue problem (B.20) and solved by using a Galerkin projection in

terms of Chebyshev polynomials described in Appendix B. This enables solutions of the dis-

persion relation D(α,β ,ω;R,n,Ro) = 0 to be obtained at each (n,Ro) with the aim of study-

ing the occurrence of local convective instability of power-law fluids at each parameter triple.

Chebyshev polynomials permit significantly higher accuracy than standard finite-difference

methods and this motivates their use here. Furthermore, as discussed by Alveroglu et al.

(2016), this approach has two additional advantages over the shooting method used previ-

ously in the literature (Griffiths et al., 2014a; Lingwood, 1997; Lingwood and Garrett, 2011).

Firstly, the perturbation equations are solved in terms of primitive variables not transformed

to a ODE system; this permits the retention of a number of terms otherwise neglected (as
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discussed previously). Secondly, all eigenvalues can be obtained simultaneously instead of

searching iteratively from some initial guess. However, the shooting method used the trans-

formed new system in order to calculates a single eigenvalue at each run. Appelquist (2014)

presents a comparison between the shooting and Chebyshev methods in full details for the von

Kármán flow.

The perturbation equations (4.5) are subject to boundary conditions

û(η = 0) = v̂(η = 0) = ŵ(η = 0) = 0 (4.8a)

û(η → η∞) = v̂(η → η∞) = ŵ(η → η∞) = 0 (4.8b)

These represent the no-slip condition on the disk surface and also ensure that the disturb-

ances are contained within the boundary-layer. All calculations use a Gauss–Lobatto grid with

100 points distributed via an exponential map between the lower disk surface η = 0 and the

top of the domain η = η∞. Further increases in the resolution and spatial extent of this grid

were found to have no numerical effect on the stability results.

4.2 Neutral curves

Neutral curves, defined by neutral spatial growth αi = 0, have been calculated for 0.6 ≤ n ≤

1 in increments of 0.1 at Ro = −1,−0.5,0,0.5 and 1. This range is deemed sufficient to

capture the convective instability characteristics of shear-thinning power-law fluids within the

BEK family of flows. Figures 4.1-4.6 presents the neutral curves in the R–ᾱr, R–β̄ , R–κ

and R–φ planes where ᾱr and β̄ represent the real radial and the azimuthal wavenumbers,

respectively, κ and φ denote the wavenumber and wave angle, and are defined in (4.6) and

(4.7), respectively. These curves enclose a region in which the boundary-layer is convectively

unstable.
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Figure 4.1: Neutral curves of the von Kármán flow, Ro = −1 for shear-thinning power-law
fluids with n = 1,0.9,0.8,0.7,0.6.

The neutral curves are seen to have a two-lobed structure demonstrating that both the

Type I and Type II modes exist in the non-Newtonian system. In particular, the upper branch

lobe (in the R–wavenumbers planes) correspond to the Type I mode of instability (due to an

inflectional crossflow velocity component) and the smaller lower branch lobe to the Type II

mode of instability (due to streamline curvature). Critical Reynolds numbers for the onset of

both modes are presented in Table 4.1.

Figure 4.2 shows the structure of the two spatial branches in the complex α–plane for the

flow of Ro = −0.5 when n = 0.6, for R = 380 and R = 762. The convective instability is

determined by a branch region lying below the line αi = 0. Figure 4.2(a) shows that branch 1

now defines the region of convective instability. Increasing the value of R affects the minimum

of branch 1 that moves downwards and the points of the branch crossing the line αi = 0 move

apart. Therefore, branch 1 results in an extension of the region of instability as R is increased.
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Figure 4.2: The two spatial branches for the flow at Ro =−0.5 in the case of n = 0.6 showing
Type I instability at; (a) at R = 380 and (b) R = 762.



4.2 Neutral curves 62

n R ᾱ β̄ κ φ

1 272.90(445.21) 0.4029(0.1319) 0.0802(0.0467) 0.4108(0.1400) 11.26(19.48)
0.9 323.60(566.41) 0.3768(0.1142) 0.0781(0.0419) 0.3848(0.1216) 11.71(20.16)
0.8 392.36(741.16) 0.3518(0.0982) 0.0760(0.0374) 0.3599(0.1051) 12.19(20.83)
0.7 488.20(999.78) 0.3298(0.0841) 0.0743(0.0331) 0.3380(0.0903) 12.69(21.46)
0.6 626.06(1394.57) 0.3103(0.0717) 0.0725(0.0290) 0.3186(0.0773) 13.15(22.01)

(a) von Kármán, Ro =−1

n R ᾱ β̄ κ φ

1 149.74(-) 0.5098(-) 0.1237(-) 0.5246(-) 13.64(-)
0.9 180.37(-) 0.4780(-) 0.1185(-) 0.4924(-) 13.92(-)
0.8 221.84(-) 0.4495(-) 0.1139(-) 0.4637(-) 14.22(-)
0.7 279.54(-) 0.4253(-) 0.1102(-) 0.4393(-) 14.52(-)
0.6 362.69(763.26) 0.4065(0.1179) 0.1075(0.0527) 0.4204(0.1291) 15.81(24.08)

(b) Ro =−0.5

n R ᾱ β̄ κ φ

1 105.88(-) 0.5805(-) 0.1444(-) 0.5982(-) 13.97(-)
0.9 127.54(-) 0.5466(-) 0.1386(-) 0.5639(-) 14.23(-)
0.8 157.52(-) 0.5163(-) 0.1336(-) 0.5333(-) 14.51(-)
0.7 200.20(-) 0.4891(-) 0.1293(-) 0.5059(-) 14.81(-)
0.6 263.00(496.81) 0.4677(0.1569) 0.1263(0.0704) 0.4845(0.1720) 15.11(24.15)

(c) Ekman, Ro = 0

n R ᾱ β̄ κ φ

1 67.21(-) 0.5861(-) 0.1455(-) 0.6039(-) 13.94(-)
0.9 81.28(-) 0.5521(-) 0.1402(-) 0.5696(-) 14.25(-)
0.8 101.40(-) 0.5187(-) 0.1351(-) 0.5360(-) 14.60(-)
0.7 131.08(-) 0.4892(-) 0.1306(-) 0.5063(-) 14.95(-)
0.6 176.36(-) 0.4646(-) 0.1271(-) 0.4816(-) 15.30(-)

(d) Ro = 0.5

n R ᾱ β̄ κ φ

1 22.40(-) 0.5404(-) 0.1185(-) 0.5532(-) 12.37(-)
0.9 27.22(-) 0.5119(-) 0.1189(-) 0.5256(-) 13.07(-)
0.8 34.51(-) 0.4803(-) 0.1179(-) 0.4946(-) 13.79(-)
0.7 46.08(-) 0.4470(-) 0.1155(-) 0.4616(-) 14.49(-)
0.6 65.71(-) 0.4108(-) 0.1117(-) 0.4257(-) 15.21(-)

(e) Bödewadt, Ro = 1

Table 4.1: The values of the critical Reynolds number R, wavenumbers α , β and κ and wave
angle φ for shear-thinning power-law fluids at various Ro on the both modes Type I and (Type
II).
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Figure 4.3: Neutral curves of the flow at Ro =−0.5 for shear-thinning power-law fluids with
n = 1,0.9,0.8,0.7,0.6.

Furthermore, branch 2 eventually also crosses the line αi = 0 thereby mapping out the upper

and lower branch of the neutral curve, as shown in Figure 4.2(b).

It is noted that Figure 4.1 is consistent with the neutral curves generated by Griffiths et al.

(2014a) for Newtonian von Kármán flow, Ro = −1 and n = 1. However, slight differences

in the numerical values of the critical Reynolds numbers are found owing to the inclusion

of the additional viscous terms µ̂U ′
(

U ′ ∂ û
∂η

+V ′ ∂ v̂
∂η

)
, µ̂V ′

(
U ′ ∂ û

∂η
+V ′ ∂ v̂

∂η

)
and η/R in the

perturbation equations. Figure 4.1 shows that shear-thinning fluids for the von Kármán flow

have a strong stabilising effect on both the Type I and Type II in terms of the critical Reynolds

number and the region of instability from the upper branch. It is interesting to note that these

terms lead to growth in the relative size of the Type II mode as n is decreased (as compared to

Griffiths’results). In addition, the critical Reynolds numbers are reduced in comparison with

Griffiths’ numerical results as predicted in Griffiths et al. (2014a).



4.2 Neutral curves 64

R

0 100 200 300 400 500 600 700 800 900 1000

ᾱ
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Figure 4.4: Neutral curves of the Ekman flow, Ro = 0 for shear-thinning power-law fluids with
n = 1,0.9,0.8,0.7,0.6.

Figure 4.3 reveals the neutral curves of the related flow of the BEK family for Ro =−0.5.

It shows that decreasing the power-law index (n < 1) has a stabilising effect on both the Type

I and Type II modes in terms of the critical Reynolds number and the region of instability from

the upper branch. Furthermore, the Type II mode begins to appear as the power-law index n is

decreased and it can be seen this clearly at n = 0.6.

The neutral curves for the Ekman flow, Ro = 0 are then presented in Figure 4.4. It shows

that the behaviour of the Ekman flow is similar to the flow for Ro = −0.5 in terms of the

stabilising effect on the Type I mode and appearance of the Type II mode as n is reduced.

Figure 4.5 shows the neutral curves of the related flow of the BEK family for Ro = 0.5.

It is noted from this figure that there is a stabilising effect for decreasing power-law index n

in terms of the critical Reynolds number as well as the region of instability from the upper

branch.
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Figure 4.5: Neutral curves of the flow at Ro = 0.5 for shear-thinning power-law fluids with
n = 1,0.9,0.8,0.7,0.6.

The neutral curves for Bödewadt flow are then produced at Ro = 1. Figure 4.6 reveals that

shear-thinning fluids have a stabilising effect on Type I mode for the Bödewadt flow in terms

of the critical Reynolds number and the region of instability from the upper branch. However,

the stabilising effect is weaker compared to the effect of the other flows of BEK family. In

other words, the stabilising effect is decreasing gradually depending on the value of Rossby

number changed from von Kármán flow, Ro =−1 towards Bödewadt flow, Ro = 1.

In general, all neutral curves in Figures 4.1-4.6 and critical Reynolds numbers in Table

4.1 suggest that decreasing the power-law index (n < 1) has a stabilising effect on both the

dominant Type I mode and secondary Type II mode for all Ro. That is, shear-thinning fluids

act to stabilise the von Kármán, the Ekman, the Bödewadt, and all intermediate boundary-

layers. Figures 4.1-4.6 further suggest that, while reducing the associated critical Reynolds

number, reductions in n act to promote the appearance of the distinct Type II mode.
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(ᾱr,R)-plane

n = 1

n = 0.9

n = 0.8

n = 0.7

n = 0.6

R
0 50 100 150 200 250 300 350 400

β̄

0

0.04

0.08

0.12

0.16

0.2

0.24

0.28
(β̄,R)-plane

n = 1

n = 0.9

n = 0.8

n = 0.7

n = 0.6

R
0 50 100 150 200 250 300 350 400

κ

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

(κ,R)-plane

n = 1

n = 0.9

n = 0.8

n = 0.7

n = 0.6

R
0 50 100 150 200 250 300 350 400

φ

10

14

18

22

26

30

34

38

42

46

50
(φ,R)-plane

n = 1

n = 0.9

n = 0.8

n = 0.7

n = 0.6

Figure 4.6: Neutral curves of the Bödewadt flow, Ro = 1 for shear-thinning power-law fluids
with n = 1,0.9,0.8,0.7,0.6.

4.3 Growth rates

In this section, the growth rates of the Type I instability mode of the BEK family of boundary-

layer flows are presented for power-law fluids. These growth rates are plotted as a variation of

the absolute value of the imaginary part of the negative radial wavenumber, |αi|, at particular

number of spiral vortices n̄. The growth rates of the secondary Type II mode are not included

here, owing to their very small value in comparison with the dominant Type I mode. In

addition, the power-law fluids have only a slight effect on the Type II mode.

Figure 4.7 shows the convective growth rates of the dominant Type I mode at R = Rc +25

against n̄ at Ro =−1, −0.5 and 0 for various value of n. Here n̄ = β̄R is the number of spiral

vortices around the disk surface, and Rc denotes the critical Reynolds number at the onset of

the Type I mode presented in Table 4.1 for the particular n and Ro. That is, the growth rate is

sampled a fixed distance (R = 25) into the convectively unstable region for a variety of flow



4.3 Growth rates 67

n̄

18 22 26 30 34 38 42 46 50 54 58

|ᾱ
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|ᾱ
i
|

0

0.01

0.02

0.03

0.04

0.05

0.06
n = 1

n = 0.9

n = 0.8

n = 0.7

n = 0.6

(c) Ekman, Ro = 0

Figure 4.7: Growth rates for Type I mode for shear-thinning power-law fluids with n =
1,0.9,0.8,0.7,0.6.
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configurations.

Figure 4.7 reveals a universal stabilising effect on the growth rates of the Type I mode for

each flow as n decreases; this is in addition to the stabilising increase in Rc with reduced n as

identified previously. The stabilising results seen here are consistent with the critical values

for each flow reported in Table 4.1.

It is interesting to note that the maximum growth rate (identified with a red dot) is pushed

to higher n̄. That is, although it might be expected the delayed onset and weaker growth

of the disturbances for shear-thinning fluids, the number of spiral vortices at the maximum

growth rate location is predicted to increase compared to the Newtonian case. Furthermore,

the maximum growth rate for all values of n is increased as the Rossby number reduced from

−1 to 0. These maximum rates are used later in the energy analysis of §4.4.

Note that it is not possible to show convective growth rates for Ro ≥ 0.5. This is due to the

very early onset of absolute instability and associated “branch exchange” between Type I and

Type III modes. Therefore, it is impossible to find the location of maximum growth rate at

such positive Ro. Further information on this can be found for the Newtonian case performed

by Lingwood and Garrett (2011).
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4.4 Energy analysis

Following the work of Cooper and Carpenter (1997), Cooper et al. (2015) and Garrett et al.

(2016) for the von Kármán flow, an integral energy equation for the disturbances within the

power-law BEK family of flows is derived here in order to gain insight into the underlying

physical mechanisms behind the stabilising effects determined previously.

Cooper’s approach are followed by derive the governing energy equations by multiplying

the linearised momentum equations (4.3) by the disturbance quantities u, v and w, respectively.

These are then summed to obtain the following kinetic-energy equation for the disturbances

{
R(n−1)/2

(
∂

∂ t
+U

∂

∂ r

)
+

Ro
R

(
V

∂

∂θ
−W

∂

∂η

)}
K

=−uw
∂U
∂η

− vw
∂V
∂η

+
Ro
R

w2 ∂W
∂η

+
Ro
R

Uu2 +
Ro
R

Uv2

−
[

R(n−1)/2 ∂ (up)
∂ r

+
Ro
R

∂ (vp)
∂θ

+
∂ (wp)

∂η
− Ro

R
up
]
+

[
∂
(
u jσi j

)
∂xi

−σi j
∂u j

∂xi

]

+
1
R

∂

∂η

(
µ

∂u
∂η

)
u+

1
R

∂

∂η

(
µ

∂v
∂η

)
v+

1
R

∂

∂η

(
µ

∂w
∂η

)
w. (4.9)

Here K = (1/2)
(
u2 + v2 +w2) is the kinetic energy, σi j are anti-symmetric viscous stress

terms

σi j =
µ

R

(
∂ui

∂x j
−

∂u j

∂xi

)
. (4.10)

Note that O
(
1/R2) viscous terms have been omitted to ensure consistency with the lin-

earised governing stability equations. Furthermore, the derivatives with respect to t and θ are

removed to capture the steady, rotationally-symmetric nature of the energy. In practice this is

done by averaging the perturbations over a single time period and azimuthal mode. The equa-

tions are then integrated across the entire boundary-layer to obtain the following expressions:
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∫
∞

0

R(n−1)/2

U
∂K
∂ r︸ ︷︷ ︸
a

+
∂ (up)

∂ r︸ ︷︷ ︸
b

− ∂

∂ r
(uσ11 + vσ12 +wσ13)︸ ︷︷ ︸

c


dη

=
∫

∞

0

[(
−uw

∂U
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)
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(
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∂V
∂η

)
+

(
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w2 ∂W
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∫

∞

0

(
σi j

∂u j

∂xi

)
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R
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)
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III
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IV

+
∫

∞
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Ro
R
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∂η
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∞
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Ro
R

u2Udη +
∫
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Ro
R
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[
µ

∂ 2u
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∂η
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]
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1
R

∫
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[
µ
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∂ µ
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∂η

v

]
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∫
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[
µ

∂ 2w
∂η2 w+

∂ µ

∂η

∂w
∂η

w

]
dη︸ ︷︷ ︸

V I

.

(4.11)

Note that overbars denote a period-averaged quantity; for example, uv = uv∗+ u∗v (where ∗

indicates a complex conjugate) and W̄ subscripts denote quantities evaluated at the wall.

Substituting (4.4) into the left-hand-side of equation (4.11) and then derive the terms with

respect to r gives

∫
∞

0

[
R(n−1)/2i(α −α

∗){U (uu∗+ vv∗+ww∗)+(up∗+u∗p)

−(uσ
∗
11 +u∗σ11 + vσ

∗
12 + v∗σ12 +wσ

∗
13 +w∗

σ13)}]dη = RHS.

It is clear that α = αr + iαi and α∗ = αr − iαi, gives

−2ᾱi

∫
∞

0

[
UK +up− (uσ11 + vσ12 +wσ13)

]
dη = RHS

where ᾱ = R(n−1)/2α .

Therefore, The energy equation is normalized for any eigenmode against the integrated
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mechanical energy flux as follows

−2ᾱi = (P1 +P2 +P3)︸ ︷︷ ︸
I

+ D︸︷︷︸
II

+(PW1 +PW2)︸ ︷︷ ︸
III

+(S1 +S2 +S3)︸ ︷︷ ︸
IV

+(G1 +G2 +G3)︸ ︷︷ ︸
V

+(N1 +N2 +N3)︸ ︷︷ ︸
V I

. (4.12)

Note that the mathematical origin of each term is indicated by the numbered underbracing in

equations (4.11) and (4.12).

As discussed by Cooper and Carpenter (1997); Cooper et al. (2015), particular terms in

equation (4.12) can be interpreted physically as originating from the following effects,

(a) average kinetic energy convected by the radial mean flow,

(b) work done by the perturbation pressure,

(c) work done by the viscous stress inside the boundary-layer,

(I) Reynolds stress energy production terms, Pi,

(II) viscous dissipation energy removal term, D,

(III) pressure work terms, PWi,

(IV) contributions from work done on the wall by viscous stresses, Si,

(V) terms arising from the streamline curvature effects and the three dimensionality of the

mean flow, Gi,

(VI) non-Newtonian viscosity terms, Ni.

The terms PW2, S1, S2 and S3 in the energy balance equation (4.12) are equal to zero. This is

because of the boundary conditions (4.8) for all flows of the BEK family. Furthermore, for the

Ekman flow, Ro = 0, PW1 and Gi are identically zero.
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The positive terms in the equation (4.12) contribute to energy production while the nega-

tive terms remove energy from the disturbances. A mode is therefore amplified when energy

production outweighs the energy dissipation. That is, the instability is occurred when ᾱi < 0

from equation (4.12), which is consistent with the definition of instability used to generate the

neutral curves in §4.2 and growth rates in §4.3.

The total energy of the system, (the sum of the energy production and the dissipation terms)

is very useful to interpret the stability effects of power-law fluids. Increased total energy leads

to a destabilising effect on the Type I mode. On the other hand, reduced total energy lead to

stabilising effect on the mode.

As discussed previously in §4.3, the maximum growth rate is used here to calculate the

energy balance for the flow of BEK family. All calculations within the energy analysis are

performed at R = Rc + 25. Here Rc is the critical Reynolds number presented in Table 4.1 at

the onset of the Type I mode. Again, as predicted by Lingwood and Garrett (2011), it is not

possible to find the location of maximum growth rate for Ro ≥ 0.5 due to the very early onset

of absolute instability and associated “branch exchange”. Thus, it is impossible to present the

energy balance calculations at these positive Ro.

Figure 4.8 presents the energy balance calculations for the dominant Type I mode at Ro =

−1, −0.5 and 0 for various value of n. It can be seen that there is a stabilising effect on the

Type I mode for the von Kármán, Ekman and the flow of Ro =−0.5. This is due to decrease in

the total energy that comes from the sum of the energy production and the dissipation terms.

Furthermore, it is interesting to note that both the Reynolds stress energy production term P2

and the viscous dissipation energy term D are reduced as n is decreased; this is primary cause

of the reduction in total energy. It is interesting to note that non-Newtonian viscosity effects

(indicated by Ni) are found to play a negligible role in the generation of the instability. That

is, non-Newtonian viscosity acts to modify the steady flow but the stability response to this is

predominantly inviscid in nature.
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Figure 4.8: Type I energy balance at Re = Rc + 25 for shear-thinning power-law fluids with
n = 1,0.9,0.8,0.7,0.6.



4.5 Conclusion 74

4.5 Conclusion

In this chapter, the stability of stationary convective disturbances in the BEK family of boundary-

layer flows has been investigated for shear-thinning power-law fluids. The work of Griffiths

et al. (2014a) has been generalised successfully to this broader class of flows and also allowed

for a number of mathematical terms that had been previously neglected in that analysis. As

with Griffiths’ study, the analysis has required the use of the so-called boundary-layer and

parallel-flow approximations. Although this may lead to some slight inaccuracies in the qual-

itative predictions, the use of this approximation is common in the community and is not

expected to affect the quantitative conclusions made here.

The newly-derived steady-flow solutions presented in Chapter 3 were perturbed to derive

the perturbation equations. Linear stability analysis has been conducted to study the occur-

rence of convective instability. The governing equations are controlled by the power-law index

(defining the extent of shear thinning) and the Rossby number (defining the global rotation

rate). The results presented show that shear-thinning power-law fluids are expected to be sta-

bilising for the entire BEK family of flows. In particular, there is a stabilising effect on both

the Type I and Type II modes. This is evident through a delayed onset of convective instability

to higher Reynolds numbers and also qualitatively ‘weaker’ modes. Furthermore, the growth

rates of Type I instability mode have been considered to find the maximum rates for particular

flows in the system.

The results have been confirmed by energy-balance calculations at the maximum growth

rates in order to obtain the underlying physical mechanisms behind the stabilising effects. This

approach suggests that all physical processes (both energy production and dissipation) are

weakened by the introduction of shear-thinning fluids. Furthermore, non-Newtonian viscosity

is expected to play very little role in the dominant instability mechanisms. Rather the results

suggest that their benefit comes from a modification of the steady flow profiles which, in turn,

are more stable to inviscid Type I effects.
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With regards to motivating industrial aims in this thesis, the skin-friction drag in enclosed

rotor-stator devices can be reduced through the use of shear-thinning lubricants. This would

work by delaying laminar-turbulent transition, thereby utilising the lower drag forces arising

from laminar flow.



Chapter 5

Convective instabilities for the BEK

family of flows for Carreau fluids

In this chapter, the linear perturbation equations relevant to Carreau fluids for the BEK family

of flows are formulated in order to study the occurrence of linear convective instability. Again,

as mentioned in the previous chapter, the Chebyshev collocation method used by Alveroglu

et al. (2016) and Abdulameer et al. (2016) is applied to solve these perturbation equations.

The stability neutral curves in this chapter are computed by this numerical method in order to

present the properties of convective instability for shear-thinning and shear-thickening Carreau

fluids. While the structure of this chapter follows that of Chapter 4, it is important to note that

this chapter considers an entirely different model for non-Newtonian viscosity. Significant

differences have been found between the two models in the case of the von Kármán flow

(Griffiths, 2016) and this motivates its consideration here.

The derivation of the perturbation equations is given in §5.1. The neutral stability curves

are presented that based on the solutions of the perturbation equations in §5.2 and §5.3 while

the effects of Carreau fluids on the growth rates are described in §5.4. Finally, the results of

the energy analysis are presented in §5.5.
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5.1 The perturbation equations

The same procedure detailed in §4.1 for the power-law fluids is followed in this section, except

now using the viscosity of Carreau fluids (3.11) in the governing boundary-layer equations

(3.4). A local linear stability analysis is conducted at a local radius of the disk r∗a by assuming

sufficiently small disturbances on the steady-mean flow at that position.

The local Reynolds number for Carreau fluids is defined by setting n= 1 in (4.1) as follows

R =
r∗a△Ω∗L∗

ν∗ =
r∗aRoΩ∗L∗

ν∗ =
r∗aRo
L∗ = raRo. (5.1)

This definition of Reynolds number is entirely consistent with the Newtonian formulation

of Lingwood (1997). The Reynolds number is negative when the Rossby number is negative,

however this is merely a consequence of the formulation and all results will be presented in

terms of positive R for all Ro. The local Reynolds number can be interpreted as the non-

dimensional location of the local analysis (Lingwood, 1997).

The velocity, pressure and time in the dimensionless form are given by r∗aΩ∗Ro, ρ∗r∗2
a Ω∗2Ro2

and L∗/(r∗aΩ∗Ro), respectively. The steady mean flow and small perturbing quantities are in-

dicated by upper-case and lower-case symbols, respectively. The instantaneous dimensionless

velocities and pressure of a perturbed flow are defined by setting n = 1 in the non-dimensional

components (4.2) as follows

U0(z,r,θ , t) =
rRo
R

U(z)+u(z,r,θ , t), (5.2a)

V0(z,r,θ , t) =
rRo
R

V (z)+ v(z,r,θ , t), (5.2b)

W0(z,r,θ , t) =
Ro
R

W (z)+w(z,r,θ , t), (5.2c)

P0,1(z,r,θ , t) =
Ro2

R2 P(z)+ p(z,r,θ , t). (5.2d)

It is noted that the scalings (3.12) and (5.2) are an extension of the exact similarity solu-

tion introduced by von Kármán (1921) and Lingwood (1995) for the von Kármán flow. The
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scalings (5.2) are consistent with those used in the Newtonian study of the BEK family by

Lingwood (1997). When Ro = −1, these expressions are consistent with those used by Grif-

fiths (2016). However, Carreau fluids are controlled by two parameters: the power-law index

n and relaxation parameter k, these arise from the viscosity function (3.11) and so appear in

the perturbation equations.

The non-dimensional Navier-Stokes equations are linearised with respect to the perturb-

ation quantities. The parallel-flow approximation is applied in the same way as Lingwood

(1997) to ensure that the linearised equations are separable in r, θ and t. Therefore, variations

in the Reynolds number with radius are neglected by replacing the variable r with R/Ro. Fur-

thermore, all O((Ro/R)2) terms are also ignored. The derivation of perturbation equations for

Carreau fluids is presented in Appendix A. Thus, the linearised disturbance equations take the

following form

∂u
∂ r

+
Ro
R

(
u+

∂v
∂θ

)
+

∂w
∂ z

= 0, (5.3a)

∂u
∂ t

+U
∂u
∂ r

+
Ro
R

(
V

∂u
∂θ

+W
∂u
∂ z

+Uu
)
+U ′w−

(
2

Ro
R

V +
Co
R

)
v

=−∂ p
∂ r

+
1
R

∂

∂ z

[
µ

∂u
∂ z

+ µ̂

(
U ′∂u

∂ z
+V ′∂v

∂ z

)
U ′
]
, (5.3b)

∂v
∂ t

+U
∂v
∂ r

+
Ro
R

V
∂v
∂θ

+
Ro
R

W
∂v
∂ z

+
Ro
R

Uv+V ′w+

(
2

Ro
R

V +
Co
R

)
u

=−Ro
R

∂ p
∂θ

+
1
R

∂

∂ z

[
µ

∂v
∂ z

+ µ̂

(
U ′∂u

∂ z
+V ′∂v

∂ z

)
V ′
]
,

∂w
∂ t

+U
∂w
∂ r

+
Ro
R

V
∂w
∂θ

+
Ro
R

W
∂w
∂ z

+
Ro
R

W ′w =−∂ p
∂ z

+
1
R

∂

∂ z

(
µ

∂w
∂ z

)
, (5.3c)

where the viscosity and the disturbance viscosity function of Carreau fluids is given by, re-
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spectively

µ =
{

1+ k2 [(U ′)2 +(V ′)2]}(n−1)/2
, (5.3d)

µ̂ =
k2 (n−1)µ

{1+ k2[(U ′)2 +(V ′)2]}
. (5.3e)

where n is the power-law index and k is the relaxation parameter.

Following the procedure applied for power-law fluids, the perturbation quantities are as-

sumed to have the normal-mode form

u = û(z;α,β ,ω;R,Ro,k)ei(αr+β̃ θ−ωt), (5.4a)

v = v̂(z;α,β ,ω;R,Ro,k)ei(αr+β̃ θ−ωt), (5.4b)

w = ŵ(z;α,β ,ω;R,Ro,k)ei(αr+β̃ θ−ωt), (5.4c)

p = p̂(z;α,β ,ω;R,Ro,k)ei(αr+β̃ θ−ωt). (5.4d)

Here û, v̂, ŵ and p̂ are the spectral representations of the perturbation velocities and pres-

sure, respectively, α = αr + iαi and β̃ = β/Ro are the complex radial and real azimuthal

wave-numbers, and ω is the frequency of the disturbance in the frame rotating with the lower

disk. Substituting the normal-mode forms (5.4) into (5.3) gives

(
iα +

Ro
R

)
û+ iβ̄ v̂+

∂ ŵ
∂ z

= 0, (5.5a)

[
i
(
αU + β̄V −ω

)
+

Ro
R

U
]

û−
(

2
Ro
R

V +
Co
R

)
v̂+

Ro
R

W
∂ û
∂ z

+U ′ŵ+ iᾱ p̂− 1
R

∂

∂ z

[
µ

∂ û
∂ z

+ µ̂

(
U ′∂ û

∂ z
+V ′∂ v̂

∂ z

)
U ′
]
= 0, (5.5b)
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[
i
(
αU + β̄V −ω

)
+

Ro
R

U
]

v̂+
(

2
Ro
R

V +
Co
R

)
û+

Ro
R

W
∂ v̂
∂ z

+V ′ŵ+ iβ̄ p̂− 1
R

∂

∂ z

[
µ

∂ v̂
∂ z

+ µ̂

(
U ′∂ û

∂ z
+V

∂ v̂
∂ z

)
V ′
]
= 0, (5.5c)

[
i
(
αU + β̄V −ω

)
+

Ro
R

W
]

ŵ+
Ro
R

W
∂ ŵ
∂ z

+
∂ p̂
∂ z

− 1
R

∂

∂ z

(
µ

∂ ŵ
∂ z

)
= 0, (5.5d)

where β̄ = β/R. The neutral wavenumber κ and orientation angle φ typically used in asymp-

totic analyses are then given by

κ =

√
α2 + β̄ 2 =

√
α2 +

β 2

r2 , (5.6)

and

φ = tan−1
(

β̄

α

)
=

π

2
− tan−1

(
αr
β

)
. (5.7)

It is noted that additional viscous terms µ̂U ′
(

U ′ ∂ û
∂ z +V ′ ∂ v̂

∂ z

)
and µ̂V ′

(
U ′ ∂ û

∂ z +V ′ ∂ v̂
∂ z

)
ap-

pear in the perturbation equations (5.5) which are also neglected in Griffiths (2016). The

perturbation equations (5.5) are written as the eigenvalue problem (B.23) by implementing

the Chebyshev collocation method. This eigenvalue problem is solved to obtain the solutions

of the dispersion relation D(α,β ,ω;R,n,Ro,k) = 0 with the aim of studying the occurrence

of convective instability of Carreau fluids at each parameter set (n,Ro,k). The Chebyshev col-

location method is applied by Alveroglu et al. (2016) for Newtonian fluids to study the effects

of surface roughness and also in the Chapter 4 of this thesis to determine neutral curves for

power-law fluids. The details of this numerical method are explained in Appendix B.

The boundary conditions for perturbation equations (5.5) are given by

û(z = 0) = v̂(z = 0) = ŵ(z = 0) = 0, (5.8a)

û(z → z∞) = v̂(z → z∞) = ŵ(z → z∞) = 0 (5.8b)
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5.2 Neutral curves for the case k = 100

In this section, the neutral curves defined by neutral spatial growth αi = 0 are presented for

0.6 ≤ n ≤ 1.4 in increments of 0.1 at Ro =−1,−0.5,0,0.5 and 1 for the case k = 100. These

curves have been calculated to determine the convective instability properties of both shear-

thinning and shear-thickening Carreau fluids within the BEK family of flows. All the neutral

curves in this thesis are presented in the R–αr, R–β̄ , R–κ and R–φ planes where αr and β̄

denote the real radial and the azimuthal wavenumbers, respectively, κ and φ represent the

wavenumber and wave angle defined in (5.6) and (5.7), respectively. Each curve encloses

a region in which the boundary-layer is convectively unstable. Two parameters, n and k,

determine the characteristics of a Carreau fluid. The relaxation parameter is fixed here by

choosing k = 100 and varying the power-law index n, and consider the effect of k in section

5.3.

As mentioned in a previous chapter, two instability modes contribute to the neutral curves

for the non-Newtonian system. The upper branch is the Type I mode of instability that is at-

tributed to an inflectional crossflow velocity component, and the smaller lower branch Type II

mode of instability that is attributed to external streamline curvature and other viscous effects.

The two spatial branches in the complex α–plane are presented in Figure 5.1 for the flow

at Ro =−0.5 with k = 100 for shear-thinning (n = 0.6) and shear-thickening (n = 1.4) fluids

at the same value of Reynolds number at R = 235. A branch region lying below the line

αi = 0 determines the convective instability. The region of convective instability is indicated

by branch 1 for both shear-thinning and shear-thickening fluids. Figure 5.1(a) shows that

branch 2 crosses the line αi = 0, mapping out the Type II mode in the case of n= 0.6. However,

the Type II mode does not appear in the neutral curves for shear-thickening fluids because the

branch 2 has not crossed the line αi = 0, as shown in Figure 5.1(b). Moreover, the regions of

convective instability determined by both branch 1 and branch 2 are extended by increasing

the value of R.
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Figure 5.1: The two spatial branches for the flow at Ro =−0.5 with k = 100 showing Type I
instability at R = 235 for; (a) shear-thinning, n = 0.6 and (b) shear- thickening, n = 1.4.

The neutral curves of the von Kármán flow, Ro = −1 for both shear-thinning and shear-

thickening Carreau fluids with k = 100 are presented here in Figures 5.2-5.3. The neutral

curves for other related flows of BEK family are shown in Appendix C.

Figure 5.2 shows that shear-thinning fluids for the von Kármán flow with k = 100 have a

slight destabilising effect on both the Type I and Type II modes in terms of the critical Reyn-

olds number. It is noted that the size of Type II mode is increased as n is reduced. Furthermore,

a strong destabilising effect has been observed in terms of the region of instability from the

upper branch. The other related flows of BEK family for shear thinning fluids have found to

display the same behaviour in terms of the critical Reynolds number for Type I mode and the

region of instability from the upper branch.

On the other hand, Figure 5.3 shows that shear-thickening fluids with k = 100 for the von

Kármán flow have a small stabilising effect on both Type I and Type II modes in terms of the

critical Reynolds number. However, the convectively unstable region is strongly reduced from

the upper branch of the neutral curve. The same behaviour has been noticed for other related

flows of BEK family in terms of the critical Reynolds number at the onset of Type I mode and
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Figure 5.2: Neutral curves of the von Kármán flow, Ro =−1 for shear-thinning Carreau fluids
with n = 1,0.9,0.8,0.7,0.6 and k = 100.

the region of instability from the upper branch. Moreover, it has been seen that the Type II

mode does not appear for flows with Ro ≥−0.5.

It is interesting to note that there is a remarkable difference between equivalent results of

shear-thinning power-law and Carreau fluids in terms of their convective instability character-

istics. The neutral curves reveal that the unstable region is increased for Carreau fluids as n is

reduced for k = 100. In other words, shear-thinning Carreau fluids have a destabilising effect

on both the dominant Type I mode and distinct Type II mode for all value of Ro by setting the

parameter k = 100.

The findings in this thesis regarding the differences between the two non-Newtonian mod-

els across all Ro are consistent with those of Griffiths (2016) in the limiting case of Ro =−1.

However, it is noted that where comparisons can be made between the Carreau studies at

Ro = −1, there is a difference in the values of critical Reynolds numbers for both Type I
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Figure 5.3: Neutral curves of the von Kármán flow, Ro = −1 for shear-thickening Carreau
fluids with n = 1,1.1,1.2,1.3,1.4 and k = 100.

and Type II modes and in the instability region form the upper branch. This is due to using

the viscosity function (2.24) scaled by µ̄∗
0 in the perturbation equations (5.5) while Griffiths

(2016) used the viscosity function (2.23) scaled by µ̄∗
∞ in the perturbation equations. This

scaling leads to some deviation from the neutral curve of Newtonian fluids. Furthermore, the

additional viscous terms µ̂U ′
(

U ′ ∂ û
∂ z +V ′ ∂ v̂

∂ z

)
and µ̂V ′

(
U ′ ∂ û

∂ z +V ′ ∂ v̂
∂ z

)
are included in the per-

turbation equations (5.5) as the same as power-law fluids whilst these terms are removed in

Griffiths (2016). Tables 5.1-5.2 show the values of critical Reynolds numbers for the onset of

Type I and Type II mode for shear-thinning and shear-thickening Carreau fluids, respectively.

The relaxation parameter k in the viscosity function of Carreau fluids has also been invest-

igated. This parameter is found to play a significant role in the stability characteristics of the

flow to the extent that the value of k can determine whether Carreau fluids have a stabilising

or destabilising effect on the Type I and Type II modes. Therefore, the variation of the critical
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n R α β̄ κ φ

1 272.90(445.21) 0.4029(0.1319) 0.0802(0.0467) 0.4108(0.1400) 11.26(19.48)
0.9 254.86(437.51) 0.4853(0.1479) 0.0999(0.0539) 0.4954(0.1574) 11.63(20.04)
0.8 236.27(428.50) 0.5988(0.1698) 0.1276(0.0637) 0.6123(0.1813) 12.03(20.55)
0.7 217.08(416.98) 0.7676(0.2005) 0.1690(0.0771) 0.7860(0.2148) 12.41(21.03)
0.6 197.31(401.39) 1.0300(0.2457) 0.2332(0.0964) 1.0561(0.2639) 12.76(21.42)

(a) von Kármán, Ro =−1

n R α β̄ κ φ

1 149.74(-) 0.5098(-) 0.1237(-) 0.5246(-) 13.64(-)
0.9 142.19(-) 0.6128(-) 0.1517(-) 0.6313(-) 13.90(-)
0.8 134.10(-) 0.7565(-) 0.1913(-) 0.7803(-) 14.19(-)
0.7 125.39(-) 0.9729(-) 0.2511(-) 1.0048(-) 14.47(-)
0.6 116.09(234.89) 1.3175(0.3823) 0.3463(0.1696) 1.3622(0.4182) 14.73 (23.92)

(b) Ro =−0.5

n R α β̄ κ φ

1 105.88(-) 0.5805(-) 0.1444(-) 0.5982(-) 13.97(-)
0.9 100.08(-) 0.6980(-) 0.1768(-) 0.7200(-) 14.21(-)
0.8 94.43(-) 0.8623(-) 0.2230(-) 0.8907(-) 14.50(-)
0.7 88.84(-) 1.1084(-) 0.2926(-) 1.1464(-) 14.79(-)
0.6 83.20(-) 1.4736(-) 0.3980(-) 1.5550(-) 15.07(-)

(c) Ekman, Ro = 0

n R α β̄ κ φ

1 67.21(-) 0.5861(-) 0.1455(-) 0.6039(-) 13.94(-)
0.9 63.14(-) 0.7037(-) 0.1782(-) 0.7259(-) 14.21(-)
0.8 59.59(-) 0.8679(-) 0.2246(-) 0.8964(-) 14.51(-)
0.7 56.53(-) 1.0815(-) 0.2887(-) 1.1194(-) 14.95(-)
0.6 53.90(-) 1.4312(-) 0.3918(-) 1.4839(-) 15.31(-)

(d) Ro = 0.5

n R α β̄ κ φ

1 22.40(-) 0.5404(-) 0.1185(-) 0.5532(-) 12.37(-)
0.9 20.36(-) 0.6499(-) 0.1481(-) 0.6666(-) 12.84(-)
0.8 18.68(-) 0.8099(-) 0.1900(-) 0.8319(-) 13.20(-)
0.7 20.65 (-) 1.0301(-) 0.2529 (-) 1.0607 (-) 13.80 (-)
0.6 16.81(-) 1.2700(-) 0.3296(-) 1.3121(-) 14.55(-)

(e) Bödewadt, Ro = 1

Table 5.1: The values of the critical Reynolds number R, wave numbers α , β , κ and wave
angle φ shear-thinning Carreau fluids with k = 100 at various Ro on the both modes Type I
and (Type II).
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n R α β̄ κ φ

1 272.90(445.21) 0.4029(0.1319) 0.0802(0.0467) 0.4108(0.1399) 11.26(19.48)
1.1 290.44(452.44) 0.3428(0.1191) 0.0661(0.0410) 0.3491(0.1259) 10.91(18.98)
1.2 307.58(459.77) 0.2984(0.1096) 0.0558(0.0365) 0.3036(0.1155) 10.59(18.44)
1.3 324.36(467.53) 0.2633(0.1013) 0.0479(0.0329) 0.2676(0.1065) 10.30(17.98)
1.4 340.85(475.91) 0.2354(0.0955) 0.0417(0.0300) 0.2390(0.1001) 10.05(17.43)

(a) von Kármán, Ro =−1

n R α β̄ κ φ

1 149.74(-) 0.5098(-) 0.1237(-) 0.5246(-) 13.64(-)
1.1 156.88(-) 0.4342(-) 0.1035(-) 0.4464(-) 13.41(-)
1.2 163.77(-) 0.3785(-) 0.0887(-) 0.3888(-) 13.19(-)
1.3 170.56(-) 0.3336(-) 0.0772(-) 0.3424(-) 13.03(-)
1.4 177.41(-) 0.2997(-) 0.0684(-) 0.3074(-) 12.86(-)

(b) Ro =−0.5

n R α β̄ κ φ

1 105.88(-) 0.5805(-) 0.1444(-) 0.5981 (-) 13.97(-)
1.1 111.94(-) 0.4930(-) 0.1207(-) 0.5075 (-) 13.76(-)
1.2 118.32(-) 0.4272(-) 0.1031(-) 0.4395 (-) 13.56 (-)
1.3 125.05(-) 0.3744(-) 0.0893(-) 0.3849 (-) 13.42 (-)
1.4 132.15(-) 0.3326(-) 0.0785(-) 0.3418 (-) 13.29 (-)

(c) Ekman, Ro = 0

n R α β̄ κ φ

1 67.21(-) 0.5861(-) 0.1455(-) 0.6039 (-) 13.94 (-)
1.1 71.76(-) 0.4960(-) 0.1211(-) 0.5105(-) 13.72 (-)
1.2 76.77(-) 0.4268(-) 0.1026(-) 0.4390 (-) 13.52(-)
1.3 82.17(-) 0.3737(-) 0.0884(-) 0.3840 (-) 13.30 (-)
1.4 87.90(-) 0.3297(-) 0.0769(-) 0.3385 (-) 13.14 (-)

(d) Ro = 0.5

n R α β̄ κ φ

1 22.40(-) 0.5404(-) 0.1185(-) 0.5532 (-) 12.37 (-)
1.1 24.82 (-) 0.4579(-) 0.0965(-) 0.4680(-) 11.90 (-)
1.2 27.55 (-) 0.4114(-) 0.0800(-) 0.4191(-) 11.01(-)
1.3 36.5 (-) 0.4129(-) 0.0700(-) 0.4188(-) 9.63(-)
1.4 34.5 (-) 0.3144(-) 0.0555(-) 0.3192(-) 10.01(-)

(e) Bödewadt, Ro = 1

Table 5.2: The values of the critical Reynolds number R, wave numbers α , β , κ and wave
angle φ for shear-thickening Carreau fluids with k = 100 at various Ro on the both modes
Type I and (Type II).
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Reynolds numbers with the parameter k is required to identify the optimal value of k denoted

in this thesis by ko. This optimization is also important to enable a comparison of equivalent

results between the power-law and Carreau models. The neutral curves for the parameter ko

will be considered in the following section.

5.3 Neutral curves for the case k = ko

In this section, the neutral curves for 0.6≤ n≤ 1.4 in increments of 0.1 at Ro=−1,−0.5,0,0.5

are presented for the case k = ko. As discussed in the previous section, the variation of critical

Reynolds numbers with the parameter k is necessary in order to select the optimal values of

k = ko for each value of n and Ro. Figures 5.4 and 5.5 present the critical Reynolds numbers

versus the parameter k for both shear-thinning and shear-thickening Carreau fluids, respect-

ively. These figures are plotted by firstly calculating the steady mean flow velocities in the

range [0,100] of the parameter k, and then solving the perturbation equations in order to de-

termine the critical Reynolds number in k ∈ [0,100]. The variation in Rc versus k for the

Rossby number Ro = 1 are not performed here due to inconsistency of the numerical code

calculated mean flow velocities for all k. The steady mean flow profiles of shear-thinning and

shear-thickening Carreau fluids with k = ko are presented in Appendix C. Furthermore, the

numerical values of these mean flow parameters U ′ (0), V ′ (0) and W (z∞) calculated at the

optimal value ko for each n and Ro are also reported in Tables C.1-C.2 in Appendix C. It has

been noticed from these tables that the optimal values of relaxation parameter ko for each Ro

are approximately close to each other for all n where the values are between 6.42 < ko < 6.16

and 5.17 < ko < 4.82 for von Kármán and Ekman flows, respectively.
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Figure 5.4: Variation in the critical Reynolds number Rc with the relaxation parameter k for
shear-thinning Carreau fluids.

Figure 5.4 reveals that the critical Reynolds numbers for shear-thinning Carreau fluids

sharply increase with k until reaching a maximum value for all n < 1 and Ro, and then there

is a gradual drop passing the critical Reynolds number for Newtonian fluid (R = 272.90). The

optimal values of the parameter k are selected at the maximum value of Rc indicated by the

red dots in the Figure 5.4. This selection is to ensure that shear-thinning Carreau fluids have a

maximum stabilising effect on both Type I and Type II modes. In contrast, Figure 5.5 shows

that the critical Reynolds numbers for shear-thickening Carreau fluids are markedly decreased

approaching its minimum value for each n > 1 and Ro followed by regular rise until k = 100.

The minimum values of Rc are identified as the "optimal" values of the parameter k denoted by
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Figure 5.5: Variation in the critical Reynolds number Rc with the relaxation parameter k for
shear-thickening Carreau fluids.

the red dots to ensure that the shear-thickening Carreau fluids have the maximum destabilising

effect on both Type I and Type II modes.

Figure 5.6 shows the two spatial branches in the complex α–plane for the flow of Ro =

−0.5 with k = ko for a shear-thinning fluid (n = 0.6) at R = 523 and a shear-thickening fluid

(n = 1.4) at R = 224. The convective instability is determined by a branch region lying below

the line αi = 0. The branch 1 indicates the region of convective instability for both shear-

thinning and shear-thickening fluids. It has been seen that branch 2 started to pass the line

αi = 0 to produce the Type II lobe as shown in Figure 5.6(a). However, the branch 2 in Figure

5.6(b) is far away from the line. Thus, the Type II lobe does not exist in the neutral curve. The

regions of convective instability determined by both branch 1 and branch 2 are extended by
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Figure 5.6: The two spatial branches for the flow at Ro = −0.5 with k = ko showing Type
I instability for; (a) shear-thinning and n = 0.6 at R = 523, (b) shear- thickening, n = 1.4 at
R = 224.

increasing the value of R.

The neutral curves of the von Kármán flow, Ro = −1 for both shear-thinning and shear-

thickening Carreau fluids with k = ko are revealed here in Figures 5.7 and 5.8. All other

neutral curves for related flows of BEK family are presented in Appendix C.

Figure 5.7 shows that shear-thinning Carreau fluids for the von Kármán flow with k = ko

have a stabilising effect on both the Type I and Type II modes in terms of the critical Reynolds

number. However, it is noted that there is a slight destabilising effect in terms of the region of

instability from the upper branch. Furthermore, it is found that the Type II mode is expanded

as n is decreased which is similar to the effect of the shear-thinning power-law fluids. The

same stability behaviour of the von Kármán flow has been observed for other related flows of

BEK family in terms of the critical Reynolds number, the region of instability and the growth

of Type II mode. Furthermore, it is interesting to note that the growth of the distinct Type II

mode is gradually increased as n is reduced.
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Figure 5.7: Neutral curves of the von Kármán flow, Ro =−1 for shear-thinning Carreau fluids
with n = 1,0.9,0.8,0.7,0.6 and k = ko.

On the other hand, Figure 5.8 shows that shear-thickening Carreau fluids for the von

Kármán flow with k = ko have a slight destabilising effect on both the Type I and Type II

modes in terms of the critical Reynolds number. Nevertheless, a small stabilising effect is

observed in terms of the region of instability from the upper branch. Moreover, very slight

promotion has been accrued on the Type II mode as n increased. All other related flows of

BEK family for shear-thickening fluids have the same stability behaviour of the von Kármán

flow in terms of the critical Reynolds number for Type I mode and the region of instability

from the upper branch. However, the Type II mode for the related flows of Ro ≥ −0.5 does

not appear obviously. The critical Reynolds numbers of shear-thinning and shear-thickening

for the onset of both modes are reported in Tables 5.3-5.4, respectively.

Returning back to the variation of Rcversus k, it is clear that the Non-Newtonian Carr-

eau fluids have Newtonian critical Reynolds number RN
c for particular values of relaxation
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n R α β̄ κ φ

1 272.90(445.21) 0.4029(0.1319) 0.0802(0.0467) 0.4108(0.1400) 11.26(19.48)
0.9 290.66(501.72) 0.4118(0.1268) 0.0839(0.0462) 0.4203(0.1349 ) 11.51(20.02)
0.8 315.68(581.97) 0.4209(0.1212) 0.0880(0.0455) 0.4300(0.1295) 11.81(20.57)
0.7 352.29(700.81) 0.4307(0.1145) 0.0926(0.0443) 0.4405(0.1227) 12.14(21.18)
0.6 408.66(885.98) 0.4396(0.1068) 0.0975(0.0427) 0.4503(0.1150) 12.51(21.79)

(a) von Kármán, Ro =−1

n R α β̄ κ φ

1 149.74(-) 0.5098(-) 0.1237(-) 0.5246(-) 13.64(-)
0.9 162.70(-) 0.5201(-) 0.1281(-) 0.5356(-) 13.83(-)
0.8 181.18(-) 0.5325(-) 0.1332(-) 0.5489(-) 14.05(-)
0.7 208.62(-) 0.5423(-) 0.1384(-) 0.5597(-) 14.31(-)
0.6 251.74(522.34) 0.5495(0.1695) 0.1432(0.0765) 0.5679(0.1860) 14.61(24.28)

(b) Ro =−0.5

n R α β̄ κ φ

1 105.88(-) 0.5805(-) 0.1444(-) 0.5982(-) 13.97(-)
0.9 114.00(-) 0.5948(-) 0.1496(-) 0.6134(-) 14.12(-)
0.8 125.80(-) 0.6114(-) 0.1558(-) 0.6310(-) 14.29(-)
0.7 143.68(-) 0.6279(-) 0.1625(-) 0.6485(-) 14.51(-)
0.6 172.34(335.55) 0.6417(0.2235) 0.1693(0.1011) 0.6637(0.2453) 14.78(24.33)

(c) Ekman, Ro = 0

n R α β̄ κ φ

1 67.21(-) 0.5861(-) 0.1455(-) 0.6039(-) 13.94(-)
0.9 71.72(-) 0.6028(-) 0.1512 0.6215(-) 14.09(-)
0.8 78.33(-) 0.6203(-) 0.1580(-) 0.6401(-) 14.29(-)
0.7 88.50(-) 0.6403(-) 0.1659(-) 0.6615(-) 14.52(-)
0.6 105.12(-) 0.6602(-) 0.1744(-) 0.6828(-) 14.80(-)

(d) Ro = 0.5

Table 5.3: The values of the critical Reynolds number R, wave numbers α , β and κ and wave
angle φ for shear-thinning Carreau fluids with k = ko at various Ro on the both modes Type I
and (Type II).
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n R α β̄ κ φ

1 272.90(445.21) 0.4029(0.1319) 0.0802(0.0467) 0.4108(0.1400) 11.26(19.48)
1.1 259.94(404.14) 0.3955(0.1359) 0.0771(0.0469) 0.4030(0.1437 ) 11.03(19.03)
1.2 250.28(373.52) 0.3886(0.13912) 0.0744(0.0469) 0.3957(0.1468) 10.8347(18.64)
1.3 242.99(350.24) 0.3831(0.1423) 0.0721(0.0470) 0.3898(0.1499) 10.6654(18.27)
1.4 237.41(332.22) 0.3768(0.1442) 0.0700(0.0468) 0.3833(0.1516) 10.5246(17.99)

(a) von Kármán, Ro =−1

n R α β̄ κ φ

1 149.74(-) 0.5098(-) 0.1237(-) 0.5246(-) 13.64(-)
1.1 140.36(-) 0.4986(-) 0.1197(-) 0.5128(-) 13.49(-)
1.2 133.41(-) 0.4888(-) 0.1162(-) 0.5024(-) 13.37(-)
1.3 128.18(-) 0.4788(-) 0.1131(-) 0.4920(-) 13.29(-)
1.4 124.18(-) 0.4715(-) 0.1106(-) 0.4843(-) 13.20(-)

(b) Ro =−0.5

n R α β̄ κ φ

1 105.88(-) 0.5805(-) 0.1444(-) 0.5982(-) 13.97(-)
1.1 100.12(-) 0.5666(-) 0.1398(-) 0.5836(-) 13.86(-)
1.2 95.92(-) 0.5538(-) 0.1359(-) 0.5702(-) 13.79(-)
1.3 92.78(-) 0.5437(-) 0.1328(-) 0.5597(-) 13.73(-)
1.4 90.41(-) 0.5362(-) 0.1304(-) 0.5518(-) 13.67(-)

(c) Ekman, Ro = 0

n R α β̄ κ φ

1 67.21(-) 0.5861(-) 0.1455(-) 0.6039(-) 13.94(-)
1.1 64.00(-) 0.5713(-) 0.1406(-) 0.5884(-) 13.83(-)
1.2 61.65(-) 0.5598(-) 0.1367(-) 0.5762(-) 13.73(-)
1.3 59.88(-) 0.5507(-) 0.1336(-) 0.5667(-) 13.64(-)
1.4 58.50(-) 0.5424(-) 0.1310(-) 0.5580(-) 13.57(-)

(d) Ro = 0.5

Table 5.4: The values of the critical Reynolds number R, wave numbers α , β and κ and wave
angle φ for shear-thickening Carreau fluids with k = ko at various Ro on the both modes Type
I and (Type II).
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Figure 5.8: Neutral curves of the von Kármán flow, Ro = −1 for shear-thickening Carreau
fluids with n = 1,1.1,1.2,1.3,1.4 and k = ko.

parameter k for each 0.6 < n < 1.4 as shown in Figures 5.4-5.5. The neutral curves of shear-

thinning and shear-thickening Carreau fluids are presented for the von Kármán flow, Ro =−1

that have RN
c = 272.90 for each n. It is observed that the shear-thinning Carreau fluids have

a slight stabilising effect on the Type II mode that is promoted as n is decreased; this is in

contrast to shear-thickening Carreau fluids that have a destabilising effect on this mode as

presented in Figures 5.9-5.10. Furthermore, a stark destabilising effect has been noticed for

shear thinning fluids such that the instability region is expanded via the upper branch as n is

reduced, while shear-thickening fluids are observed to have a strong stabilising effects on this

region. The critical Reynolds numbers at the onset of Type II mode for both shear-thinning

and shear-thickening fluids that have RN
c = 272.90 at the onset of Type I mode for the Kármán

flow, Ro =−1 are reported in Table 5.5.



5.3 Neutral curves for the case k = ko 95

R
200 300 400 500 600 700 800 900 1000

α
r

0

0.5

1

1.5

(αr,R)-plane

n = 1

n = 0.9

n = 0.8

n = 0.7

n = 0.6

R
200 300 400 500 600 700 800 900 1000

β

0

0.1

0.2

0.3

0.4
(β,R)-plane

n = 1

n = 0.9

n = 0.8

n = 0.7

n = 0.6

R
200 300 400 500 600 700 800 900 1000

κ

0

0.5

1

1.5

(κ,R)-plane

n = 1

n = 0.9

n = 0.8

n = 0.7

n = 0.6

R
200 300 400 500 600 700 800 900 1000

φ
10

15

20

25

30
(φ,R)-plane

n = 1

n = 0.9

n = 0.8

n = 0.7

n = 0.6

Figure 5.9: Neutral curves of the von Kármán flow, Ro =−1 for shear-thinning Carreau fluids
with n = 1,0.9,0.8,0.7,0.6 and RN

c = 272.90 at the onset of Type I mode.
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Figure 5.10: Neutral curves of the von Kármán flow, Ro = −1 for shear-thickening Carreau
fluids with n = 1,1.1,1.2,1.3,1.4 and RN

c = 272.90 at the onset of Type I mode.
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n R α β̄ κ φ k
1 445.21 0.1319 0.0467 0.1400 19.48 -

0.9 468.81 0.1379 0.0503 0.1468 20.04 28.4
0.8 496.28 0.1463 0.0549 0.1562 20.5879 28.6
0.7 527.60 0.1539 0.0600 0.1651 21.3046 28.8
0.6 561.80 0.1762 0.0693 0.1893 21.4875 28.8

(a) Shear-thinning fluids

n R α β̄ κ φ k
1 445.21 0.1319 0.0467 0.1400 19.48 -

1.1 425.11 0.1270 0.0437 0.1343 18.9805 27.4
1.2 408.08 0.1240 0.0413 0.1308 18.4317 26.8
1.3 393.65 0.1213 0.0393 0.1276 17.9669 26.2
1.4 381.42 0.1192 0.0377 0.1250 17.5445 25.5

(b) Shear-thickening fluids

Table 5.5: The values of the critical Reynolds number of Type II mode R, wave numbers α ,
β ,κ , wave angle φ and relaxation parameter k that have RN

c = 272.90 for each n at the onset
of Type I mode for the von Kármán flow, Ro =−1.

5.4 Growth rates

In this section, the growth rates of the Type I instability mode are presented for the BEK family

of shear-thinning and shear-thickening Carreau fluids for both cases k = 100 and k = ko. The

growth rates of the Type I instability mode are plotted as a variation of the absolute value of

the imaginary part of the negative radial wavenumber, |αi|, at particular values of number of

spiral vortices n̄. The growth rates of the secondary Type II mode are not involved here, due

to their very small value as compared to the dominant Type I mode and also because Carreau

fluids have only a slight effect on the Type II mode.

For the case k= 100, Figures 5.11-5.12 present the convective growth rates of the dominant

Type I mode at R = Rc + 25 against n̄ at Ro = −1, −0.5 and 0 for shear-thinning and shear-

thickening fluids, respectively. Here n̄ = β̄R is the number of spiral vortices around the disk

surface, and Rc denotes the critical Reynolds number reported in Tables 5.1-5.2 for the onset

of the Type I mode for the particular n and Ro.

Figure 5.11 shows a destabilising effect on the growth rates of the Type I mode and the
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maximum values identified by red dotes are pushed to higher values of n̄ for each shear-

thinning flow as n is decreased. However, shear-thickening fluids have a stabilising effect on

the growth rates of the Type mode I and the maximum values shift to lower values of n̄ as

presented in Figure 5.12.

Regarding the optimal case k = ko, the convective growth rates of the dominant Type I

mode at R = Rc + 25 against n̄ at Ro = −1, −0.5 and 0 for both shear-thinning and shear-

thickening fluids are presented in Figures 5.13-5.14, respectively. The critical Reynolds num-

bers Rc for the onset of the Type I mode for each flow are stated in Tables 5.3-5.4.

In contrast to the case of fixed k = 100, Figure 5.13 reveals a stabilising effect on the

growth rates of the Type I mode for each shear-thinning flow when k = ko, while Figure

5.14 shows a destabilising effect on the growth rates of the Type I for these flows of shear-

thickening fluids. On the other hand, it is interesting to note that the behaviour of the shifting

maximum growth rates with number of spiral vortices n̄ for Carreau fluids is the same for

k = ko and k = 100. However, this behaviour is different between shear-thinning and shear

thickening Carreau fluids. In other words, the number of spiral vortices n̄ is increased for

shear-thinning Carreau fluids, whilst it is decreased for shear-thickening fluids for all k.

Moreover, it has been seen that the maximum growth rate for all values of n for both cases

of k is increased as the Rossby number Ro reduced from −1 to 0. In general, All the results

of growth rates are consistent with the critical Reynolds numbers for each flow presented

previously.

As mentioned in the Chapter 4, absolute instability onsets at very small Reynolds numbers

for Ro ≥ 0.5 leading to “branch exchange”. Therefore, it is impossible to find the location of

maximum growth rate (Lingwood and Garrett, 2011).
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Figure 5.11: Growth rates for Type I mode for shear-thinning Carreau fluids with n =
1,0.9,0.8,0.7,0.6 and k = 100.
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Figure 5.12: Growth rates for Type I mode for shear-thickening Carreau fluids with n =
1,1.1,1.2,1.3,1.4 and k = 100.
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Figure 5.13: Growth rates for Type I mode for shear-thinning Carreau fluids with n =
1,0.9,0.8,0.7,0.6 and k = ko.
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|ᾱ
i|

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
n = 1

n = 1.1

n = 1.2

n = 1.3

n = 1.4

(b) Ro =−0.5

n̄

12 14 16 18 20 22 24

|ᾱ
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Figure 5.14: Growth rates for Type I mode for shear-thickening Carreau fluids with n =
1,1.1,1.2,1.3,1.4 and k = ko.
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5.5 Energy analysis

By the same procedure as in §4.4, the studies of Cooper and Carpenter (1997), Cooper et al.

(2015) and Garrett et al. (2016) for the von Kármán flow are followed in this section, and de-

rive an integral energy equation for the disturbances within the Carreau BEK family of flows.

This will enable us to establish the underlying physical mechanisms behind the stabilising

effects determined previously.

The approach of Cooper and Carpenter (1997) is applied here to derive the governing

energy equations by multiplying the linearised momentum equations (5.3) by the disturbance

quantities u, v and w, respectively. The kinetic energy equation is then obtained by summing

the momentum equations and is given as follows

{
∂

∂ t
+U

∂

∂ r
+

Ro
R

(
V

∂

∂θ
−W

∂

∂ z

)}
K

=−uw
∂U
∂ z

− vw
∂V
∂ z

+
Ro
R

w2 ∂W
∂ z

+
Ro
R

Uu2 +
Ro
R

Uv2

−
[

∂ (up)
∂ r

+
Ro
R

∂ (vp)
∂θ

+
∂ (wp)

∂ z
− Ro

R
up
]
+

[
∂
(
u jσi j

)
∂xi

−σi j
∂u j

∂xi

]

+
1
R

∂

∂ z

(
µ

∂u
∂ z

)
u+

1
R

∂

∂ z

(
µ

∂v
∂ z

)
v+

1
R

∂

∂ z

(
µ

∂w
∂ z

)
w. (5.9)

Note that K = (1/2)
(
u2 + v2 +w2) is the kinetic energy, µ is the viscosity function of the

Carreau fluids, and σi j are anti-symmetric viscous stress terms

σi j =
µ

R

(
∂ui

∂x j
−

∂u j

∂xi

)
. (5.10)

The viscous terms O
(
1/R2) have been neglected to ensure consistency with the linearised

governing stability equations. Moreover, the steady, rotationally-symmetric nature of the en-

ergy is ensured by removing the derivatives with respect to both t and θ . The perturbations

are averaging over a single time period and azimuthal mode. The energy integral equation is
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then obtained by integrate the entire boundary-layer as follows

∫
∞

0

U
∂K
∂ r︸ ︷︷ ︸
a

+
∂ (up)

∂ r︸ ︷︷ ︸
b

− ∂

∂ r
(uσ11 + vασ12 +wσ13)︸ ︷︷ ︸

c

dz

=
∫

∞

0

[(
−uw

∂U
∂ z

)
+

(
−vw

∂V
∂ z

)
+

(
Ro
R

w2 ∂W
∂ z

)]
dz︸ ︷︷ ︸

I

−
∫

∞

0

(
σi j

∂u j

∂xi

)
dz︸ ︷︷ ︸

II

+
∫

∞

0

(
Ro
R

up
)

dz+(wp)W̄︸ ︷︷ ︸
III

−(uσ31 + vσ32 +wσ33)W̄︸ ︷︷ ︸
IV

+
∫

∞

0

Ro
R

∂ K̄
∂ z

Wdz+
∫

∞

0

Ro
R

u2Udz+
∫

∞

0

Ro
R

v2Udz︸ ︷︷ ︸
V

+
1
R

∫
∞

0

[
µ

∂ 2u
∂ z2 u+

∂ µ

∂ z
∂u
∂ z

u

]
dz+

1
R

∫
∞

0

[
µ

∂ 2v
∂ z2 v+

∂ µ

∂ z
∂v
∂ z

v

]
dz+

1
R

∫
∞

0

[
µ

∂ 2w
∂ z2 w+

∂ µ

∂ z
∂w
∂ z

w

]
dz︸ ︷︷ ︸

V I

.

(5.11)

Here overbars denote a period-averaged quantity, such that uv = uv∗+u∗v where ∗ indic-

ates a complex conjugate and W̄ subscripts denote quantities evaluated at the wall.

Substituting (5.4) on the left-hand-side of equation (5.11) and then derive the terms with

respect to r gives

∫
∞

0
[i(α −α

∗){U (uu∗+ vv∗+ww∗)+(up∗+u∗p)

−(uσ
∗
11 +u∗σ11 + vσ

∗
12 + v∗σ12 +wσ

∗
13 +w∗

σ13)}]dη = RHS.

It is clear that α = αr + iαi and α∗ = αr − iαi, gives

−2αi

∫
∞

0

[
UK +up− (uσ11 + vσ12 +wσ13)

]
dη = RHS

Thus, the energy equation is normalized for any eigenmode against the integrated mech-
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anical energy flux in the following form

−2αi = (P1 +P2 +P3)︸ ︷︷ ︸
I

+ D︸︷︷︸
II

+(PW1 +PW2)︸ ︷︷ ︸
III

+(S1 +S2 +S3)︸ ︷︷ ︸
IV

+(G1 +G2 +G3)︸ ︷︷ ︸
V

+(N1 +N2 +N3)︸ ︷︷ ︸
V I

, (5.12)

The mathematical origin of each term is indicated by the numbered underbracing in equations

(5.11) and (5.12) and explained physically in §4.4.

The terms PW2, S1, S2 and S3 in the energy balance equation (5.12) are identically zero

due to the boundary conditions (5.8) for all flows of the BEK family. Furthermore, for the

Ekman flow, Ro = 0, PW1 and Gi are equal to zero due to the appearance of Ro in these terms.

The stability effect of both shear-thinning and shear-thickening Carreau fluids can be inter-

preted by calculating the total energy of the system which is the sum of the energy production

and dissipation terms. In other words, increased total energy reveals a destabilising effect on

the modes, while decreased total energy indicates a stabilising effect on the mode.

The maximum growth rates obtained in §5.4 for each flow are used here to obtain the

energy balance for flows within the BEK family. The calculations of the energy analysis

are applied at R = Rc + 25, where Rc is the critical Reynolds number for the onset of the

Type I mode. Again, as predicted by Lingwood and Garrett (2011), it is not possible to find

the location of maximum growth rate for Ro ≥ 0.5 due to the very early onset of absolute

instability and associated “branch exchange”. Therefore, the energy balance calculations at

these positive Ro are not shown here.

The energy balance calculations of the dominant Type I mode for BEK family of shear-

thinning and shear-thickening Carreau fluids are presented for cases k = 100 and k = ko.

For the case k = 100, Figures 5.15-5.16 show the energy balance calculations of Type I

mode for the von Kármán, Ekman and the flow of Ro = −0.5 for both shear-thinning and

shear-thickening fluids, respectively. A very slight destabilising effect can be found on the
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Figure 5.15: Type I energy balance at Re = Rc + 25 for shear-thinning Carreau fluids with
n = 1,0.9,0.8,0.7,0.6 and k = 100.
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Figure 5.16: Type I energy balance at Re = Rc + 25 for shear-thickening Carreau fluids with
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Figure 5.17: Type I energy balance at Re = Rc + 25 for shear-thinning Carreau fluids with
n = 1,0.9,0.8,0.7,0.6 and k = ko.
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Figure 5.18: Type I energy balance at Re = Rc + 25 for shear-thickening Carreau fluids with
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Type I mode for shear-thinning fluids due to rise the total energy that come from the sum of

the energy production and the dissipation term. Furthermore, it has been noticed that the terms

of both energy production P2 and dissipation energy D are increased as n decreased. However,

a small stabilising effect can be observed for shear-thickening fluids due to a reduction in the

total energy. Moreover, the energy production term P2 and the dissipation energy term D are

reduced as n increased.

Figures 5.17-5.18 present the energy balance calculations of the Type I mode at Ro =

−1, −0.5 and 0 for both shear-thinning and shear-thickening fluids with the case k = ko,

respectively. It has been seen that there is a stabilising effect on the Type I mode for shear-

thinning fluids where the term of energy production P2 is reduced as n decreased. On the other

hand, shear-thickening fluids have a destabilising effect on the Type I mode where the term

P2 is increased as n raised. It is observed that the term of energy production P2 has a primary

effect on the total energy that indicates the stability behaviour of the flow while the term of

dissipation energy D has a slight effect on the total energy in the case k = ko. As found in

Chapter 4 for the power-law flows, no direct effects on the energy balance are found for non-

Newtonian terms. The modified viscosity is therefore again seen to act to establish new steady

flows which are unstable through inviscid effects. This is as expected for the inviscid Type I

mode.

5.6 Conclusion

In this chapter, the stability of stationary convective disturbances in the BEK family of boundary-

layer flows have been investigated for both shear-thinning and shear-thickening Carreau fluids

for the case of k = 100 and the optimal value of k = ko. The steady mean flow velocities

derived in Chapter 3 are perturbed to obtain the perturbation equations. The linear stability

analysis are conducted to investigate the occurrence of convective instability. The power-law

index n indicates whether a Carreau fluid is shear-thinning when n < 1 or shear-thickening
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when n > 1. The Rossby number Ro identifies the particular flow within the BEK family such

that the von Kármán flow is obtained when Ro = −1, Ekman flow when Ro = 0, and Böde-

wadt flow when Ro = 1. Furthermore, the stability behaviour of Curreau fluids is determined

by the value of relaxation parameter k. Therefore, the governing perturbation equations are

controlled by these three parameters n, Ro and k. The optimal values of the parameter k men-

tioned in 5.3 are obtained as a variation of the critical Reynolds number with k that presented

in Figures 5.4-5.5 for each n and Ro. Physically the parameter k determines the stability be-

haviour of Carreau fluids such that k represents as a key to decide whether the fluid has a

stabilising or destabilising effect.

The neutral curves have revealed that shear-thinning fluids have a slight destabilising effect

on both Type I and Type II modes for the BEK family of flows when k = 100, while shear-

thickening fluids have a small stabilising effect on these modes for the same case. In direct

contrast to these results, the selection of the optimal value ko reveals that shear-thinning fluids

have a stabilising effect on both Type I and Type II modes for the BEK family of flows.

However, shear-thickening fluids have a destabilising effect. It is found that the results in

the shear-thinning for the case k = ko have the same stability characteristics as the results of

shear-thinning power-law fluids which is in contrast to the results for the case k = 100.

The growth rates of the Type I instability mode have been considered in order to find

the maximum rates for particular flows in the system. The results obtained are confirmed

by conducting an energy balance analysis at the locations of the maximum growth rates to

obtain the underlying physical mechanisms behind the stabilising effects. The total energy

of the system is affected by the physical processes energy production and dissipation terms.

The results of the energy analysis are consistent with the results of the neutral curves for both

shear-thinning and shear- thickening fluids.

In conclusion, the shear-thinning Carreau fluids at ko can be used to reduce skin-friction

drag and delay transition from laminar to turbulence in many industrial applications.



Chapter 6

Conclusions

6.1 Completed work

This thesis is concerned with the convective instability analysis in the BEK family of rotating

boundary-layer flows for two types of generalised Newtonian fluid models: power-law and

Carreau fluids. The non-Newtonian study of Griffiths (2016) has been generalized to the entire

BEK family of rotating boundary-layer flows. The boundary-layer approximation is applied to

the Navier-Stokes equations in order to construct the governing leading order equations. The

non-dimensionalised governing continuity and boundary-layer equations are solved to obtain

the solutions of steady mean BEK family of flows. The flows of this family are governed

by the Rossby number, Ro. The particular cases of this family are von Kármán (Ro =−1) ,

Ekman (Ro = 0) and Bödewadt (Ro = 1) flows. The viscosity function of power-law fluids

are parametrised by a power-law index n, while the viscosity of Carreau fluids are controlled

by two parameters, n and the relaxation parameter k. Two cases for Carreau fluids have been

investigated depending on the value of the relaxation parameter: k = 100 and the optimal value

of k = ko.

A comparison between shear-thinning power-law and Carreau fluids has been accom-

plished for the mean flow profiles, convective neutral curves, growth rates, and energy bal-
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Figure 6.1: Comparison of shear-thinning power-law and Carreau fluids for the von Kármán
flow, Ro =−1 when n = 0.6 for; (a) mean flow profiles and (b) neutral curves.

ance for von Kármán flow, Ro = −1 with the power-law index, n = 0.6. Figure 6.1(a) shows

that the maximum value of the radial component U slightly approaches the disk surface for

Carreau fluids. Therefore, the thickness of the boundary-layer reduces by using Carreau fluids

instead of power-law fluids. Furthermore, the magnitude of the axial flow W in the far-field

is decreased by using Carreau fluids, especially for larger values of the k as shown in fig-

ure 6.1(a). The viscosity function for shear-thinning power-law fluids is unbounded in the

far-field of the boundary-layer. This behaviour is unphysical in contrast to the behaviour of

the viscosity function for Carreau fluids which is limited in the region of the boundary-layer.
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Therefore, the study of Carreau fluids presents a good description of the real nature of the

shear-thinning and shear-thickening boundary-layer flows. Furthermore, the viscosity func-

tion of shear-thickening power-law fluids tends to zero at the outer-edge of the boundary-layer.

Thus, the study is restricted here to investigate only shear-thinning fluids for the power-law

model.

The solutions of the steady mean flows across the BEK family are perturbed in order to

obtain the perturbation equations for both power-law and Carreau fluids. A linear stability

analysis was conducted in order to study the occurrence of convective instability. The Cheby-

shev collocation method was applied here to calculate the neutral curves for each of the BEK

family of flows. The results reveal that shear-thinning power-law fluids have a stabilising ef-

fect on both the Type I and Type II modes for the BEK family of flows in terms of the critical

Reynolds number and the region of instability from the upper branch. Furthermore, the effect

of shear-thinning fluids lead to growth in the size of the Type II mode. With respect to Carreau

fluids, the shear-thinning Carreau fluids have a slight destabilising effect on both the Type I

and Type II modes for k = 100 in terms of the critical Reynolds number. Furthermore, these

fluids are found to have a strongly destabilising effect from upper branch of neutral curve.

Therefore, the results suggest that the stability behaviour of shear-thinning Carreau fluids for

k = 100 is not consistent with the behaviour of shear-thinning power-law fluids. In contrast,

the shear-thickening Carreau fluids have a small stabilising effect in terms of the critical Reyn-

olds number, while the region of instability is starkly decreased from upper branch of neutral

curve.

The investigation shows that the value of relaxation parameter k plays a crucial role in

the stability properties of Carreau fluids. The results reveal that the optimal value of k =

ko changes the behaviour of previous results of Carreau fluids as shown previously in §5.3.

The value ko is obtained by plotting the variation of critical Reynolds numbers versus k as

presented in Figures 5.4-5.5 in Chapter 5. The values of ko are different for each value of
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Figure 6.2: Comparison of shear-thinning power-law and Carreau fluids when n = 0.6 and
Ro =−1 for (a) Growth rates of Type I mode and (b)Type I energy balance at Re = Rc +25.

n and Ro. However, these values are approximately very close to each other. It is found

that shear-thinning Carreau fluids have a stabilising effect which is consistent with those of

power-law fluids, while shear-thickening Carreau fluids have a destabilising effect at ko.

Figure 6.1(b) shows that shear-thinning Carreau fluids for k= 100 have very strong destabil-

ising effects on Type I and II modes in comparison to fluids that are otherwise the same but

with k = ko in terms of critical Reynolds number and the region of instability from the upper

branch. The results of convective neutral curves have been confirmed by an investigation of

the growth rates of the Type I instability mode to present the effects of power-law and Carreau

fluids. As expected, agreement has been found between the results of neutral curves and the

growth rates as shown in Figure 6.2(a).

The results of growth rates are obtained for only von Kármán and Ekman flows. This is

due to very early onset of absolute instability for Ro ≥ 0.5 that leads to “branch exchange”

between Type I and Type III modes. Thus, it is impossible to detect maximum growth rate

at such positive Ro (Lingwood and Garrett, 2011). The study of the energy analysis supports

the results obtained for neutral curves and growth rates. The energy-balance calculations are

obtained to provide the underlying physical mechanisms behind the stabilising effects by ap-
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plying the approach of Cooper and Carpenter (1997). The results of the energy analysis are

consistent with the results obtained from the neutral curves. Figure 6.2(b) shows a comparative

Type I energy balance between shear-thinning power-law and Carreau fluids for von Kármán

flow with the power-law index n = 0.6. The comparative mean flow profiles, neutral curves,

growth rates and energy balance for other related flows of BEK family have the same beha-

viour of those for von Kármán flow, Ro =−1. Comparative results for Ekman flow are shown

in Appendix C.5.

In conclusion, the use of shear-thinning power-law and Carreau fluids with optimal values

of relaxation parameter is crucial to delay the transition from laminar to turbulence for the

entire BEK family of flows. In other words, these fluids led to reduce skin-friction drag in

enclosed rotor-stator devices in industrial applications.

6.2 Future work

There are several areas of research for future work on the current study of this thesis. Firstly,

the experimental study is needed in order to compare and validate the theoretical analysis.

The results presented here could be extended to other non-Newtonian viscosity models. Fur-

thermore, this current study has been limited to stationary disturbances that are to expected

to be observed in all practical engineering applications where they are continuously excited

by unavoidable surface roughness. However, where great care is taken to use high polished

surfaces, it is known that non-stationary convective instabilities can become dominant in the

sense of both larger growth rates and lower critical Reynolds numbers (Balakumar and Ma-

lik, 1990; Hussain et al., 2011). The study of absolute instability is also a potential area of

future interest. Previous studies of absolute instability has been performed for BEK family of

Newtonian flows by Lingwood (1997) and Lingwood and Garrett (2011). Chapters 4 and 5

could be generalized to observe the absolute instability characteristics of the BEK family of

flows for power-law and Carreau fluids, respectively, which will give an insight into the onset
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of turbulence within the boundary layers. The results were obtained here by applying a linear

stability analysis with local parallel-flow approximation. Thus, non-parallel mean flow could

be involved in the work by following the study of Davies and Carpenter (2003). Finally, the

asymptotic linear stability analysis would also be valuable to confirm the results in the limit

of high Reynolds number behaviour.



Appendix A

Derivation of the perturbation equations

In this appendix, the governing boundary-layer equations are presented in the non-dimensional

form and the calculations for adding small perturbing quantities to the mean flow velocities to

generate the governing perturbation equations. Furthermore, these equations are rearranged

and presented in a form consistent with the Chebyshev collocation method of solution. §A.1

and §A.2 present the form of the perturbation equations for power-law and Carreau fluids,

respectively.

A.1 Power-law fluids

The dimensionless form for the boundary-layer equations are obtained with respect to the

following variable

r =
r∗

L∗ , z =
z∗

L∗ , (U,V,W ) =
(U∗,V ∗,W ∗)

r∗aΩ∗Ro
, P =

P∗

ρ∗(r∗aΩ∗Ro)2 , t =
t∗r∗aΩ∗

L∗ . (A.1)
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The local Reynolds number is defined as:

R = r∗
2/(n+1)

a

[
△Ω2−nL∗

ν∗

]2/(n+1)

= r∗
2/(n+1)

a

[
Ro2−nΩ2−nL∗

ν∗

]2/(n+1)

= r∗
2/(n+1)

a

[
RoRo1−nΩ2−nL∗

ν∗

]2/(n+1)

=

[
r∗aRo
L∗

]2/(n+1)

(A.2)

= [raRo]2/(n+1) .

Therefore the governing boundary-layer equations (3.4) become

1
r

∂ (rU0)

∂ r
+

1
r

∂V0

∂θ
+

∂W0

∂ z
= 0, (A.3)

∂U0

∂ t
+U0

∂U0

∂ r
+

V0

r
∂U0

∂θ
+W0

∂U0

∂ z
−

V 2
0
r
− CoV0

R(n+1)/2
=−∂P0

∂ r
+

1
R(2−n)(n+1)/2

(
∂

∂ z

(
µ0

∂U0

∂ z

))
,

(A.4)

U0
∂V0

∂ r
+

V0

r
∂V0

∂θ
+W0

∂V0

∂ z
+

U0V0

r
+

CoU0

R(n+1)/2
=−1

r
∂P0

∂θ
+

1
R(2−n)(n+1)/2

(
∂

∂ z

(
µ0

∂V0

∂ z

))
,

(A.5)

U0
∂W0

∂ r
+

V0

r
∂W0

∂θ
+W0

∂W0

∂ z
=−∂P1

∂ z
+

1
R(2−n)(n+1)/2

[
1
r

∂

∂ r

(
µ0r

∂U0

∂ z

)
+

1
r

∂

∂θ

(
µ0

∂V0

∂ z

)
+2

∂

∂ z

(
µ0

∂W0

∂ z

)]
,

(A.6)

where

µ0 =
µ∗

0
m∗

(
r∗aΩ∗Ro

L∗

)1−n

=

[(
∂U0

∂ z

)2

+

(
∂V0

∂ z

)2
](n−1)/2

. (A.7)
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The instantaneous non-dimensional velocities and pressure are given by

U0(η ,r,θ , t) =
rRo

R(n+1)/2
U(η)+u(η ,r,θ , t),

V0(η ,r,θ , t) =
rRo

R(n+1)/2
V (η)+ v(η ,r,θ , t),

W0(η ,r,θ , t) =
r(n−1)/(n+1)Ro

R(n+1)/2
W (η)+w(η ,r,θ , t),

P0,1(η ,r,θ , t) =
r2(n−1)/(n+1)Ro2

R(n+1)
P(η)+ p(η ,r,θ , t).

The continuity equation becomes

1
r

∂

∂ r

[
r2RoU(η)

R(n+1)/2
+ ru(r,η ,θ , t)

]
+

1
r

∂

∂θ

[
rRoV (η)

R(n+1)/2
+ v(r,η ,θ , t)

]
+

∂

∂ z

[
r(n−1)/(n+1)RoW (η)

R(n+1)/2
+w(r,η ,θ , t)

]
= 0,

=⇒ 1
r

∂ (ru)
∂ r

+
1−n
n+1

η

r
∂u
∂η

+
1
r

∂v
∂θ

+ r(1−n)/(n+1) ∂w
∂η

= 0.

We have

R(n−1)/2 ∂u
∂ r

+
Ro
R

(1−n)
(n+1)

η
∂u
∂η

+
Ro
R

u+
Ro
R

∂v
∂θ

+Ro(n−1)/(n+1) ∂w
∂η

= 0. (A.8)

The viscosity function becomes

µ0 =

({
∂

∂ z

[
rRoU(η)

R(n+1)/2
+u(r,η ,θ , t)

]}2

+

{
∂

∂ z

[
rRoV (η)

R(n+1)/2
+ v(r,η ,θ , t)

]}2
)(n−1)/2

,

=


[

rr(1−n)/(n+1)U ′Ro
R(n+1)/2

+ r(1−n)/(n+1) ∂u
∂η

]2

+

[
rr(1−n)/(n+1)V ′Ro

R(n+1)/2
+ r(1−n)/(n+1) ∂v

∂η

]2


(n−1)/2

,

=

{[
r2r2(1−n)/(n+1)(U ′)2Ro2

Rn+1 +
2rr2(1−n)/(n+1)Ro

R(n+1)/2
U ′ ∂u

∂η

]

×

[
r2r2(1−n)/(n+1)(V ′)2Ro2

Rn+1 +
2rr2(1−n)/(n+1)Ro

R(n+1)/2
V ′ ∂v

∂η

]}(n−1)/2

,
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=

{
r2r2(1−n)/(n+1)Ro2

Rn+1 [(U ′)2 +(V ′)2]+
2rr2(1−n)/(n+1)Ro

R(n+1)/2

(
U ′ ∂u

∂η
+V ′ ∂v

∂η

)}(n−1)/2

,

=

{
r4/(n+1)Ro2

Rn+1 [(U ′)2 +(V ′)2]

}(n−1)/2
1+

2r(3−n)/(n+1)Ro
R(n+1)/2

{
r4/(n+1)Ro2

Rn+1 [(U ′)2 +(V ′)2]

}−1

×
(

U ′ ∂u
∂η

+V ′ ∂v
∂η

))(n−1)/2

,

=
r2(n−1)/(n+1)Ron−1

R(n−1)(n+1)/2
[(U ′)2 +(V ′)2](n−1)/2

{
1+

2R(n+1)/2

r[(U ′)2 +(V ′)2]Ro

(
U ′ ∂u

∂η
+V ′ ∂v

∂η

)}(n−1)/2

,

=
r2(n−1)/(n+1)Ron−1

R(n−1)(n+1)/2

{
µ +

R(n+1)/2

rRo
(n−1)µ

[(U ′)2 +(V ′)2]

(
U ′ ∂u

∂η
+V ′ ∂v

∂η

)}
,

=
r2(n−1)/(n+1)Ron−1

R(n−1)(n+1)/2

{
µ +

R(n+1)/2

rRo
(n−1)µU ′

[(U ′)2 +(V ′)2]

∂u
∂η

+
R(n+1)/2

rRo
(n−1)µV ′

[(U ′)2 +(V ′)2]

∂v
∂η

}
,

=
r2(n−1)/(n+1)Ron−1

R(n−1)(n+1)/2

[
µ +

R(n+1)/2

rRo
µ̂U ′ ∂u

∂η
+

R(n+1)/2

rRo
µ̂V ′ ∂v

∂η

]
,

where

µ̂ =
(n−1)µ

[(U ′)2 +(V ′)2]
= (n−1)[(U ′)2 +(V ′)2](n−3)/2.

The derivatives of the viscosity and disturbance viscosity functions are given by

∂ µ

∂ z
= µ

′,

∂ µ̂

∂ z
=

(n−3)µ ′

[(U ′)2 +(V ′)2]
,

∂ µ

∂ r
=

1−n
n+1

η

r
µ

′
,

∂ µ̂

∂ r
=

1−n
n+1

η

r
(n−3)µ

′

[(U ′)2 +(V ′)2]
.
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The r-momentum equation becomes

∂

∂ t

[
rRoU(η)

R(n+1)/2
+u(r,η ,θ , t)

]
+

[
rRoU(η)

R(n+1)/2
+u(r,η ,θ , t)

]
∂

∂ r

[
rRoU(η)

R(n+1)/2
+u(r,η ,θ , t)

]
+

1
r

[
rRoV (η)

R(n+1)/2
+ v(r,η ,θ , t)

]
∂

∂θ

[
rRoU(η)

R(n+1)/2
+u(r,η ,θ , t)

]
+

[
r(n−1)/(n+1)RoW (η)

R(n+1)/2
+w(r,η ,θ , t)

]
∂

∂ z

[
rRoU(η)

R(n+1)/2
+u(r,η ,θ , t)

]
− 1

r

[
rRoV (η)

R(n+1)/2
+ v(r,η ,θ , t)

]2

− Co
R(n+1)/2

[
rRoV (η)

R(n+1)/2
+ v(r,η ,θ , t)

]
=− ∂

∂ r

[
r2(n−1)/(n+1)Ro2P(η)

Rn+1 + p(r,η ,θ , t)

]
+

X1

R(2−n)(n+1)/2
,

=⇒ ∂u
∂ t

+
rU2Ro2

Rn+1 +
r

Rn+1
1−n
n+1

ηUU ′Ro2 +
rURo

R(n+1)/2
∂u
∂ r

+
ηRo

R(n+1)/2
1−n
n+1

U
∂u
∂η

+
RoUu

R(n+1)/2

+
ηRo

R(n+1)/2
1−n
n+1

U ′u+
V Ro

R(n+1)/2
∂u
∂θ

+
rU ′WRo2

Rn+1 +
WRo

R(n+1)/2
∂u
∂η

+
rr(1−n)/(n+1)U ′wRo

R(n+1)/2

− rV 2Ro2

Rn+1 − 2V vRo
R(n+1)/2

− Cov
R(n+1)/2

=−r2(n−1)/(n+1)Ro2

rRn+1
1−n
n+1

(
ηP′−2P

)
− ∂ p

∂ r
− 1−n

n+1
η

r
∂ p
∂η

+
X1

R(2−n)(n+1)/2
,

where

X1 =
∂

∂ z

(
r2(n−1)/(n+1)Ron−1

R(n−1)(n+1)/2

(
µ +

R(n+1)/2

rRo
µ̂U ′ ∂u

∂η
+

R(n+1)/2

rRo
µ̂V ′ ∂v

∂η

)
{

∂

∂ z

[
rU(η)Ro
R(n+1)/2

+u(r,η ,θ , t)
]})

,

=
r2(n−1)/(n+1)Ron−1

R(n−1)(n+1)/2
∂

∂ z

[(
µ +

R(n+1)/2

rRo
µ̂U ′ ∂u

∂η
+

R(n+1)/2

rRo
µ̂V ′ ∂u

∂η

)

×

(
rr(1−n)/(n+1)U ′Ro

R(n+1)/2
+ r(1−n)/(n+1) ∂u

∂η

)]
,
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=
r2(n−1)/(n+1)Ron−1

R(n−1)(n+1)/2
∂

∂ z

[
rr(1−n)/(n+1)µU ′Ro

R(n+1)/2
+ r(1−n)/(n+1)

µ
∂u
∂η

+r(1−n)/(n+1)
µ̂U ′

(
U ′ ∂u

∂η
+V ′ ∂v

∂η

)]
,

=
r2(n−1)/(n+1)Ron−1

R(n−1)(n+1)/2

{
rr2(1−n)/(n+1)(µU ′)′Ro

R(n+1)/2
+ r2(1−n)/(n+1)

(
µ
′ ∂u
∂η

+µ
∂ 2u
∂η2

)

+r2(1−n)/(n+1)
[

µ̂U ′
(

U ′ ∂u
∂η

+V ′ ∂v
∂η

)]′}
,

=
Ron−1

R(n−1)(n+1)/2

{
r(µU ′)′Ro
R(n+1)/2

+

(
µ
′ ∂u
∂η

+µ
∂ 2u
∂η2

)
+

[
µ̂U ′

(
U ′ ∂u

∂η
+V ′ ∂v

∂η

)]′}
,

=⇒ X1Ron−1

R(2−n)(n+1)/2
=

r(µU ′)′Ro
R(n+1)

+
1

R(n+1)/2
∂

∂η

(
µ

∂u
∂η

+ µ̂U ′
(

U ′ ∂u
∂η

+V ′ ∂v
∂η

))
.

Apply parallel-flow approximation, we have

R(n−1)/2
(

∂u
∂ t

+U
∂u
∂ r

)
+

Ro
R

V
∂u
∂θ

+
Ro
R

W
∂u
∂η

+
Ro
R

Uu+Ro(n−1)/(n+1)U
′
w

−
(

2
Ro
R

V +
Co
R

)
v+

Ro
R

η
(1−n)
(n+1)

(
U

∂u
∂η

+U
′
u+

∂ p
∂η

)
=−R(n−1)/2 ∂ p

∂ r
+

Ron−1

R
∂

∂η

(
µ

∂u
∂η

+ µ̂U ′
(

U ′ ∂u
∂η

+V ′ ∂v
∂η

))
, (A.9)

where

µ̂ =
(n−1)µ

[(U ′)2 +(V ′)2]
. (A.10)
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The θ -momentum equation becomes

∂

∂ t

[
rRoV (η)

R(n+1)/2
+ v(r,η ,θ , t)

]
+

[
rRoU(η)

R(n+1)/2
+u(r,η ,θ , t)

]
∂

∂ r

[
rRoV (η)

R(n+1)/2
+ v(r,η ,θ , t)

]
+

1
r

[
rRoV (η)

R(n+1)/2
+ v(r,η ,θ , t)

]
∂

∂θ

[
rRoV (η)

R(n+1)/2
+ v(r,η ,θ , t)

]
+

[
r(n−1)/(n+1)RoW (η)

R(n+1)/2
+w(r,η ,θ , t)

]
∂

∂ z

[
rRoV (η)

R(n+1)/2
+ v(r,η ,θ , t)

]
+

1
r

[
rRoU(η)

R(n+1)/2
+u(r,η ,θ , t)

][
rRoV (η)

R(n+1)/2
+ v(r,η ,θ , t)

]
+

Co
R(n+1)/2

[
rRoU(η)

R(n+1)/2
+u(r,η ,θ , t)

]
=−1

r
∂

∂θ

[
r2(n−1)/(n+1)Ro2P(η)

Rn+1 + p(r,η ,θ , t)

]
+

X2

R(2−n)(n+1)/2
,

=⇒ ∂v
∂ t

+
rUV Ro2

Rn+1 +
r

Rn+1
1−n
n+1

ηUV ′Ro2 +
rURo

R(n+1)/2
∂v
∂ r

+
ηRo

R(n+1)/2
1−n
n+1

U
∂v
∂η

+
RoVu

R(n+1)/2

+
ηRo

R(n+1)/2
1−n
n+1

V ′u+
V Ro

R(n+1)/2
∂v
∂θ

+
rV ′WRo2

Rn+1 +
RoW

R(n+1)/2
∂v
∂η

+
rr(1−n)/(n+1)V ′wRo

R(n+1)/2

+
rUV Ro2

Rn+1 +
Ro(Uv+Vu)

R(n+1)/2
+

rCoRoU
Rn+1 +

Cou
R(n+1)/2

=−1
r

∂ p
∂θ

+
X2

R(2−n)(n+1)/2
,

where

X2 =
∂

∂ z

(
r2(n−1)/(n+1)Ron−1

R(n−1)(n+1)/2

(
µ +

R(n+1)/2

rRo
µ̂U ′ ∂u

∂η
+

R(n+1)/2

rRo
µ̂V ′ ∂v

∂η

)
{

∂

∂ z

[
rV (η)Ro
R(n+1)/2

+ v(r,η ,θ , t)
]})

=
r2(n−1)/(n+1)Ron−1

R(n−1)(n+1)/2
∂

∂ z

[(
µ +

R(n+1)/2

rRo
µ̂U ′ ∂u

∂η
+

R(n+1)/2

rRo
µ̂V ′ ∂v

∂η

)

×

(
rr(1−n)/(n+1)V ′Ro

R(n+1)/2
+ r(1−n)/(n+1) ∂v

∂η

)]
,

=
r2(n−1)/(n+1)Ron−1

R(n−1)(n+1)/2
∂

∂ z

[
rr(1−n)/(n+1)µV ′Ro

R(n+1)/2
+ r(1−n)/(n+1)

µ
∂v
∂η

+r(1−n)/(n+1)
µ̂V ′

(
U ′ ∂u

∂η
+V ′ ∂v

∂η

)]
,
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=
r2(n−1)/(n+1)Ron−1

R(n−1)(n+1)/2

{
rr2(1−n)/(n+1)(µV ′)′Ro

R(n+1)/2
+ r2(1−n)/(n+1)

(
µ
′ ∂v
∂η

+µ
∂ 2v
∂η2

)
+r2(1−n)/(n+1)

[
µ̂V ′

(
U ′ ∂u

∂η
+V ′ ∂v

∂η

)]′}
,

=
Ron−1

R(n−1)(n+1)/2

{
r(µV ′)′Ro
R(n+1)/2

+

(
µ
′ ∂v
∂η

+µ
∂ 2v
∂η2

)
+

[
µ̂V ′

(
U ′ ∂u

∂η
+V ′ ∂v

∂η

)]′}
,

=⇒ X2Ron−1

R(2−n)(n+1)/2
=

r(µV ′)′Ro
R(n+1)

+
1

R(n+1)/2
∂

∂η

(
µ

∂v
∂η

+ µ̂V ′
(

U ′ ∂u
∂η

+V ′ ∂v
∂η

))
.

Apply parallel-flow approximation, we have

R(n−1)/2
(

∂v
∂ t

+U
∂v
∂ r

)
+

Ro
R

V
∂v
∂θ

+
Ro
R

W
∂v
∂η

+
Ro
R

Uv+Ro(n−1)/(n+1)V
′
w

+

(
2

Ro
R

V +
Co
R

)
u+

Ro
R

η
(1−n)
(n+1)

(
U

∂v
∂η

+V
′
u
)

=−Ro
R

∂ p
∂θ

+
Ron−1

R
∂

∂η

(
µ

∂v
∂η

+ µ̂V ′
(

U ′ ∂u
∂η

+V ′ ∂v
∂η

))
. (A.11)

The z-momentum equation becomes

∂

∂ t

[
r(n−1)/(n+1)RoW (η)

R(n+1)/2
+w(r,η ,θ , t)

]
+

[
rRoU(η)

R(n+1)/2
+u(r,η ,θ , t)

]

× ∂

∂ r

[
r(n−1)/(n+1)RoW (η)

R(n+1)/2
+w(r,η ,θ , t)

]

+
1
r

[
rRoV (η)

R(n+1)/2
+ v(r,η ,θ , t)

]
∂

∂θ

[
r(n−1)/(n+1)RoW (η)

R(n+1)/2
+w(r,η ,θ , t)

]

+

[
r(n−1)/(n+1)RoW (η)

R(n+1)/2
+w(r,η ,θ , t)

]
∂

∂ z

[
r(n−1)/(n+1)RoW (η)

R(n+1)/2
+w(r,η ,θ , t)

]

=− ∂

∂ z

[
r2(n−1)/(n+1)Ro2P(η)

Rn+1 + p(r,η ,θ , t)

]
+

X3

R(2−n)(n+1)/2
,
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=⇒ ∂w
∂ t

+
r(n−1)/(n+1)Ro2

Rn+1
1−n
n+1

[
U
(
ηW ′−W

)]
+

rURo
R(n+1)/2

∂w
∂ r

+
ηRo

R(n+1)/2
1−n
n+1

U
∂w
∂η

+
r(n−1)/(n+1)Ro

rR(n+1)/2
1−n
n+1

[u(ηW ′−W )]+
V Ro

R(n+1)/2
∂w
∂θ

+
r(n−1)/(n+1)WW ′Ro2

Rn+1 +
WRo

R(n+1)/2
∂w
∂η

+
W ′wRo
R(n+1)/2

=−r(n−1)/(n+1)P′Ro2

Rn+1 − r(1−n)/(n+1) ∂ p
∂η

+
X3

R(2−n)(n+1)/2
,

where

X3 =
∂

∂ z

(
r2(n−1)/(n+1)Ron−1

R(n−1)(n+1)/2

(
µ +

R(n+1)/2

rRo
µ̂U ′ ∂u

∂η
+

R(n+1)/2

rRo
µ̂V ′ ∂v

∂η

)

×

{
∂

∂ z

[
r(n−1)/(n+1)W (η)Ro

R(n+1)/2
+w(r,η ,θ , t)

]})

=
r2(n−1)/(n+1)Ron−1

R(n−1)(n+1)/2
∂

∂ z

[(
µ +

R(n+1)/2

rRo
µ̂U ′ ∂u

∂η
+

R(n+1)/2

rRo
µ̂V ′ ∂v

∂η

)

×
(

W ′Ro
R(n+1)/2

+ r(1−n)/(n+1) ∂w
∂η

)]
,

=
r2(n−1)/(n+1)Ron−1

R(n−1)(n+1)/2
∂

∂ z

[
µW ′Ro
R(n+1)/2

+ r(1−n)/(n+1)
µ

∂w
∂η

+
µ̂W ′

r

(
U ′ ∂u

∂η
+V ′ ∂v

∂η

)]
,

=
r(n−1)/(n+1)Ron−1

R(n−1)(n+1)/2

{
(µW ′)′Ro
R(n+1)/2

+ r(1−n)/(n+1)
(

µ
′ ∂w
∂η

+µ
∂ 2w
∂η2

)
+

[
µ̂W ′

r

(
U ′ ∂u

∂η
+V ′ ∂v

∂η

)]′}
,

=
Ron−1

R(n−1)(n+1)/2

{
r(n−1)/(n+1)(µW ′)′Ro

R(n+1)/2
+

(
µ
′ ∂w
∂η

+µ
∂ 2w
∂η2

)

+
r(n−1)/(n+1)

r

[
µ̂W ′

(
U ′ ∂u

∂η
+V ′ ∂v

∂η

)]′}
,

=⇒ X3Ron−1

R(2−n)(n+1)/2
=

r(n−1)/(n+1)(µW ′)′Ro
R(n+1)

+
1

R(n+1)/2
∂

∂η

(
µ

∂w
∂η

)
+

r(n−1)/(n+1)

rR(n+1)/2

[
µ̂W ′

(
U ′ ∂u

∂η
+V ′ ∂v

∂η

)]′
.

Apply parallel-flow approximation, we have



A.1 Power-law fluids 122

R(n−1)/2
(

∂w
∂ t

+U
∂w
∂ r

)
+

Ro
R

V
∂w
∂θ

+
Ro
R

W
∂w
∂η

+
Ro
R

W
′
w

+
Ro
R

η
(1−n)
(n+1)

U
∂w
∂η

=−Ro(n−1)/(n+1) ∂ p
∂η

+
Ron−1

R
∂

∂η

(
µ

∂w
∂η

)
= 0. (A.12)

It has been necessary to set each factor Ro j that appear in disturbance equations to unity,

where j is some expression involving n− 1 . This approximation is necessary to ensure the

continuity as Ro is varied from −1 to 1. Then the continuity equation A.8 and the linear

disturbance equations A.9, A.11 and A.12 become

R(n−1)/2 ∂u
∂ r

+
Ro
R

[
η
(1−n)
(n+1)

∂u
∂η

+u+
∂v
∂θ

]
+

∂w
∂η

= 0, (A.13a)

R(n−1)/2
(

∂u
∂ t

+U
∂u
∂ r

)
+

Ro
R

(
V

∂u
∂θ

+W
∂u
∂η

+Uu
)
+U ′w

− (2RoV +Co)v
R

+
Ro
R

η
(1−n)
(n+1)

(
U

∂u
∂η

+U ′u+
∂ p
∂η

)
=−R(n−1)/2 ∂ p

∂ r
+

1
R

∂

∂η

[
µ

∂u
∂η

+ µ̂

(
U ′ ∂u

∂η
+V ′ ∂v

∂η

)
U ′
]
, (A.13b)

R(n−1)/2
(

∂v
∂ t

+U
∂v
∂ r

)
+

Ro
R

V
∂v
∂θ

+
Ro
R

W
∂v
∂η

+
Ro
R

Uv+V ′w

+

(
2

Ro
R

V +
Co
R

)
u+

Ro
R

η
(1−n)
(n+1)

(
U

∂v
∂η

+V ′u
)

=−Ro
R

∂ p
∂θ

+
1
R

∂

∂η

[
µ

∂v
∂η

+ µ̂

(
U ′ ∂u

∂η
+V ′ ∂v

∂η

)
V ′
]
, (A.13c)

R(n−1)/2
(

∂w
∂ t

+U
∂w
∂ r

)
+

Ro
R

V
∂w
∂θ

+
Ro
R

W
∂w
∂η

+
Ro
R

W ′w

+
Ro
R

η
(1−n)
(n+1)

U
∂w
∂η

=− ∂ p
∂η

+
1
R

∂

∂η

(
µ

∂w
∂η

)
= 0. (A.13d)

Assume the disturbances have the normal mode form:
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u = û(η ;α,β ,ω;R,Ro)ei(αr+β̃ θ−ωt), (A.14a)

v = v̂(η ;α,β ,ω;R,Ro)ei(αr+β̃ θ−ωt), (A.14b)

w = ŵ(η ;α,β ,ω;R,Ro)ei(αr+β̃ θ−ωt), (A.14c)

p = p̂(η ;α,β ,ω;R,Ro)ei(αr+β̃ θ−ωt). (A.14d)

where β̃ = β/Ro.

Set ω = 0 so that

ᾱ (iû)+
Ro
R

(
û+η

(1−n)
(n+1)

û′
)
+ iβ̄ v̂+ ŵ′ = 0,(

iᾱU + iβ̄V +
Ro
R

U
)

û+
Ro
R

Wû′− (2RoV +Co) v̂
R

+U ′ŵ+
Ro
R

η
(1−n)
(n+1)

(
Uû′+U ′û+ p̂′

)
=−iᾱ p̂+

1
R
{µ û′′+µ

′û′+ û′[µ̂ ′U ′U ′+ µ̂(U ′U ′′+U ′U ′′)]+ v̂′[µ̂ ′U ′V ′+ µ̂(V ′U ′′+U ′V ′′)]

+ û′′µ̂U ′U ′+ v̂′′µ̂U ′V ′},(
iᾱU + iβ̄V +

Ro
R

U
)

v̂+
Ro
R

Wv̂′+
(2RoV +Co) û

R
+V ′ŵ+

Ro
R

η
(1−n)
(n+1)

(
U

∂ v̂
∂η

+V
′
û
)

=−iβ̄ p̂+
1
R
{µ v̂′′+µ

′v̂′+ û′[µ̂ ′U ′V ′+ µ̂(U ′V ′′+V ′U ′′)]+ v̂′[µ̂ ′V ′V ′+ µ̂(V ′V ′′+V ′V ′′)]

+ û′′µ̂U ′V ′+ v̂′′µ̂V ′V ′},(
iᾱU + iβ̄V +

Ro
R

W ′
)

ŵ+
Ro
R

(
W +η

(1−n)
(n+1)

U
)

ŵ′ =−p̂′+
1
R

{
µŵ′′+µ

′ŵ′} .
Rearranging the equations in a way that it makes easy to solve by using the Chebyshev

spectral method as in the following form

ᾱ(iû)+
Ro
R

(
û+ η̂ û′

)
+ iβ̄ v̂+ ŵ′ = 0, (A.15a)

ᾱ [i(Uû+ p̂)]+ r0 = 0, (A.15b)

ᾱ(iUv̂)+θ0 = 0, (A.15c)

ᾱ (iUŵ)+ z0 = 0. (A.15d)
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Here

r0 =

[
iβ̄V +

Ro
R

(
U + η̂U ′)] û+

1
R

(
RoW +Roη̂U −µ

′− µ̂
′
(

U
′
)2

−2µ̂U ′U ′′
)

û′

−(2RoV +Co)
R

v̂− 1
R

[
µ̂
′U ′V ′+ µ̂

(
U ′V ′′+V ′U ′′)] v̂′− 1

R

[
µ + µ̂

(
U ′)2

]
û′′

− 1
R

(
µ̂U ′V ′) v̂′′+U ′ŵ+

(
Ro
R

η̂

)
p̂,

θ0 =

[
(2RoV +Co)

R
+Roη̂V ′

]
û− 1

R

[
µ̂
′U ′V ′+ µ̂

(
U ′V ′′+V ′U ′′)] û′+

(
iβ̄V +

Ro
R

U
)

v̂

+
1
R

[
RoW +Roη̂U −µ

′− µ̂
′ (V ′)2 −2µ̂V ′V ′′

]
v̂′− 1

R

(
µ̂U ′V ′) û′′

− 1
R

[
µ + µ̂

(
V ′)2

]
v̂′′+V ′ŵ+ iβ̄ p̂,

z0 =

(
iβ̄V +

Ro
R

W ′
)

ŵ+
1
R

(
RoW +Roη̂U −µ

′) ŵ′− µ

R
ŵ′′+ p̂′,

where η̂ = η
(1−n)
(n+1) and µ̂ = (n−1)µ

U ′2+V ′2 .

A.2 Carreau fluids

The non-dimensionalising velocity, pressure and time scales for Carreau fluids are similar to

those for Power-law fluids given in A.1. The local Reynolds number is defined as:

R =
r∗a△Ω∗L∗

ν∗ =
r∗aRoΩ∗L∗

ν∗ =
r∗aRo
L∗ = raRo. (A.16)

Therefore the governing boundary-layer equations (3.4) and the viscosity function (3.11)

become
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1
r

∂ (rU0)

∂ r
+

1
r

∂V0

∂θ
+

∂W0

∂ z
= 0, (A.17)

∂U0

∂ t
+U0

∂U0

∂ r
+

V0

r
∂U0

∂θ
+W0

∂U0

∂ z
−

V 2
0
r
− CoV0

R
=−∂P0

∂ r
+

1
R

[
∂

∂ z

(
µ0

∂U0

∂ z

)]
, (A.18)

∂V0

∂ t
+U0

∂V0

∂ r
+

V0

r
∂V0

∂θ
+W0

∂V0

∂ z
+

U0V0

r
+

CoU0

R
=−1

r
∂P0

∂θ
+

1
R

[
∂

∂ z

(
µ0

∂V0

∂ z

)]
, (A.19)

∂W0

∂ t
+U0

∂W0

∂ r
+

V0

r
∂W0

∂θ
+W0

∂W0

∂ z
=−∂P1

∂ z
+

1
R

[
1
r

∂

∂ r

(
µ0r

∂U0

∂ z

)
1
r

∂

∂θ

(
µ0

∂V0

∂ z

)
+

∂

∂ z

(
2µ0

∂W0

∂ z

)]
,

(A.20)

where

µ0 =

{
1+

k2R2

r2Ro2

[(
∂U
∂ z

)2

+

(
∂V
∂ z

)2
]}(n−1)/2

. (A.21)

The instantaneous non-dimensional velocities and pressure are given by

U0(r,z,θ , t) =
rRo
R

U(z)+u(r,z,θ , t),

V0(r,z,θ , t) =
rRo
R

V (z)+ v(r,z,θ , t),

W0(r,z,θ , t) =
Ro
R

W (z)+w(r,z,θ , t),

P1(r, ,θ , t) =
Ro2

R2 P(z)+ p(r,z,θ , t).

The continuity equation becomes

1
r

∂

∂ r

[
r2RoU(z)

R
+ ru(r,z,θ , t)

]
+

1
r

∂

∂θ

[
rRoV (z)

R
+ v(r,z,θ , t)

]
+

∂

∂ z

[
RoW (z)

R
+w(r,z,θ , t)

]
= 0,

=⇒ 1
r

∂ (ru)
∂ r

+
1
r

∂v
∂θ

+
∂w
∂ z

= 0.

We have
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∂u
∂ r

+
Ro
R

u+
Ro
R

∂v
∂θ

+
∂w
∂ z

= 0. (A.23)

The viscosity function becomes

µ0 =

[
1+

k2R2

r2Ro2

({
∂

∂ z

[
rRoU(z)

R
+u(r,z,θ , t)

]}2

+

{
∂

∂ z

[
rRoV (z)

R
+ v(r,z,θ , t)

]}2
)](n−1)/2

,

=

{
1+

k2R2

r2Ro2

[(
rRoU ′

R
+

∂u
∂ z

)2

+

(
rRoV ′

R
+

∂v
∂ z

)2
]}(n−1)/2

,

=

{
1+

k2R2

r2Ro2

[(
r2Ro2(U ′)2

R2 +
2rRoU ′

R
∂u
∂ z

)
+

(
r2Ro2(V ′)2

R2 +
2rRoV ′

R
∂v
∂ z

)]}(n−1)/2

,

=

{
1+ k2[(U ′)2 +(V ′)2]+

2k2R
rRo

(
U ′∂u

∂ z
+V ′∂v

∂ z

)}(n−1)/2

,

= {1+ k2[(U ′)2 +(V ′)2]}(n−1)/2
(

1+
2k2R

rRo{1+ k2[(U ′)2 +(V ′)2]}

(
U ′∂u

∂ z
+V ′∂v

∂ z

))(n−1)/2

,

= {1+ k2[(U ′)2 +(V ′)2]}(n−1)/2
(

1+
(n−1)k2R

rRo{1+ k2[(U ′)2 +(V ′)2]}

(
U ′∂u

∂ z
+V ′∂v

∂ z

))
,

= µ +
k2(n−1)µR

rRo{1+ k2[(U ′)2 +(V ′)2]}

(
U ′∂u

∂ z
+V ′∂v

∂ z

)
,

= µ +
k2(n−1)µU ′R

Ro{1+ k2[(U ′)2 +(V ′)2]}
1
r

∂u
∂ z

+
k2(n−1)µV ′R

Ro{1+ k2[(U ′)2 +(V ′)2]}
1
r

∂v
∂ z

,

= µ +
R

rRo
µ̂U ′∂u

∂ z
+

R
rRo

µ̂V ′∂v
∂ z

,

where

µ̂ =
k2(n−1)µ

{1+ k2[(U ′)2 +(V ′)2]}
= k2(n−1){1+ k2[(U ′)2 +(V ′)2]}(n−3)/2.
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The derivatives of the viscosity and disturbance viscosity functions are given by

∂ µ

∂ z
= µ

′,

∂ µ̂

∂ z
=

k2(n−3)µ ′

{1+ k2[(U ′)2 +(V ′)2]}
,

∂ µ

∂ r
=

1
r

k2(n−1)µ[(U ′)2 +(V ′)2]

{1+ k2[(U ′)2 +(V ′)2]}
,

∂ µ̂

∂ r
=

2
r

k2(n−1)µ
{1+ k2[(U ′)2 +(V ′)2]}

+
1
r

k2(n−3)µ ′[(U ′)2 +(V ′)2]

(U ′U ′′+V ′V ′′){1+ k2[(U ′)2 +(V ′)2]}
.

The r-momentum equation becomes

∂

∂ t

[
rRoU(z)

R
+u(r,z,θ , t)

]
+

[
rRoU(z)

R
+u(r,z,θ , t)

]
∂

∂ r

[
rRoU(z)

R
+u(r,z,θ , t)

]
+

1
r

[
rRoV (z)

R
+ v(r,z,θ , t)

]
∂

∂θ

[
rRoU(z)

R
+u(r,z,θ , t)

]
+

[
RoW (z)

R
+w(r,z,θ , t)

]
∂

∂ z

[
rRoU(z)

R
+u(r,z,θ , t)

]
− 1

r

[
rRoV (z)

R
+ v(r,z,θ , t)

]2

− Co
R

[
rRoV (z)

R
+ v(r,z,θ , t)

]
=− ∂

∂ r

[
Ro2P(z)

R2 + p(r,z,θ , t)
]
+

X1

R
,

=⇒ ∂u
∂ t

+
rU2Ro2

R2 +
rURo

R
∂u
∂ r

+
RoUu

R

+
V Ro

R
∂u
∂θ

+
rU ′WRo2

R2 +
WRo

R
∂u
∂ z

+
rRoU ′w

R
− rV 2Ro2

R2 − 2V vRo
R

− Cov
R

=−∂ p
∂ r

+
X1

R
.

where
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X1 =
∂

∂ z

((
µ +

R
rRo

µ̂U ′∂u
∂ z

+
R

rRo
µ̂V ′∂v

∂ z

){
∂

∂ z

[
rRoU(z)

R
+u(r,z,θ , t)

]})
,

=
∂

∂ z

{(
µ +

R
rRo

µ̂U ′∂u
∂ z

+
R

rRo
µ̂V ′∂v

∂ z

)[
rRoU ′

R
+

∂u
∂ z

]}
,

=
∂

∂ z

[
rRoµU ′

R
+µ

(
∂u
∂ z

)
+ µ̂U ′

(
U ′∂u

∂ z
+V ′∂v

∂ z

)]
,

=
rRo(µU ′)′

R
+µ

(
∂ 2u
∂ z2

)
+µ

′
(

∂u
∂ z

)
+

k2(n−3)µ ′

{1+ k2[(U ′)2 +(V ′)2]}
U ′
(

U ′∂u
∂ z

+V ′∂v
∂ z

)
+

k2(n−1)µ
{1+ k2[(U ′)2 +(V ′)2]}

U ′′
(

U ′∂u
∂ z

+V ′∂v
∂ z

)
+

k2(n−1)µ
{1+ k2[(U ′)2 +(V ′)2]}

U ′
(

U ′∂u
∂ z

+V ′∂v
∂ z

)′
,

=
rRo(µU ′)′

R
+µ

(
∂ 2u
∂ z2

)
+µ

′
(

∂u
∂ z

)
+

k2[(n−1)µU ′′+(n−3)µ ′U ′]

{1+ k2[(U ′)2 +(V ′)2]}

(
U ′∂u

∂ z
+V ′∂v

∂ z

)
+

k2(n−1)µ
{1+ k2[(U ′)2 +(V ′)2]}

U ′
(

U ′∂u
∂ z

+V ′∂v
∂ z

)′
,

=⇒ X1

R
=

rRo(µU ′)′

R2 +
1
R

∂

∂ z

[
µ

∂u
∂ z

+ µ̂U ′
(

U ′∂u
∂ z

+V ′∂v
∂ z

)]
.

Apply parallel-flow approximation, we have

∂u
∂ t

+U
∂u
∂ r

+
Ro
R

V
∂u
∂θ

+
Ro
R

W
∂u
∂ z

+
Ro
R

Uu+U ′w

−
(

2
Ro
R

V +
Co
R

)
v =−∂ p

∂ r
+

1
R

∂

∂ z

[
µ

∂u
∂ z

+ µ̂U ′
(

U ′∂u
∂ z

+V ′∂v
∂ z

)]
, (A.24)

where

µ̂ =
k2 (n−1)µ

{1+ k2[(U ′)2 +(V ′)2]}
. (A.25)

The θ -momentum equation becomes
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∂

∂ t

[
rRoV (z)

R
+ v(r,z,θ , t)

]
+

[
rRoU(z)

R
+u(r,z,θ , t)

]
∂

∂ r

[
rRoV (z)

R
+ v(r,z,θ , t)

]
+

1
r

[
rRoV (z)

R
+ v(r,z,θ , t)

]
∂

∂θ

[
rRoV (z)

R
+ v(r,z,θ , t)

]
+

[
RoW (z)

R
+w(r,z,θ , t)

]
∂

∂ z

[
rRoV (z)

R
+ v(r,z,θ , t)

]
+

1
r

[
rRoU(z)

R
+u(r,z,θ , t)

][
rRoV (z)

R
+ v(r,z,θ , t)

]
+

Co
R

[
rRoU(z)

R
+u(r,z,θ , t)

]
=−1

r
∂

∂θ

[
Ro2P(z)

R2 + p(r,z,θ , t)
]
+

X2

R
,

=⇒ ∂v
∂ t

+
rUV Ro2

R2 +
rURo

R
∂v
∂ r

+
RoVu

R

+
V Ro

R
∂v
∂θ

+
rV ′WRo2

R2 +
RoW

R
∂v
∂ z

+
rV ′wRo

R
+

rUV Ro2

R2 +
Ro(Uv+Vu)

R
+

rCoRoU
R2 +

Cou
R

=−1
r

∂ p
∂θ

+
X2

R
,

where

X2 =
∂

∂ z

((
µ +

R
rRo

µ̂U ′∂u
∂ z

+
R
r

µ̂V ′∂v
∂ z

){
∂

∂ z

[
rRoV (z)

R
+ v(r,z,θ , t)

]
+

1
r

∂

∂θ

[
RoW (z)

R
+w(r,z,θ , t)

]})
=

∂

∂ z

[(
µ +

R
rRo

µ̂U ′∂u
∂ z

+
R

rRo
µ̂V ′∂v

∂ z

)(
rRoV ′

R
+

∂v
∂ z

+
1
r

∂w
∂θ

)]
,

=
∂

∂ z

[
rRoµV ′

R
+µ

∂v
∂ z

+
µ

r
∂w
∂θ

+ µ̂V ′
(

U ′∂u
∂ z

+V ′∂v
∂ z

)]
,

=
rRo(µV ′)′

R
+µ

∂ 2v
∂ z2 +µ

′∂v
∂ z

+
µ

r
∂ 2w

∂θ∂ z
+

µ ′

r
∂w
∂θ

+
k2[(n−1)µV ′′+(n−3)µ ′V ′]

r{1+ k2[(U ′)2 +(V ′)2]}

(
U ′∂u

∂ z
+V ′∂v

∂ z

)
+

k2(n−1)µ
r{1+ k2[(U ′)2 +(V ′)2]}

V ′
(

U ′∂u
∂ z

+V ′∂v
∂ z

)′
,

=⇒ X2

R
=

r (µV ′)′

R2 +
µ

R
∂ 2v
∂ z2 +

µ ′

R
∂v
∂ z

+
µ

rR
∂ 2w

∂θ∂ z
+

µ ′

rR
∂w
∂θ

+
1
R

∂

∂ z

[
µ

∂v
∂ z

+ µ̂V ′
(

U ′∂u
∂ z

+V ′∂v
∂ z

)]
,
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Apply parallel-flow approximation, we have

∂v
∂ t

+U
∂v
∂ r

+
Ro
R

V
∂v
∂θ

+
Ro
R

W
∂v
∂ z

+
Ro
R

Uv+V ′w

+

(
2

Ro
R

V +
Co
R

)
u =−Ro

R
∂ p
∂θ

+
1
R

∂

∂ z

(
µ

∂v
∂ z

+ µ̂V
′
(

U ′∂u
∂ z

+V ′∂v
∂ z

))
, (A.26)

The z-momentum equation becomes

∂

∂ t

[
RoW (z)

R
+w(r,z,θ , t)

]
+

[
rRoU(z)

R
+u(r,z,θ , t)

]
∂

∂ r

[
RoW (z)

R
+w(r,z,θ , t)

]
+

1
r

[
rRoV (z)

R
+ v(r,z,θ , t)

]
∂

∂θ

[
RoW (z)

R
+w(r,z,θ , t)

]
+

[
RoW (z)

R
+w(r,z,θ , t)

]
∂

∂ z

[
RoW (z)

R
+w(r,z,θ , t)

]
=− ∂

∂ z

[
Ro2P(z)

R2 + p(r,z,θ , t)
]
+

X3

R
,

=⇒ ∂w
∂ t

+
rURo

R
∂w
∂ r

+
V Ro

R
∂w
∂θ

+
WW ′Ro2

R2 +
WRo

R
∂w
∂ z

+
W ′wRo

R
=−P′Ro2

R2 − ∂ p
∂ z

+
X3

R

where

X3 =
∂

∂ z

((
µ +

R
rRo

µ̂U ′∂u
∂ z

+
R

rRo
µ̂V ′∂v

∂ z

){
∂

∂ z

[
RoW (z)

R
+w(r,z,θ , t)

]})
,

=
∂

∂ z

[(
µ +

R
rRo

µ̂U ′∂u
∂ z

+
R

rRo
µ̂V ′∂v

∂ z

)(
RoW ′

R
+

∂w
∂ z

)]
,

=
∂

∂ z

[
RoµW ′

R
+µ

∂w
∂ z

+
k2(n−1)µW ′

r{1+ k2[(U ′)2 +(V ′)2]}

(
U ′∂u

∂ z
+V ′∂v

∂ z

)]
,

=
Ro(µW ′)′

R
+µ

∂ 2w
∂ z2 +µ

′∂w
∂ z

+
k2[(n−1)µW ′′+(n−3)µ ′W ′]

r{1+ k2[(U ′)2 +(V ′)2]}

(
U ′∂u

∂ z
+V ′∂v

∂ z

)
+

k2(n−1)µ
r{1+ k2[(U ′)2 +(V ′)2]}

W ′
(

U ′∂u
∂ z

+V ′∂v
∂ z

)′
,

=⇒ X3

R
=

(µW ′)′

R2 +
µ

R
∂ 2w
∂ z2 +

µ ′

R
∂w
∂ z

+
1

rR
∂

∂ z

[
µ̂W ′

(
U ′∂u

∂ z
+V ′∂v

∂ z

)]
.
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Apply parallel-flow approximation, we have
∂w
∂ t

+U
∂w
∂ r

+
Ro
R

V
∂w
∂θ

+
Ro
R

W
∂w
∂ z

+
Ro
R

W
′
w =−∂ p

∂ z
+

1
R

∂

∂ z

(
µ

∂w
∂ z

)
.

Therefore, we have the following perturbation equations

∂u
∂ r

+
Ro
R

(
u+

∂v
∂θ

)
+

∂w
∂ z

= 0, (A.27a)

∂u
∂ t

+U
∂u
∂ r

+
Ro
R

(
V

∂u
∂θ

+W
∂u
∂ z

+Uu
)
+U ′w− (2RoV +Co)v

R

=−∂ p
∂ r

+
1
R

∂

∂ z

[
µ

∂u
∂ z

+ µ̂U ′
(

U ′∂ û
∂ z

+V ′∂ v̂
∂ z

)]
, (A.27b)

∂v
∂ t

+U
∂v
∂ r

+
Ro
R

V
∂v
∂θ

+
Ro
R

W
∂v
∂ z

+
Ro
R

Uv+V ′w+

(
2

Ro
R

V +
Co
R

)
u

=−Ro
R

∂ p
∂θ

+
1
R

∂

∂ z

[
µ

∂v
∂ z

+ µ̂V ′
(

U ′∂ û
∂ z

+V ′∂ v̂
∂ z

)]
,

∂w
∂ t

+U
∂w
∂ r

+
Ro
R

V
∂w
∂θ

+
Ro
R

W
∂w
∂ z

+
Ro
R

W
′
w =−∂ p

∂ z
+

1
R

∂

∂ z

(
µ

∂w
∂ z

)
. (A.27c)

Assume the disturbances have the normal mode form:

u = û(η ;α,β ,ω;R,Ro,k)ei(αr+β̃ θ−ωt), (A.28a)

v = v̂(η ;α,β ,ω;R,Ro,k)ei(αr+β̃ θ−ωt), (A.28b)

w = ŵ(η ;α,β ,ω;R,Ro,k)ei(αr+β̃ θ−ωt), (A.28c)

p = p̂(η ;α,β ,ω;R,Ro,k)ei(αr+β̃ θ−ωt), (A.28d)

where β̃ = β/Ro.
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Set ω = 0 so that

α (iû)+
Ro
R

û+ iβ̄ v̂+ ŵ′ = 0,(
iαU + iβ̄V +

Ro
R

U
)

û+
Ro
R

Wû′− (2RoV +Co) v̂
R

+U ′ŵ =−iᾱ p̂+
1
R
{µ û′′+µ

′û′

+ û′[µ̂ ′U ′U ′+ µ̂(U ′U ′′+U ′U ′′)]+ v̂′[µ̂ ′U ′V ′+ µ̂(V ′U ′′+U ′V ′′)]

+ û′′µ̂U ′U ′+ v̂′′µ̂U ′V ′},(
iαU + iβ̄V +

Ro
R

U
)

v̂+
Ro
R

Wv̂′+
(2RoV +Co) û

R
+V ′ŵ =−iβ̄ p̂+

1
R
{µ v̂′′+µ

′v̂′

+ û′[µ̂ ′U ′V ′+ µ̂(U ′V ′′+V ′U ′′)]+ v̂′[µ̂ ′V ′V ′+ µ̂(V ′V ′′+V ′V ′′)]

+ û′′µ̂U ′V ′+ v̂′′µ̂V ′V ′},(
iαU + iβ̄V +

Ro
R

W ′
)

ŵ+
Ro
R

Wŵ′ =−p̂′+
1
R

{
µŵ′′+µ

′ŵ′} .
Rearranging the equations in a way that it makes easy to solve by using the Chebyshev

spectral method as in the following form

α

(
iû+

Ro
R

)
û+ iβ̄ v̂+ ŵ′ = 0, (A.29a)

α [i(Uû+ p̂)]+ r0 = 0, (A.29b)

α(iUv̂)+θ0 = 0, (A.29c)

α (iUŵ)+ z0 = 0. (A.29d)

Here
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r0 =

(
iβ̄V +

Ro
R

U
)

û+
1
R

[
RoW −µ

′− µ̂
′ (U ′)2 −2µ̂U ′U ′′

]
û′− (2RoV +Co)

R
v̂

− 1
R

[
µ̂
′U ′V ′+ µ̂

(
U ′V ′′+V ′U ′′)] v̂′− 1

R

[
µ + µ̂

(
U ′)2

]
û′′− 1

R

(
µ̂U ′V ′) v̂′′+U ′ŵ,

θ0 =

[
(2RoV +Co)

R

]
û− 1

R

[
µ̂
′U ′V ′+ µ̂

(
U ′V ′′+V ′U ′′)] û′+

(
iβ̄V +

Ro
R

U
)

v̂

+
1
R

[
RoW −µ

′− µ̂
′ (V ′)2 −2µ̂V ′V ′′

]
v̂′− 1

R

(
µ̂U ′V ′) û′′− 1

R

[
µ + µ̂

(
V ′)2

]
v̂′′

+V ′ŵ+ iβ̄ p̂,

z0 =

(
iβ̄V +

Ro
R

W ′
)

ŵ+
1
R

(
RoW −µ

′) ŵ′− µ

R
ŵ′′+ p̂′,

where η̂ = η
(1−n)
(n+1) and µ̂ = k2(n−1)µ

{1+k2[(U ′)2+(V ′)2]} .



Appendix B

Numerical method for solving

perturbation equations

In this appendix we present an overview of the spectral methods in §B.1. The implementation

of the Chebyshev collocation method and the eigenvalue problems for power-law and Carreau

fluids are described in §B.2.

B.1 Fundamental background of the spectral methods

Spectral methods are considered as a general class of weighted residual methods where the

approximation solutions are defined as a truncated series expansion (Peyret, 2013). The error

or residual of the approximations should be zero.

The truncated series expansion of the function u(x) defined on the interval [a,b] is given

by

uN (x) =
N

∑
k=0

ĉkϕk (x) , a ≤ x ≤ b, (B.1)

where uN (x) is the approximation solution, ĉk is the expansion coefficient and ϕk (x)is the
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orthogonal basis functions.

For periodic problems, the trigonometric functions eikx are used as orthogonal basis func-

tions while Chebyshev Tk (x) or Legendre Lk (x) polynomials are applied for non-periodic

problems.

If the function u(x) is given, then the residual is defined in the following form

RN (x) = u−uN . (B.2)

If uN (x) is an approximate solution to the differential equation L u − f = 0, then the

residual RN is given by

RN (x) = L uN − f , (B.3)

where L is a partial differential operator subject to the appropriate boundary conditions.

Now, the following scalar product is set to zero in order to force the residual to be approx-

imately zero

(RN ,ψi)w∗
=

b∫
a

RNψiw∗dx = 0, i ∈ IN . (B.4)

Note that ψi (x) are the weighting functions, w∗ is the weight and IN is the discrete set

where its dimension is the number of the collocation points xi. If the weighting functions ψi

are complex, then the functions in the integral is replaced by its complex conjugate ψ̄i.

The type of the spectral method used is identified by the selection of the weighting func-

tions and the weight. For the case of Galerkin and tau formulations, it is required that the

choice of weighting functions are equal to basis functions and the weight should be associated

with the orthogonality of the basis functions such that

ψi = ϕi and w∗ = w (B.5)
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For the Chebyshev collocation method, both weighting functions and weight are chosen in

the following form

ψi (x) = δ (x− xi) and w∗ = 1, (B.6)

where δ is the Dirac delta-function and xi are selected collocation points in [a,b].

From (B.4) and (B.6) we have

RN (xi) = 0, (B.7)

which gives with the definition of the residual (B.2)

uN (xi) = u(xi) , i = 0, . . . ,N, (B.8)

therefore, from the truncated series expansion (B.1) we obtain an algebraic system of N + 1

coefficients ĉk given by

N

∑
k=0

ĉkϕk (xi) = u(xi) , i = 0, . . . ,N. (B.9)

B.2 Implementation of Chebyshev collocation method

The Chebyshev collocation method is used by Appelquist (2014) and Alveroglu et al. (2016)

to solve linear governing perturbation equations for the Newtonian fluids. We use this method

to solve the governing equations for the generalised Newtonian fluids. The Chebyshev poly-

nomials of the first kind are defined in terms of trigonometric function as follows

Tk (yi) = cos
(
k cos−1 (yi)

)
,k = 0,1, . . . ,N, (B.10)

where N is the number of collocation points and yi ∈ [−1,1] is the Gauss-Lobatto points
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defined by

yi = cos(iπ/N) , i = 0,1, . . . ,N, (B.11)

then the Chebyshev polynomials recursively are given as

T0 (yi) = 1,

T1 (yi) = yi, (B.12)

Tk+1 (yi) = 2yTk (yi)−Tk−1 (yi) .

Furthermore, the derivatives of Chebyshev polynomials are defined by

T (n)
0 (yi) = 0,

T (n)
1 (yi) = T (n−1)

0 (yi) ,

T (n)
2 (yi) = 4yT (n−1)

1 (yi) , (B.13)

T (n)
k (yi) = 2kT (n−1)

k−1 (yi)+
k

k−2
T (n)

k−1 (yi) , k = 3,4, . . . ,N,

where n is the order of the derivative.

The type of governing perturbation equations (4.5) and (5.5) for both power-law and Carr-

eau fluids, respectively is a second order ordinary differential equation. Therefore, the first and

the second derivatives of the Chebyshev polynomials are only required in order to implement

Chebyshev collocation method as follows
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T ′
0 (yi) = 0, T ′′

0 (yi) = 0,

T ′
1 (yi) = 0, T ′

1 (yi) = 1,

T ′
2 (yi) = 4T ′

1 (yi) , T ′
2 (yi) = 4T ′

1 (yi) , (B.14)

T ′
k (yi) = 2Tk−1 (yi)+2yiT ′

k−1 (yi)−Tk−2 (yi) ,

T ′′
k (yi) = 4T ′

k−1 (yi)+2yiT ′′
k−1 (yi)−T ′′

k−2 (yi) , k = 3,4, . . . ,N,

where superscripts ′ and ′′ indicate the first and second derivatives with respect to yi.

The Chebyshev expansions of these quantities are determined in order to solve the eigen-

value problems (4.5) and (5.5) for power-law and Carreau fluids, respectively. A transforma-

tion of the Gauss-Lobatto collocation points yi defined in (B.11) is required at N +1 number

of points in the interval [−1,1] in to physical domain [0,η∞] and [0,z∞] for power-law and

Carreau fluids, respectively. New collection points in the physical domain are calculated by

using an exponential mapping transformation function defined in (B.15). These points is used

to distribute collocation points N = 100 between the lower disk surface η = 0 and the top of

the domain ηmax = 20.

ηi = −4log((yi −A)/B) ,

A = −1−B, (B.15)

B = 2/
(

e−(η∞/4)−1
)
.

In the physical space of the rotating flows, the Chebyshev polynomials and their derivatives

are introduced by using the chain rule as

Sk (ηi) = Tk (yi) ,

S′k (ηi) =
dTk (yi)

dηi
= T ′

k (y)
dyi

dηi
, (B.16)

S′k (ηi) =
d2Tk (yi)

dη2
i

= T ′′
k (y)

(
dyi

dηi

)2

+T ′
k (yi)

dy2
i

dη2
i
.
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Here, Superscripts ′ and ′′ denote the first and the second derivatives of Sk (ηi)and Tk (yi)with

respect to ηi and yi, respectively.

The eigenfunctions of the perturbation components (û, v̂, ŵ, p̂) and their derivatives are

expanded in truncated series at collocation points ηi as follows

û(ηi) =
N

∑
k=0

ĉû
kSk (ηi) , v̂(ηi) =

N

∑
k=0

ĉv̂
kSk (ηi) ,

ŵ(ηi) =
N

∑
k=0

ĉŵ
k Sk (ηi) , p̂(ηi) =

N

∑
k=0

ĉ p̂
k Sk (ηi) , (B.17)

û′ (ηi) =
N

∑
k=0

ĉû
kS′k (ηi) , v̂′ (ηi) =

N

∑
k=0

ĉv̂
kS′k (ηi) ,

ŵ′ (ηi) =
N

∑
k=0

ĉŵ
k S′k (ηi) , p̂′ (ηi) =

N

∑
k=0

ĉp̂
k S′k (ηi) , (B.18)

û′′ (ηi) =
N

∑
k=0

ĉû
kS′′k (ηi) , v̂′′ (ηi) =

N

∑
k=0

ĉv̂
kS′′k (ηi) ,

ŵ′′ (ηi) =
N

∑
k=0

ĉŵ
k S′′k (ηi) , p̂′′ (ηi) =

N

∑
k=0

ĉp̂
k S′′k (ηi) . (B.19)

Regarding to the boundary conditions, all the perturbations quantities are equal to zero at

the disk surface η0 and the top of the domain ηN . It is noted that the domain η used in the

previous equations for power-law fluids. Regarding to the Carreau fluids, η is replaced by z in

the equations.

The following eigenvalue problem for the wavenumber α for power-law fluids is obtained

by substituting the Chebyshev expansions of the perturbation quantities into the linearised

perturbation equations (4.5)
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(
APL

1 α +APL
0
)

V = 0. (B.20)

where V is the matrix of the eigenfunctions, APL
1 and APL

0 are the matrices defined in the

following form

APL
1 =



εSN (η0) 0 0 0 . . .

0 εSN (η0) 0 0 . . .

0 0 εSN (η0) 0 . . .

0 0 0 εSN (η0) . . .

iUS0 (η1) 0 0 iS0 (η1) . . .

0 iUS0 (η1) 0 0 . . .

0 0 iUS0 (η1) 0 . . .

iS0 (η1) 0 0 0 . . .

...
...

...
... . . .

εSN (ηN) 0 0 0 . . .

0 εSN (ηN) 0 0 . . .

0 0 εSN (ηN) 0 . . .

0 0 εS
′
N (ηN) 0 . . .



, (B.21)
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APL
0 =



εSN (η0) 0 0 0 . . .

0 εSN (η0) 0 0 . . .

0 0 εSN (η0) 0 . . .

0 0 0 εSN (η0) . . .

A51 A52 A53 A54U . . .

A61 A62 A63 A64 . . .

0 0 A73 A74 . . .

A81 A82 A83 0 . . .

...
...

...
... . . .

εSN (ηN) 0 0 0 . . .

0 εSN (ηN) 0 0 . . .

0 0 εSN (ηN) 0 . . .

0 0 εS
′
N (ηN) 0 . . .



. (B.22)

Here

A51 =

(
iβ̄V +U

Ro
R

+
Roη̂

R
U ′
)

S0 (η1)+
1
R

[
RoW +Roη̂U −µ

′− µ̂
′ (U ′)2

−2µ̂U ′U ′′]S′0 (η1)−
1
R

[
µ + µ̂

(
U ′)2

]
S′′0 (η1) ,

A52 = − 1
R
(2RoV +Co)S0 (η1)−

1
R

[
µ̂
′U ′V ′+ µ̂

(
U ′V ′′+V ′U ′′)]S′0 (η1)

− 1
R

(
µ̂U ′V ′)S′′0 (η1) ,

A53 = U ′S0 (η1) , A54 =
Ro
R

η̂S′0 (η1) ,

A61 =
1
R

(
2RoV +Co+Roη̂V ′)S0 (η1)−

1
R

[
µ̂
′U ′V ′+ µ̂

(
U ′V ′′+V ′U ′′)]S′0 (η1)

− 1
R

(
µ̂U ′V ′)S′′0 (η1) ,

A62 =

(
iβ̄V +

Ro
R

U
)

S0 (η1)+
1
R

[
RoW +Roη̂U −µ

′− µ̂
′ (V ′)2 −2µ̂V ′V ′′

]
S′0 (η1)

− 1
R

[
µ + µ̂

(
V ′)2

]
S′′0 (η1) ,
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A63 = V ′S0 (η1) , A64 = iβ̄S0 (η1) ,

A73 =

(
iβ̄V +

Ro
R

W ′
)

S0 (η1)+
1
R

(
RoW +Roη̂U −µ

′)S′0 (η1)−
1
R

µS′′0 (η1) ,

A74 = S′0 (η1) ,

A81 =
Ro
R

S0 (η1)+
Ro
R

η̂S′0 (η1) , A82 = iβ̄S0 (η1) , A83 = S′0 (η1) .

where η̂ = η
(1−n)
(n+1) and µ̂ = (n−1)µ

(U ′)2+(V ′)2 .

Regarding to the Carreau fluids, substituting the Chebyshev expansions of the perturbation

quantities into the linearised perturbation equations (5.5) gives the the following eigenvalue

problem

(
AC

1 α +AC
0

)
V = 0, (B.23)

where V is the matrix of the eigenfunctions, and

AC
1 =



εSN (z0) 0 0 0 . . .

0 εSN (z0) 0 0 . . .

0 0 εSN (z0) 0 . . .

0 0 0 εSN (z0) . . .

iUS0 (z1) 0 0 iS0 (z1) . . .

0 iUS0 (z1) 0 0 . . .

0 0 iUS0 (z1) 0 . . .

iS0 (z1) 0 0 0 . . .

...
...

...
... . . .

εSN (zN) 0 0 0 . . .

0 εSN (zN) 0 0 . . .

0 0 εSN (zN) 0 . . .

0 0 εS
′
N (zN) 0 . . .



, (B.24)
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AC
0 =



εSN (z0) 0 0 0 . . .

0 εSN (z0) 0 0 . . .

0 0 εSN (z0) 0 . . .

0 0 0 εSN (z0) . . .

A51 A52 A53 0 . . .

A61 A62 A63 A64 . . .

0 0 A73 A74 . . .

A81 A82 A83 0 . . .

...
...

...
... . . .

εSN (zN) 0 0 0 . . .

0 εSN (zN) 0 0 . . .

0 0 εSN (zN) 0 . . .

0 0 εS
′
N (zN) 0 . . .



. (B.25)

Here

A51 =

(
iβ̄V +U

Ro
R

)
S0 (z1)+

1
R

[
RoW −µ

′− µ̂
′ (U ′)2 −2µ̂U ′U ′′

]
S′0 (z1)

− 1
R

[
µ + µ̂

(
U ′)2

]
S′′0 (z1) ,

A52 = − 1
R
(2RoV +Co)S0 (z1)−

1
R

[
µ̂
′U ′V ′+ µ̂

(
U ′V ′′+V ′U ′′)]S′0 (z1)

+
1
R

(
µ̂U ′V ′)S′′0 (z1) ,

A53 = U ′S0 (z1) ,

A61 =
1
R
(2RoV +Co)S0 (z1)−

1
R

(
µ̂
′U ′V ′+ µ̂

(
U ′V ′′+V ′U ′′))S′0 (z1)

− 1
R

(
µ̂U ′V ′)S′′0 (z1) ,

A62 =

(
iβ̄V +

Ro
R

U
)

S0 (z1)+
1
R

(
RoW −µ

′− µ̂
′ (V ′)2 −2µ̂V ′V ′′

)
S′0 (z1)

− 1
R

[
µ + µ̂

(
V ′)2

]
S′′0 (z1) ,
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A63 = V ′S0 (z1) , A64 = iβ̄S0 (z1) ,

A73 =

(
iβ̄V +

Ro
R

W ′
)

S0 (z1)+
1
R

(
RoW −µ

′)S′0 (z1)−
1
R

µS′′0 (z1) ,

A74 = S′0 (z1) ,

A81 =
Ro
R

S0 (z1) , A82 = iβ̄S0 (z1) , A83 = S′0 (z1) ,

where

µ̂ =
k2 (n−1)µ

{1+ k2[(U ′)2 +(V ′)2]}
.

The size of the matrices in (B.20) and (B.23) is 4(N +1)x4(N +1), where N is the number

of collection points and 4 is the number of the perturbation quantities û, v̂, ŵ and p̂. The

complex parameter ε in the matrices is selected to ε =−1680i, where i is
√
−1. This value is

to ensure that the boundary conditions are suitably imposed for perturbing the matrix.

The eigenvalue problem is solved by using MATLAB solver function (polyeig) in the

spectral code to compute the solutions and the eigenvalues α for fixed values of R and various

values of β iteratively. The branch point is selected with very smallest imaginary part of

eigenvalue Im(αi) for each β such that the next imaginary part for the iteration of β is zero.

The same procedure is continued for wide range of Reynolds number to obtain branch points

required to plot the entire neutral curve of convective instability for power-law and Carreau

fluids.



Appendix C

Steady mean flow profiles and neutral

curves

In this appendix we show the mean flow profiles and the neutral curves that were not presented

in the main text of this thesis. The mean flow velocities of the BEK family flows for shear-

thinning and shear-thickening fluids with k = ko are shown in §C.1. The numerical values of

these mean flow profiles are reported in C.2. In §C.3 we present the neutral curves for shear-

thinning and shear-thickening Carreau fluids with k = 100 while the neural curves for k = ko

are presented in §C.4. Finally, the comparative results between power-law and Carreau fluids

are showed in §C.5.

C.1 Mean flow profiles of BEK family of flows for Carreau

fluids

Figures C.1-C.4 present the neutral curves of BEK family flows for shear-thinning while Fig-

ures C.5-C.8 show the neutral curves for shear-thickening Carreau fluids when k = ko.
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Figure C.1: Steady mean flow profiles U , V and W versus for Newtonian (n = 1) and shear-
thinning Carreau fluids with n = 0.9,0.8,0.7,0.6 and k = ko at Ro =−1.
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Figure C.2: Steady mean flow profiles U , V and W versus for Newtonian (n = 1) and shear-
thinning Carreau fluids with n = 0.9,0.8,0.7,0.6 and k = ko at Ro =−0.5.
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Figure C.3: Steady mean flow profiles U , V and W versus for Newtonian (n = 1) and shear-
thinning Carreau fluids with n = 0.9,0.8,0.7,0.6 and k = ko at Ro = 0.
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Figure C.4: Steady mean flow profiles U , V and W versus for Newtonian (n = 1) and shear-
thinning Carreau fluids with n = 0.9,0.8,0.7,0.6 and k = ko at Ro = 0.5.
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Figure C.5: Steady mean flow profiles U , V and W versus for Newtonian (n = 1) and shear-
thickening Carreau fluids with n = 1.1,1.2,1.3,1.4 and k = ko at Ro =−1.
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Figure C.6: Steady mean flow profiles U , V and W versus for Newtonian (n = 1) and shear-
thickening Carreau fluids with n = 1.1,1.2,1.3,1.4 and k = ko at Ro =−0.5.
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Figure C.7: Steady mean flow profiles U , V and W versus for Newtonian (n = 1) and shear-
thickening Carreau fluids with n = 1.1,1.2,1.3,1.4 and k = ko at Ro = 0.
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Figure C.8: Steady mean flow profiles U , V and W versus for Newtonian (n = 1) and shear-
thickening Carreau fluids with n = 1.1,1.2,1.3,1.4 and k = ko at Ro = 0.5.
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C.2 Numerical values of the mean velocity flow velocities

Table C.1 shows the numerical values of the mean flow velocities for shear-thinning while

Table C.2 presents the numerical values for shear-thickening fluids when k = ko.

n −U ′(0) V ′(0) W (z∞) ko

1 0.5102 0.6159 0.8845 -

0.9 0.5585 0.6887 0.8578 6.42

0.8 0.6182 0.7820 0.8309 6.40

0.7 0.6925 0.9033 0.8047 6.30

0.6 0.7870 1.0661 0.7794 6.16

(a) Ro =−1

n −U ′(0) V ′(0) W (z∞) ko

1 0.8570 0.9073 1.0219 -

0.9 0.9529 1.0349 0.9545 5.75

0.8 1.0705 1.1982 0.8876 5.59

0.7 1.2158 1.4106 0.8225 5.38

0.6 1.3955 1.6913 0.7614 5.09

(b) Ro =−0.5

n −U ′(0) V ′(0) W (z∞) ko

1 1.000 1.000 1.0000 -

0.9 1.1122 1.1415 0.9238 5.17

0.8 1.2517 1.3248 0.8469 5.11

0.7 1.4272 1.5676 0.7706 5.01

0.6 1.6473 1.8934 0.6976 4.82

(c) Ro = 0

n −U ′(0) V ′(0) W (z∞) ko

1 1.0176 0.9612 1.0853 -

0.9 1.1256 1.0911 1.0013 4.75

0.8 1.2662 1.2663 0.9112 4.96

0.7 1.4477 1.5035 0.8190 5.06

0.6 1.6789 1.8266 0.7294 5.01

(d) Ro = 0.5

Table C.1: Numerical values of the mean velocity flow parameters U ′,V ′ and W for shear-
thinning Carreau fluids with n = 1,0.9,0.8,0.7,0.6 and k = ko at various Ro.
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n −U ′(0) V ′(0) W (z∞) ko

1 0.5102 0.6159 0.8845 -

1.1 0.4707 0.5581 0.9107 6.40

1.2 0.4382 0.5116 0.9358 6.32

1.3 0.4114 0.4740 0.9595 6.20

1.4 0.3887 0.4427 0.9822 6.11

(a) Ro =−1

n −U
′
(0) V

′
(0) W (z∞) ko

1 0.8570 0.9073 1.0219 -

1.1 0.7787 0.8066 1.0881 5.85

1.2 0.7147 0.7264 1.1518 5.81

1.3 0.6623 0.6623 1.2116 5.71

1.4 0.6184 0.6096 1.2685 5.63

(b) Ro =−0.5

n −U ′(0) V ′(0) W (z∞) ko

1 1.000 1.000 1.0000 -

1.1 0.9112 0.8914 1.0719 4.90

1.2 0.8403 0.8067 1.1386 4.73

1.3 0.7840 0.7406 1.1985 4.52

1.4 0.7376 0.6871 1.2537 4.35

(c) Ro = 0

n −U ′(0) V ′(0) W (z∞) ko

1 1.0176 0.9612 1.0853 -

1.1 0.9339 0.8630 1.1619 4.28

1.2 0.8685 0.7880 1.2302 4.03

1.3 0.8169 0.7296 1.2905 3.80

1.4 0.7752 0.6831 1.3438 3.60

(d) Ro = 0.5

Table C.2: Numerical values of the mean velocity flow parameters U ′,V ′ and W for shear-
thickening Carreau fluids with n = 1,1.1,1.2,1.3,1.4 and k = ko at various Ro.

C.3 Neutral curves of BEK family of flows for Carreau flu-

ids with k = 100

Figures C.9-C.12 present the convective neutral curves of BEK family flows for shear-thinning

Carreau fluids while Figures C.13-C.16 show the neutral curves for shear-thickening Carreau

fluids when k = 100.
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Figure C.9: Neutral curves of the flow at Ro = −0.5 for shear-thinning Carreau fluids with
n = 1,0.9,0.8,0.7,0.6 and k = 100.
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Figure C.10: Neutral curves of the Ekman flow, Ro = 0 for shear-thinning Carreau fluids with
n = 1,0.9,0.8,0.7,0.6 and k = 100.
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Figure C.11: Neutral curves of the flow at Ro = 0.5 for shear-thinning Carreau fluids with
n = 1,0.9,0.8,0.7,0.6 and k = 100.
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Figure C.12: Neutral curves of the Bödewadt flow, Ro = 1 for shear-thinning Carreau fluids
with n = 1,0.9,0.8,0.7,0.6 and k = 100.
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Figure C.13: Neutral curves of the flow at Ro =−0.5 for shear-thickening Carreau fluids with
n = 1,1.1,1.2,1.3,1.4 and k = 100.
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Figure C.14: Neutral curves of the Ekman flow, Ro = 0 for shear-thickening Carreau fluids
with n = 1,1.1,1.2,1.3,1.4 and k = 100.
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Figure C.15: Neutral curves of the flow at Ro = 0.5 for shear-thickening Carreau fluids with
n = 1,1.1,1.2,1.3,1.4 and k = 100.
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Figure C.16: Neutral curves of the Bödewadt flow, Ro = 1 for shear-thickening Carreau fluids
with n = 1,1.1,1.2,1.3,1.4 and k = 100.
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C.4 Neutral curves of BEK family of flows for Carreau flu-

ids with k = ko

Figures C.17-C.19 show the convective neutral curves for shear-thinning Carreau fluids while

Figures C.20-C.22 present the neutral curves for shear-thickening Carreau fluids when k = ko

at various values of Ro.
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Figure C.17: Neutral curves of the flow at Ro = −0.5 for shear-thinning Carreau fluids with
n = 1,0.9,0.8,0.7,0.6 and k = ko.



C.4 Neutral curves of BEK family of flows for Carreau fluids with k = ko 157

R
0 200 400 600 800 1000

α
r

0

0.2

0.4

0.6

0.8

1

1.2

(αr,R)-plane

n = 1
n = 0.9
n = 0.8
n = 0.7
n = 0.6

R
0 200 400 600 800 1000

β̄

0

0.1

0.2

0.3

0.4
(β̄,R)-plane

n = 1
n = 0.9
n = 0.8
n = 0.7
n = 0.6

R
0 200 400 600 800 1000

κ

0

0.2

0.4

0.6

0.8

1

1.2

(κ,R)-plane

n = 1
n = 0.9
n = 0.8
n = 0.7
n = 0.6

R
0 200 400 600 800 1000

φ
10

15

20

25

30

35

40
(φ,R)-plane

n = 1
n = 0.9
n = 0.8
n = 0.7
n = 0.6

Figure C.18: Neutral curves of the Ekman flow, Ro = 0 for shear-thinning Carreau fluids with
n = 1,0.9,0.8,0.7,0.6 and k = ko.
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Figure C.19: Neutral curves of the flow at Ro = 0.5 for shear-thinning Carreau fluids with
n = 1,0.9,0.8,0.7,0.6 and k = ko.
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Figure C.20: Neutral curves of the flow at Ro =−0.5 for shear-thickening Carreau fluids with
n = 1,1.1,1.2,1.3,1.4 and k = ko.

R
0 200 400 600 800 1000

α
r

0

0.2

0.4

0.6

0.8

1

1.2
(αr,R)-plane

n = 1
n = 1.1
n = 1.2
n = 1.3
n = 1.4

R
0 200 400 600 800 1000

β̄

0

0.05

0.1

0.15

0.2

0.25

0.3
(β̄,R)-plane

n = 1
n = 1.1
n = 1.2
n = 1.3
n = 1.4

R
0 200 400 600 800 1000

κ

0

0.2

0.4

0.6

0.8

1

1.2
(κ,R)-plane

n = 1
n = 1.1
n = 1.2
n = 1.3
n = 1.4

R
0 200 400 600 800 1000

φ

10

15

20

25

30

35

40
(φ,R)-plane

n = 1
n = 1.1
n = 1.2
n = 1.3
n = 1.4

Figure C.21: Neutral curves of the Ekman flow, Ro = 0 for shear-thickening Carreau fluids
with n = 1,1.1,1.2,1.3,1.4 and k = ko.
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Figure C.22: Neutral curves of the flow at Ro = 0.5 for shear-thickening Carreau fluids with
n = 1,1.1,1.2,1.3,1.4 and k = ko.

C.5 Comparative results between the power-law and Carr-

eau fluids

Figure C.23 present the comparative mean flow velocities, convective neutral curves, growth

rates and energy balance between shear-thinning power-law and Carreau fluids for Ekman

flow, Ro = 0.
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Figure C.23: Comparison of shear-thinning power-law and Carreau fluids for Ekman flow,
Ro = 0 when n = 0.6 for (a) steady mean flow profiles, (b) neutral curves, (c) growth rates and
(d) energy balance.
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