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Abstract

The aim of this thesis is to derive adaptive methods for discontinuous Galerkin

approximations for both elliptic and parabolic interface problems. The derivation

of adaptive method, is usually based on a posteriori error estimates. To this end,

we present a residual-type a posteriori error estimator for interior penalty discon-

tinuous Galerkin (dG) methods for an elliptic interface problem involving possibly

curved interfaces, with flux-balancing interface conditions, e.g., modelling mass

transfer of solutes through semi-permeable membranes. The method allows for

extremely general curved element shapes employed to resolve the interface geom-

etry exactly. Respective upper and lower bounds of the error in the respective

dG-energy norm with respect to the estimator are proven. The a posteriori error

bounds are subsequently used to prove a basic a priori convergence result. More-

over, a contraction property for a standard adaptive algorithm utilising these a

posteriori bounds, with a bulk refinement criterion is also shown, thereby proving

that the a posteriori bounds can lead to a convergent adaptive algorithm sub-

ject to some mesh restrictions. This work is also concerned with the derivation

of a new L∞(L2)-norm a posteriori error bound for the fully discrete adaptive

approximation for non-linear interface parabolic problems. More specifically, the

time discretization uses the backward Euler Galerkin method and the space dis-

cretization uses the interior penalty discontinuous Galerkin finite element method.

The key idea in our analysis is to adapt the elliptic reconstruction technique, in-

troduced by Makridakis and Nochetto [48], enabling us to use the a posteriori

error estimators derived for elliptic interface models and to obtain optimal order

in both L∞(L2) and L∞(L2) + L2(H1) norms. The effectiveness of all the error

estimators and the proposed algorithms is confirmed through a series of numerical

experiments.
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Chapter 1

Introduction

Interface conditions are used in the modelling of various engineering applications
stemming from physical, chemical, and biological phenomena, in particular, ones
involving multiple distinct materials with different diffusion, density, permeability
or conductivity properties. Such interface conditions are typically used to close
systems of partial differential equations (PDEs) posed on multi-compartment dis-
tinct material regions. As a result, these interface problems often produce solutions
having jump discontinuities of the state variable and/or of some of its derivatives
across the interface. In other words, their solutions may have higher regularity in
individual material regions than in the entire physical domain. The analytical reg-
ularity theory for interface problems is far less advanced than for respective stan-
dard (one-compartment) initial/boundary-value problems. Therefore, the reliable
and efficient numerical approximation of such problems is desirable. Furthermore,
such a development has the potential to be used to inform on the underlying local
analytical regularity properties, too.

A class of interface problems, which is still relatively unexplored, are problems with
flux-balancing interface conditions, resulting in discontinuities in the state variable
itself. This class of interface conditions model, among other things, the mass
transfer of solutes through semi-permeable membranes in a number of engineering
applications and biological processes; see, e.g., [19, 20] for more details on the
modelling. The design of practical high-order numerical methods for this class of
problems poses a number of challenges, most important being the discontinuity of
the solution across the interface, and the geometric approximation of the, possibly
curved, interface itself.

1



Introduction 2

In the context of finite element methods (FEMs), when the interface is a gen-
eral manifold of co-dimension one, the geometry cannot be described exactly by
the mesh, as even isoparametric elements can only exactly resolve interfaces with
polynomial level-sets. A number of methods to address this shortcoming have
been proposed over the years, such as the unfitted FEM [37], immersed interface
methods [45, 46, 54], fictitious domain methods [10, 15, 16], composite FEM [55],
cut-cell techniques [49, 57, 14, 36], etc.

Many of the aforementioned works also provide a priori error analysis of the pro-
posed methods and/or goal-oriented error estimation techniques and the lack of
availability of rigorous a posteriori bounds may appear somewhat surprising at
first sight. Observing, however, that, upon interface approximation, the exact
solution is defined on a different domain to its finite element approximation, the
standard approach of proving a posteriori bounds, i.e., using PDE stability results
linking the error with the residual, becomes cumbersome. Few a posteriori bounds
for curved domains exist, focusing on the related (but simpler) problem of proving
a posteriori bounds for elliptic problems posed on (single-compartment) curved
domains [27, 4].

Moreover, the topic of a convergence analysis of adaptive algorithms for ellip-
tic problems is now relatively well understood for both conforming and non-
conforming methods, see, e.g., [52, 42, 25, 11, 39, 40, 53]; no results in the context
of elliptic interface problems exist.

To address the challenge of general curved interface geometry, in this work we
present a fitted interior-penalty discontinuous Galerkin (dG) method for an elliptic
interface problem involving elements with extremely general curved faces. This
fitted approach avoids some of the aforementioned challenges for crucially, proving
a posteriori error bounds, at the expense of extending standard approximation,
inverse, and conforming-nonconforming recovery estimates (in the spirit of the
seminal work [41]) to elements with curved faces, which are also derived. The latter
results may be of independent interest. The elliptic interface problem considered
here is posed on a multi-compartment domain with specific flux-balancing interface
conditions modelling mass transfer through semi-permeable membranes [17, 19,
20]. Such interface problems, yielding discontinuous solutions across the interface,
can be easily implemented within an existing dG code simply by modifying the
interior penalty dG numerical fluxes accordingly [35, 20, 21].
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Moreover, the extremely general element shapes allowed in the proposed method
are able to resolve very general interface geometries exactly, up to quadrature
errors. The optimal approximation of the finite element spaces and good con-
ditioning of the respective stiffness matrices are ensured by the use of physical
coordinate basis functions, as opposed to standard mapped ones from a reference
element; this idea was utilised in [9, 18], where efficient techniques for the assem-
bly step are presented. Furthermore, an alternative construction using parametric
maps of reference elements with extremely general reference element shapes is also
proposed. The latter may prove to be useful in the context of high-order finite
element spaces.

Of course, the “fitted” approach proposed below may appear cumbersome at first
sight particularly in view of spatial discretisation in the context of evolutionary
PDEs involving moving interfaces. This is, in fact, not necessarily the case as
the developments presented below appear to be generalisable, at least in principle,
to a cut-cell-type setting, whereby a mesh is not subordinate to the interface
location a priori. This is not done here, however, in the interest of simplicity of
the presentation of the key ideas.

The choice the interior penalty dG method for interface problems is motivated
by the following factors. First, due to the lack of any conformity requirements,
it is possible to choose the local element bases freely, which is important when
employing very general element shapes to ensure optimal approximation rates and
well-conditioned stiffness matrices; this idea was utilised in [18], where efficient
techniques for the assembly step where presented. Second, for interface problems
yielding discontinuous solutions across the interface, such as the one considered
below, the interface conditions can be easily implemented within an existing dG
code simply by modifying the interior penalty dG numerical fluxes accordingly
[35, 20, 21]

This thesis is also concerned with the development and analysis of numerical
methods for a class of parabolic interface problems, modelling the mass trans-
fer of solutes through semi-permeable membranes, closed by nonlinear interface
conditions. We tackle the challenge of deriving a posteriori error bound for such
problems by employing a nonstandard elliptic reconstruction. This is inspired by a
classical elliptic projection construction of Douglas and Dupont for the treatment
of nonlinear boundary conditions in the a priori error analysis setting [29]. A key
aspect of our analysis is the use of elliptic reconstruction technique, introduced by
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Makridakis and Nochetto [48, 44], and extended to dG methods in [33]. Here, we
investigate adaptive algorithms for both elliptic and parabolic interface problems
with a focus on addressing some challenges to derive estimators error for nonlin-
earity and the geometric approximation of the interface itself. To do this, different
problems are presented below along with their respective challenges.

In Chapter 2, the model problems are introduced. The discontinuous Galerkin
method, along with the admissible curve element shape, are given. Semi and fully
discrete approximation scheme for nonlinear interface problem are shown. Some
necessary lemmas and theorems which will be used throughout this work are also
given. In Chapter 3, we present some necessary approximation, trace, inverse and
continuity recovery. These are a key part of the error analysis which we use to
derive a posterior error bounds in Chapter 4. Further, in Chapter 3, the coercivity
and contiounty are also proven. Chapter 4 is devoted to the proof of reliable and
efficient a posteriori error bounds in terms of the energy norm for the interior
penalty discontinuous Galerkin method. An important attribute of this method is
the use of physical coordinate basis functions, as opposed to standard mapped ones
from a reference element. We stress that the developments presented in Chapter
4 also apply to the special case of elliptic problems with non-essential boundary
conditions on a single non-polygonal/non-polyhedral domain. Using the derived a
posteriori bounds, we also give a basic priori convergence result for the proposed
method using the efficiency under minimal regularity assumptions, in the spirit
of the seminal work [34]. We do so since of regularity theory for elliptic interface
problems is far from being well developed. The theory presented is complemented
by a series of numerical experiments.

The aim of Chapter 5 is to study the convergence analysis for the presented adap-
tive algorithm. We prove a basic error contraction result of an adaptive discontin-
uous Galerkin method for an elliptic interface problem. The adaptive algorithm
is based on the residual-type a posteriori error estimator, with a bulk refinement
criterion. The results here are inspired and influenced by [42, 11] in the context of
elliptic problems. The derivation of the adaptive schemes to arrive to a contraction
result poses a number of challenges. First, the treatment of the interface condi-
tions. Second, the refinement of curved elements touching the interface boundary
so that their angles remain uniformly bounded. The latter will introduce some
mild mesh assumptions.

Chapter 6 deals with nonlinear parabolic interface problems. In particular, we



Introduction 5

derive new posteriori error estimator for backward Euler time-stepping method
combined with the spatial discontinuous Galerkin scheme from Chapter 4. The
main challenge in the construction of such an error estimator is having to deal
with a nonlinear error equation due to the interface modelling. This challenge
can be handled with an elliptic reconstruction inspired by a nonstandard elliptic
projection of Douglas and Dupont [29] for the treatment of nonlinear boundary
conditions.

To the best of our knowledge, an a posteriori error estimator for an interface
problem with linear conditions at the interface was only proven in [50] for straight
interfaces. The main contribution of Chapter 6 is to provide an a posteriori error
estimator for the backward Euler in time and fitted interior-penalty discontinuous
Galerkin method in space applied to nonlinear interfaces problem. The presented
a posteriori error analysis in terms of L∞(L2)+L2(H1) and L∞(L2)-norms appear
to be of optimal order. The derivation of the energy-norm bound is inspired
and influenced by [22, 23]. For linear parabolic problems, there are many error
estimators available in the literature [8, 26, 44, 47, 48, 6, 43]. Other posteriori
error estimates for linear and nonlinear parabolic problems in the literature include
[33, 59, 51, 2, 24, 58, 30, 56]. Numerical experiments are presented through an
implementation based on the deal.II finite element library [7].

Finally, in Chapter 7 we summarise the results of this work and discuss ways in
which this work could be extended.



Chapter 2

Interface problems and

Discontinuous Galerkin methods

2.1 Introduction

The objective of this chapter is to introduce the elliptic and parabolic inter-
face model problems, and the fitted interior-penalty discontinuous Galerkin (dG)
scheme for their discretisation.

The dG method employs elements with, possibly, curved faces, able to resolve the
interface geometry exactly. The method is closely related to the spatial discretiza-
tion for parabolic interface problems introduced in [20], with the latter assuming
exact interface resolution using standard (non-curved) simplicial or box-type ele-
ments only.

A key attribute of the proposed method is the use of physical frame basis functions,
i.e., the elemental bases consist of polynomials on the elements themselves, rather
than mapped polynomials through a mapping from a reference element. Crucially,
the lack of conformity of the dG method allows for such physical frame polynomial
basis functions to be used on very general element shapes. The implementation
challenges arising from this non-standard choice will be discussed below.

Before introducing the model problems and their dG discretisation, some useful
general definitions and basic inequalities that shall be used throughout this work
are also given here.

6



Interface problems and discontinuous Galerkin methods 7

2.1.1 Sobolev spaces

Let ω ⊂ Rd, d = 1, 2, 3 be a bounded Lipschitz domain with boundary ∂ω. The
norm of L2(ω) ≡ H0(ω), ω ⊂ Ω, will be denoted by ‖ · ‖ω, and is induced by the
standard L2(ω)-inner product, denoted by 〈·, ·〉ω; when ω = Ω, we shall use the
abbreviations ‖ · ‖ ≡ ‖ · ‖Ω and 〈·, ·〉 ≡ 〈·, ·〉Ω . For 1 ≤ p ≤ +∞, we define the Lp
norms by

‖v‖Lp(ω) =

(∫
ω

|v|pdx

)1/p

for some 1 ≤ p ≤ +∞,

‖v‖Lp(ω) := ess sup |v (x) | for p = +∞.

Note that L2 (ω) is a Hilbert space with an inner product given by 〈·, ·〉ω. For
α = (α1, α2, . . . , αd) multi-index, the distributional derivative Dαv is denoted by

Dα =:
∂|α|

∂xα1
1 ∂x

α2
2 ...∂x

αd
d

.

The Hilbertian Sobolev space of order s ∈ N is defined by

Hs(ω) := {v ∈ L2(ω) : Dαv ∈ L2(ω), 0 ≤ |α| ≤ s},

with associated norm

‖v‖Hs(ω) :=

( ∑
0≤|α|≤s

‖Dαv‖2
ω

)1/2

,

and seminorm

|v|Hs(ω) :=

(∑
|α|=s

‖Dαv‖2
ω

)1/2

.

It is also possible to define Sobolev spaces of fractional order based on function
space interpolation, we refer to [1] for details. Whenever boundary values are used
in this thesis, they are to be understood in the sense of traces. The space H1

G is
defined as

H1
G :=

{
u ∈ H1(ω) : u|ΓG = 0

}
,

where ΓG ⊂ ∂ω. If ΓG = ∂ω, then the space will be denoted by H1
0 (ω). With

Ck (ω) we denote the space of all functions u for which Dαu is continuous for all
muliti-indices α with norm |α| ≤ k. Further, we Let Lp(0, T ;X) be the Bohner
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space (where X is real Banach space equipped with norm ‖.‖X which consist of
all measurable functions v : [0, T ]→ X) defined by

‖v‖Lp(0,T ;X) =

(∫ T

0

‖v(t)‖pXdt

)1/p

< +∞, 1 ≤ p <∞,

‖v‖L∞(0,T ;X) = ess sup ‖v(t)‖X < +∞, p = +∞.

(2.1)

2.1.2 Useful inequalities

The purpose of this section is to introduce general results which will be utilized
throughout the rest of this work.

Theorem 2.1 (Young’s inequality). Let a, b ∈ R, then for any ε > 0, we have

ab ≤ a2ε

2
+
b2

2ε
.

Theorem 2.2 (Poincare–Friedrichs inequality). Let ω be a connected open polyg-
onal/polyhedral domain in Rd, d = 2, 3. Then, for all u ∈ H1

0 (ω), we have

‖u‖2
ω ≤ C‖∇u‖2

ω.

Proof. See [12].

Theorem 2.3 (Trace inequality). Given z ∈ H1(ω), for and open Lipschitz do-
main ω ⊂ Rd, d = 2, 3 , the following bound holds

‖z‖2
ψ ≤ Ctrace

(
δ−1‖z‖2

ω + δ‖∇z‖2
ω

)
, (2.2)

for all δ positive and for some positive constant Ctrace, independent of z, where
ψ ⊂ ∂ω of positive (d− 1)-dimensional Hausdorff measure.

Proof. See [1] for a proof.

Lemma 2.4 (Gronwall’s inequilty). If a and b are non-negative constants and

0 ≤ u(t) ≤ a+ b

∫ t

0

u(s)ds, ∀0 ≤ t < T, (2.3)

then, we have
u(t) ≤ aebt. (2.4)
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Ω1 Ω2Γtr

Figure 2.1: The Ω is subdivided into two sub-domains Ω1 and Ω2 by the
interface Γtr = Ω\(Ω1 ∪ Ω2).

Proof. See [38].

2.2 A fitted dG method for interface problems

We shall consider two model problems: a linear interface problem for the Poisson
equation and a nonlinear interface parabolic problem. The former will be used
to introduce the basic idea of the fitted approach for the discretisation of the
space variables. This framework is then applied to the latter problem, starting
with the semi-discrete approximation using the fitted dG in space approximation
and finishing with the fully discrete backward Euler in time fitted dG in space
approximation.

2.2.1 Elliptic model problem

Let Ω be a bounded open polygonal/polyhedral domain with Lipschitz boundary
∂Ω in Rd, d = 2, 3. Ω is split into two sub-domains Ω1 and Ω2, such that Ω =

Ω1 ∪ Ω2 ∪ Γtr, with Γtr := (∂Ω1 ∩ ∂Ω2) \∂Ω being also Lipschitz continuous with
bounded curvature; see Figure 2.1 for an illustration.

We consider the model problem:

−∆u = f, in Ω1 ∪ Ω2,

u = 0, on ∂Ω,

n1 · ∇u1 = Ctr(u2 − u1)|Ω1 on Ω̄1 ∩ Γtr,

n2 · ∇u2 = Ctr(u1 − u2)|Ω2 on Ω̄2 ∩ Γtr,

(2.5)

with ui = u|Ω̄i , i = 1, 2, Ctr > 0 a given interface transmission (e.g., permeability)
constant and ni, i = 1, 2 denoting the respective outward unit normal vectors.
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This is a simplified model for mass transfer of a solute through a semi-permeable
membrane through osmosis, but it is rich enough in highlighting the aforemen-
tioned challenges posed for the numerical analysis of this class of problems. Also,
we set H1 := H1(Ω1 ∪ Ω2), and

H1
0 := {v ∈ H1 : v = 0 on ∂Ω}.

Upon integrating by parts on each sub-domain and applying the interface condi-
tion, we arrive to (2.5) in weak form, which reads: find u ∈ H1

0 such that

D (u, v) :=

∫
Ω1∪Ω2

∇u · ∇vdx+

∫
Γtr
CtrJuK · JvKds =

∫
Ω

fvdx, (2.6)

for all v ∈ H1
0, where JuK := v1|Kn1 + v2|Kn2 is the jump across the interface.

We shall now introduce the fitted interior penalty discontinuous Galerkin (dG)
finite element method for the discretization of the elliptic interface problem (2.6).

2.2.2 The Mesh

Let T = {K} be a locally quasi-uniform subdivision of Ω, possibly containing
regular hanging nodes, with K a generic, possibly curved, simplicial, box-type,
or prismatic element of diameter hK . More specifically, we shall assume that
the mesh consists of triangular or quadrilateral elements when d = 2, and of
tetrahedral or prismatic elements with triangular bases when d = 3. We stress that
the prismatic elements considered here are not assumed to have parallel bases, in
general.The mesh skeleton Γ := ∪K∈T ∂K is subdivided into three disjoint subsets
Γ = ∂Ω ∪ Γint ∪ Γtr, where Γint := Γ\(∂Ω ∪ Γtr).

For simplicity of the presentation, we shall assume that elements with curved faces
will be employed only to resolve the interface geometry, i.e., only elements K ∈ T
such that ∂K ∩ Γtr 6= ∅ are curved, see Figure 2.2 for an illustration. This is
also realistic from a practical perspective, as the global use of curved elements is
more computationally demanding (with no immediate advantage) during assembly.
Nevertheless, the theory below can be easily modified to cover the case of curved
elements away from the interface, if so desired.
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K1
K2

Γtr

ν1

ν2

•

•

Figure 2.2: Curved elements K1 and K2 (solid lines/curves) from either side
of the interface Γtr, resolving the geometry of Γtr.

2.2.3 Finite element space

We define the discontinuous finite element space Sph, subortinate to the mesh
T = {K}, by

Sph ≡ Sph(T ) = {v ∈ L2(Ω) : v|K ∈ Pp(K), K ∈ T }, (2.7)

where Pp(K) denotes the space of polynomials of total degree p on an element K.

For each element face E ⊂ Γint ∪ Γtr, there are two elements K1 and K2 such
that E ⊂ ∂K1 ∩ ∂K2. The outward unit normal vectors on E of ∂K1 and ∂K2

are denoted by nK1 and nK2 , respectively. For a function v : Ω → R that may
be discontinuous across Γ, we set vi = v|Ki , and we define the jump JvK and the
average {v} of v across E by

JvK = v|K1nK1 + v|K2nK2 , {v} =
1

2
(v|K1 + v|K2) . (2.8)

Similarly, for a vector valued function w, piecewise smooth on T with wi = w|Ki ,
we define

JwK = w|K1 · nK1 + w|K2 · nK2 , {w} =
1

2
(w|K1 + w|K2) .

When E ⊂ ∂Ω, we set {v} = v, JvK = vn and JwK = w · n with n denoting the
outward unit normal to the boundary ∂Ω.

We introduce the meshsize function h : Ω → R, where h|K = hK , K ∈ T and
h = {h} on each (d − 1)-dimensional open face E ⊂ Γ. We also define hmax :=

maxx∈Ω h and hmin := minx∈Ω h. Without loss of generality, we shall assume
that hmax remains uniformly bounded throughout this work, thus, avoiding having
estimation constants dependent on max{1, hmax}.
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2.2.4 dG method for the elliptic problem

To arrive the interior penalty discontinuous Galerkin method, we multiply (2.5)
by a test function v ∈ Sph +H1

0 and, integrate over each subdomain, we have.

−
∫

Ω

(∆u) vdx =

∫
Ω

fvdx. (2.9)

Next, we decompose the integrals into element contributions and integrate by
parts: ∑

K∈T

∫
K

∇u · ∇vdx−
∑
K∈T

〈n · ∇u, v〉∂K =
∑
K∈T

∫
K

fvdx. (2.10)

The next step is to split the face integrals:∑
K∈T

〈n · ∇u, v〉∂K =
∑

E∈Γ\Γtr

(
〈n · ∇u, v〉∂K1

⋂
E + 〈n · ∇u, v〉∂K2

⋂
E

)
+
∑
E∈Γtr

(
〈n · ∇u, v〉∂Ω1

⋂
E + 〈n · ∇u, v〉∂Ω2

⋂
E

)
,

(2.11)

where K1, K2 ∈ T , for E ∈ ∂K1 ∩ ∂K2, n is the a corresponding unit normal on
E (exterior to K2). We can see that

∑
E∈Γ\Γtr

(
〈n · ∇u, v〉∂K1∩E + 〈n · ∇u, v〉∂K2∩E

)
=

∫
Γ\Γtr
{∇u} · JvKds

+

∫
Γint\Γtr

J∇uK · {v}ds.
(2.12)

Applying the interface condition, gives

∑
E∈Γtr

(
〈n · ∇u, v〉∂Ω1

⋂
E + 〈n·∇u, v〉∂Ω2

⋂
E

)
=

∫
Γtr
CtrJuK · JvKds. (2.13)

Collecting all these results together, we obtain

∑
K∈T

∫
K

∇u · ∇vdx−
∫

Γ\Γtr
{∇u} · JvKds−

∫
Γint\Γtr

J∇uK · {v}ds

+

∫
Γtr
CtrJuK · JvKds =

∫
Ω

fvdx.

(2.14)

Assuming that the fluxes ∇u are continuous almost everywhere in Ω, we obtain∫
Γint\Γtr

J∇uK · {v}ds = 0 ∀u ∈ H
3
2

+ε(Ω1 ∪ Ω2) for ε > 0.
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Also JuK = 0. We obtain, for all u, v ∈ H 3
2

+ε(Ω1 ∪ Ω2), ε > 0,

∑
K∈T

∫
K

∇u · ∇vds−
∫

Γ\Γtr
({∇u} · JvK + {∇v} · JuK) ds+

∫
Γ\Γtr

γ0

h
JuK · JvKds

+

∫
Γtr
CtrJuK · JvKds =

∫
Ω

fvdx.

The above suggest the following interior penalty discontinuous Galerkin method :
find uh ∈ Sph such that

Dh(uh, vh) = 〈f, vh〉, for all vh ∈ Sph, (2.15)

where

Dh(uh, vh) =
∑
K∈T

∫
K

∇uh · ∇vhdx−
∫

Γ\Γtr
({∇uh} · JvhK + {∇vh} · JuhK)ds

+

∫
Γ\Γtr

γ0

h
JuhK · JvhKds+

∫
Γtr
CtrJuhK · JvhKds;

(2.16)

here γ0 > 0 is the discontinuity-penalization function (to be defined precisely in the
next Chapters,) and Ctr > 0 is the permeability coefficient. We note carefully that
there is no discontinuity penalization on the interface. As we shall see below, the
penalty parameter has to be chosen large enough in order to ensure the stability
of the discontinuous Galerkin discretization; cf., also, e.g., [20].

2.2.5 Parabolic model problem

We consider a parabolic interface model problem, modelling the mass transfer of
solutes through semi-permeable membranes, closed by nonlinear interface condi-
tions. To begin with, we define the permeability p : R2n −→ Rn as a function of
the traces of u from both sides of the interface, with P(u) = p(u1, u2), we have

ut −∆u = f, in Ω1 ∪ Ω2 ∪ [0, T ],

u = 0, on ∂Ω,

u(0, x) = u0(x), on {0} × Ω,

n1 · ∇u1 = P(u)(u2 − u1)|Ω1 on Ω̄1 ∩ Γtr,

n2 · ∇u2 = P(u)(u1 − u2)|Ω2 on Ω̄2 ∩ Γtr,

(2.17)
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where ui = u|Ω̄i∩Γtr , i = 1, 2, and ni, i = 1, 2 denoting the respective outward unit
normal vectors. Let p̃ : R2n −→ Rn denote the function describing the diffusive
flux across the interface Γtr, that is

p̃(x1, x2) = P(x1, x2)(x1 − x2) ∀x1, x2 ∈ R2n, (2.18)

and assume that p̃ ∈ C1,1(R2n) and that its Jacobian p̃′ is bounded. Upon integrat-
ing by parts on each sub-domain and applying the interface condition, we arrive
to (2.17) in weak form, which reads: find u ∈ L2(0, T,H1

0)∩H1
0(0, T, L2(Ω1 ∪Ω2))

such that, for almost every t ∈ (0, T ], we have∫
Ω

∂u

∂t
vdx+D (t;u, v) +M (u, v) =

∫
Ω

fvdx, (2.19)

for all v ∈ H1
0. Here,

D (t;u, v) =

∫
Ω1∪Ω2

∇u · ∇vdx, M (u, v) =

∫
Γtr
P(u)JuK · JvKds. (2.20)

In the remaining of the chapter we present the semi-discrete and fully-discrete
formulations of the model problem (2.17).

2.2.6 Semi-discrete formulation

We consider the semi-discrete interior penalty discontinuous Galerkin method for
(2.17) as D̃h : Sph × S

p
h → R of the bilinear form D̃h, given by

〈∂uh
∂t

, vh〉+ D̃h(t;uh, vh) +M(uh, vh) = 〈f, vh〉, for all vh ∈ Sph, (2.21)

where

D̃h(t;uh, vh) =
∑
K∈T

∫
K

∇uh · ∇vhdx−
∫

Γ\Γtr
({∇uh} · JvhK + {∇vh} · JuhK)ds

+

∫
Γ\Γtr

γ0

h
JuhK · JvhKds;

(2.22)

where the dependence on time has been made explicit in D̃h andM as in (2.20).
Note that D̃h differs from Dh defined in (2.16), in that it does not include the
interface term.
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2.2.7 Fully discrete formulation

We consider a fully discrete scheme consisting of the fitted interior penalty discon-
tinuous Galerkin method in space, together with backward Euler Galerkin time-
stepping. To this end, we will discretise the time interval [0, T ] into subintervals
(tn−1, tn], n = 1, ..., N with t0 = 0 and tN = T , and we denote by kn = tn − tn−1

the local time step. We associate to each time-step tN a spatial mesh T n and the
respective finite element space Sn := Sph(T n). The fully discrete scheme is defined
as follows. Set u0

h to be a projection of u0 onto some space S0 subordinate to a
mesh T 0 employed for the discretisation of the initial condition. For k = 1, ..., n,
find unh ∈ Sn such that

〈u
n
h − un−1

h

kn
, vn〉+Dn

h (unh, v
n) +M (unh, v

n) = 〈fn, vn〉 ∀vn ∈ Sn, (2.23)

where Dn
h(·, ·) = Dh(tn, ·, ·) denotes the dG bilinear form defined on the mesh T n.



Chapter 3

Approximation and recovery on

curved elements

3.1 Introduction

This chapter aims to present some useful approximation, trace, inverse estimates
and recovery operator, which will be used in the derivation of the a posteriori error
bound below. The coercivity and continuity of the bilinear form are also proven.

3.2 Mesh assumptions

We make some further assumptions on the admissible meshes near the (curved)
interface. We assume that no interior point of an element K ∈ T (which we
recall is an open set) can have a non-trivial intersection with the interface Γtr.
Moreover, for simplicity (and with no essential loss of generality,) we assume that
the set ∂K ∩Γtr 6= ∅ is one whole face of K, or one vertex of K only. Hence, when
d = 3, we shall only consider (possibly curved) tetrahedral or prismatic elements
with triangular bases K ∈ T such that ∂K ∩ Γtr 6= ∅, so that a unique cut plane
passes through the 3 vertices of K lying on Γtr. Elsewhere in the mesh, box-type
elements when d = 3 are also allowed. Moreover, we assume that the mesh is
constructed in such a way that each element K is a Lipschitz domain.

Assumption 3.1. For all elements K ∈ T tr, we assume that:

16
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K

Γtr

nK

Γtr

m

Figure 3.1: Elements K ∈ T tr are assumed to satisfy Assumption 3.1 a) (left)
and b) (right)

a) (star-shapedness) each element K ∈ T tr, having the face E ⊂ Γtr, is star-
shaped with respect to all vertices opposite this face E; note that we have one
such vertex when K is simplicial, or more than one such vertices when K is
box-type or prismatic. Furthermore, we assume that each element K ∈ T tr

is also star-shaped with respect to all the midpoints of the edges sharing a
common vertex with the face E ⊂ Γtr and are not (edges of) E ⊂ Γtr itself;
we refer to Figure 3.1 for an illustration for d = 2.

b) (shape-regularity) we have m(x) ·n(x) ≥ c|m(x)| uniformly across the mesh,
for every vector m(x) = x − x0, with x ∈ E and x0 any vertex opposite
E ∈ Γ, and n(x) the respective unit outward normal vector to E at x.
Moreover, we assume that |m(x)| ∼ hK uniformly.

Note that Assumption 3.1 b) is trivially satisfied by shape-regular elements K
with straight faces. It is a natural condition in view of proving trace estimates, cf.
Lemma 3.3 below (see also [3, Theorem 3.10] and [31, Section 3] for illuminating
expositions). Assumption 3.1 a) can always be fulfilled on sufficiently fine meshes,
given that the curvature of Γtr is bounded.

We denote the set of, possibly curved, interface elements by

T tr := {K ∈ T : measd−1(∂K ∩ Γtr) > 0};

with measr(ω) denoting the r-dimensional Hausdorff measure of a set ω ⊂ Rd; see
Figure 2.2 for an illustration of such elements. Note that elements having just one
vertex on Γtr do not belong to T tr.

Definition 3.2. For each K ∈ T tr, we define the simplicial or box-type related
element K̃ to be the element with straight/planar faces having the same vertices
as K. Let also K ⊂ K be the largest sub-element with straight/planar faces and
all faces parallel to the faces of the related element K̃.
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Γtr

KK K̃

E Ẽ

Figure 3.2: A three-dimensional curved element K ∈ T tr (enclosed by the
solid lines and curve), its related elements K̃ having the same vertices as K
and straight faces (two same faces and the third depicted by a dashed line,)
and K (having two same faces and the third depicted by a dashed-dotted line.)
Although it does not belong to Γtr, the face E (enclosed by the solid lines and
curve,) has a curved edge while the related face Ẽ (two same faces and the third

depicted by a dashed line,) is a straight triangle.

For two adjacent elements K,K ′ ∈ T tr sharing a common face E ∈ Γint ∪ Γtr, we
shall denote by Ẽ := ∂K̃∩∂K̃ ′ the related common face of the two (also adjacent)
related simplicial or prismatic elements K̃, K̃ ′.

Notice that in general, K 6= K̃ when ∂K ∩ Γtr is curved; see Figure 3.2 for an
illustration.

Next, we define
Γinttr := {E ∈ Γint : E 6= Ẽ},

i.e., the subset of Γint containing all the faces E ∈ Γint with different related faces
Ẽ; see again Figure 3.2 for an illustration. Notice that E 6= Ẽ is possible only
when d = 3.

The above star-shapedness assumptions effectively imply that the angles between
the faces E ⊂ Γtr and those faces in Γinttr cannot be arbitrarily small and that the
Jacobian of the function parametrising E ⊂ Γtr on a local coordinate system, as
defined above, cannot be very large. Satisfying these assumptions may require a
small number of refinements of the elements K ∈ T tr of a given initial mesh.

3.3 Approximation, trace, and inverse estimates

For the proof of upper and lower a posteriori error bounds, we shall require ap-
proximation, trace, and inverse estimates for the elements with curved boundaries
K ∈ T tr, with uniform constants, i.e., constants that are independent of the par-
ticular shape of K. We begin by extending the standard trace estimate (2.2) to
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elements with curved faces in which the constant independent of the shape and
size of K and of v.

Lemma 3.3. Let v ∈ H1(K) and K ∈ T tr. Then, under the above assumptions
on the mesh, we have

‖v‖∂K∩Γtr ≤ C
(
h−1
K ‖v‖

2
K + hK‖∇v‖2

K

)
, (3.1)

with C > 0, independent of the shape and size of K and of v.

Proof. Since K ∈ T tr is star-shaped with respect to any given vertex νEtr opposite
the face Etr = ∂K ∩ Γtr, let m(s) be the vector pointing from the vertex νEtr to
all points s ∈ K, thereby defining m : K → Rd, cf. Figure 3.1 (right). Without
loss of generality, we assume that K ∈ T tr is simplicial. Indeed, if K ∈ T tr is
prismatic, let K0 ⊂ K to be the (curved) simplex defined by νEtr and Etr and
follow the argument presented below for K0 instead.

Defining the vector field F = mv2, the divergence theorem implies∫
Etr

(m ·n)v2 ds =

∫
∂K

F ·n ds =

∫
K

∇·F dx =

∫
K

(∇·m)v2 dx+ 2

∫
K

v∇v ·m dx,

noting that m(s) · n(s) = 0 for all s ∈ ∂K\Etr, which, in turn, yields

min
Etr
|m · n|‖v‖2

Etr ≤ d‖v‖2
K + hK‖v‖K‖∇v‖K , (3.2)

noting that ‖∇ ·m‖L∞(K) = d and ‖ |m|‖L∞(K) ≤ hK . The result already follows
by Assumption 3.1 b).

Next, let Π0 : L2(Ω)→ S0
h denote the orthogonal L2-projection operator onto the

element-wise constant functions, given by

Π0v|K := |K|−1

∫
K

vdx, for K ∈ T ,

with | · | ≡ measd(·) denoting the volume. We have the following approximation
result.

Lemma 3.4. Given the assumptions on the mesh, for each v ∈ H1(K), K ∈ T ,
we have the bounds

‖v − Π0v‖K ≤ ChK‖∇v‖K , (3.3)
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and
‖v − Π0v‖∂K ≤ C

√
hK‖∇v‖K , (3.4)

with C > 0 constant independent of the shape of K ∈ T , on v and on hK.

Proof. Due to the general, possibly curved, shape of the elements K ∈ T tr, a
simple application of a standard Bramble-Hilbert type result (cf., e.g., [13]) and
scaling is not sufficient to provide uniform constant C with respect to the shape
of K. Instead, we work as follows. For K ∈ T \T tr, the results are well-known.
For K ∈ T tr, the Friedrichs-type inequality proven in [61, Theorem 3.2], with
explicit constant with respect to the domain, along with shape-regularity, yields
(3.3). The bound (3.4) follows by combining (3.1) with (3.3).

For each K ∈ T tr, we shall require special sub-simplices contained in K, with
certain properties, having, in particular, straight/planar faces.

Lemma 3.5. Let K ∈ T tr. For each v ∈ Pp(K), there exists a simplex K[(v) ⊂ K

with straight/planar faces such that

|K| ≤ C[|K[(v)| with ‖v‖L∞(K) = ‖v‖L∞(K[(v)),

where the positive constant C[ is independent of v, hK, and p, but depends, how-
ever, on the shape-regularity constant of K.

Proof. Let K ∈ T tr and fix v ∈ P(K). Define xK ∈ K to be a point where the
maximum of v in K is attained, viz.,

‖v‖L∞(K) = |v(xK)|.

To prove the result, it is sufficient to show that there exists a simplex K[(v) ⊂ K

with straight/planar faces containing xK ∈ K such that |K| ≤ C[|K[(v)|. Recalling
Definition 3.2, we observe that, for K, we have |K| ∼ |K̃| from shape-regularity.
If xK ∈ K, then we can take K[(v) := K. If xK ∈ K\K, the star-shapedness of K
with respect to the midpoints of the faces (when d = 2) or the edges (when d = 3)
allows for the construction of a simplex K[(v) with faces (when d = 2) or edges
(when d = 3) defined by the line-segments connecting xK with these midpoints.
Given that the distance between xK and these midpoints equivalent to hK/2, the
result follows. Since we have established that exists at least one K[(v) per element,
we may define K[(v) as the one with the maximum area, to minimize the constant
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Γtr

K

K

K̃

xK∗

∗

∗

K[(v)

Figure 3.3: A curved element K ∈ T tr (enclosed by the solid lines and curve,)
its related element K̃ having the same vertices as K and straight faces (two
same faces and the third depicted by a dashed line,) K (having two same faces
and the third depicted by a dashed-dotted line,) and K[(v) for some v ∈ Pp(K)
(enclosed by the solid lines with endpoints denoted by ∗.) Here, xK is the point

where the maximum of v in K is attained.

C[. Notice that C[ can be taken independent of the polynomial v, as the area of
K[(v) is always bounded from below by a multiple of h2

K and K is compact.

We refer to Figure 3.3 for an illustration of the elements K, K̃,K, and K[(v), for
some v ∈ Pp(K). Notice that we have K = K̃ = K = K[(v), for all v ∈ Pp(K),
when the face E ⊂ Γtr of a K ∈ T tr is not curved.

The above result is required to show the following crucial inverse-type estimates
between L2-norms of polynomials on curved elements K ∈ T tr and their related
elements K̃.

Lemma 3.6. Let K ∈ T tr and assume that the related element K̃ is such that

cinvC[p
2d|K\K̃| < |K|, (3.5)

with cinv > 0 the constant of the inverse estimate ‖v‖2
L∞(K̃)

≤ cinvp
2d|K̃|−1‖v‖2

K̃
,

for all v ∈ Pp(K). Then, the following estimate holds

‖v‖2
K ≤ θinv(K)‖v‖2

K∩K̃ ,

where θinv(K) := |K|/
(
|K| − cinvC[p2d|K\K̃|

)
.

Proof. Let v ∈ Pp(K). We have, respectively,
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‖v‖2
K = ‖v‖2

K∩K̃ + ‖v‖2
K\K̃

≤ ‖v‖2
K∩K̃ + |K\K̃|‖v‖2

L∞(K\K̃)

≤ ‖v‖2
K∩K̃ + |K\K̃|‖v‖2

L∞(K[(v))

≤ ‖v‖2
K∩K̃ + cinvp

2d|K[(v)|−1|K\K̃|‖v‖2
K[(v)

≤ ‖v‖2
K∩K̃ + cinvC[p

2d|K|−1|K\K̃|‖v‖2
K ,

as K[(v) ⊂ K, using Lemma 3.5; the result follows.

Lemma 3.7. Let K ∈ T tr and let K ⊂ K and K̃ as in Definition 3.2 be such that

cinvp
2d|K̃\K| < |K̃|, (3.6)

for cinv > 0 as in Lemma 3.6. Then, for each v ∈ Pp(K), the following estimate
holds

‖v‖2
K̃
≤ ηinv(K)‖v‖2

K ,

where ηinv(K) := |K̃|/
(
|K̃| − cinvp2d|K̃\K|

)
.

Proof. Let v ∈ Pp(K). We have, respectively

‖v‖2
K̃

= ‖v‖2
K + ‖v‖2

K̃\K ≤ ‖v‖
2
K + |K̃\K|‖v‖2

L∞(K̃\K)

≤ ‖v‖2
K + |K̃\K|‖v‖2

L∞(K̃)
≤ ‖v‖2

K + cinvp
2d|K̃|−1|K̃\K|‖v‖2

K̃
,

which implies the result.

Notice that, when K ∈ T tr is convex, we have K̃ = K and, thus, ηinv(K) = 1.
Also, when K ∈ T tr is not curved, we have K = K̃ = K and, therefore, θinv(K) =

1 = ηinv(K).

Remark 3.8. It is possible to extend the applicability of the above estimates by
replacing p2d by p2 in (3.6) at the expense of a, more involved to estimate, constant
cinv. We refer to [32, Lemma 3.7] for a similar construction. This remark also
applies to (3.5) for the case where K[(v) and K have parallel faces.

Remark 3.9. A close inspection of the proof of Lemma 3.5 reveals that the shape-
regularity assumption of K can be relaxed to requiring that there exists a, uniform
across the mesh, constant calt > 0 such that |K̃| ≤ calt|K|. The constant C[ will
then depend on calt instead of the shape-regularity constant of K as stated in
Lemma 3.5. This, in turn, implies the validity of the inverse estimates in Lemmata
3.6 and 3.7 in this setting also.
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For the remaining of this work, we shall require the above inverse-type estimates,
hence we make the following saturation assumption which can always be satisfied
after a finite number of refinements of an original coarse mesh.

Assumption 3.10. We assume that the conditions (3.5) and (3.6) are satisfied for
all elements K ∈ T tr.

We continue with a generalization of the standard inverse-type estimate from a
face of an element to the element itself; here the face is allowed to be curved.

Lemma 3.11. Let K ∈ T tr such that a whole face of K, say Etr, is contained in
Γtr, and is, in general, curved. Then, for each v ∈ Pp(K), the inverse estimate

‖v‖2
Etr ≤ C

p2

hK
‖v‖2

K ,

with C > 0 constant, independent of v, p, hK and K, but dependent on the shape-
regularity constant of K.

Proof. We partition Etr into m (d − 1)-dimensional pieces of equal measure, de-
noted by Ej, j = 1, . . . ,m. Further, we construct a partition of K into (curved)
sub-elements Kj, by considering the simplices with one face Ej and the remaining
vertex being the vertex of K opposite Etr, when K is simplicial or by considering
the prismatic elements obtained by extrusion of Ej orthogonally to the face of K
opposite Etr, when K is prismatic. We refer to Figure 3.4 for an illustration when
d = 2.

K
Kj

Ej

Etr ⊂ Γtr

K
Kj

Ej

Etr ⊂ Γtr

Figure 3.4: Curved elements K ∈ T tr with their partitions.

Denoting by Ẽj the straight/planar face of the related element K̃j approximating
Ej, we have

‖v‖2
Ẽj
≤ Cp2 |Ẽj|

|K̃j|
‖v‖2

K̃j
≤ C

p2

hK
‖v‖2

K̃j
≤ Cηinv(Kj)

p2

hK
‖v‖2

Kj
, (3.7)

as, in view of Remark 3.9, it is possible to apply Lemma 3.7 on each Kj (for
sufficiently large m.)
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As m → ∞, Kj becomes infinitesimal in (d − 1)-dimensions, and so, approxi-
mating Kj by K̃j produces arbitrarily small error in the geometry, resulting to
ηinv(Kj) → 1. Moreover, since Etr admits a differentiable parametrization, we
have limm→∞

∑m
j=1 ‖v‖2

Ẽj
= ‖v‖2

Etr
. Therefore, summing (3.7) over j and taking

m→∞, we arrive at the required result.

Lemma 3.12. Let K ∈ T tr and let E a face of K, such that E ⊂ ∂K\Γtr. Then,
for each v ∈ Pp(K), the inverse estimate

‖v‖2
E ≤ C

p2

hK
‖v‖2

K ,

with C > 0 constant, independent of v, p, hK and K, but dependent on the shape-
regularity constant of K.

Proof. Fix K ∈ T tr and a face E∗ ⊂ ∂K\Γtr. For d = 2, the star-shapedness with
respect to the midpoints of the faces E ⊂ ∂K\Γtr, allows for the existence of a
straight-edged triangle K∗ ⊂ K having E∗ as one face and as remaining vertex the
midpoint of the other face E ⊂ ∂K\Γtr opposite to E∗. From the shape-regularity
of K, we infer that |K| ∼ |K∗|. On this triangle K∗, we can apply the standard
inverse inequality to deduce

‖v‖2
E∗ ≤ C

p2

hK∗
‖v‖2

K∗ ≤ C
p2

hK
‖v‖2

K ,

as required.

For d = 3 and K with meas2(∂K ∩ Γtr) > 0, we approximate E∗ ⊂ ∂K\Γtr by a
quasiuniform triangulation consisting of m triangles, denoted by Ẽj, j = 1, . . . ,m.
Let xE∗ be the midpoint of an edge of K which is not an edge of E∗ and consider
the straight-faced pyramids K̃j, j = 1, . . . ,m, having Ẽj as one base and xE∗ as
remaining vertex. On each K̃j, we can apply the standard inverse estimate

m∑
j=1

‖v‖2
Ẽj
≤ Cp2

m∑
j=1

|Ẽj|
|K̃j|
‖v‖2

K̃j
≤ C

p2

hK

m∑
j=1

‖v‖2
K̃j
≤ Cηinv(Kj)

p2

hK

m∑
j=1

‖v‖2
Kj
,

working as before. Taking m→∞ gives the result.
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3.4 Recovery operator

An important tool for the a posteriori analysis will be a conforming recovery
operator in the spirit of the original construction by Karakashian and Pascal [41].
In particular, we shall modify the construction from [41] to allow for discontinuous
functions across Γtr and for curved elemental faces and edges on Γtr, under the
following assumption.

Assumption 3.13. We define the positive function θ : L2(Ω1 ∪ Ω2) → R with
θ|K := θinv(K), for K ∈ T tr, θ|K := 1, for K ∈ T \T tr, and θ := {θ} on Γ\Γtr.
We also define the positive function η : L2(Γ\Γtr) → R with η|E := {ηinv}, for
E ∈ Γ\Γtr. For the remaining of this work, we shall assume that θ and η are
locally quasi-uniform.

Lemma 3.14. Given the above mesh assumptions, there exists a recovery operator
E : Sph → H1

0, such that

∑
K∈T

‖∇α(vh − E(vh))‖2
K ≤ Cα

∑
E⊂Γ\Γtr

‖
√
θηh1/2−αJvhK‖2

E, (3.8)

for all vh ∈ Sph, Cα > 0, α = 0, 1, independent of vh, θ and h.

Proof. The proof is based on the one of [41, Theorem 2.2]; particular care is given
in dealing with the additional challenges posed by the, possibly curved, interface
elements. Without loss of generality, we assume that the mesh is conforming on
each Ωi, i = 1, 2, i.e., no hanging nodes are present; for, otherwise, we perform a
finite number of ‘green’ refinements to remove the hanging nodes, and we consider
the new refined mesh in the place of the original T in what follows.

We begin by choosing a Lagrange basis for Sph. For each K ∈ T \T tr, we consider
the standard Lagrange degrees of freedom. For each K ∈ T tr, we choose respective
the Lagrange basis of K̃. Let N denote the set of all Lagrange nodes of Sph, and
we define five of its subsets:

• N0 the set of all internal elemental nodes;

• Nint the set of all nodes situated on Γint;

• N∂Ω the set of all nodes situated on ∂Ω;

• Ntr the set of all nodes situated on Γtr;
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• Nout the set of nodes belonging to each element K ∈ T tr, situated outside
K. (E.g., the node of K1 situated at the midpoint of the linear segment ν1ν2

in Figure 3.5.)

K1
K2

Γtr

ν1

ν2

•

•

••

••
Figure 3.5: Degrees of freedom for quadratic Lagrange interface elements
K1,K2 ∈ T tr, denoted by • and ◦, respectively. Note that one degree of free-
dom of K1 is situated outside K1 (i.e., in ¯̃K1\K̄1,) at the midpoint of the linear

segment ν1ν2.

Evidently, we have N = N0 ∪ Nint ∪ N∂Ω ∪ Ntr ∪ Nout. Note, however, that,
Nout ∩ N0 6= ∅, in general; for an illustration consider the node ν situated at the
midpoint of the linear segment ν1ν2 in Figure 3.5: ν viewed as a node for K2

implies ν ∈ N0 and viewed as a node for K1 implies ν ∈ Nout.

Further, letN i
tr andN i

out denote the two subsets of the interface nodesNtr, and the
‘outer’ nodesNout associated with the Lagrange basis functions from the respective
elements belonging to Ω1 and Ω2 only, respectively. Note that if non-matching
grids are used across the interface Γtr, N 1

tr and N 2
tr are, in general different and

strict subsets of Ntr; if, on the other hand, there are no hanging nodes on the
interface, theN i

tr, i = 1, 2, are each a copy ofNtr. Completely analogous properties
characterise N i

out, i = 1, 2 also.

For each node ν ∈ N\(Ntr ∪Nout), we define its element-neighbourhood

ων := {K ∈ T : ν ∈ K̄},

along with its cardinality |ων |. Note that, when ν ∈ N0, we have |ων | = 1. Also,
for each node ν ∈ N i

tr, i = 1, 2, we define its ‘one-sided’ element neighbourhood

ωiν := {K ∈ T : K ⊂ Ωi, ν ∈ K̄}, i = 1, 2,

along with its cardinality |ωiν |, i = 1, 2, while for each node ν ∈ Nout, we define its
‘one-sided’ element neighbourhood

ωiν := {K ∈ T tr : K ⊂ Ωi, ν ∈ ¯̃K}, i = 1, 2,
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along with its cardinality |ωiν |. Finally, for each K ∈ T , let NK := {ν : ν ∈ ¯̃K},
the set of Lagrange nodes of K.

The recovery operator E : Sph → H1
0 is defined by determining its nodal values Nν

at each of the Lagrange nodes ν ∈ N :

Nν(E(vh)) :=



0, if ν ∈ N∂Ω;
1

|ων |
∑
K∈ων

Nν(vh|K), if ν ∈ Nint ∪N0;

1

|ωiν |
∑
K∈ωiν

Nν(vh|K), if ν ∈ N i
tr ∪N i

out, i = 1, 2.

(3.9)

Note that E(vh) will be, in general, discontinuous across Γtr. Therefore, denot-
ing by φν the conforming Lagrange basis function at the node ν, (which may,
nonetheless, be discontinuous across Γtr,) we have

E(vh) =
∑
ν∈N

Nν(E(vh))φν , (3.10)

allowing for the regular nodes on ν ∈ Ntr to be counted twice in the summation,
i.e., once for each i = 1, 2; here we have used the convention that φν signifies its
restriction onto the respective element K for all nodes ν ∈ Nout. Hence, we have
E(vh) ∈ H1

0.

From this, we deduce, respectively,∑
K∈T

‖∇(vh − E(vh))‖2
K ≤

∑
K∈T

θinv(K)‖∇(vh − E(vh))‖2
K∩K̃

≤
∑
K∈T

∑
ν∈NK

θinv(K)
∣∣Nν(vh|K)−Nν(E(vh))

∣∣2‖∇φν‖2
K∩K̃

≤ C(p)
∑

ν∈N\N0

θ(ν)hd−2(ν)
∑

K:ν∈NK

∣∣Nν(vh|K)−Nν(E(vh))
∣∣2

=: C(p)
∑

ν∈N\N0

Iν ,

using the standard bound ‖∇φν‖2
K∩K̃ ≤ ‖∇φν‖

2
K̃
≤ Chd−2

K̃
, where h(ν) and θ(ν)

are given by extending the definitions of the functions h and θ (to include the
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mesh nodes also)

h(ν) :=


1

|ων |
∑
K∈ων

hK , if ν ∈ Nint ∪N∂Ω;

1

|ωiν |
∑
K∈ωiν

hK̃ , if ν ∈ N i
tr ∪N i

out, i = 1, 2,

and θ(ν) := 1, if ν ∈ Nint∪N∂Ω, while θ(ν) := 1
|ωiν |
∑

K∈ωiν
θinv(K), if ν ∈ N i

tr∪N i
out,

i = 1, 2. We have

∑
ν∈N∂Ω

Iν =
∑
ν∈N∂Ω

θ(ν)hd−2(ν)
∑

K:ν∈NK

|Nν(vh|K)
∣∣2≤ C

∑
E⊂∂Ω

‖
√
θh

d−2
2 vh‖2

L∞(E).

Also, ∑
ν∈Nint∪Ntr∪Nout

Iν ≤ C
∑

E⊂Γint

∑
ν∈Ẽ

θ(ν)hd−2(ν)|Nν(vh|K1)−Nν(vh|K2)
∣∣2

≤ C
∑

E⊂Γint

‖
√
θh

d−2
2 JvhK‖2

L∞(Ẽ)
,

with Ẽ := E when E /∈ Γinttr . Note that Ẽ 6= E is possible only for d = 3. The
first inequality follows from applying the crucial [41, Lemma 2.2] and working as
in the proof of [41, Theorem 2.2], while the last inequality follows from the shape-
regularity property. We remark that, for d = 2, we have |Nν(vh|K)−Nν(E(vh))

∣∣ = 0

as |ωiν | = 1 when ν ∈ N i
out, i = 1, 2, while for d = 3 and for p = 1, we haveNout = ∅.

For d = 3, and p ≥ 2, we may have |ωiν | > 1 and, thus, the above calculation is
non-trivial for ν ∈ Nout.

Combining the above bounds, we arrive at∑
K∈T

‖∇(vh − E(vh))‖2
K ≤ C

∑
E⊂Γ\Γtr

‖
√
θh

d−2
2 JvhK‖2

L∞(Ẽ)
.

Finally, applying the standard inverse estimate

‖v‖2
L∞(Ẽ)

≤ C(p)h−d+1
K ‖v‖2

Ẽ
,

for all polynomials v ∈ Pp(Ẽ), and using Lemma 3.7 with K = E, we deduce

‖v‖2
Ẽ
≤ ηinv(E)‖v‖2

E.
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Hence, we obtain the required bound for α = 1. The proof for α = 0 is completely
analogous.

Remark 3.15. When Γtr is not curved, i.e., when the mesh T does not contain
any elements with curved faces, we have θ = 1 = η on Γ\Γtr in (3.8), thereby
retrieving the known bound of Karakashian and Pascal [41, Theorem 2.2].

Next, we shall modified the trace estimate defined for straight line to case the
curved boundary for functions in Sph + H1

0; see Karakashian and Pascal [41] and
[20, Lemma 3.1].

Lemma 3.16. Suppose that the mesh T is both shape-regular and locally quasi-
uniform. Then for v ∈ Sph +H1

0, the following trace estimate holds

2∑
j=1

‖v|Ωj‖2
Γtr ≤ Ctrace

(
ε−1‖v‖2 + ε

(∑
K∈T

‖∇v‖2
K + ‖

√
θη/hJvK‖2

Γint

))
. (3.11)

for any ε > hmax, and constants Ctrace > 0 independent of the shape and size of K
and of v.

Proof. Let decompose the function v ∈ Sph + H1
0 into a conforming part E(v)

and a nonconforming part v − E(v) ∈ Sph. Using Lemma 3.14, there exists a
E(v) ∈ H1

0, i = 1, 2, such that

∑
K∈T

‖∇α(v − E(v))‖2
K ≤ Cα‖

√
θηh1/2−αJvK‖2

Γint . (3.12)

Applying triangle inequality i.e v = c+ v − E(v), gives

2∑
j=1

‖v|Ωj‖2
Γtr ≤ 2

2∑
j=1

(
‖E(v)|Ωj‖2

Γtr + ‖(v − E(v)|Ωj‖2
Γtr

)
. (3.13)

Now, to bound the first term on the right-hand side of the (3.13), we note that
E(v) ∈ H1

0, giving

2∑
j=1

‖E(v)|Ωj‖2
Γtr ≤ C

(
ε−1‖E(v)‖2 + ε‖∇E(v)‖2

)
, (3.14)
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for any ε > 0 sufficiently small. Now, applying triangle inequality for each term,
given

‖E(v)‖ ≤ ‖v − E(v)‖+ ‖v‖, ‖∇E(v)‖2 ≤ 2
∑
K∈T

(
‖∇(v − E(v))‖2

K + ‖∇v‖2
K

)
.

From (3.12), we have

2∑
j=1

‖E(v)|Ωj‖2
Γtr ≤ Ctrace

(
ε−1C0‖

√
θηh1/2JvK‖2

Γint + ε−1‖v‖2

+ C1ε‖
√
θηh−1/2JvK‖2

Γint + ε
∑
K∈T

‖∇v‖2
K

)

≤ Ctrace

(
ε−1‖v‖2 + ε

∑
K∈T

‖∇v‖2
K + ε‖

√
θηh−1/2JvK‖2

Γint

)
,

(3.15)

using the assumption that ε > hmax. Now, it remains to bound the second term
on the right-hand side of (3.13). To do this, applying trace estimate in Lemma
3.3 on each element, we obtain

2∑
j=1

‖(v − E(v))|Ωj‖2
Γtr ≤ Ctrace

∑
K∈T

(
‖
√

1/h(v − E(v))‖2
K + ‖

√
h∇(v − E(v))‖2

K

)
.

≤ Ctrace‖
√
θηJvK‖Γint ,

(3.16)

using the assumption that ε > hmax. Now, inserting (3.15) and (3.16) in (3.13)
the proof is finished.

Lemma 3.17. For each vh ∈ H1
0, w, v ∈ H1

0 + Sph, we have

Dh(vh, vh) ≥
1

2
‖|vh|‖2 (3.17)

D̂h(w, v) ≤ C‖|w|‖‖|v|‖, (3.18)

for γ0 > 0 large enough, where Dh is given in (2.16), D̂h is an (inconsistent)
extension D̂h : (H1

0 + Sph)× (H1
0 + Sph)→ R of the bilinear form Dh, given by

D̂h(w, v) =
∑
K∈T

∫
K

∇w · ∇v dx−
∫

Γ\Γtr
({∇Πw} · JvK + {∇Πv} · JwK)ds

+

∫
Γ\Γtr

γ0

h
JwK · JvKds+

∫
Γtr
CtrJwK · JvKds.

(3.19)
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and

‖|vh|‖ :=
(∑
K∈T

‖∇vh‖2
K + ‖

√
γ0/hJvhK‖2

Γ\Γtr + Ctr‖JvhK‖2
Γtr

) 1
2
. (3.20)

Proof. We begin by assessing the coercivity of the dG bilinear form Dh on Sph×S
p
h,

thereby further determining the discontinuity-penalization parameter γ0. To this
end, we have

Dh(vh, vh) =
∑
K∈T

∫
K

(∇vh)2dx− 2

∫
Γ\Γtr
{∇vh} · JvhKds+

∫
Γ\Γtr

γ0

h
JvhK2ds

+

∫
Γtr
CtrJvhK2ds.

To bound the second term in the above equation. Using the Cauchy-Schwartz
inequality and Lemma 3.12, we obtain

2

∫
Γ\Γtr
{∇vh} · JvhK ds ≤

( ∑
E⊂Γ\Γtr

‖
√

h/γ0{∇vh}‖2
E

) 1
2‖
√
γ0/hJvhK‖Γ\Γtr

≤ C
( ∑
E⊂∂K,E⊂Γ\Γtr

‖
√

h/γ0∇vh‖2
E∩∂K

) 1
2‖
√
γ0/hJvhK‖Γ\Γtr

≤ C
(∑
K∈T

‖γ−1/2
0 ∇vh‖2

K

) 1
2‖
√
γ0/hJvhK‖Γ\Γtr .

≤ C

2

∑
K∈T

‖γ−1/2
0 ∇vh‖2

K +
1

2
‖
√
γ0/hJvhK‖2

Γ\Γtr .

(3.21)

Choosing γ0 > C, we obtain

2

∫
Γ\Γtr
{∇vh} · JvhK ds ≤

1

2

∑
K∈T

‖∇vh‖2
K +

1

2
‖
√
γ0/hJvhK‖2

Γ\Γtr .

The continuity property follows analogously to (3.21), giving∫
Γ\Γtr
{∇Πw} · JvK ds ≤

( ∑
E⊂Γ\Γtr

‖
√
h/γ0∇Πw‖2

E

) 1
2‖
√
γ0/hJvK‖Γ\Γtr

≤ C
( ∑
E⊂∂K,E⊂Γ\Γtr

‖
√
h/γ0∇Πw‖2

E∩∂K

) 1
2‖
√
γ0/hJvK‖Γ\Γtr

≤
(∑
K∈T

‖∇w‖2
K

) 1
2‖
√
γ0/hJvK‖Γ\Γtr ,

(3.22)
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and similarly,∫
Γ\Γtr
{∇Πv} · JwK ds ≤

( ∑
E⊂Γ\Γtr

‖
√
h/γ0∇Πv‖2

E

) 1
2‖
√
γ0/hJwK‖Γ\Γtr

≤
(∑
K∈T

‖∇v‖2
K

) 1
2‖
√
γ0/hJwK‖Γ\Γtr ,

Combing these results, gives the bound.



Chapter 4

A posteriori and a priori error

estimates for dG methods for

elliptic interface problems

4.1 Introduction

We shall prove a reliable and efficient a posteriori error estimate for elliptic for
the interior penalty discontinuous Galerkin (dG) method for the elliptic interface
equation. The a posteriori error estimate is derived under the assumption that the
triangulation is aligned with the interfaces although, crucially, extremely general
curved element shapes are also allowed, as discussed above.

Let u be the exact solution of a PDE and uh be some finite element approximation;
an a posteriori error estimator Υ with Υ depending only on the the uh and the PDE
data is an approximation of the error e := u− uh, in a certain norm ‖.‖ such that
‖.‖ ≤ Υ. A posteriori estimates can be used to estimate the local error distribution,
and can be incorporated in an adaptive algorithm. Such bounds are useful not
only for adaptivity but also for the quality assessment of the approximate solution.
An a posteriori estimator, Υ, is said to be reliable if there is C > 0, independent
of the exact solution u and of uh, such that

‖e‖ ≤ CΥ, (4.1)

33
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while Υ is said to be efficient if there is c > 0, independent of the exact solution
u and of uh, such that

cΥ ≤ ‖e‖. (4.2)

The constants appearing in equations (4.1) and (4.2) are not always explicitly
calculable. Related to this is the useful notion of the efectivity index, which
defined as the ratio of the posteriori error indicator and the dG-norm of the actual
error. We stress that the posteriori error bounds that derived for elliptic interface
problem will be the key ingredient in the study of the error for non linear parabolic
modelling in Chapter 5 .

4.2 A posteriori error bound

We begin by assessing the coercivity of the dG bilinear form Dh on Sph × S
p
h, with

respect to the dG-energy norm

‖|vh|‖ :=
(∑
K∈T

‖∇vh‖2
K + ‖

√
γ0/hJvhK‖2

Γ\Γtr + Ctr‖JvhK‖2
Γtr

) 1
2
, (4.3)

for γ0 ≡ γ0(p) > 0 sufficiently large. We note carefully that the definition of the
discontinuity-pernalization parameter γ0 to be given below will only depend on the
polynomial degree p and the shape-regularity of the mesh, through the respective
dependence of the inverse estimates from Lemmata 3.11 and 3.12.

Letting Π : L2(Ω) → Sph denote the orthogonal L2-projection operator onto the
discontinuous finite element space, we begin by defining the a posteriori error
indicator

Υ :=
(∑
K∈T

Υ2
K

)1/2

, with ΥK :=
(

Υ2
RK

+ Υ2
EK

+ Υ2
JK

+ Υ2
TrK

)1/2

, (4.4)

comprising of the interior, normal flux, jump and interface residuals

ΥRK := ‖h(Πf + ∆uh)‖K , ΥEK := ‖
√
hJ∇uhK‖∂K∩Γint ,

ΥJK := ‖γ0h
−1/2JuhK‖∂K∩Γ\Γtr , ΥTrK :=

2∑
i=1

‖
√
h(CtrJuhK +∇uh) · ni‖∂K∩Γtr .

We also define the data oscillation term

Θ1 := ‖h(f − Πf)‖,



Error estimates for dG methods for elliptic interface problems 35

along its restriction on each K, Θ1,K := ‖h(f − Πf)‖K .

4.2.1 Upper bound

For the proof of an a posteriori bound, we use the conforming recovery operator.
To this end, we decompose the error into conforming and non-conforming parts
u− uh = ec + udh, with ec := u−E(uh) and udh := E(uh)− uh, noting that ec ∈ H1

0.

Then, from (3.19) we have immediately that D̂h(w, v) = Dh(w, v) for all w, v ∈ Sph,
and also D̂h(w, v) = D(w, v) for all w, v ∈ H1

0. The error equation can be derived
as follows

‖|ec|‖2 = D(ec, ec) = D(u, ec)− D̂h(uh, e
c)− D̂h(u

d
h, e

c)

=

∫
Ω

fec dx− D̂h(uh, e
c)− D̂h(u

d
h, e

c) +Dh(uh,Π0e
c)−

∫
Ω

fΠ0e
c dx

=
(∫

Ω

f(ec − Π0e
c) dx− D̂h(uh, e

c − Π0e
c)
)
− D̂h(u

d
h, e

c) =: I − II.

We estimate the terms I and II above in the following lemmata.

Lemma 4.1. We have
I ≤ C

(
Υ2 + Θ2

1

)1/2‖∇ec‖,

for γ0 = γmax{
√
θη, 1} for some γ > 1 large enough.

Proof. Integration by parts yields

I =
∑
K∈T

∫
K

(f + ∆uh)(e
c − Π0e

c) dx−
∫

Γint
J∇uhK · {ec − Π0e

c}ds

+

∫
Γ\Γtr

JuhK · {∇Π(ec − Π0e
c)}ds−

∫
Γ\Γtr

γ0

h
JuhK · Jec − Π0e

cKds

−
∫

Γtr

(
CtrJuhK · Jec − Π0e

cK + J∇uh(ec − Π0e
c)K
)
ds.

(4.5)

We focus on estimating the third term on the right-hand side of (4.5), which can
be bounded as

‖γ−1
0

√
h{∇Π(ec − Π0e

c)}‖Γ\Γtr‖γ0h
−1/2JuhK‖Γ\Γtr . (4.6)
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The term involving ec can be further bounded by∑
E∈Γ\Γtr

‖γ−1
0

√
h{∇Π(ec − Π0e

c)}‖2
E ≤ C

∑
K∈T

‖γ−1
0 ∇Π(ec − Π0e

c)‖2
K

≤ C
∑
K∈T

‖γ−1
0

√
θ∇Π(ec − Π0e

c)‖2
K̃
≤ C

∑
K∈T

‖(γ0h)−1
√
θΠ(ec − Π0e

c)‖2
K̃

≤ C
∑
K∈T

‖
√
θη(γ0h)−1Π(ec − Π0e

c)‖2
K ≤ C

∑
K∈T

‖∇ec‖2
K ,

using Lemma 3.12, Lemma 3.6, a standard inverse estimate on K̃, and Lemma
3.7, respectively, upon selecting γ0 = γmax{

√
θη, 1} for some γ > 1 large enough;

hence, we get∫
Γ\Γtr

JuhK · {∇Π(ec − Π0e
c)}ds ≤ C‖γ0h

−1/2JuhK‖Γ\Γtr‖∇ec‖.

Working in a standard fashion for the remaining terms, we deduce

I ≤ C
(∑
K∈T

h2
K‖f + ∆uh‖2

K + ‖
√
hJ∇uhK‖2

Γint + ‖γ0h
−1/2JuhK‖2

Γ\Γtr

) 1
2‖∇ec‖

+ C
2∑
i=1

∑
K∈T tr

‖
√
h(CtrJuhK +∇uh) · ni‖∂K∩Γtr‖∇ec‖K ,

using the approximation bounds given in Lemma 3.4. The result already follows.

To estimate II, we use (3.18) for D̂h, along with the following bound.

Lemma 4.2. With the above mesh assumptions and with γ0 as in the statement
of Lemma 4.1, we have

‖|udh|‖
2 ≤ C

∑
K∈T

(
γ−1 + γ−2(1 + hKCtr)

)
Υ2
JK
, (4.7)

for C > 0 generic constant, independent of h and of uh.

Proof. Using Lemma 3.14, we have∑
K∈T

‖∇udh‖2
K + ‖

√
γ0/hJudhK‖2

Γ\Γtr ≤
∑

E⊂Γ\Γtr
‖
√
θηh−1/2JudhK‖2

E + ‖γ0(γh)−1/2JudhK‖2
Γ\Γtr

≤ C
∑
K∈T

(C1γ
−2 + γ−1)Υ2

JK
,
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For the third term on the right hand side of (4.3), we use (3.1) and Lemma 3.14
once more to deduce

Ctr‖JudhK‖2
Γtr ≤ 2Ctr

2∑
j=1

‖udh|Ωj‖2
Γtr ≤ 2CCtr

∑
K∈T tr

(
hK‖∇udh‖2

K + h−1
K ‖u

d
h‖2

K

)
≤ 2CCtr

((
C1 + C0

)∑
E⊂Γint

‖
√
θηJuhK‖2

E

)
≤ CCtr

(
γ−2

∑
K∈T

hKΥ2
JK

)
.

Combining the last two bounds yields the result.

Theorem 4.3 (Upper bound). Let u be the solution of (2.5) and let uh ∈ Sph be
its dG approximation with γ0 as in the statement of Lemma 4.1. Then, we have
the following a posteriori error bound

‖|u− uh|‖2 ≤ C
(
Υ2 + Θ2

1

)
+ C

∑
K∈T

(
γ−1 + γ−2(1 + hKCtr)

)
Υ2
JK
. (4.8)

Proof. The proof follows immediately from the error equation, the bounds on I

and on II, along with the triangle inequality ‖|u− uh|‖ ≤ ‖|ec|‖+ ‖|udh|‖.

4.2.2 Lower bound

We employ standard bubble functions, [60], to show lower bounds for the above a
posteriori estimator. A key challenge to overcome is the shape of interface elements
K ∈ T tr, for which we do not posses any stability properties of respective elemental
or face bubble functions. We shall overcome this by employing bubble functions
on K and on E instead.

To this end, we denote by ωE the union of the elements sharing an interior face
E ∈ Γint\Γinttr , and by ψK and ψE the (standard) element and face bubble functions
[60]. The functions ψK ∈ H1

0 (K) and ψE ∈ H1
0 (ωE) are such that ‖ψK‖L∞(K) = 1,

and ‖ψE‖L∞(E) = 1. Moreover, for each v ∈ Sph, there exist positive constants
c1, c2, independent of h and of v, such that

‖v‖2
K ≤ c1‖

√
ψKv‖2

K , ‖v‖2
E ≤ c2‖

√
ψEv‖2

E, (4.9)

for all K ∈ T \T tr and E ⊂ Γint\Γinttr . When K ∈ T tr or when E ∈ Γinttr , (4.9)
holds for K or E instead, respectively, so that, by Lemma 3.6 and Lemma 3.7,

‖v‖2
K ≤ θη(K)‖v‖2

K ≤ c1θη(K)‖
√
ψKv‖2

K , (4.10)



Error estimates for dG methods for elliptic interface problems 38

where θη(K) := θinv(K)ηinv(K) and

‖v‖2
E ≤ θη(E)‖v‖2

E ≤ c2θη(E)‖
√
ψEv‖2

E, (4.11)

with θη(E) := θinv(E)ηinv(E). To treat both the cases K ∈ T \T tr and K ∈ T tr

simultaneously, we shall carry over the θ and η terms (along with K and E) for
all K ∈ T , recalling that θinv(K) = 1 = ηinv(K) (and K = K, E = E) when
K ∈ T \T tr.

We can now show a lower bound for the a posteriori error estimator.

Theorem 4.4 (Lower bound). Let u be the solution of (2.5) and let uh ∈ Sph the
dG solution given by (2.21). Then, for all K ∈ T , we have the following bound

Υ2
RK

+ Υ2
EK
≤ C

∑
K′∈ωK

(θη(K ′))2
(
‖∇(u− uh)‖2

K′ + Θ2
1,K′

)
, (4.12)

where ωK := {K ′ ∈ T : measd−1((∂K∩∂K ′)\Γtr) 6= 0}. Further, for two elements
Ki ∈ T tr sharing a face E ⊂ Γtr, we have the bound

2∑
i=1

‖
√
h(CtrJuhK+∇uh)·ñi‖2

Ẽi
≤ C

2∑
i=1

(
(θη(Ki))

2
(
‖∇(u−uh)‖2

Ki
+Θ2

1,Ki

)
+Θ2

2,Ki

)
,

(4.13)
where Ẽi := Ẽ ∩ ∂K̃i, i = 1, 2, represent the related faces Ẽ, signifying that the
values of a function on Ẽi are taken from within K̃i. Also, ñi denote the respective
outward normal to Ẽi. Finally, Θ2,Ki := |K̃i4Ki|h−dKi‖CtrJuhK + ∇uh‖Ẽi is the
interface oscillation term, with P4Q := (P\Q) ∪ (Q\P ) denoting the symmetric
difference between two sets P and Q.

Proof. We first prove (4.12). For the interior residual, for K ∈ T , we set R|K :=

(Πf + ∆uh)|K , and M |K := h2
KRψK . Then, using (4.10), we have

Υ2
RK

= h2
K‖R‖2

K ≤ c1θη(K)h2
K‖
√
ψKR‖2

K = c1θη(K)〈Πf + ∆uh,M〉K . (4.14)

Using integration by parts along with (2.6) yields

〈Πf + ∆uh,M〉K = 〈∇(u− uh),∇M〉K + 〈Πf − f,M〉K
≤ ‖∇(u− uh)‖K‖∇M‖K + hK‖Πf − f‖Kh−1

K ‖M‖K .
(4.15)



Error estimates for dG methods for elliptic interface problems 39

Further, as hK ∼ hK , we have ‖∇M‖2
K ≤ Ch−2

K ‖M‖2
K ≤ Ch2

K‖R‖2
K , which, used

on (4.15) and in view of (4.14), implies

Υ2
RK
≤ Cθη(K)

(
‖∇(u− uh)‖K + ‖h(Πf − f)‖K

)
ΥRK , (4.16)

which already gives the required bound.

For the normal flux residual, for E ⊂ Γint, we set ωE := K1 ∪ K2 ∪ E with
K1, K2 ∈ T such that E = ∂K1 ∩ ∂K2 and, on ωE, we define the function τE :=

h(E)J∇uhKψE∩∂K1∩∂K2
. Here, J∇uhK in ωE is understood as its constant extension

in the normal direction to E. (Notice that E ∈ Γ\Γtr is not curved, so there is
a unique normal direction to E.) Since J∇uK = 0 on Γint, and τE|∂ωE = 0, with
ωE = K1 ∪K2 ∪ E we have, for K ∈ T ,

Υ2
EK
≤ c2

∑
E⊂∂K∩Γint

θη(E)〈J∇uhK, τE〉E = c2

∑
E⊂∂K∩Γint

θη(E)〈J∇(uh − u)K, τE〉E.

(4.17)
Integration by parts and (2.6) imply

〈J∇(uh − u)K, τE〉E = 〈∆uh + f, τE〉ωE + 〈∇(uh − u),∇τE〉ωE
= 〈Πf + ∆uh, τE〉ωE + 〈f − Πf, τE〉ωE + 〈∇(uh − u),∇τE〉ωE .

(4.18)

Observing that τE = 0 on (K1∪K2∪E)\(K1∪K2∪ (E∩∂K1∩∂K2)), a standard
inverse estimate implies ‖∇τE‖2

Ki
≤ Ch−2

Ki
‖τE‖2

Ki
≤ ChKi‖J∇uhK‖2

E∩∂Ki
, which,

used on (4.18) and in view of (4.17), implies

Υ2
EK
≤ Cc2

( ∑
K′∈ωK

(
Υ2
RK′

+ Θ2
K′

) 1
2

)
ΥEK . (4.19)

We now prove the bound on the interface residual (4.12). For E ⊂ ∂K1∩∂K2∩Γtr,

we consider the related face Ẽ of K̃i, i = 1, 2, and let also ñ signify the normal
vector to Ẽ. We consider the face bubble ψi

Ẽ
supported in K̃i, i = 1, 2, respectively.

We shall also make use of the extension and/or restriction of ψi
Ẽ
onto Ki, i = 1, 2,

denoted for simplicity also by ψi
Ẽ
. Therefore, ψi

Ẽ
= 0 on ∂Ki\E also, since ψi

Ẽ

is constructed to vanish on the (d − 1)-dimensional hyperplanes containing the
(straight) faces of Ki not belonging to the interface. We define

riE := h(E)
(
(CtrJuhK +∇uh) · ñψiẼ

)
|Ki ,
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for i = 1, 2, where (CtrJuhK+∇uh) · ñ in Ki is understood as its constant extension
in the ñ-direction. Setting rE|Ki := riE, i = 1, 2, we have rE ∈ H1

0 by construction.
Using the interface conditions in 2.5 along with (2.6), we deduce

2∑
i=1

〈(CtrJuhK +∇uh) · ni, rE〉Ei

= 〈CtrJuh − uK, JrEK〉E + 〈∆uh + f, rE〉K1∪K2 + 〈∇(uh − u),∇rE〉K1∪K2 ,

(4.20)

with Ei := E ∩ ∂Ki, and ni := n|Ωi . Setting N := CtrJuhK +∇uh for brevity, and
using (4.20), we get

c−1
2

2∑
i=1

‖
√
hN · ñi‖2

Ẽi
≤

2∑
i=1

〈N · ñi, rE〉Ẽi

= 〈CtrJuh − uK, JrEK〉E + 〈∆uh + f, rE〉K1∪K2 + 〈∇(uh − u),∇rE〉K1∪K2

+
2∑
i=1

(
〈N · ñi, rE〉Ẽi − 〈N · n

i, rE〉Ei
)
.

(4.21)

Note that
√
hN · ñi is a polynomial and, therefore, the constant c2 in the first

inequality above is independent of E. Now, recalling that E and Ẽ have the same
endpoints, for the last two terms on the right-hand side of (4.21), we have

〈N · ñi, rE〉Ẽi − 〈N · n
i, rE〉Ei =

∮
Ẽi∪Ei

(NrE) · n ds =

∫
K̃i4Ki
∇ · (NrE) dx, (4.22)

from the divergence theorem.

Combining (4.21) and (4.22), along with the Cauchy-Schwarz inequality yields

c−1
2

2∑
i=1

‖
√
hN · ñi‖2

Ẽi

≤ ‖CtrJuh − uK‖E‖JrEK‖E +
2∑
i=1

(
‖∇(uh − u)‖Ki‖∇riE‖Ki

+ ‖h(∆uh + f)‖Ki‖h−1riE‖Ki + ‖∇ · (NrE)‖L1(K̃i4Ki)

)
.

(4.23)

Now, Lemma 3.5, and a standard inverse estimate give, respectively,

‖∇riE‖2
Ki
≤ ChdKi‖∇r

i
E‖2

L∞(Ki)
= ChdKi‖∇r

i
E‖2

L∞((Ki)[(∇riE))

≤ Chd−2
Ki
‖riE‖2

L∞((Ki)[(∇riE)) ≤ Chd−2
Ki
‖riE‖2

L∞(Ki)

=Chd−2
Ki
‖riE‖2

L∞(Ẽi)
≤ Ch−1

Ki
‖riE‖2

Ẽi
≤ C‖

√
hN · ñi‖2

Ẽi
,
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since riE is constant in the direction of ñi. Also, from Lemma 3.11, we have

‖riE‖2
Ei
≤ Ch−1

Ki
‖riE‖2

Ki
≤ Chd−1

Ki
‖riE‖2

L∞(Ẽi)
≤ ChKi‖

√
hN · ñi‖2

Ẽi
.

Finally, using Lemma 3.5, along with standard inverse estimates, we have

‖∇ · (NrE)‖L1(K̃i4Ki) ≤ |K̃i4Ki|‖∇ · (NrE)‖L∞(K̃i4Ki)

≤ |K̃i4Ki|‖∇ · (NrE)‖L∞(K̃i∪Ki)

= |K̃i4Ki|‖∇ · (NrE)‖L∞((K̃i∪Ki)[(NrE))

≤ C|K̃i4Ki|h−1
Ki
‖NrE‖L∞((K̃i∪Ki)[(NrE))

≤ C|K̃i4Ki|h−1
Ki
‖NrE‖L∞(Ẽi)

≤ C|K̃i4Ki|h−dKi‖NrE‖L1(Ẽi)

≤ C|K̃i4Ki|h−dKi‖N(
√
hN · ñi)‖L1(Ẽi)

≤ C|K̃i4Ki|h−dKi‖N‖Ẽi‖(
√
hN · ñi)‖Ẽi .

Combining the above bounds and using (4.16), we deduce from (4.23):

2∑
i=1

‖
√
hN · ñi‖2

Ẽi
≤ C

( 2∑
i=1

‖
√
hCtrJuh − uK‖2

Ei
+ |K̃i4Ki|2h−2d

Ki
‖N‖2

Ẽi

+ (θη(Ki))
2
(
‖∇(u− uh)‖2

Ki
+ ‖h(Πf − f)‖2

Ki

))
,

which implies the result.

Remark 4.5. For the jump residual, we trivially have

Υ2
JK

= γ0‖
√
γ0/hJu− uhK‖2

∂K∩Γ\Γtr , (4.24)

so it is omitted in the lower bound.

We observe that the interface oscillation term Θ2,K is equal to zero when K = K̃,
i.e., on non-curved elements. When K 6= K̃, the size of Θ2,K depends on the ratio
between the d-dimensional volume of the symmetric difference between K and K̃,
divided by hdK ∼ |K|.
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4.3 A priori error bound

Since no a priori error bound is available for the (fitted) discontinuous Galerkin
method proposed above for the elliptic interface problem, we use the above a
posteriori bounds to show a basic a priori convergence result in the spirit of the
celebrated work of Gudi [34]. Here, however, we need to account also for the
oscillation term arising from the treatment of the interface.

Theorem 4.6. Let u ∈ H1
0 and uh ∈ Sph be the solutions of (2.6) and (2.21)

respectively. Then, the error bound

‖|u− uh|‖ ≤ C inf
vh∈Sph

(
‖|u− vh|‖+ Θ1 + Θ2

)
, (4.25)

holds with Θ2|K := Θ2,K, K ∈ T .

Proof. Let vh ∈ Sph with vh 6= uh and set ψ := uh − vh ∈ Sph. Coercivity, (2.6),
(2.16), and continuity imply

1

2
‖|uh − vh|‖2 ≤ D̂h(uh − vh, ψ) = 〈f, ψ〉 − D̂h(vh, ψ)

= D̂h(u− vh, E(ψ)) + 〈f, ψ − E(ψ)〉 − D̂h(vh, ψ − E(ψ))

≤ C‖|u− vh|‖‖|E(ψ)|‖+ 〈f, ψ − E(ψ)〉 − D̂h(vh, ψ − E(ψ)).

Noting that Lemma 3.14 implies ‖|E(ψ)|‖ ≤ C‖|ψ|‖, for some constant C > 0

depending on θη, after division by by ‖|ψ|‖, we arrive at

‖|uh − vh|‖ ≤ C‖|u− vh|‖+ 2
〈f, ψ − E(ψ)〉 − D̂h(vh, ψ − E(ψ))

‖|ψ|‖
. (4.26)

Now, to estimate the second term on the right-hand side of (4.26), integration by
parts gives

R :=

∫
Ω

f(ψ − E(ψ)) dx− D̂h(vh, ψ − E(ψ))

=
∑
K∈T

∫
K

(f + ∆vh)(ψ − E(ψ)) dx−
∫

Γint
J∇vhK · {ψ − E(ψ)}ds

+

∫
Γ\Γtr

JvhK · {∇Π(ψ − E(ψ))}ds−
∫

Γ\Γtr

γ0

h
JvhK · JψKds

−
∫

Γtr

(
CtrJvhK · Jψ − E(ψ)K + J∇vh(ψ − E(ψ)K

)
ds.

(4.27)



Error estimates for dG methods for elliptic interface problems 43

Working in a standard fashion to estimate the terms on the right-hand side of
(4.27), we have

R ≤ C
(∑
K∈T

h2
K‖f + ∆vh‖2

K + hK‖J∇vhK‖2
∂K∩Γint + h−1

K ‖JvhK‖
2
∂K∩Γ\Γtr

) 1
2

×
(∑
K∈T

h−2
K ‖ψ − E(ψ))‖2

K

) 1
2

+
( ∑
K∈T tr

2∑
i=1

hK‖(CtrJvhK +∇vh) · ni‖2
∂K∩Γtr

) 1
2

×
( 2∑
j=1

‖h−1/2(ψ − E(ψ))|Ωj‖2
Γtr

) 1
2
.

(4.28)

For the last term on the right-hand side of (4.28), we use Lemmata 3.11 and 3.14
to deduce

2∑
j=1

‖h−1/2(ψ−E(ψ))|Ωj‖2
Γtr ≤ C

∑
K∈T tr

‖h−1(ψ−E(ψ))‖2
K ≤ C‖

√
θηh−1/2JψK‖2

Γ\Γtr .

Noting that the fact that uh is the dG solution was not used in the proof of the
lower bound (Theorem 4.4 above), it can be replaced by any vh ∈ Sph. Therefore,
Theorem 4.4 (with vh replacing uh) and the triangle inequality yield the result.

The above result offers a basic convergence proof for the proposed (fitted) dis-
continuous Galerkin method for interface problems. Note that the regularity of
solutions to such interface problems, which may involve piecewise smooth inter-
face manifolds, is not well understood in the literature. Therefore, such basic
convergence results, not requiring any regularity of the underlying solution, are
desirable.

4.4 Higher order interface approximation

The saturation of the approximation of the geometry by the mesh, (3.5) and (3.6),
is required to be satisfied for the above a posteriori error bounds to hold. One
way of achieving this in practice is an initial refinement step in the vicinity of T tr.
This approach is expected to deliver optimal convergence rates for the respective
adaptive algorithm when p = 1, 2. Indeed, from the a priori error analysis of
finite element methods with local basis of degree p and with boundary and/or



Error estimates for dG methods for elliptic interface problems 44

interface approximation, we can expect optimal convergence rates when the curved
boundaries/interfaces are approximated locally by interpolants of degree p− 1.

To ensure that the above interface approximation requirements (3.5), (3.6) do
not result to potentially excessive and unnecessary refinement in the vicinity of
Γtr, when higher order elements are used, we can employ a (non-standard) fitted
approach based on parametric elemental mappings, which we shall now describe.

Each element K ∈ T tr is assumed to be constructed via a parametric elemental
mapping FK : K̂ → K of polynomial degree q ∈ N, from a curved reference
element K̂ with |K̂| ∼ O(1).

Γtr

K

K̃

K̂

ˆ̃K

FK

Figure 4.1: A curved element K ∈ T tr and the related q-degree parametric
element K̃ as the mapping of the respective reference elements K̂ and ˆ̃K.

More precisely, we begin by considering a parametric mesh of degree q ∈ N, whose
skeleton approximates the interface Γtr with a piecewise interpolant of degree q.
Setting K̃ to be one such (unfitted) parametric element with non-trivial intersec-
tion with Γtr, we consider the q-degree parametric mapping FK̃ : ˆ̃K → K̃ with ˆ̃K

being the (classical) reference element, i.e., it may be the d-simplex, the reference
d-hypercube or the reference d-prism, the latter constructed as tensor-product of
the reference (d− 1)-simplex and the interval [0, 1]. By considering the extension
of FK̃ on a larger domain Ŷ ⊃ ˆ̃K with the same (polynomial) formula, we can
precisely define Ŷ as the FK̃-pre-image of K ∪ K̃ where K ∈ T tr is the fitted
element related to K̃; we denote the extension of FK̃ to Ŷ by FK . We refer to
Figure 4.1 for an illustration. Hence, the reference element K̂ := F−1

K (K) will, in
general, be curved.

We, now, define the mapped discontinuous finite element space Sp,qh , subortinate
to the mesh T = {K}, by

Sp,qh = {v ∈ L2(Ω) : v ◦ F−1
K |K ∈ Rp(K̂)}, (4.29)

where Rp(K̂) ∈ {Pp(K̂),Qp(K̂)}, and Qp(K̂) denotes space of tensor-product
polynomials of degree p in each variable; when ˆ̃K is a d-simplex, we may select
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Rp(K̂) = Pp(K̂), while we select Rp(K̂) = Qp(K̂), in general, otherwise to ensure
optimal approximation rates.

The key motivation for the above construction is that we can re-use the above
developments in this fitted mapped setting also, by first applying the elemental
mappings FK and then use the results from Section 3.3 on the curved reference
element K̂ instead. An inspection of the proofs from Section 3.3 shows that all
results hold true in this setting also, with the constants in the estimates now
depending also on the nature of the mapping FK , as is standard in parametric
finite elements.

4.5 Numerical experiments

We shall now illustrate the performance of the a posteriori error estimator within
a standard adaptive algorithm, through an implementation based on the deal.II
finite element library [7]. This allows for the use of curved elements via high-order
parametric mappings of tensor-product reference elements. We take advantage this
capability and approximate curved interfaces via tensor-product elements defined
through parametric mappings of degree higher than linear, as described in Section
4.4.

Although not discussed above merely for simplicity of the presentation, the ex-
tension of the proposed dG method to problems with non-homogeneous Dirichlet
boundary conditions is straightforward; the a posteriori bound is then modified
accordingly [42]. In all cases considered below the interface residual term Θ2,K was
omitted due to its insignificant magnitude (Example 1 below) or simply because
it is equal to zero (Example 2 below). We set γ = 10 throughout.

4.5.1 Example 1

We consider the problem (2.6) with Ω = (−1, 1)2 and the interface Γtr being a
circle of radius r = 0.5, centred at the origin. The Dirichlet boundary conditions
and the source term f are determined by the exact solution

u =

 r3, in Ω1

r3 + 1, in Ω2
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DoFs estimator rate ‖|.|‖-error rate L2-error H1-error
192 1.3381e+01 — 1.7550e+00 — 6.2516e-02 1.3886e+00
768 7.6174e+00 0.81 8.4388e-01 1.06 2.0201e-02 7.2406e-01
3072 3.9838e+00 0.94 3.9950e-01 1.08 5.7567e-03 3.6434e-01
12288 2.0259e+00 0.95 1.9147e-01 1.06 1.5192e-03 1.8187e-01
49152 1.0202e+00 0.99 9.3267e-02 1.04 3.8765e-04 9.0744e-02
196608 5.1826e-01 0.98 4.6010e-02 1.02 9.7624e-05 4.5323e-02

Table 4.1: Example 1. Convergence of estimator and errors; quadratic map-
ping with p = 1.

DoFs estimator rate ‖|.|‖-error rate L2-error H1-error
432 1.8278e+00 — 4.5728e-01 — 7.6800e-03 1.9028e-01
1728 3.8913ee-01 2.2 8.4015e-02 2.44 6.2879e-04 3.3034e-02
6912 9.2506ee-02 2.07 1.8457e-02 2.19 5.9084e-05 6.8618e-03
27648 2.2127ee-02 2.06 4.2318e-03 2.12 5.7411e-06 1.5135e-03
110592 5.5103e-03 2.00 1.0017e-03 2.08 5.7413e-07 3.4841e-04

Table 4.2: Example 1. Convergence of estimator and errors; quadratic map-
ping with p = 2.

DoFs estimator rate ‖|.|‖-error rate L2-error H1-error
768 6.5923e-02 – 4.3641e-02 — 8.5525e-05 3.0614e-02
3072 8.1666e-03 3.01 4.6166e-03 3.24 5.7611e-06 3.7515e-04
12288 1.0233e-03 2.99 5.289e-05 3.12 3.8178e-07 4.6925e-05
49152 1.2937e-04 2.98 6.3781e-06 3.05 2.4791e-08 5.9393e-06
196608 1.7042e-05 2.92 8.0091e-07 2.99 1.5886e-09 7.5685e-07

Table 4.3: Example 1. Convergence of estimator and errors; quadratic map-
ping with p = 3.

where r =
√
x2 + y2 and Ctr = 0.75.

Upon satisfactory approximation of the interface geometry, the above problem
does not admit singular behaviour and we expect to observe optimal convergence
rates. To simulate a fitted approach, presented above, we use parametric maps of
degree higher than linear for the interface elements. We set γ = 10.
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Dofs Estimate Rate E.norm Rate L2-error H1-error
192 1.3359e+01 – 1.7552e+00 — 6.2249e-02 1.3886e+00
768 7.6144e+00 0.81 8.439e-01 1.05 2.02e-02 7.2405e-01
3072 3.9829e+00 0.93 3.9949e-01 1.07 5.7576e-03 3.6433e-01
12288 2.0255e+00 0.97 1.9147e-01 1.06 1.5194e-03 1.8187e-01
49152 1.02e+00 0.98 9.3261e-02 1.03 3.8766e-04 9.0742e-02
196608 5.1507e-01 0.98 4.5982e-02 1.02 9.7628e-05 4.5315e-02

Table 4.4: Example 1.Convergence of estimator and errors; cubic mapping
with p = 1.

Dofs Estimate Rate E.norm Rate L2-error H1-error
192 1.3383e+01 – 1.7546e+00 — 0.062308 1.3879
768 7.6178e+00 0.81 8.437e-01 1.05 0.020188 0.7239
3072 3.9836e+00 0.93 3.9946e-01 1.07 0.0057546 0.3643
12288 2.0257e+00 0.97 1.9146e-01 1.06 0.0015189 0.18186
49152 1.02e+00 0.98 9.3261e-02 1.03 0.00038766 0.090742
196608 5.1507e-01 0.98 4.5982e-02 1.02 9.7628e-05 0.045315

Table 4.5: Example 1. Convergence of estimator and errors; mapping =4 with
p = 1.

4.5.2 Example 2

Let, now, Ω = (−1, 1)× (0, 1), subdivided into Ω1 = (−1, 0)× (0, 1), Ω2 = (0, 1)2,
i.e., interfacing at x = 0. The Dirichlet boundary conditions and the source term
f are determined by the exact solution

u =

(x2 + y2)3/4 + x in Ω1;

1 + y3/2 + x in Ω2,

which has a point singularity at (0, 0). This example studies the interaction of the
interface discontinuity, with the point singularity at one interface endpoint. The
convergence under uniform as well as adaptive refinement is given in Figure 4.6 for
p = 1, 2, while the respective effectivity indices (i.e., the ratio between estimator
and exact solution) and adapted meshes are given in Figure 4.7.

We begin by assessing the decay of the estimators under uniform refinement, using
quadratic parametric mappings (q = 2) for the elements on Γtr: in Tables 4.1, 4.2,
and 4.3, the convergence of the a posteriori estimator, of the energy norm, of the
H1-seminorm and of the L2-norm of the error are reported, along with the respec-
tive convergence rates for the estimator and for the energy error, for p = 1, 2, and
3, respectively. The estimator and the dG-norm of the actual error are plotted in
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(a) Quadratic mapping with p = 1.

(b) Quadratic mapping with p = 2.

Figure 4.2: Example 1. Plot estimator and errors of convergence for adaptive
mesh in the left and uniform mesh in the right.

Figure 4.2, for both adaptive and uniform refinement; for the adaptive refinement
a standard bulk criterion is used. Optimal convergence rates are observed in all
cases.
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(a) Refinement =3 (b) Refinement =3

(c) Refinement =8 (d) Refinement =8

Figure 4.3: Example 1. Solution profiles for quadratic mapping; with p = 1,
in the left and meshes produced for quadratic mapping; with p = 1, in the right.
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(a) Refinement =3 (b) Refinement =3

(c) Refinement =8 (d) Refinement =8

Figure 4.4: Example 1. Solution profiles for quadratic mapping; with p = 2,
in the left and meshes produced for quadratic mapping; with p = 2, in the right.
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(a) Refinement =6 (b) Refinement =6

(c) Refinement =9 (d) Refinement =9

Figure 4.5: Example 2. Solution profiles for p = 2; in the left and meshes
produced for p = 2, in the right
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(a) p = 1.

(b) p = 2.

Figure 4.6: Example 2. Plot estimator and errors of convergence for adaptive
mesh in the left and uniform mesh in the right.
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(a) p = 1.

(b) p = 2.

Figure 4.7: Example 2. Plot effectivity index of convergence of adaptive mesh
in the left and uniform mesh in the right.



Chapter 5

Convergence of the adaptive

algorithm

5.1 Introduction

The aim of this chapter is to prove the convergence of a standard adaptive algo-
rithm applied to the elliptic interface problems introduced in Chapter 2, based
on the a posteriori error bounds derived in Chapter 4. The proof of convergence
is based on the techniques developed in [11, 42]. However, the condition at the
curved interface poses a series of difficulties, particularly in view of proving a con-
traction result. We will need to assume that angle remain uniform bounded when
refining curved elements at the vicinity of the interface boundary by newest vertex
bisection. It should be possible to generalise such property through a set of mild
mesh assumption, although we leave this issue to future work.

5.2 Convergence analysis

We begin by defining

Υ2
T (uh) :=

∑
K∈T

h2
K‖f + ∆uh‖2

K +
∑
E∈Γint

hE‖J∇uhK‖2
E

+
2∑
j=1

‖h1/2 (CtrJuhK +∇uh) · ni‖2
Γtr .

(5.1)

54
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The following Lemma generalises to the present setting the result in Karakashian
and Pascal [42].

Lemma 5.1. Let E(uh) ∈ H1
0 be the continuity recovery of uh given in Lemma

3.14 and assume that
max

Ω
{
√
θη} ≤ 2. (5.2)

Then, there exists a constant γ > 0, depending only on the shape regularity of the
triangulations, such that

‖γ0h
−1/2JuhK‖2

Γ\Γtr ≤ CΥ2
T (uh), (5.3)

for γ0 = γmax{
√
θη, 1}.

Proof. The coercivity of the dG bilinear form Dh implies

‖
√
γ0/hJuhK‖2

Γ\Γtr ≤ ‖|uh − E(uh)|‖2 ≤ 2Dh(uh − E(uh), uh − E(uh)).

The dG method gives

A := Dh (uh − E(uh), uh − E(uh)) =

∫
Ω

f (uh − E(uh)) dx−Dh (E(uh), uh − E(uh)) .

Using the continuity of E(uh), the above implies

A =

∫
Ω

f (uh − E(uh)) dx−
∑
K∈T

∫
K

∇uh · ∇ (uh − E(uh)) dx

+
∑
K∈T

∫
K

∇ (uh − E(uh)) · ∇ (uh − E(uh)) dx

+

∫
Γ\Γtr
{∇E(uh)} · Juh − E(uh)Kds

+

∫
Γtr
CtrJuh − E(uh)K · Juh − E(uh)Kds

−
∫

Γtr
CtrJuhK · Juh − E(uh)Kds.

(5.4)
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Integration by parts on the second term on the right-hand side of (5.4) yields

−
∑
K∈T

∫
K

∇uh · ∇ (uh − E(uh)) dx =
∑
K∈T

∫
K

∆uh (uh − E(uh)) dx

−
∫

Γ\Γtr
{∇uh} · Juh − E(uh)Kds−

∫
Γ\Γtr
{uh − E(uh)} · J∇uhKds

−
2∑
i=1

∫
Γtr
ni · ∇uh,i (uh,i − E(uh,i )) ds,

(5.5)

using the notation vi := v|Ωi , i = 1, 2 for a function v ∈ H1
0. Combing (5.4) and

(5.5) gives

|A| ≤ CΥT (uh)
(
‖h−1(uh − E(uh))‖+ ‖h−1/2(uh − E(uh))‖Γ\Γtr

)
+ CΥT (uh)

( 2∑
j=1

‖h−1/2
(
uh − E(uh)|Ωj

)
‖2

Γtr

)1/2

+
∑
K∈T

‖∇ (uh − E(uh)) ‖2
K

+ ‖(θη/h)1/2JuhK‖Γ\Γtr‖(h/θη)1/2{∇E(uh)−∇uh}‖Γ\Γtr

+
∑
E∈Γtr

Ctr‖Juh − E(uh)K‖2.

Now, applying Lemmas 3.11 and 3.12, along with Lemma 3.14, we arrive at the
bound

|A| ≤ CΥT (uh)
∥∥√θηh−1/2JuhK

∥∥
Γ\Γtr

+ C(1 + Ctr
√
hmax)

∥∥√θηh−1/2JuhK
∥∥2

Γ\Γtr .
(5.6)

Selecting now γ > 0 large enough such that, for the coefficient of the second term
on the right-hand side of (5.6), it holds γ ≥ 8C(1 + Ctr

√
hmax), we have

‖
√
γ0/hJuhK‖2

Γ\Γtr ≤
C

γ
ΥT (uh)

∥∥γ0h
−1/2JuhK

∥∥
Γ\Γtr +

1

8γ

∥∥γ0h
−1/2JuhK

∥∥2

Γ\Γtr

≤ C

γ
Υ2
T (uh) +

1

4γ

∥∥γ0h
−1/2JuhK

∥∥2

Γ\Γtr ,

(5.7)

and, thus,(
1− 1

4
max{max

Ω

√
θη, 1}

)
‖γ0h

−1/2JuhK‖2
Γ\Γtr ≤ C max{max

Ω

√
θη, 1}Υ2

T (uh),

(5.8)
which already implies the result.
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Therefore, under the assumptions of Lemma 5.1, the a posteriori bound from
Theorem 4.3 can be reduced to

‖|u− uh|‖2 ≤ CΥ2
T (uh), (5.9)

i.e., the penalty term disappears from the estimator. This is crucial, since the
penalty term involves the mesh-size h with a negative power.

5.2.1 Adaptive procedure

We consider a sequence {Sm}m∈N0 of fitted dG spaces Sm := (Sph)m subordinate
to a mesh Tm, constructed following the above assumptions. We shall describe
and analyze an adaptive discontinuous Galerkin method admitting an iteration of
the form SOLVE → ESTIMATE → MARK → REFINE, which will determine {Sm}m
automatically.

SOLVE: In this step, on a mesh Tm, the dG approximation um ∈ Sm is computed
by solving

Dm (um, vm) = 〈f, vm〉 ∀vm ∈ Sm, (5.10)

with Dm denoting the discrete bilinear form with respect to the mesh Tm, (2.16).

ESTIMATE: In this step, for each elementK ∈ Tm, we evaluate the local a posteriori
error estimators ΥTm(um, K), given by

Υ2
Tm(um, K) =

∑
K∈Tm

h2
K‖f + ∆um‖2

K +
∑

E∈∂K∩Γintm

hE‖J∇umK‖2
E

+
2∑
j=1

‖h1/2 (CtrJumK +∇um) · ni‖2
∂K∩Γtrm

;

(5.11)

note that, with this notation, we have

Υ2
Tm(um) =

∑
K∈Tm

Υ2
Tm(um, K).

MARK: The third step is based on the, so-called, Dörfler or bulk marking strategy
[28], whereby, given 0 < µ < 1, we find a collection of elements Mm ⊂ Tm such
that

µΥ2
Tm(um) ≤ Υ2

Tm (um,Mm) :=
∑

K∈Mm

Υ2
Tm(um, K); (5.12)
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the collectionMm is called the set of marked elements.

REFINE: Finally, the elements and faces that have been marked are subdivided by
bisection into children see below (cf., [28]). This process gives Tm+1.

A crucial challenge for the interface problem compared to the, now standard, proof
of convergence of the above adaptive procedure applied to single domain problem
is that the steps MARK and REFINE require to be compatible with the interface
approximation saturation assumption (5.2).

In what follows, we shall use a subscriptm to denote quantities related to mesh Tm.
Now, let β1 and β2 be two constants depending only on the initial triangulation
and such that 0 < β1 < β2 < 1. If Tm is constructed from Tm−1 by adding a new
vertex or edges using a bisection technique, then for K ∈ Tm−1 and K̂ ∈ Tm, we
have

κ1hK̂ ≤ hK ≤ k2hK̂ , (5.13)

where κ1 := 21/2β1/β2 and κ2 := 21/2β2/β1, for all elements not having a face on
the interface. For the elements on Γtr, we make (5.13) an assumption

Next, we show an estimator reduction property (cf., [25], Corollary 4.4).

Lemma 5.2. Let δ = 1− 2−1/2 and 0 < µ < 1. Then, we have

Υ2
Tm(um) ≤ (1− δµ

2
)Υ2
Tm−1

(um−1) + (1 +
2

δµ
) max{1, Ctr}

×
( ∑
K∈Tm

‖∇(um − um−1)‖2
K + ‖

√
θη/hmJum − um−1K‖2

Γm\Γtrm

)
(5.14)

Proof. Set vm := um − um−1, m ∈ N, for brevity. Using a standard Poincaré-
Friedrichs inequality along with Lemma 3.14, we have

‖vm‖2 ≤ 2‖E(vm)‖2 + 2‖vm − E(vm)‖2

≤ C
∑
j=1,2

‖∇E(vm)‖2
Ωj

+ C‖
√
θηhmJvmK‖2

Γm\Γtrm

≤ C
∑
K∈Tm

(
‖∇vm‖2

K + ‖∇(vm − E(vm))‖2
K

)
+ C‖

√
θηhmJvmK‖2

Γm\Γtrm

≤ C
∑
K∈Tm

‖∇vm‖2
K + C‖

√
θη/hmJvmK‖2

Γm\Γtrm .

(5.15)
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Therefore, using Lemma 3.11 and (5.15), we have∑
K∈Tm

‖hm∆vm‖2
K + ‖h1/2

m J∇vmK‖2
Γintm

+
∑
j=1,2

Ctr‖h1/2
m (JvmK +∇vm) · ni‖2

Γtrm

≤ C
∑
K∈Tm

‖∇vm‖2
K + CCtr‖vm‖2

≤ C max{1, Ctr}
∑
K∈Tm

‖∇vm‖2
K + CCtr‖

√
θη/hmJvmK‖2

Γm\Γtrm ,

(5.16)

for C > 0, constant depending only on the local geometry of the triangulation.

Using the elementary identity (a + b)2 ≤ (1 + λ)a2 + (1 + λ−1)b2, for a, b, λ ∈ R,
λ > 0, we have∑

K∈Tm

‖hm(f + ∆um)‖2
K ≤ (1 + λ)

∑
K∈Tm

‖hm(f + ∆um−1)‖2
K

+ (1 + λ−1)
∑
K∈Tm

‖hm∆vm‖2
K ,

(5.17)

‖h1/2
m J∇umK‖2

Γintm
≤ (1 + λ)‖h1/2

m J∇um−1K‖2
Γintm

+ (1 + λ−1)‖h1/2
m J∇vmK‖2

Γintm
, (5.18)

and ∑
j=1,2

‖h1/2
m (JumK +∇um) · ni‖2

Γtrm

≤ (1 + λ)
∑
j=1,2

‖h1/2
m (Jum−1K +∇um−1) · ni‖2

Γtrm

+ (1 + λ−1)
∑
j=1,2

‖h1/2
m (JvmK +∇vm) · ni‖2

Γtrm
.

(5.19)

Combing (5.17), (5.18) and (5.19), with (5.16), we deduce

Υ2
Tm(um) ≤ (1 + λ)Υ2

Tm−1
(um−1) + (1 + λ−1)C max{1, Ctr}

×
( ∑
K∈Tm

‖∇vm‖2
K + ‖

√
θη/hmJvmK‖2

Γm\Γtrm

)
.

(5.20)

Now, for each elementK ∈Mm−1, i.e., elements refined at the (m−1)-st iteration,
let Rm := {K ′ ∈ Tm : K

′ ⊂ K}. Then, for all K ′ ∈ Rm,
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we have hK′ ≤
(
β2

β1

)
2−1/2hK ≤ 2−1/2hK and

Υ2
Tm−1

(um−1) = Υ2
Tm−1

(um−1, Tm−1\Mm−1) + Υ2
Tm(um−1, {Rm : K ∈Mm−1})

≤ Υ2
Tm−1

(um−1, Tm−1\Mm−1) + 2−1/2Υ2
Tm−1

(um−1,Mm−1)

≤ Υ2
Tm−1

(um−1, Tm−1)− (1− 2−1/2)Υ2
Tm−1

(um−1,Mm−1)

≤ (1− δµ)Υ2
Tm−1

(um−1, Tm−1),

(5.21)

making use of the a Dörfler-type marking strategy property (5.12) in the last step.
Substituting (5.21) into (5.20), and selecting λ = δµ/2, the result already follows
by noting that (

1 +
δµ

2

)(
1− δµ

)
≤ 1− δµ

2
.

5.2.2 Quasi-orthogonality

We now prove a mesh perturbation result, which we shall use to establish the
quasi-orthogonality in Lemma 5.4 below.

Lemma 5.3. For γ0 > 0 sufficiently large, and CG = 3C2−r/2−1
2

, then we have

D̂m(z, z) ≤ 2D̂m−1(z, z) +
CG
γ
‖γ0h

−1/2JzK‖2
Γm−1\Γtrm−1

(5.22)

for all z ∈ Sm−1 +H1
0, with r ∈ N denoting the minimum number of refinements

on the elements on Γtr, required to satisfy maxΩ{
√
θη} ≤ 2 in the transition from

Tm−1 to Tm. Here D̂m denoted the inconsistent bilinear form introduced in section
4.2.1.

Proof. Since Tm is a refinement of Tm−1, we have z ∈ Sm + H1
0 also. Hence,

associated to Zm.

D̂m(z, z) = D̂m−1 (z, z) + 2

∫
Γm\Γtrm

{Π∇z} · JzKds− 2

∫
Γm−1\Γtrm−1

{Π∇z} · JzKds

+ ‖
√
γ0/hmJzK‖2

Γm\Γtrm − ‖
√
γ0/hm−1JzK‖2

Γm−1\Γtrm−1
,

since
‖JzK‖2

Γtrm
= ‖JzK‖2

Γtrm−1
,

∑
K∈Tm

‖∇z‖2 =
∑

K∈Tm−1

‖∇z‖2.
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Using (5.13), we have

‖hm
−1/2JzK‖2

Γm\Γtrm ≤ C2−r/2‖hm−1
−1/2JzK‖2

Γm−1\Γtrm−1
. (5.23)

Using similar arguments as in Lemma 3.17, gives

2

∫
Γm\Γtrm
{Π∇z} · JzKds ≤ C

( ∑
K∈Tm

‖γ−1/2
0 ∇z‖2

K

)1/2

‖
√
γ0/hmJzK‖Γm\Γtrm

≤ 1

2
D̂m(z, z) +

1

2
‖
√
γ0/hmJzK‖2

Γm\Γtrm ,

(5.24)

for γ0 sufficiently large, and, as in the proof of Lemma 4.2, we immediately have

‖
√
γ0/hmJzK‖2

Γm\Γtrm ≤
1

γ
‖γ0h

−1/2
m JzK‖2

Γm\Γtrm . (5.25)

and

2

∫
Γm−1\Γtrm−1

{Π∇z} · JzKds ≤ C
( ∑
K∈Tm−1

‖γ−1/2
0 ∇z‖2

K

)1/2

‖
√
γ0/hm−1JzK‖Γm−1\Γtrm−1

≤ 1

2
D̂m−1(z, z) +

1

2
‖
√
γ0/hm−1JzK‖2

Γm−1\Γtrm−1
.

Combining the above bounds the assertion already follows.

Lemma 5.4. Let em := u − um and CR = 3
2
C + 2C(4 + CF )γ + CG. Then, we

have

D̂m(em, em) = (2 + γ−1)D̂m−1(em−1, em−1)− 1

4
‖|um − um−1|‖2

+
CR
γ

(
Υ2
Tm(um) + Υ2

Tm−1
(um−1)

)
,

(5.26)

for γ0 = γmax{
√
θη, 1}, and γ > 0 sufficiently large.

Proof. For brevity, we set vm := um − um−1 and wm := vm − E(vm), m ∈ N.

Using the PDE problem along with straightforward manipulations reveals the
identity

D̂m(em, em) = D̂m(em−1, em−1)− D̂m(vm, vm) + 2D̂m(em, wm)

− 2
(
D̂m(um, wm)− 〈f, wm〉

)
.

(5.27)
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We now consider bound each term in turns. Applying Lemma 5.3, gives

D̂m(em−1, em−1) ≤ 2D̂m−1(em−1, em−1) +
CG
γ
‖γ0h

−1/2Jem−1K‖2
Γm−1\Γtrm−1

.

The coercivity of the bilinear form D̂m gives

D̂m (vm, vm) ≥ 1

2
‖|vm|‖2. (5.28)

To bound the third term on the right-hand side of (5.27), we start by observing
that

2D̂m (em, wm) = 2D̂m (em−1, wm) + 2D̂m (vm, wm) . (5.29)

The first term on the right-hand side of the above equation can be bounded by
(5.13) as follows:

D̂m (em−1, wm)

≤ ‖∇em−1‖‖∇wm‖+ ‖∇em−1‖‖
√
γ0/hmJwmK‖Γm\Γtrm

+ ‖∇wm‖‖
√
γ0/hmJem−1K‖Γm\Γtrm + Ctr‖Jem−1K‖Γtrm‖JwmK‖Γtrm

+ ‖
√
γ0/hm−1Jem−1K‖Γm\Γtrm‖

√
γ0/hmJwmK‖Γm\Γtrm

≤
(
‖∇wm‖2 + ‖

√
γ0/hmJwmK‖2

Γm\Γtrm + Ctr‖JwmK‖2
Γtrm

)1/2

×
(
‖∇em−1‖2 + C2−r/2‖

√
γ0/hm−1Jem−1K‖2

Γm−1\Γtrm−1
+ Ctr‖Jem−1K‖2

Γtrm−1

)1/2

≤ CF‖|em−1|‖‖|wm|‖.
(5.30)

where CF =
(
max{1, C2−r/2}

)1/2. Using Lemma 3.17, gives

D̂m (em−1, wm) ≤ 1

2γ
‖|em−1|‖2 +

γCF
2
‖|wm|‖2. (5.31)

The second term on the right hand side of (5.31) can be bound by using (4.7), we
have

D̂m (em−1, wm) ≤ 1

2γ
‖|em−1|‖2 +

γCF
2

(
C
∑
K∈Tm

(γ−1 + γ−2(1 + Ctr
√
hmax)

)
× ‖γ0h

−1/2
m JvmK‖2

Γm\Γtrm ,

≤ γ−1D̂m−1 (em−1, em−1) + CCF‖γ0h
−1/2
m JvmK‖2

Γm\Γtrm .

(5.32)
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Next, for the second term on right-hand side of (5.29), we also have

2D̂m (vm, wm) ≤ 1

4
‖|vm|‖2 + 4C‖|wm|‖2

≤ 1

4
‖|vm|‖2 + 4C‖γ0h

−1/2
m JvmK‖2

Γm\Γtrm .
(5.33)

Collecting all of these results, we obtain

2D̂m (em, wm) ≤ γ−1D̂m−1 (em−1, em−1)+
1

4
‖|vm|‖2+C(4+CF )‖γ0h

−1/2
m JvmK‖2

Γm\Γtrm .

To bound the final term in equation (5.27), we begin with setting

B := 〈f, wm〉 − D̂m (um, wm) =

∫
Ω

fwmdx− D̂m (um, wm) .

Integration by parts on the above implies

|B| ≤ CΥT (um)
(
‖h−1

m wm‖+ ‖h−1/2
m wm‖Γm\Γtrm

)
+ CΥT (um)

( 2∑
j=1

‖h1/2
m wm|Ωj

)
‖2

Γtrm

)1/2

+ ‖(θη/hm)1/2JumK‖Γm\Γtrm‖(hm/θη)1/2{∇wm}‖Γm\Γtrm .

Now, applying Lemmas 3.11 and 3.12, along with Lemma 3.14, we arrive at the
bound

|B| ≤ CΥ2
Tm(um)

∥∥√θηh−1/2
m JvmK

∥∥
Γm\Γtrm

+ C
∥∥√θηh−1/2

m JvmK
∥∥2

Γm\Γtrm
. (5.34)

Selecting now γ > 0 large enough so that, for the coefficient of the second term
on the right-hand side of (5.34), we have γ ≥ 8C, we obtain

|B| ≤ C

γ
ΥTm(um)

∥∥γ0h
−1/2
m JvmK

∥∥
Γm\Γtrm

+
1

8γ

∥∥γ0h
−1/2
m JvmK

∥∥2

Γm\Γtrm

≤ C

γ
Υ2
Tm(um) +

1

4γ

∥∥γ0h
−1/2
m JvmK

∥∥2

Γm\Γtrm
.

(5.35)

Finally, applying the triangle inequality and Lemma 5.1, gives

‖γ0h
−1/2
m Jum − um−1K‖2

Γm\Γtrm ≤ ‖γ0h
−1/2
m JumK‖2

Γm\Γtrm + ‖γ0h
−1/2
m−1 Jum−1K‖2

Γm−1\Γtrm−1

≤ CΥ2
Tm(um) + CΥ2

Tm−1
(um−1).

Recalling that γ0 = γmax{
√
θη, 1}, γ > 1 and combining the above bounds the

results already follows.
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5.2.3 Contraction property

We are now ready to prove the main theorem of this Chapter.

Theorem 5.5. Let u ∈ H1
0. Then, there exist constants β > 0 and 0 < ρ < 1

depending only on the shape regularity of the triangulations and on the marking
parameter µ, such that

D̂m (em, em) + βΥ2
Tm (um) ≤ ρ

(
D̂m−1 (em−1, em−1) + βΥ2

Tm−1
(um−1)

)
(5.36)

Proof. Using Lemma 5.2 and Lemma 5.4, we have

D̂m (em, em) + βΥ2
Tm (um)

≤
(
2 + γ−1

)
D̂m−1 (em−1, em−1)− 1

4
‖|um − um−1|‖2

+
CR
γ

Υ2
Tm−1

(um−1) + (
CR
γ

+ β)Υ2
Tm (um))

≤
(
2 + γ−1

)
D̂m−1 (em−1, em−1)− 1

4
‖|um+1 − um|‖2

+

(
CR
γ

+ (
CR
γ

+ β)(1− δµ

2
)

)
Υ2
Tm−1

(um−1, Tm−1)

+ (1 +
2

δµ
) max{1, Ctr}(

CR
γ

+ β)

×
( ∑
K∈Tm

‖∇(um − um−1)‖2
K + ‖

√
θη/hmJum − um−1K‖2

Γm\Γtrm

)
.

(5.37)

If we choose β =
(

4(1 + 2
δµ

) max{1, Ctr}
)−1

− CR
γ
, this leads to cancellation of the

term ‖|um+1 − um|‖ on the right hand side of (5.37) with the last component of
the fourth term on the right hand side of(5.37). Setting γ = CR

εβ
we obtain

D̂m (em, em) + βΥ2
Tm (um) ≤ (2 + εβ) D̂m−1 (em−1, em−1)

+ (2ε+ 1− µδ

2
)βΥ2

Tm−1
(um−1) .

(5.38)

Due to (5.9), we deduce

D̂m (em, em) + βΥ2
Tm (um) ≤ (2− εβ) D̂m−1 (em−1, em−1)

+ (2ε(C + 1) + 1− δµ

2
)βΥ2

Tm−1
(um−1) .

(5.39)
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Choosing ε = δµ
8(C+1)

and γ0 large enough to make β > 0, we have

D̂m (em, em) + βΥ2
Tm (um) ≤

(
2− δβµ

8(C + 1)

)
D̂m (em−1, em−1)

+

(
1− δµ

4

)
βΥ2
Tm−1

(um−1) .

(5.40)

The proof follows by choosing

ρ = max

{
2− δβµ

8(C + 1)
, 1− δµ

4

}
. (5.41)

The contraction of D̂m (em, em) + βΥ2
Tm (um) as m→∞ implies that

D̂m (em, em)→ 0 as m→∞, which, in true, implies ‖|em|‖ → 0 as m→∞.

5.3 Numerical experiments

The main objective of this section is to illustrate the practical performance of the
adaptive algorithm. All results shown are obtained with an implementation based
on the deal.II finite element library [7]. Here, we present the result of three
numerical examples, with γ = 10 and polynomials of degree one and two in all
the examples. In all the cases, the starting mesh is the uniform square mesh node
of 16 × 16 elements. Although not discussed above merely for simplicity of the
presentation, it is straightforward to extend the proposed dG method to problems
with non-homogeneous Dirichlet boundary conditions.

5.3.1 Example 1

Let Ω = (−1, 1)2 and subdivide it into two subdomains interfacing at x = 0; thus
Ω1 = (−1, 0) × (−1, 1), Ω2 = (0, 1) × (−1, 1). Dirichlet boundary conditions and
source term f are determined by the exact solution

u(x) =

 (4x+ 4x2) e(y
2−1)

2

in Ω1;

(−5x3 + 4x+ 1) e(y
2−1)

2

in Ω2.
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Both components obey non-homogeneous Dirichlet boundary condition. Further,
the solution u is compatible with the transmission condition (defined in (2.5)) with
respect to the permeability Ctr ≡ 4.

The numerical solution obtained after few iterations of the adaptive algorithm
presented above is plotted in Figure 5.1 together with the respective meshes.

(a) Refinement =6 (b) Refinement =6

(c) Refinement =11 (d) Refinement =11

Figure 5.1: Example 1. Solution profiles ; with p = 1, in the left and meshes
produced ; with p = 1, in the right.

We begin by assessing the decay of the estimators on uniform meshes. Numerical
results are reported in Table 5.1 and Table 5.2 in the case of linear and quadratic
elements, respectively. In both cases, the a posteriori estimator appears to be of
optimal rate under uniform refinement. The estimator and the dG-norm of the
error are plotted in Figure 5.2 under both uniform and adaptive mesh refinement;
in Figure 5.3, we plot the respective effectivity indices, defined as the ratio of the
posteriori error indicator and the dG-norm error. Optimal rates of convergence
are observed with respect to the degrees of freedom for both the estimator and
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DoFs estimator rate ‖|.|‖-error rate L2-error H1-error
16 8.86664e+01 – 2.26145e+01 — 1.49369+01 1.5493e+01
64 4.50136e+01 0.97 1.08152e+01 1.06 5.40166e-01 0.810062e+01
256 2.37694e+01 0.92 0.495936e+01 1.12 1.75040e-01 0.40658e+01
1024 1.23039e+01 0.95 0.226606e+01 1.13 5.07852e-02 0.200753e+01
4096 0.626679e+01 0.97 0.106339e+01 1.09 1.37406e-02 9.93241e-01
16384 0.316349e+01 0.98 5.11661e-01 1.05 3.57951e-03 4.93316e-01
65536 0.158947e+01 0.99 2.50428e-01 1.03 9.13994e-04 2.4573e-01

Table 5.1: Example 1. Decay of the a posteriori error estimator and errors for
p = 1.

DoFs estimator rate ‖|.|‖-error rate L2-error H1-error
36 5.89003e+01 – 1.72413e+01 – 0.16731e+01 1.17844e+01
144 1.43043e+01 2.04 0.342048e+01 2.33 1.71202e-01 0.23397e+01
576 0.345626e+01 2.04 8.33096e-01 2.03 1.93163e-02 5.55376e-01
2304 7.92704e-01 2.12 0.178967e-01 2.21 1.91641e-03 1.17387e-01
9216 1.83402e-01 2.11 3.83275e-02 2.22 1.80756e-04 2.46368e-02
36864 4.34877e-02 2.07 8.47322e-03 2.17 1.66339e-05 5.32887e-03
147456 1.05398e-02 2.04 1.95167e-03 2.11 1.52498e-06 1.20475e-03

Table 5.2: Example 1.Decay of the a posteriori error estimator and errors for
p = 2.

the error. Furthermore, the effectivity indices appear to be bounded asymptoti-
cally and remain between 4 and 6, and between 3 and 6 for linear and quadratic
elements, respectively.

5.3.2 Example 2

Let Ω = (−1, 1)2\(0, 1)× (−1, 0) and subdivide it into two subdomains interfacing
at x = 0.125. We consider the classical problem with f = 0 and non-homogeneous
Dirichlet boundary conditions compatible to the exact solution

u = r2/3sin(2θ/3),

with r =
√
x2 + y2, θ = tan−1(y/x), and Ctr ≡ 1.

The purpose of this example is to observe the behaviour of the adaptive proce-
dure based on the presented a posteriori error estimator, in presence of both a
singularity (at the reentrant corner) and the jump discontinuity at the interface.
Numerical solutions obtained after few iterations of the adaptive algorithm pre-
sented above is plotted in Figure 5.4. The refinement near the origin by adaptive
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(a) p = 1.

(b) p = 2.

Figure 5.2: Example 1. Estimator and errors for adaptive mesh in the left and
uniform mesh in the right (p = 1, 2).

algorithm clearly indicates that the error estimator is practical and captures the
interface and singularity. The convergence plots reported in Figure 5.5 confirm
that the estimator tends to zero at the expected rate.
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(a) p = 1.

(b) p = 2.

Figure 5.3: Example 1. Effectivity index for adaptive (left) and uniform mesh
(right).
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(a) Refinement =6 (b) Refinement =6

(c) Refinement =10 (d) Refinement =10

Figure 5.4: Example 2. Solution profiles; with p = 1, in the left and meshes
produced; with p = 1, in the right.



Convergence of the adaptive algorithm 71

(a) p = 1.

(b) p = 2.

Figure 5.5: Example 2. Estimator and convergence rate for adaptive (left)
and uniform (right) mesh for p = 1 (above) and p = 2 (below).



Chapter 6

A posteriori error estimates for dG

methods for parabolic interface

problems

6.1 Introduction

We will now derive a posteriori error bounds for both the spatially-discrete dG
method and a fully-discrete backward-Euler-dG scheme for the solution of parabolic
interface problems. The key technique used in the proofs is the elliptic reconstruc-
tion idea, introduced by Makridakis and Nochetto for spatially discrete conforming
FEM [48] and extended to fully discrete conforming FEM by Lakkis and Makri-
dakis [44]. These ideas have been carried forward also to fully discrete schemes
involving spatially non-conforming/dG methods in [33]. The choice of this tech-
nique for deriving a posteriori error for parabolic problem is motivated by the
following factors. First, elliptic reconstruction allows us to utilise the readily
available elliptic interface a posteriori estimates derived in Chapter 4 to bound
the main part of the spatial error. Second, this technique combines the energy
approach and appropriate pointwise representation of the error in order to arrive
to optimal order a posteriori estimators in the L∞(L2)-norm. As a result, this ap-
proach will lead to optimal order in both L2(H1) and L∞(L2)-type norms, while
the results obtained by the standard energy methods are only optimal order in
L2(H1)-type norms. To the best of our knowledge, no results in the context of
non-linear parabolic interface problems exist for the L∞(L2)-norm. The main con-
tribution in this chapter is to prove such an a posteriori error estimator. For an a

72
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posteriori error analysis in the L∞(L2) +L2(H1)-type norm using backward Euler
in time and a fitted interior-penalty discontinuous Galerkin method in space for
straight interfaces we refer to [50].

6.2 Elliptic reconstruction and revisiting a posteri-

ori error bounds for elliptic interface problems

In this section, we will define the suitable elliptic reconstruction of spatially dis-
crete dG functions. A key observation we will make is that the elliptic reconstruc-
tion is the exact solution to an elliptic problem, whose dG approximation is the
dG approximation to the parabolic problem at a particular time. Therefore, we
will be able to utilise a posteriori error bounds for elliptic problems to estimate
the difference between the elliptic reconstruction and the a dG approximation. To
do so, we return to the a posteriori error estimation for the fitted discontinuous
Galerkin method for interface elliptic problems from Section 2.2.4. In particular,
we will extend the energy-norm a posteriori error bounds from Chapter 4 to non-
linear elliptic interface problems including also a reaction term, and we prove a
posteriori error bounds in the L2-norm, too. The a posteriori analysis follows us-
ing technical developments from the a priori analysis presented in [20]. The latter
was inspired by a, non-standard, elliptic projection construction of Douglas and
Dupont [29] for the treatment of non linear boundary conditions in a classical a
priori error analysis setting, cf., also [20].

To this end, for the a posteriori error analysis, we define the elliptic reconstruction
w ∈ H1

0 to be the solution of the problem: for t ∈ [0, T ], find w ≡ w(t, Zh) ∈ H1
0,

related to a dG function Zh ∈ Sph, such that

D(t;w, v) + λ〈w, v〉+M(w, v) = 〈g, v〉 ∀v ∈ H1
0, (6.1)

for some fixed λ > 0 at our disposal, where g ≡ g(t) ∈ L2(Ω) denotes the Riesz
representer of the linear functional given by the right-hand side of (6.1), with
respect to the L2-inner product, with

〈g, vh〉 = D̃h(t;Zh, vh) + λ〈Zh, vh〉+M(Zh, vh), (6.2)
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for all vh ∈ Sph, where

D̃h(t;Zh, vh) =
∑
K∈T

∫
K

∇Zh · ∇vhdx−
∫

Γ\Γtr
({∇ΠZh} · JvhK + {∇Πvh} · JZhK)ds

+

∫
Γ\Γtr

γ0

h
JZhK · JvhKds;

we emphasise that D̃h differs from Dh defined in Chapter 2 in that it does not
include the interface term. We remark on the technical point that g is first defined
for v ∈ Sph by (6.2) and then we consider an (arbitrary) extension of g into H1

0 +Sph

by Hahn-Banach theorem.

To ensure the well-posedness of the reconstruction w, the constant λ has to be
chosen large enough, as we shall see below.

Lemma 6.1. Problem (6.1) is well-posed and w ∈ H1
0 is unique when λ > 0 is

chosen sufficiently large.

Proof. To show the well-posedness for (6.1), we shall prove the associated mapping
is coercivity on H1

0. We begin by recalling a standard trace estimate (2.2). We
note carefully the crucial fact that ψ can be a strict subset of ∂ω.

Using the assumption that p̃(z) = P(z) (z1 − z2) ∈ C0,1(R2n), we have

|M (w, v) | ≤
∫

Γtr
Cp̃|JwK||JvK| ds ≤ Cp̃

2∑
j=1

‖w|Ωj‖Γtr

2∑
j=1

‖v|Ωj‖Γtr

≤ CtraceCp̃

2∑
j=1

(
δ−1‖w‖2

Ωj
+ δ‖∇w‖2

Ωj

) 1
2

2∑
j=1

(
δ−1‖v‖2

Ωj
+ δ‖∇v‖2

Ωj

) 1
2 ,

(6.3)

where Cp̃ is the Lipschitz constant of p̃; here we have made use of (2.2) with
ψ = Γtr and ω = Ωj. Choosing, therefore, δ = (4CtraceCp̃)

−1, and λ > 16C2
traceC

2
p̃ ,

which implies that λ > 4δ−1CtraceCp̃, we arrive at

|M (w, v) | ≤ 1

4

2∑
j=1

(
λ‖w‖2

Ωj
+ ‖∇w‖2

Ωj

) 1
2

2∑
j=1

(
λ‖v‖2

Ωj
+ ‖∇v‖2

Ωj

) 1
2 . (6.4)

Setting v = w in the last bound, we deduce

|M (w,w) | ≤ 1

4

( 2∑
j=1

(
λ‖w‖2

Ωj
+‖∇w‖2

Ωj

) 1
2

)2

≤ 1

2

2∑
j=1

(
λ‖w‖2

Ωj
+‖∇w‖2

Ωj

)
. (6.5)
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Therefore, (6.2) implies

D(t;w,w) + λ‖w‖2 +M(w,w) ≥
2∑
j=1

‖∇w‖2
Ωj

+ λ‖w‖2 − |M(w,w)|

≥ 1

2

( 2∑
j=1

‖∇w‖2
Ωj

+ λ‖w‖2
)
,

which yields the strong monotonicity of the differential operator in weak form

with respect to the quantity
2∑
j=1

‖∇w‖2
Ωj

+ λ‖w‖2 which is a norm in H1
0. The

continuity follows from (6.1). Therefore, the problem is well-posed upon choosing
λ > 16C2

traceC
2
p̃ .

Now that the well-posedness of the reconstruction is settled, we make the following
crucial observation: Zh ∈ Sph is the dG solution to the PDE problem (6.1) which
has exact solution w ∈ H1

0. Indeed, letting Yh ∈ S
p
h to be the dG solution to (6.1),

i.e., we have for all Vh ∈ Sph that

D̃h(t;Yh, Vh) + λ〈Yh, Vh〉+M(Yh, Vh) = 〈g, Vh〉. (6.6)

From the definition of g this implies

D̃h(t;Yh − Zh, Vh) + λ〈Yh − Zh, Vh〉+M(Yh, Vh)−M(Zh, Vh) = 0, (6.7)

noting carefully that g is defined against all of L2(Ω) so testing with functions in
Sph is permitted. Set Vh = Yh−Zh. Focusing on the last two terms on the left-hand
side of the previous equation, Lipschitz continuity and lemma 3.16 imply

|M(Yh, Yh − Zh)−M(Zh, Yh − Zh)| ≤ Cp̃‖Yh − Zh‖2
Γtr

≤ CtraceCp̃

(
ε−1‖Yh − Zh‖2

K

+ ε
(∑
K∈T

‖∇(Yh − Zh)‖2
K + ‖

√
θη/hJYh − ZhK‖2

Γint

))
,

(6.8)

for ε > hmax. Note that this is not really an essential restriction as ε will be of
modest size as we shall now see. Indeed, choosing ε = (4CtraceCp̃)

−1 and λ >

16C2
traceC

2
p̃ , as in Lemma 6.1 above, (6.7) and (6.8), along with the coercivity of
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Dh, (3.17), imply

∑
K∈T

‖∇(Yh − Zh)‖2
K + ‖Yh − Zh‖2

K + ‖
√
γ0hJYh − ZhK‖2

Γint = 0,

noting that γ > 1
2
θη. The left-hand side is a norm (as it includes the L2 norm)

and, therefore, we conclude Yh = Zh.

Upon redefining the dG-norm as

‖|v|‖ :=
(∑
K∈T

‖∇v‖2
K + ‖

√
γ0/hJvK‖Γ\Γtr

)1/2

,

we now show the following result.

Lemma 6.2 (Energy-norm a posteriori error bound). Let w ∈ H1
0 be defined by

(6.1). Then, the following bound holds:

‖|w − Zh|‖2 + λ‖w − Zh‖2 ≤ C
(
Υ2
Sc1

(Zh) + Υ2
Sd1

(Zh)
)
, (6.9)

and, if ∂w
∂t
∈ H1, then

∣∣∣∣∣∣∣∣∣ ∂
∂t

(w − Zh)
∣∣∣∣∣∣∣∣∣2 + λ‖ ∂

∂t
(w − Zh)‖2 ≤ C

(
Υ2
Sc2

(Zh) + Υ2
Sd2

(Zh)
)
, (6.10)

where

ΥSc1
(Zh) :=

(∑
K∈T

‖h(g − λZh + ∆Zh)‖2
K + ‖

√
hJ∇ZhK‖2

∂K∩Γint

+
2∑
i=1

‖
√
hP(Zh)JZhK +∇Zh) · ni‖2

∂K∩Γtr

) 1
2
,

ΥSd1
(Zh) :=

(
6(C1γ

−2 + γ−1)‖γ0h
−1/2JZhK‖2

Γ\Γtr + 6C0γ
−2λ‖γ0h

−1/2JZhK‖2
Γ\Γtr

) 1
2
,

ΥSc2
(Zh) :=

(∑
K∈T

‖h ∂
∂t

(g − λZh + ∆Zh)‖2
K + ‖

√
hJ∇(

∂Zh
∂t

)K‖2
∂K∩Γint

+
2∑
i=1

‖
√
hP(

∂Zh
∂t

)J
∂Zh
∂t

K +∇(
∂Zh
∂t

)) · ni‖2
∂K∩Γtr + Υ2

S∞(Zh)Υ
2
Sc1

(Zh)
) 1

2
,

(6.11)

ΥSd2
(Zh) :=

(5

2
(C1γ

−2 + γ−1)‖γ0h
−1/2J

∂Zh
∂t

K‖2
Γ\Γtr +

5

2
C0λγ

−2‖γ0h
−1/2J

∂Zh
∂t

K‖2
Γ\Γtr

+ Υ2
S∞(Zh)Υ

2
Sd1

(Zh)
) 1

2
,

(6.12)

with ΥS∞(Zh) :=
2∑
j=1

‖∂Zh
∂t
|Ωj‖∞,Γtr .
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Proof. Using Lemma 3.14, we split the error ε := w−Zh = εc+Zd
h into conforming

and non-conforming parts, respectively, with εc := w−Zc
h ∈ H1

0 and Zd
h := Zc

h−Zh.
Noting that D̃h(Z

c
h, ε

c) = D(Zc
h, ε

c) since both arguments are in H1
0, we have

‖|εc|‖2 + λ‖εc‖2 = D(t;w, εc)− D̃h(Z
c
h, ε

c) + λ〈w, εc〉 − λ〈Zc
h, ε

c〉

= 〈g, εc〉 −M(w, εc)− D̃h(Z
c
h, ε

c)− λ〈Zc
h, ε

c〉,
(6.13)

where in the last step we used (6.1). From (6.6), we have

D̃h(t;Zh,Π0ε
c) + λ〈Zh,Π0ε

c〉+M(Zh,Π0ε
c)− 〈g,Π0ε

c〉 = 0. (6.14)

Adding the last two identities, we arrive at

‖|εc|‖2 + λ‖εc‖2

=
(
〈g, εc − Π0ε

c〉 − D̃h(Zh, ε
c − Π0ε

c)− λ〈Zh, εc − Π0ε
c〉
)

+
(
M(Zh,Π0ε

c)−M(w, εc)
)

+
(
D̃h(Z

d
h, ε

c) + λ〈Zd
h, ε

c〉
)

=
(
〈g, εc − Π0ε

c〉 − D̃h(Zh, ε
c − Π0ε

c)− λ〈Zh, εc − Π0ε
c〉 −M(Zh, ε

c − Π0ε
c)
)

+
(
M(Zh, ε

c)−M(w, εc)
)

+
(
D̃h(Z

d
h, ε

c) + λ〈Zd
h, ε

c〉
)

= : (I) + (II) + (III).

(6.15)
Term I can be estimated in completely analogous fashion to the corresponding
term without reaction in Lemma 4.1.

For term II, the assumption p̃ = P(z) (z1 − z2) ∈ C0,1(R2n) and Lemma 3.16
imply

|II| ≤
∫

Γtr

(∣∣p̃(Zh)− p̃(w)
∣∣)∣∣JεcK∣∣

≤
∫

Γtr
Cp̃
∣∣w − Zh∣∣|JεcK|

≤
∫

Γtr
Cp̃
(∣∣w − Zc

h

∣∣+
∣∣Zc

h − Zh
∣∣)|JεcK|

≤ 2Cp̃

2∑
j=1

(
‖εc|Ωj‖2

Γtr + ‖Zd
h|Ωj‖2

Γtr

)
≤ 1

2
‖|εc|‖2 +

λ

2
‖εc‖2 +

1

2
‖|Zd

h|‖
2

+
λ

2
‖Zd

h‖2,

(6.16)

working completely analogously to (6.8), using the assumption that hmax is small
enough.
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Finally, for term III, we work completely analogously to the proof of Lemma
4.2 (noting that the estimator ΥJK in Lemma 4.2 includes the constant γ0, as
opposed to the current discussion). Putting these bounds together, the result
already follows.

We now prove of (6.10). Similarly as before, we have∣∣∣∣∣∣∣∣∣∂εc
∂t

∣∣∣∣∣∣∣∣∣2 + λ‖∂ε
c

∂t
‖2 = D(t;

∂w

∂t
, εc)− D̃h(

∂Zc
h

∂t
, εc) + λ〈∂w

c
h

∂t
, εc〉 − λ〈∂Z

c
h

∂t
, εc〉

= 〈∂g
∂t
, εc〉 − d

dt
M(w, εc)− D̃h(

∂Zc
h

∂t
, εc)− λ〈∂Z

c
h

∂t
, εc〉,

(6.17)
where in the last step we inserted (6.1) differentiated with respect to t. Similarly
inserting (6.14) differentiated with respect to time, yields∣∣∣∣∣∣∣∣∣∂εc

∂t

∣∣∣∣∣∣∣∣∣2 + λ‖∂ε
c

∂t
‖2 =

(
〈∂g
∂t
, εc − Π0ε

c〉 − D̃h(
∂Zh
∂t

, εc − Π0ε
c)− λ〈∂Zh

∂t
, εc − Π0ε

c〉

− d

dt
M(Zh, ε

c − Π0ε
c)
)

+
d

dt

(
M(Zh, ε

c)−M(w, εc)
)

+
(
D̃h(

∂Zd
h

∂t
, εc) + λ〈∂Z

d
h

∂t
, εc〉
)

=:(I) + (II) + (III).

(6.18)
as before, term I can be estimated in completely analogous fashion as in the proof
of Lemma 4.1.

Concerning term II, the assumption p̃′ ∈ C0,1(R2n) and Lemma 3.16 imply

|II| ≤
∫

Γtr

d

dt

(∣∣p̃(Zh)− p̃(w)
∣∣)∣∣JεcK∣∣

≤
∫

Γtr

(∣∣(p̃′(Zh)− p̃′(w))[
∂Zh
∂t

]
∣∣+
∣∣p̃′(w)[

∂ε

∂t
]
∣∣)∣∣JεcK∣∣

≤

(
Cp̃ (ΥS∞(Zh))

2∑
j=1

‖ε|Ωj‖Γtr +
2∑
j=1

Cp̃′‖
∂ε

∂t
|Ωj‖Γtr

)
2∑
j=1

‖εc|Ωj‖Γtr

≤
(
1 + C2

p̃Υ2
S∞(Zh)

) 2∑
j=1

‖ε|Ωj‖2
Γtr +

2∑
j=1

(
C2
p̃′‖
∂ε

∂t
|Ωj‖2

Γtr + 2‖Zd
h|Ωj‖2

Γtr

)
≤ 1

4

( (
1 + Υ2

S∞(Zh)
) (
‖|ε|‖2 + λ‖ε‖2

)
+
∣∣∣∣∣∣∣∣∣∂εc
∂t

∣∣∣∣∣∣∣∣∣2 + λ‖∂ε
c

∂t
‖2

+
∣∣∣∣∣∣∣∣∣∂Zd

∂t

∣∣∣∣∣∣∣∣∣2 + λ‖∂Z
d

∂t
‖2 + ‖|Zd

h|‖
2

+ λ‖Zd
h‖2
)
,

(6.19)
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where, as before Cp̃ is the Lipschitz constant of p̃, and Cp̃′ is a bound for its
Jacobian. Furthermore, we assumed that λ > 16C2

trace max{2, C2
p̃ , C

2
p̃′}.

working completely analogously to (6.8), using the assumption that hmax is small
enough.

Finally, for (III), we work completely analogously to the proof of Lemma 4.2
(noting that the estimator ΥJK in Lemma 4.2 includes the constant γ0, as opposed
to the current discussion). Putting these bounds together, the result already
follows.

We will now also prove an a posteriori error bound for the elliptic problem in the
L2(Ω) norm for the above nonlinear elliptic interface problem via an Aubin-Nitsche
duality-type argument, To do so, we follow some ideas from [20, 29] in order to
treat the nonlinear interface condition.

Denoting by S∗ the dual space of S := H1
0 + Sph, we consider the linear operator

M(w, ·) : S → R, which can be viewed as an operator

M : S → S∗, by w 7→ M(w, ·). (6.20)

Then, we define the derivativeM′ is a mapping S → L(S,S∗), where L(S,S∗) is
the space of linear mappings from S to S∗. Using this, for εr := rw + (1 − r)Zh,
we define

G(t, v) :=

∫ 1

0

M′
(εr(t, ·)) (v)dr. (6.21)

Now, setting v = w − Zh, we have

G(t, w − Zh) =

∫ 1

0

M′
(εr)(w − Zh)dr =

∫ 1

0

∂

∂r

(
M(εr))dr

=M(w(t, ·))−M(Zh(t, ·)),
(6.22)

using the fact that the mapping [0, 1] → S∗, given by r 7→ M(εr) is continuously
differentiable as p̃ ∈ C1,1(R2n). For brevity, we will denote G(t, z(t, .)) by Gz.

We will use G define above to assume the existence of a regular dual problem, as
follows.

Assumption 6.3. We assume that the domains Ω1 and Ω2 are such that for s ∈
(3

2
, 2], there exist a solution ψ ∈ Hs

0 (defined in the obvious fashion) of the linear
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dual equation

DL2
h (v, ψ) + λ〈v, ψ〉+ 〈Gv, ψ〉 = 〈v, α1〉+ 〈v|Γtr , α2〉Γtr ∀v ∈ Hs

0 + Sph, (6.23)

where for the (non-projected) dG bilinear form

DL2
h (t; v, φ) =

∑
K∈T

∫
K

∇v · ∇φdx−
∫

Γ\Γtr
({∇v} · JφK + {∇φ} · JvK)ds

+

∫
Γ\Γtr

γ0

h
JvK · JφKds,

for all data α1 ∈ L2(Ω) and α2 ∈ (H1/2(Γtr))2, so that ψ satisfies the elliptic
regularity estimate

2∑
j=1

‖ψ‖Hs0(Ωj) ≤ Cell
(
‖α1‖+ ‖α2‖H1/2(Γtr)

)
, (6.24)

for Cell > 0, independent of ψ, α1 and α2. Note also that here, as well as in
subsequent instances, v|Γtr should be interpreted as the vector function whose
component are the traces of v from the two subdomains.

Remark 6.4. We note that the above construction in Assumption 6.3 is well posed.
Indeed, the higher regularity required in allows for the (non-projected) dG bilinear
form DL2

h (t; v, φ) for φ, v ∈ Hs
0 + Sph to make sense. Therefore, noting that, for

φ ∈ Hs
0, we have

DL2
h (t; v, φ) =

∑
K∈T

∫
K

∇v · ∇φdx−
∫

Γ\Γtr
{∇φ} · JvKds;

a simple integration by parts shows the consistency of this bilinear form with the
weak Laplacian.

We are now ready to prove the following L2(Ω)-norm a posteriori error bounds for
the dG method for the elliptic interface problem.

Lemma 6.5. Assume that (6.24) holds for some s ∈ (3
2
, 2]. Then, we have the

bound
‖w − Zh‖2 ≤ CΥ2

S1,L2
(s, Zh). (6.25)
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and, if in addition p̃ is twice differentiable with bounded second partial derivatives,

‖ ∂
∂t

(w − Zh) ‖2 ≤ Υ2
S2,L2

(s, Zh) + CΥ2
S1,L2

(s, Zh)

×
(
C
−1/2
p̃

(
Υ2
Sc2

(Zh) + Υ2
Sd2

(Zh)
)

+ Υ
S

1/2
∞

(Zh)
)
,

(6.26)

for some constants C > 0, independent of the mesh and the functions involved in
the bounds, where

ΥS1,L2(s, Zh) :=
(∑
K∈T

C(∂K ∩ Γtr)
(
‖hs(g − λZh + ∆Zh)‖2

K

+ ‖hs−1/2J∇ZhK‖2
∂K∩Γint + ‖γ0h

s−3/2JZhK‖2
∂K∩Γ\Γtr

+
2∑
i=1

‖hs−1/2(P(Zh)JZhK +∇Zh) · ni‖2
∂K∩Γtr

)) 1
2
.

ΥS2,L2(s, Zh) :=
(∑
K∈T

C(∂K ∩ Γtr)
(
‖hs ∂

∂t
(g − λZh + ∆Zh)‖2

K

+ ‖hs−1/2J∇(
∂Zh
∂t

)K‖2
∂K∩Γint + ‖γ0h

s−3/2J
∂Zh
∂t

K‖2
∂K∩Γ\Γtr

+
2∑
i=1

‖hs−1/2(P(
∂Zh
∂t

)J
∂Zh
∂t

K +∇(
∂Zh
∂t

)) · ni‖2
∂K∩Γtr

)) 1
2
.

with Υ
S

1/2
∞

(Zh) :=
2∑
j=1

‖∂Zh
∂t
|Ωj‖H1/2(Γtr). Υ2

Sc2
(Zh) and Υ2

Sd2
(Zh) defined as in Lemma 6.2.

Proof. Let ψ solve (6.23) with α1 = ε and α2 = 0. Testing with v = ε, where
ε = w − Zh and applying (6.1), we deduce that

‖ε‖2 = DL2
h (ε, ψ) + λ〈ε, ψ〉+ 〈Gε, ψ〉

= D (w,ψ)−DL2
h (Zh, ψ) + λ〈w,ψ〉 − λ〈Zh, ψ〉

+M (w,ψ)−M (Zh, ψ)

= 〈g, ψ〉 −DL2
h (Zh, ψ)− λ〈Zh, ψ〉 −M (Zh, ψ) .

(6.27)

Also from (6.6), we have

0 = −〈g,Πψ〉+ D̃h(t;Zh,Πψ) + λ〈Zh,Πψ〉+M(Zh,Πψ). (6.28)
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Noting that D̃h(t;Zh,Πψ) = DL2
h (Zh,Πψ) and adding (6.28) and (6.27), we arrive

at

‖ε‖2 = 〈g, ψ − Πψ〉 −DL2
h (t;Zh, ψ − Πψ)− λ〈Zh, ψ − Πψ〉

−M (Zh, ψ − Πψ) .
(6.29)

Integration by parts yields

DL2
h (t;Zh, ψ − Πψ) = −

∑
K∈T

∫
K

∆Zh(ψ − Πψ)dx+

∫
Γint

J∇ZhK{ψ − Πψ}ds

−
∫

Γ\Γtr
JZhK{∇(ψ − Πψ)}ds

+

∫
Γtr

J∇Zh(ψ − Πψ)Kds−M (Zh, ψ − Πψ) .

Using this, along with the approximation estimates

‖ψ − Πψ‖K ≤ C(∂K ∩ Γtr)hsK |ψ|Hs(K)

‖ψ − Πψ‖∂K ≤ C(∂K ∩ Γtr)h
s−1/2
K |ψ|Hs(K)

‖∇(ψ − Πψ)‖∂K ≤ C(∂K ∩ Γtr)h
s−3/2
K |ψ|Hs(K),

(6.30)

and working as in the case of the energy-norm a posteriori bound in Chapter 4,
we deduce the first bound.

Next, we prove the second bound. Following [20], we use the linearity of G in the
second argument, to have

d

dt
G(t, ε(t)) = (

∂G
∂ε

)|(t,ε(t))
∂ε

∂t
+ (

∂G
∂t

)|(t,ε(t)) = G|(t,ε(t))
∂ε

∂t
+ (

∂G
∂t

)|(t,ε(t)).

Setting v = ∂ε
∂t
, α1 = ∂ε

∂t
and α2 = 0 in (6.23), having exact solution Ψ ∈ Hs

0, now,
along with the last identity, yields for each t:∥∥∥∂ε

∂t

∥∥∥2

= DL2
h

(∂ε
∂t
,Ψ
)

+ λ〈∂ε
∂t
,Ψ〉+ 〈G ∂ε

∂t
,Ψ〉

= DL2
h

(∂w
∂t
,Ψ
)
−DL2

h

(∂Zh
∂t

,Ψ
)

+ λ〈∂w
∂t
,Ψ〉 − λ〈∂Zh

∂t
,Ψ〉

+
d

dt

(
M(w,Ψ)−M(Zh,Ψ)

)
− 〈∂G

∂t
,Ψ〉.

=〈∂g
∂t
,Ψ〉 −DL2

h

(∂Zh
∂t

,Ψ
)
− λ〈∂Zh

∂t
,Ψ〉 − d

dt

(
M(Zh,Ψ)

)
− 〈∂G

∂t
,Ψ〉

(6.31)

where, in the last step, we have inserted (6.1) differentiated with respect to time
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and tested with Ψ. Similarly inserting (6.28) differentiated in time and tested with
Π0Ψ, implies

∥∥∥∂ε
∂t

∥∥∥2

=

(
〈∂g
∂t
,Ψ− ΠΨ〉 −DL2

h

(∂Zh
∂t

,Ψ− ΠΨ
)
− λ〈∂Zh

∂t
,Ψ− ΠΨ〉

− d

dt
M
(
Zh,Ψ− ΠΨ

))
−
(
〈∂G
∂t
,Ψ〉

)
≤ (I) + (II).

(6.32)

Integration by parts to bound the first term on the right hand side of (6.32), gives

DL2
h (t;

∂Zh
∂t

,Ψ−ΠΨ) = −
∑
K∈T

∫
K

∆
(∂Zh
∂t

)
(Ψ− ΠΨ)dx

+

∫
Γint

J∇
(∂Zh
∂t

)
K{Ψ− ΠΨ}ds−

∫
Γ\Γtr

J
∂Zh
∂t

K{∇(Ψ− ΠΨ)}ds

+

∫
Γtr

J∇
(∂Zh
∂t

)
(Ψ− ΠΨ)Kds− d

dt
M (Zh,Ψ− ΠΨ) .

The term I can be bounded using (6.30) and working as in the case of the energy-
norm a posteriori bound in Chapter 4.

Next, we move the second term II. To do this, using (6.33), we have

〈G|(t,ε(t)),Ψ〉 =
〈 ∫ 1

0

M′
(εr)ε(t)|Γtrdr,Ψ|Γtr

〉
=

∫ 1

0

〈
(p̃ (εr))

′ [ε(t)|Γtr ] , JΨK
〉
dr

=

∫ 1

0

(∫
Γtr

(p̃ (εr))
′ [ε(t)|Γtr ] · JΨK

)
dr.

(6.33)
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Using the boundedness of the second derivatives of p̃, the elliptic regularity of
Ψ (6.24), yields

〈∂G
∂t
|(t,ε(t)),Ψ〉 =

∣∣∣ ∫ 1

0

(∫
Γtr

(
p̃′′(εr)

[∂εr
∂t
, ε(t)

]
|Γtr · JΨK

)
dr

) ∣∣∣
≤
∫ 1

0

(∫
Γtr
|p̃′′(εr)|

∣∣∣∂εr
∂t
|Γtr
∣∣∣|ε(t)|Γtr ||JΨK|

)
dr

≤ Cp̃′′

(
2∑
j=1

‖Ψ‖∞,Ωj

)∫
Γtr

(∣∣∣∂ε(t)
∂t
|Γtr
∣∣∣+
∣∣∣∂Zh
∂t
|Γtr
∣∣∣) |ε(t)|Γtr |

≤ Cp̃′′Cell‖
∂ε(t)

∂t
‖

2∑
j=1

(∑
E∈Γtr

‖∂ε(t)
∂t
|Ωj‖H1/2(E) + ‖∂Zh

∂t
|Ωj‖H1/2(Γtr)

)
‖ε(t)|Γtr‖H1/2(Γtr)∗ ,

(6.34)

where H1/2(Γtr)∗ indicates the dual space of H1/2(Γtr). Applying trace theorem,
on both terms on the right hand side of the above equation along with Lemma 6.2,
gives

2∑
j=1

∑
E∈Γtr

‖∂ε(t)
∂t
|Ωj‖H1/2(E) =

2∑
j=1

∑
E∈Γtr

(
‖∂ε(t)
∂t
|Ωj‖2

E + |∂ε(t)
∂t
|Ωj |2H1/2(E)

)1/2

≤

(
2∑
j=1

‖∂ε(t)
∂t
|Ωj‖2

Γtr

)1/2

+ C

( ∑
K∈T tr

|∂ε(t)
∂t
|2H1(K)

)1/2

≤ (
1√
Cp̃

+ C)

(
1

4

∣∣∣∣∣∣∣∣∣∂ε
∂t

∣∣∣∣∣∣∣∣∣2 +
λ

4
‖∂ε
∂t
‖2

)1/2

≤ 2C(
1√
Cp̃

+ C)
(
Υ2
Sc2

(Zh) + Υ2
Sd2

(Zh)
)1/2

,

(6.35)

where, in the last step, we have used Lemma 3.16.

To estimate ‖ε(t)|Γtr‖H1/2(Γtr)∗ we use a duality argument. Let ψ̃ be the solu-
tion of (6.23) with β = δ(ε). Hence, δ is the duality between ‖ε(t)|Γtr‖H1/2(Γtr) and
‖ε(t)|Γtr‖H1/2(Γtr)∗ , such that ‖δ(ε)‖H1/2(Γtr) = ‖ε(t)|Γtr‖H1/2(Γtr)∗ and 〈ε(t), δ(ε)〉Γtr =
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‖ε(t)|Γtr‖H1/2(Γtr)∗ , we obtain

‖ε(t)|Γtr‖2
H1/2(Γtr)∗ = 〈ε, δ(ε)〉Γtr

= D̃h

(
w, ψ̃

)
− D̂h

(
Zh, ψ̃

)
+ λ〈ε, ψ̃〉+M

(
w, ψ̃

)
−M

(
Zh, ψ̃

)
= 〈g, ψ̃ − Πψ̃〉 − D̃h

(
Zh, ψ̃ − Πψ̃

)
− λ〈Zh, ψ̃ − Πψ̃〉

−M
(
Zh, ψ̃ − Πψ̃

)
From here, the same steps used to derived (6.25) can be followed, yielding,

‖ε(t)|Γtr‖H1/2(Γtr)∗ ≤ CΥS1,L2(s, Zh). (6.36)

Combining (6.36) and (6.35) with (6.34) we can bound the last term on the right
hand of (6.32) and this concludes the proof.

6.3 A posteriori bounds for the semi-discrete case

We can now proceed to the derivation of a posteriori error bounds for the spatially
discrete problem in various norms.

6.3.1 (L∞(L2) + L2(H
1))-norm a posteriori error bounds

We derive a posteriori error bounds for the (L∞(L2) + L2(H1))-equivalent norm,
which defined as

‖e‖∗ ≡ ‖e‖∗(t) :=
(
‖e‖2

L∞(0,t;L2(Ω)) +

∫ t

0

‖|e|‖2 ds
)1/2

. (6.37)

The key idea in our analysis is to utilise the elliptic reconstruction framework
discussed above. In particular, we begin by defining for each t ∈ [0, T ] the elliptic
reconstruction w ≡ w(t, uh) ∈ H1

0, to be the unique solution of the problem

D(t;w, v) +M(w, v) + λ〈w, v〉 = 〈f − ∂uh
∂t

+ λuh, v〉, v ∈ H1
0, (6.38)

i.e., we set g = f − ∂uh
∂t

+λuh to (6.1); the idea to define the elliptic reconstruction
via the temporal derivative can be also found in [50]. Notice that from (2.21), we
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have

〈∂uh
∂t

, vh〉+ D̃h(t;uh, vh) +M(uh, vh) = 〈f, vh〉, for all vh ∈ Sph,

which immediately implies

D̃h(t;uh, vh) +M(uh, vh) + λ〈uh, vh〉 = 〈f − ∂uh
∂t

+ λuh, vh〉, (6.39)

i.e., (6.2) with Zh = uh!

Lemma 6.6. (error relation) Let u and uh be the solutions of (2.19) and (2.21),
respectively, and let w be given by (6.38). Setting

e := ρ+ ε, ρ := u− w, ε := w − uh,

we have the identity

〈∂e
∂t
, v〉+D(ρ, v) +M(u, v)−M(w, v) = λ〈ε, v〉. (6.40)

Proof. For each v ∈ H1
0, from (2.19), we have

〈∂e
∂t
, v〉+D(ρ, v) +M(u, v)−M(w, v) + λ〈ρ, v〉

= 〈f, v〉 − 〈∂uh
∂t

, v〉 −D(w, v)−M(w, v) + λ〈ρ, v〉

= λ〈e, v〉,

(6.41)

using (6.38) for the last equality. The result follows by noting that e = ρ+ ε.

Theorem 6.7 ((L∞(L2) +L2(H1))-norm estimate). For each t ∈ [0, T ], and λ as
defined above, we have

‖e‖2
∗ ≤ 4e2λT

((
‖u0 − uh(0)‖+ C0‖

√
θηhJuh(0)K‖Γ\Γtr

)2

+ C

∫ T

0

(
Υ2
Sc1

(uh) + Υ2
Sd1

(uh)
)
dt+

2

λ
‖
√
θηhJ

∂uh
∂t

K‖2
Γ\Γtr

)
+ 2‖

√
θηhJuhK‖2

L∞(0,T ;L2(Ω)).

(6.42)

Proof. We begin by decomposing uh into conforming uch := E(uh) and non-conforming
parts udh := uh−E(uh) with the help of Lemma 3.14. We also (re)set ec := u−uch,
and εc := w − uch, thereby, we have e = ec − udh, ε = εc − udh and ec = ρ+ εc.
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Setting v = ec in (6.54), therefore, we have

1

2

d

dt
‖ec‖2 +D(t; ec, ec) = 〈∂e

c

∂t
, ec〉+D(t; ec, ec)

= 〈∂u
d
h

∂t
, ec〉+D(t; εc, ec)−M(u, ec) +M(w, ec) + λ〈ε, ec〉.

(6.43)

Working completely analogously to (6.19), for λ large enough, we have

|M(u, ec)−M(w, ec)| ≤ Cp̃

2∑
j=1

(
‖ρ|Ωj‖2

Γtr + ‖ec|Ωj‖2
Γtr

)
≤ 2Cp̃

2∑
j=1

(
‖ec|Ωj‖2

Γtr + ‖εc|Ωj‖2
Γtr

)
≤ 1

2
‖|ec|‖2 +

λ

2
‖ec‖2 +

1

2
‖|εc|‖2 +

λ

2
‖εc‖2.

(6.44)

Using the Cauchy-Schwarz inequality and Lemma 3.17, we also have

|λ〈ε, ec〉| ≤ λ‖ε‖2 +
λ

4
‖ec‖2,

|〈∂u
d
h

∂t
, ec〉| ≤ λ−1‖∂u

d
h

∂t
‖2 +

λ

4
‖ec‖2,

|D(t; εc, ec)| ≤ C‖|εc|‖2 +
1

4
‖|ec|‖2 ≤ C‖|ε|‖2 + C‖|udh|‖

2
+

1

4
‖|ec|‖2.

(6.45)

Combing all of these bounds together, yields

d

dt
‖ec‖2 +

1

2
‖|ec|‖2 ≤ 2λ‖ec‖2 + C‖|ε|‖2 + 3λ‖ε‖2

+ C‖|udh|‖
2

+ λ‖udh‖2 +
2

λ
‖∂u

d
h

∂t
‖2.

(6.46)

Integrating the time variable for s ∈ (0, t), we have

‖ec(t)‖2 +
1

2

∫ t

0

‖|ec|‖2ds ≤ 2λ

∫ t

0

‖ec‖2ds+R(t), (6.47)

where

R(t) := ‖ec(0)‖2 +

∫ t

0

(
C‖|ε|‖2 + 3λ‖ε‖2 + C‖|udh|‖

2
+ λ‖udh‖2 +

2

λ
‖∂u

d
h

∂t
‖2
)
ds.

and using Gronwall inequality (2.4), we deduce

‖ec(t)‖2 +
1

2

∫ t

0

‖|ec|‖2ds ≤ e2λtR(t), (6.48)
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noting the trivial bound ‖ec‖2 ≤ ‖ec‖2 +
∫ s

0
‖|ec|‖2 ds̃. Since ‖ec(t)‖ is assumed

to be continuous with respect to t, we can select t = t∗ such that ‖ec(t∗)‖ =

‖ec‖L∞(0,T ;L2(Ω)). Therefore, (6.48) for t = t∗ implies

‖ec‖2
L∞(0,T ;L2(Ω)) ≤ ‖ec(t∗)‖2 +

1

2

∫ t∗

0

‖|ec|‖2ds ≤ e2λt∗R(t∗) ≤ e2λTR(T ),

with T being the final time. Combining this with (6.48) for t = T , we arrive at

‖ec‖2
∗ = ‖ec‖2

L∞(0,T ;L2(Ω)) +
1

2

∫ T

0

‖|ec|‖2ds ≤ 2e2λTR(T ).

Triangle inequality now implies ‖e‖∗ ≤ ‖ec‖∗ + ‖udh‖∗, thereby, concluding

‖e‖2
∗ ≤ 4e2λTR(T ) + 2‖udh‖2

∗.

Lemmas 6.2, 3.14 and 4.2 now give

R(T ) ≤
(
‖u0 − uh(0)‖+ C0‖

√
θηhJuh(0)K‖

)2

+ C

∫ T

0

(
Υ2
Sc1

(uh) + Υ2
Sd1

(uh)
)
dt

+ ‖
√
θηhJ

∂uh
∂t

K‖2
Γ\Γtr ,

while
‖udh‖2

∗ ≤ ‖
√
θηhJuhK‖2

L∞(0,T ;L2(Ω)) + C

∫ T

0

Υ2
Sd1

(uh)dt.

The result, therefore, already follows by combining the last three inequalities.

Remark 6.8. We note that the elemental residual in ΥSc1
(uh) is equal to

∑
K∈T

‖h(f − ∂uh
∂t

+ ∆uh)‖2
K ,

since g = f − ∂uh
∂t

+ λuh. Therefore, the above approach, indeed, results to the
expected residuals.

6.3.2 L∞(L2)-norm a posteriori error bounds

We now derive a posteriori error bounds for the L∞(L2)-norm only, which are
expected to be of higher order than the respective (L∞(L2) + L2(H1))-norm ones
derived above. The elliptic reconstruction framework will now play a crucial role
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in achieving optimal order a posteriori estimates, just like the classical elliptic
projection idea does for the respective a priori error analysis.

Lemma 6.9 (L∞(L2)-norm estimate). For each time T , and for λ as defined
above, s ∈ (3

2
, 2] as in (6.24). Then, the following bound holds:

‖e‖2
L∞(0,T ;L2(Ω)) ≤ eλT/2

((
‖u0 − uh(0)‖+ SL2

1 (s, uh(0))
)2

+

∫ T

0

8λ
(
Υ2
S1,L2

(s, uh(t)) +
4

λ
Υ2
S2,L2

(s, uh(t))
)
dt
)

+ 2 max
0≤t≤T

Υ2
S1,L2

(s, uh(t)),

(6.49)

with ΥS1,L2
and ΥS2,L2

as in Lemma 6.5.

Proof. Testing with v = ρ in (6.54), we have

〈∂ρ
∂t
, ρ〉+D(t; ρ, ρ) +M(u, ρ)−M(w, ρ) = λ〈ε, ρ〉 − 〈∂ε

∂t
, ρ〉. (6.50)

From (6.2) (with ρ in place of w and a different choice of the parameter in Young’s
inequality,) and the Cauchy-Schwarz inequality, we have

1

2

d

dt
‖ρ‖2 + ‖|ρ|‖2 ≤ ‖|ρ|‖2 +

λ

16
‖ρ‖2 + 4λ‖ε‖2 +

λ

16
‖ρ‖2 +

2

λ
‖∂ε
∂t
‖2 +

λ

8
‖ρ‖2,

or

d

dt
‖ρ‖2 ≤ λ

2
‖ρ‖2 + 8λ‖ε‖2 +

4

λ
‖∂ε
∂t
‖2. (6.51)

Integrating for a dummy variable u between 0 and t the time variable and using
Gronwall’s inequality (2.4), we deduce

‖ρ(t)‖2 ≤ eλt/2
(
‖ρ(0)‖2 +

∫ t

0

(
8λ‖ε‖2 +

4

λ
‖∂ε
∂t
‖2
)
du
)
. (6.52)

Since ‖w(t)‖ is assumed to be continuous with respect to t, we can select t = t∗

such that ‖ρ(t∗)‖ = ‖ρ‖L∞(0,T ;L2(Ω)) in (6.52), to arrive at

‖ρ‖2
L∞(0,T ;L2(Ω)) ≤ eλT/2

(
‖ρ(0)‖2 +

∫ T

0

(
8λ‖ε‖2 +

4

λ
‖∂ε
∂t
‖2
)
du
)
. (6.53)

Using Lemma 6.5 and the bounds

‖ρ(0)‖ = ‖u0 − w(0)‖ ≤ ‖u0 − uh(0)‖+ ‖ε(0)‖,
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‖u− uh‖2
L∞(0,T ;L2(Ω)) ≤ 2‖ρ‖2

L∞(0,T ;L2(Ω)) + 2‖ε‖2
L∞(0,T ;L2(Ω)),

the result already follows.

6.4 A posteriori bounds for the fully-discrete case

Let u be the solutions of (2.19) and the sequence and {unh}n be the fully-discrete
solution from (2.23) with unh ∈ Sn, n = 0, 1, . . . , N , respectively. Let also wn ∈ H1

0

be the elliptic reconstruction of unh given by (6.1) for Zh = unh. Let uh and w

denote the piecewise linear interpolants with respect to t at the points {unh}n and
{wn}n, respectively, viz., for t ∈ (tn−1, tn]

uh(t) := `n−1(t)un−1
h + `n(t)unh, w(t) := `n−1(t)wn−1 + `n(t)wn,

for all n = 1, . . . , N , with `n−1(t) := (t− tn−1)/kn and `n(t) := (tn− t)/kn, noting
that

∂uh
∂t

=
unh − un−1

h

kn
.

Setting, as before,

e := ρ+ ε, ρ := u− w, ε := w − uh,

and correspondingly for ec, εc and udh, we have from (2.19) for v ∈ H1
0,

〈∂e
∂t
, v〉+D(ρ, v) + λ〈ρ, v〉

= 〈f, v〉 −M(u, v)− 〈u
n
h − un−1

h

kn
, v〉 −D(w, v) + λ〈ρ, v〉.

(6.54)

Now, from the elliptic reconstruction definition, we have

D(w, v) + λ〈w, v〉+ `n−1(t)M(wn−1, v) + `n(t)M(wn, v)

= 〈`n−1(t)gn−1 + `n(t)gn, v〉,
(6.55)

from linearity, for

gn = fn − unh − un−1
h

kn
+ λunh,
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with gn = g(tn, ·) and fn = f(tn, ·). Combining, therefore (6.54) and (6.55), we
have the identity

〈∂e
∂t
, v〉+D(ρ, v) + λ〈ρ, v〉

= 〈f, v〉 −M(u, v)− 〈u
n
h − un−1

h

kn
, v〉+ λ〈u, v〉

+ `n−1(t)M(wn−1, v) + `n(t)M(wn, v)− 〈`n−1(t)gn−1 + `n(t)gn, v〉

= λ〈e, v〉+ 〈f − `n−1(t)fn−1 − `n(t)fn, v〉

+ `n−1(t)〈u
n−1
h − un−2

h

kn−1
− unh − un−1

h

kn
, v〉

+
(
`n−1(t)M(wn−1, v) + `n(t)M(wn, v)−M(u, v)

)
=: λ〈e, v〉+A(v) + B(v) + C(v),

(6.56)

noting the trivial identity `n(t) = 1 − `n−1(t) for t ∈ (tn−1, tn]. We observe that
the first arguments in λ〈e, v〉 and C are not computable as it stands, so they will
have to be estimated using the Lipschitz property ofM(·, v) and compensated on
the left-hand side by the choice of λ > 0 being sufficiently large.

Theorem 6.10 ((L∞(L2)+L2(H1))-norm estimate). For every n = 1, . . . , N , and
λ as defined above, we have

‖e‖2
∗(tn) ≤ 4e5λtn/2Υn

fd + 4 max
1≤j≤n

‖
√
θηhjJujhK‖

2, (6.57)

with

Υn
fd := Υ2

ini +
n∑
j=1

kj
(
C(Υj

space)
2 + (Υj

time)
2
)
, (6.58)

where

Υini := ‖u0 − uh(0)‖+ C0‖
√
θηhJuh(0)K‖Γ\Γtr ,

Υj
space :=

(kj + kj+1

kj
(
Υ2
Sc1

(ujh) + Υ2
Sd1

(ujh)
))1/2

,

Υj
time :=

(4

λ
‖u

j−1
h − uj−2

h

kj−1
− ujh − u

j−1
h

kj
‖2 + 2‖|ujh − u

j−1
h |‖

2
+ 2λ‖ujh − u

j−1
h ‖

2

+
4C0

λ
‖
√
θηhJ

ujh − u
j−1
h

kj
K‖2

Γ\Γtr +
4

λ
‖f − `n−1(t)fn−1 − `n(t)fn‖2

)1/2

,

with C > 0 constant depending only on the shape-regularity of the spatial mesh.
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Proof. Starting from (6.56), we set v = ec, and we have

1

2

d

dt
‖ec‖2 +D(t; ec, ec) = 〈∂e

c

∂t
, ec〉+D(ec, ec)

= λ〈ε, ec〉+D(εc, ec)− 〈∂u
d
h

∂t
, ec〉+A(ec) + B(ec) + C(ec).

(6.59)

The first three terms on the right-hand side of the above identity can be estimated
in similar fashion to (6.45):

|λ〈ε, ec〉| ≤ 2λ‖ε‖2 +
λ

8
‖ec‖2,

|〈∂u
d
h

∂t
, ec〉‖ ≤ 2λ−1‖∂u

d
h

∂t
‖2 +

λ

8
‖ec‖2,

|D(t; εc, ec)| ≤ 2C‖|εc|‖2 +
1

8
‖|ec|‖2 ≤ 2C‖|ε|‖2 + 2C‖|udh|‖

2
+

1

8
‖|ec|‖2.

(6.60)

For the remaining three terms we work as follows:

|A(ec)| ≤ 2λ−1‖f − `n−1(t)fn−1 − `n(t)fn‖2 +
λ

8
‖ec‖2,

|B(ec)| ≤ 2λ−1‖u
n−1
h − un−2

h

kn−1
− unh − un−1

h

kn
‖2 +

λ

8
‖ec‖2,

and

|C(ec)| ≤ |`n−1(t)M(wn−1, ec) + `n(t)M(wn, ec)−M(uh, e
c)|

+ |M(uh, e
c)−M(u, ec)|

≤ `n−1(t)|M(wn−1, ec)−M(uh, e
c)|+ `n(t)|M(wn, ec)−M(uh, e

c)|

+ |M(uh, e
c)−M(u, ec)|,

since `n−1 + `n = 1 and 0 ≤ `n−1, `n ≤ 1. Working now as in (6.44), and recalling
that λ > 16C2

p̃C
2
trace, we have

|M(wm, ec)−M(uh, e
c)| ≤ Cp̃

2∑
j=1

(
‖(wm − uh)|Ωj‖2

Γtr + ‖ec|Ωj‖2
Γtr

)
≤ 1

4
‖|wm − uh|‖2 +

λ

4
‖wm − uh‖2 +

1

4
‖|ec|‖2 +

λ

4
‖ec‖2,
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for m = n− 1, n, and

|M(uh, e
c)−M(u, ec)| ≤ Cp̃

2∑
j=1

(
‖e|Ωj‖2

Γtr + ‖ec|Ωj‖2
Γtr

)
≤ 2Cp̃

2∑
j=1

(
‖ec|Ωj‖2

Γtr + ‖udh|Ωj‖2
Γtr

)
≤ 1

2
‖|udh|‖

2
+
λ

2
‖udh‖2 +

1

2
‖|ec|‖2 +

λ

2
‖ec‖2,

Noting the identity 1
2
d
dt
‖ec‖2 +‖|ec|‖2 = 1

2
d
dt
‖ec‖2 +D(t; ec, ec), integrating the time

variable between 0 and t, and combining the above estimates we arrive at

‖ec(t)‖2 +
1

4

∫ t

0

‖|ec|‖2ds ≤ 5λ

2

∫ t

0

‖ec‖2ds+Rfd(t), (6.61)

with

Rfd(t) := ‖ec(0)‖2 +

∫ t

0

(
4λ‖ε‖2 + 4C‖|ε|‖2 + 4C‖|udh|‖

2
+ λ‖udh‖2 +

4

λ
‖∂u

d
h

∂t
‖2

+
4

λ
‖u

n−1
h − un−2

h

kn−1
− unh − un−1

h

kn
‖2 +

4

λ
‖f − `n−1(t)fn−1 − `n(t)fn‖2

+
1

2

∑
i=0,1

(
‖|wn−i − uh|‖

2
+ λ‖wn−i − uh‖2

))
ds.

Using Gronwall inequality (2.4), we deduce, therefore,

‖ec(t)‖2 +
1

4

∫ t

0

‖|ec|‖2ds ≤ e5λt/2Rfd(t), (6.62)

as before. Working in identical fashion to the semidiscrete case above, we arrive
at

‖e‖2
∗ ≤ 4e5λT/2Rfd(T ) + 2‖udh‖2

∗.

Now, setting for brevity εn := ε(tn), n = 0, 1, . . . , N , straightforward calculations
reveal the bounds∑

i=0,1

(
‖|ε|‖2 + λ‖ε‖2

)
≤ 2

∑
i=0,1

(
‖|εn−i|‖2

+ λ‖εn−i‖2
)
,
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and∑
i=0,1

(
‖|wn−i − uh|‖

2
+ λ‖wn−i − uh‖2

)
≤ 2

∑
i=0,1

(
‖|εn−i|‖2

+ λ‖εn−i‖2
)

+ 2‖|unh − un−1
h |‖2

+ 2λ‖unh − un−1
h ‖2,

noting the trivial bound `2
n−1(t) + `2

n(t) ≤ 1. The a posteriori bound now follows
by combining the last three estimates, along with Lemmas 6.2, 3.14 and 4.2.

Remark 6.11. We note that the maximum with respect to t in the L∞(L2)-norm
can only be attained at one of the time nodes tn, since it is a linear interpolant
with respect to t.

6.4.1 L∞(L2)-norm a posteriori bound

The proof of the L∞(L2)-norm a posteriori bound for the fully discrete scheme
will be split in a number of intermediate results for accessibility.

Lemma 6.12. For λ as above, we have the bound

d

dt
‖ρ‖2 ≤ 11λ

8
‖ρ‖2 + 4λ‖ε‖2 +

16

λ
‖∂ε
∂t
‖2

+ 4λ−1‖f − `n−1(t)fn−1 − `n(t)fn‖2

+ 4λ−1‖u
n−1
h − un−2

h

kn−1
− unh − un−1

h

kn
‖2

+
1

2
‖|wn − wn−1|‖2

+
λ

2
‖wn − wn−1‖2.

(6.63)

Proof. Setting v = ρ in (6.56), we have

〈∂ρ
∂t
, ρ〉+D(ρ, ρ) = λ〈ε, ρ〉+ 〈∂ε

∂t
, ρ〉+A(ρ) + B(ρ) + C(ρ). (6.64)

Working as before, (6.64) gives

1

2

d

dt
‖ρ‖2 + ‖|ρ|‖2

≤ 4λ‖ε‖2 +
λ

16
‖ρ‖2 +

2

λ
‖∂ε
∂t
‖2 +

λ

8
‖ρ‖2

+ 2λ−1‖f − `n−1(t)fn−1 − `n(t)fn‖2 +
λ

8
‖ρ‖2

+ 2λ−1‖u
n−1
h − un−2

h

kn−1
− unh − un−1

h

kn
‖2 +

λ

8
‖ρ‖2 + |C(ρ)|.

(6.65)
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To estimate |C(ρ)| we work as follows:

|C(ρ)| ≤ |`n−1(t)M(wn−1, ρ) + `n(t)M(wn, ρ)−M(w, ρ)|

+ |M(w, ρ)−M(u, ρ)|

≤ `n−1(t)|M(wn−1, ρ)−M(w, ρ)|+ `n(t)|M(wn, ρ)−M(w, ρ)|

+ |M(w, ρ)−M(u, ρ)|,

since `n−1(t) + `n(t) = 1 for t ∈ (tn−1, tn]. Working now as above, and recalling
that λ > 16C2

p̃C
2
trace, we have

|M(wm, ρ)−M(w, ρ)| ≤ Cp̃

2∑
j=1

(
‖(wm − w)|Ωj‖2

Γtr + ‖ρ|Ωj‖2
Γtr

)
≤ Cp̃

2∑
j=1

(
‖(wn − wn−1)|Ωj‖2

Γtr + ‖ρ|Ωj‖2
Γtr

)
≤ 1

4
‖|wn − wn−1|‖2

+
λ

4
‖wn − wn−1‖2 +

1

4
‖|ρ|‖2 +

λ

4
‖ρ‖2,

for m = n− 1, n, noting that wm − w = `m(wn − wn−1). Also,

|M(w, ρ)−M(u, ρ)| ≤ 2Cp̃

2∑
j=1

‖ρ|Ωj‖2
Γtr ≤

1

2
‖|ρ|‖2 +

λ

2
‖ρ‖2.

Combining the last three estimates, we arrive at

|C(ρ)| ≤ 1

4
‖|wn − wn−1|‖2

+
λ

4
‖wn − wn−1‖2 +

3

4
‖|ρ|‖2 +

3λ

4
‖ρ‖2.

The result now follows by using the last estimate on (6.65).

Since the terms involving ρ will be treated as above, we turn our attention to the
terms involving the difference wn − wn−1, which as it stands is not computable.

Lemma 6.13. With λ > 0 as above, we have

1

4
‖|wn − wn−1|‖2

+
λ

4
‖wn − wn−1‖2

≤ 4λ−1‖fn − fn−1‖2 + 4λ−1‖u
n−1
h − un−2

h

kn−1
− unh − un−1

h

kn
‖2.

Proof. By definition of the elliptic reconstruction, we have

D(wn − wn−1, v) + λ〈wn − wn−1, v〉+M(wn, v)−M(wn−1, v)

= 〈gn − gn−1, v〉,
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which, upon setting v = wn − wn−1 and working as before leads to

‖|wn − wn−1|‖2
+ λ‖wn − wn−1‖2 − 1

4
‖|wn − wn−1|‖2 − λ

4
‖wn − wn−1‖2

≤ 1

λ
‖gn − gn−1‖2 +

λ

4
‖wn − wn−1‖2,

from which the result already follows by replacing the gm’s with their equals.

We are now ready to state and prove the following a posteriori bound.

Theorem 6.14 (L∞(L2)-norm estimate). For every n = 1, . . . , N , and λ > 0 as
defined above, we have

‖e‖2
L∞(0,tn;L2(Ω)) ≤ 2e11λtn/8Υn

fd,L2
+ 4 max

1≤j≤n
Υ2

S
L2
1

(s, ujh), (6.66)

with

Υn
fd,L2

:= Υ2
ini,L2

+
n∑
j=1

kj
(
C(Υj

space,L2
)2 + (Υj

time,L2
)2
)
, (6.67)

where

Υini,L2 := ‖u0 − u0
h‖+ Υ

S
L2
1

(s, u0
h),

Υj
space,L2

:=
(

4λ
kj + kj+1

kj
Υ2

S
L2
1

(s, ujh) +
16

λ
Υ̂2

S
L2
2

(s,
∂uh
∂t
|t−j )
)1/2

,

Υj
time,L2

:=
(8

λ
‖u

j−1
h − uj−2

h

kj−1
− ujh − u

j−1
h

kj
‖2

+
4

λ

(
‖f − `j−1(t)f j−1 − `j(t)f j‖2 + ‖f j − f j−1‖2

))1/2

,

with C > 0 constant depending only on the shape-regularity of the spatial mesh and
Υ̂
S
L2
2

signifying the Υ
S
L2
2

of Lemma 6.5 taken on the union mesh T̂ n := T n−1∪T n,
i.e., the coarsest common refinement of T n−1 and T n.

Proof. From Lemmas 6.12 and 6.13, we have, upon integration in the time variable:

‖ρ(tn)‖2 ≤ 11λ

8

∫ tn

0

‖ρ‖2dt+Rfd,L2(tn), (6.68)

with

Rfd,L2(tn) :=‖ρ(0)‖2 +

∫ tn

0

(
4λ‖ε‖2 +

16

λ
‖∂ε
∂t
‖2 +

8

λ
‖u

n−1
h − un−2

h

kn−1
− unh − un−1

h

kn
‖2

+ 4λ−1
(
‖f − `n−1(t)fn−1 − `n(t)fn‖2 + ‖fn − fn−1‖2

))
dt.



A posteriori estimates for dG methods for parabolic interface problems 97

Gronwall’s inequality (2.4), thus, implies

‖ρ(tn)‖2 ≤ e11λtn/8Rfd,L2(tn).

Now, setting for brevity εn := ε(tn), n = 0, 1, . . . , N , straightforward calculations
reveal the bounds

4λ‖ε‖2 +
16

λ
‖∂ε
∂t
‖2 ≤ 4λ

∑
i=0,1

‖εn−i‖2 +
16

λ
‖ε

n − εn−1

kn
‖2. (6.69)

To further estimate the terms εn−i, i = 0, 1, we can use Lemma 6.5. For the last
term on the right-hand side of (6.69), we can (essentially) also apply Lemma 6.5
by viewing the linear interpolant ε as a continuous function in time whose finite
element solution is given by

unh − un−1
h

kn
=
∂uh
∂t
|t−n .

Crucially, however, the application of Lemma 6.5 in this case has to take place on
the union mesh T̂ n := T n−1 ∪ T n, i.e., the coarsest common refinement of T n−1

and T n.

The bound now follows by triangle inequality ‖e(tj)‖ ≤ ‖ρ(tj)‖ + ‖ε(tj)‖ and
Lemma 6.5, noting that a maximum with respect to t can only be achieved at a
time-node.

6.5 Numerical experiments

We present a numerical experiment aiming to investigate the performance of
the presented a posteriori bound from Theorem 6.14 for the backward-Euler dG
method for the parabolic non-linear interface problem (2.17). To this end, we
have extended the implementation of the adaptive algorithm of Metcalfe from [?]
(see also [23] for another detailed description) based on the deal.II finite element
library [7] to the present setting of interface problems. Here, we choose γ = 5 and
polynomials of degree p = 2.

The adaptive algorithm from [50], starts with an initial uniform mesh in space and
with a given initial time step. Starting from a uniform square mesh of 16 × 16

elements, the algorithm adapts the mesh to improve approximation to the initial
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condition using the initial condition estimator Υini until some tolerance intol is
satisfied.

To adapt the timestep kj, the algorithm bisects a time interval not satisfying a
user-defined temporal tolerance Υj

time ≤ ttol, and leaves a time-interval unchanged
if Υj

time ≤ ttol.

Once the time-step is adapted, the algorithm performs spatial mesh refinement and
coarsening, determined by the space indicator Υj

space using the user-defined toler-
ances stol+ and stol−, corresponding to refinement and coarsening, respectively.
More specifically, we select the elements with the largest local contributions which
result to Υj

space > stol+ for refinement. The spatial coarsening threshold is set to
stol− = 0.001 ∗ stol+; we select the elements with the smallest local contributions
which result to Υj

space < stol− for coarsening. The algorithm iterates for each
time-step. We refer to [50] for the algorithm’s workflow and all implementation
details.

6.5.1 Example 1.

We use the adaptive algorithm described above to approximate the solution to the
problem (2.17) when Ω = (−1, 1)2, subdivided into two subdomains interfacing at
x = 0, i.e., Ω1 = (−1, 0) × (−1, 1), Ω2 = (0, 1) × (−1, 1), and T = 1. The non-
homogeneous Dirichlet boundary conditions, the initial condition and the source
term f are determined by the exact solution

u =

 (4x+ 4x2) e(y
2−1)

2

cos(t) in Ω1

(−5x3 + 4x+ 1) e(y
2−1)

2

cos(t) in Ω2;

this is is compatible with the linear interface condition (2.5) having permeability
Ctr = 4.

Solution profiles and meshes produced by the adaptive algorithm at the final time
T = 1 are shown in Figures 6.1 and 6.2, respectively. The meshes generated by
the adaptive algorithm clearly show that the error estimator is correctly picking
up the solution’s features.
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(a) (b)

Figure 6.1: Example 1. Final time adaptive solution profiles with p = 2
obtained with different values of the spatial refinement tolerance: stol+ = 0.1

(left) and stol+ = 0.01 (right).

(a) (b)

Figure 6.2: Example 1. Meshes corresponding to the solution plots of Figure
6.1.



Chapter 7

Conclusions and Future Work

This thesis is devoted to the development and error analysis of adaptive discontin-
uous Galerkin methods for the numerical study of elliptic and parabolic interface
problem on partition subdomains involving, possibly, curved interfaces and arising
in the modelling of mass transfer of solutes through semi-permeable membranes.
We presented a fitted interior-penalty dG method for an elliptic interface prob-
lem involving elements with extremely general curved faces to resolve interface
geometry. As such, a key feature of this approach is that physical coordinate basis
functions, as opposed to standard mapped ones from a reference element, need
to be employed. The fitted nature of the discretisation permitted us to prove
residual-type a posteriori error bounds for a dG energy norm in standard fashion,
after extending standard approximation, inverse and conforming-nonconforming
recovery estimates (in the spirit of the important work of Karakashian and Pascal
[41]) from the literature. Furthermore, we investigated adaptive algorithms for el-
liptic interface problems with a focus on addressing some challenges to derive the
necessary contraction property which leads to proof of convergence of standard
adaptive procedures. Finally, we took the approach one step further to prove a
posteriori error estimates for the respective non linear parabolic interface problem
in the L∞(L2)- and (L∞(L2) + L2(H1))-norms. The analysis for the parabolic
problems is based on the elliptic reconstruction framework of Makridakis and No-
chetto [48] although, crucially, a number of challenges had to be overcome due to
the non-linearity on the interface condition in the present setting.

Another aim of this work was to investigate the possibility of incorporating fitted,
curved elements in adaptive finite element computations. Nonetheless, a number
of important challenges remain.
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First and foremost, the mesh design for curved elements is not treated in standard
mesh generators. This creates a number of practical issues, such as the represen-
tation of curves at the algorithmic level and, crucially for us, the refinement of
curved elements, which remains largely open. We remark that for the convergence
result presented in Chapter 5 we assumed that a “good” bisection refinement strat-
egy is available which results to refined meshes with the same geometric properties
for the curved elements. It is not clear at this point how to construct refinement
strategies that guarantee these required geometric properties, which are in turn
needed for the a posteriori bounds to hold.

Second, it would be very interesting to extend the results from this work to the
case of unfitted meshes, which are widely accepted as more practical, especially
in the context of temporally moving interfaces. The geometry variational crime
present in unfitted approximations of the interface poses a number of difficulties
(mentioned in the Introduction) in proving rigorous a posteriori bounds for such
methods.

Another interesting direction would be the extension of the analysis to higher
order time-stepping methods such as Crank-Nicolson (see Akrivis, Makridakis and
Nochetto [5] and the recent work of Bänsch, Karakatsani and Makridakis [8]).
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