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Abstract

On the Module Category of Symmetric Special Multiserial Algebras

Drew D. Duffield

The module category of an algebra is a major source of study for representation
theorists. The indecomposable modules over an algebra and the morphisms between
them are of tremendous importance, since these essentially determine the finitely
generated module category over the algebra. The Auslander-Reiten quiver is a
means of presenting this information.

In this thesis, we focus on the class of symmetric special multiserial algebras.
These are a broad class of algebras that include the well-studied subclass of sym-
metric special biserial algebras. A useful property of these algebras is that they
have a decorated hypergraph (with orientation) associated to them, called a Brauer
configuration. As well as offering a pictorial presentation of the algebra, many as-
pects of the representation theory are encoded in the combinatorial data of the
hypergraph.

In the first half of this thesis, we show that the Auslander-Reiten quiver of a
symmetric special biserial algebra is completely determined by its associated Brauer
configuration. Specifically, we can determine the indecomposable modules and the
irreducible morphisms belonging to any component of the Auslander-Reiten quiver
using only information from the Brauer configuration. We also show the number of
certain components and their precise size and shape is entirely determined by the
Green walks along the Brauer configuration.

The second half of this thesis, comprising of the last two chapters, is a study
on the representation type of symmetric special multiserial algebras. Unlike in the
biserial case, not all of these algebras are tame. It is important to know if an
algebra is tame or wild, since if it is wild, a classification of the indecomposable
modules is considered to be hopeless. In this section of the thesis, we describe
which symmetric special multiserial algebras are wild, which we present in terms
of the Brauer configuration.
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Introduction

Within the study of the representation theory of finite dimensional algebras, one of

the primary aims is to understand the module category of an algebra. To this end,

representation theorists are particularly interested in the indecomposable modules

of an algebra along with the morphisms between them. A complete classification

of the indecomposable modules and a complete description of the space of module

homomorphisms yields a complete understanding of the module category of finitely

generated A-modules.

With regards to classifying the indecomposable modules over a finite dimen-

sional algebra, the representation type of the algebra is of fundamental importance.

Drozd’s famous dichotomy ([21]) shows that an algebra can either be of tame or

wild representation type (which becomes a trichotomy if one distinguishes between

algebras that are of finite or infinite representation type). For tame algebras, the in-

decomposable modules in each dimension occur in a finite number of one-parameter

families, meaning that there is at least some hope of a classification of the indecom-

posable modules. On the other hand, the representation theory of any wild algebra

is at least as complicated as the representation theory of all finite dimensional al-

gebras. Thus, a classification of the indecomposable modules of a wild algebra is

often considered to be hopeless. It is therefore of tremendous importance to know

beforehand whether an algebra is tame or wild if one aims to develop a detailed

understanding of its representation theory.

For tame algebras, one method for calculating indecomposable modules lies

with Auslander-Reiten theory. Auslander-Reiten theory was developed in [8], [9]

and [10] by Auslander and Reiten. Given an indecomposable module M , one can

1



INTRODUCTION 2

calculate the Auslander-Reiten translate of M to calculate a new indecomposable

module. In addition, the theory of almost split sequences and irreducible morphisms

provides a method by which the morphisms between indecomposable modules can

be calculated. One way of presenting this information is the Auslander-Reiten

quiver of an algebra. The Auslander-Reiten quiver has indecomposable modules as

vertices and irreducible morphisms as arrows. Thus, the Auslander-Reiten quiver

of an algebra is essentially a way of presenting the module category of the algebra.

This makes the Auslander-Reiten quiver a very powerful tool in representation

theory and hence a source of great interest.

In this thesis, we are interested in the module category of a particular class of

algebras known as special multiserial algebras. Contained in this class are special

biserial algebras, which have been of great interest and study. The representation

theory of special biserial algebras is well-understood. For example, special biserial

algebras are of tame representation type ([18]). The indecomposable modules of

special biserial algebras have been classified ([17], [57]) using the functorial filtration

method due to Gel’fand and Ponomarev ([31]) and the morphisms between them

have been studied in [17], [20], [41] and [53]. The Auslander-Reiten quiver of special

biserial algebras is also well-understood ([17]), particularly for those that are self-

injective ([24]) and symmetric ([15], [22], [29]).

Special biserial algebras have been instrumental to many classification problems

regarding the representation type of an algebra. For example, they are used in

the derived equivalence classification of tame self-injective algebras that are either

periodic, standard, or of polynomial growth ([5], [52]). Special biserial algebras

also play a role in the classification of blocks of group algebras of tame (and finite)

representation type (see for example [23]).

A helpful tool in understanding the representation theory of symmetric special

multiserial algebras is the notion of a Brauer configuration. A Brauer configura-

tion is a decorated hypergraph with orientation – that is, a collection of vertices

and connected polygons, with a cyclic ordering of the polygons at each vertex.

Every Brauer configuration gives rise to a symmetric special multiserial algebra

([35]). Conversely, every symmetric special multiserial algebra can be associated to
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a Brauer configuration ([36]). This motivates an alternative name for symmetric

special multiserial algebras, which some authors instead call Brauer configuration

algebras. Brauer configurations algebras are particularly useful, as the represen-

tation theory of the algebra is encoded in the combinatorial data of the Brauer

configuration.

If every polygon in the Brauer configuration is a 2-gon (or edge), then one

obtains a graph called a Brauer graph and an associated algebra called a Brauer

graph algebra. Brauer graph algebras coincide with the class of symmetric special

biserial algebras ([48], [50]). Since Brauer graph algebras are special biserial, they

are of tame representation type. It is also known that those of finite representation

type are precisely the Brauer tree algebras, which have been of intense study ever

since they arose from the study of the representation theory of finite groups. The

definition of a Brauer tree orginated from the study of block algebras of finite groups

with cyclic defect (see for example [14]). Brauer graph algebras have since been

studied extensively by various authors (see for example in [1], [3], [32], [43], [46],

[48]).

As with Brauer configurations, it is possible to read off some of the represen-

tation theory of a Brauer graph algebra from its underlying Brauer graph. For

example, a useful tool in representation theory is the projective resolution of a

module. However, projective resolutions in algebras are difficult to calculate in

general. For Brauer graph algebras, one can avoid such calculations and easily read

off the projective resolutions of certain modules from the Brauer graph. These are

given by Green walks around the Brauer graph, which were first described in detail

in [37] for Brauer trees and are shown to hold more generally in [48].

The underlying Brauer graph of a domestic symmetric special biserial algebra

has been described in [16]. It is also known that the indecomposable non-projective

modules of a Brauer graph algebra are given by either string modules or band

modules ([57]). The irreducible morphisms between indecomposable modules are

then given by adding or deleting hooks and cohooks to strings ([17], [53]).

With all of this in mind, one may be interested in investigating the Auslander-

Reiten quiver of Brauer graph algebras. This is the precisely the aim of Chapter 2
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of this thesis, where we investigate precisely what information about the Auslander-

Reiten quiver of a Brauer graph algebra we can read off from its underlying Brauer

graph.

There has already been extensive work on the Auslander-Reiten quiver of Brauer

tree algebras. For example, a complete description of the Auslander-Reiten quiver

of Brauer tree algebras, has been given in [29]. In [15], the location of the modules

in the stable Auslander-Reiten quiver of a Brauer tree algebra has been described

in terms of walks in the Brauer tree. However, the descriptions in both [15] and

[29] do not address the case where the algebra is of infinite representation type,

and thus, is associated to a Brauer graph that is not a Brauer tree.

In Chapter 2, we use the results of [17] to provide a constructive algorithm for

reading off the indecomposable modules and irreducible morphisms of any given

Auslander-Reiten component by using nothing other than the Brauer graph. How-

ever, if the algebra is representation-infinite, then the Auslander-Reiten quiver will

consist of many different components, which can be of various different shapes and

sizes. The general shapes for the Auslander-Reiten components of selfinjective spe-

cial biserial algebras is known due to [24], but it is still possible to say more about

the precise size, shape and number of certain components. It is shown towards the

end of Chapter 2 that all of this information is determined by the Green walks along

the Brauer graph. Essentially, this means the Brauer graph completely determines

the Auslander-Reiten quiver of the algebra.

Chapters 3 and 4 investigate the broader class of symmetric special multiserial

algebras, which were first introduced in [56] and later investigated in [34], [35] and

[36]. They both generalise and contain the class of special biserial algebras, and

similar to special biserial algebras, the representation theory is generally controlled

by the uniserial modules over the algebra. Unlike biserial algebras though, most

special multiserial algebras are wild. Symmetric radical cube zero algebras are a

subclass of special multiserial algebras (as shown in [36]), and for these, a classifi-

cation of finite, tame and wild algebras exists in [13]. However, such a classification

does not currently exist for symmetric special multiserial algebras in general. It is

precisely the aim of both Chapters 3 and 4 to provide a description of the symmetric
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special multiserial algebras that are wild.

The author of this thesis believes that the list of wild symmetric special multi-

serial algebras presented in Chapters 3 and 4 is complete, however a proof to this

effect is currently a work in progress. Some work towards providing a complete

classification of the tame symmetric special multiserial algebras is in Chapter 3,

but there is one case which still needs to be addressed. It is therefore the intention

of the author to provide a proof of the complete classification of finite, tame and

wild symmetric special multiserial algebras in a forthcoming paper.

The List of Wild Symmetric Special Multiserial Algebras

The following theorem provides the list of symmetric special multiserial algebras

proven to be wild in Chapters 3 and 4. The proof of this theorem is at the end

of Chapter 4 in Section 4.3. We refer the reader to Chapter 1 for the relevant

preliminaries towards the theorem.

Main Theorem. Let A be a symmetric special multiserial algebra corresponding

to a Brauer configuration χ. Suppose χ satisfies any of the following.

(a) χ contains an n-gon such that n > 4.

(b) χ contains an n-gon such that n = 4 and χ is not of the form

where every vertex has multiplicity one.

(c) χ contains an n-gon such that n = 3 and χ is not of one of the two forms

(i)
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G

u1

u2

u3

ur−1

ur

v1

v′1
w1

w′1

v2

v′2

w2w′2

v3
v′3

w3

w′3

vr−1

v′r−1

wr−1

w′r−1

vr v′r

wr

w′r

where G is a Brauer graph connecting the (not necessarily distinct) ver-

tices u1, . . . , ur and evi = ev′i = ewi = ew′i = 1 for all i; or

(ii)

T1

T2

T3

where T1, T2 and T3 are distinct multiplicity-free Brauer trees containing

m1, m2 and m3 polygons respectively such that the values of the triple

(m1,m2,m3) conform to a column of the following table.

m1 1 1 1 1 1 2

m2 2 2 2 2 3 2

m3 2 3 4 5 3 2

Then A is wild.

We actually show that the converse to (b) and (c)(ii) is also true in Chapter 3.

Namely, we show the following.

Theorem. If A is a tame symmetric special multiserial algebra, then A is at most

quadserial. In particular, if A is quadserial and the underlying Brauer configuration

of A is of the form given in Case (b) of the Main Theorem, then A is tame.
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Theorem. Suppose A is a symmetric special triserial algebra whose underlying

Brauer configuration is of the form given in Case (c)(ii) of the Main Theorem.

Then A is tame.

This falls short of a complete classification of tame and wild symmetric special

multiserial algebras, as we do not show the converse to (c)(i) in the Main Theorem.

Conjecture. Suppose A is a symmetric special triserial algebra whose underlying

Brauer configuration is of the form given in Case (c)(i) of the Main Theorem. Then

A is tame.



Chapter 1

Preliminaries and Notation

We assume the reader has a basic familiarity with the representation theory of

algebras, including a knowledge of modules over algebras and representations of

quivers. We direct the reader to [7, Chapters I, II, III] and [12] for further reading

if this is not the case.

Throughout this thesis, we let K be an algebraically closed field and Q =

(Q0, Q1) be a finite connected quiver with vertex set Q0 and arrow set Q1. We

let I be an admissible ideal of the path algebra KQ such that KQ/I is a basic

finite dimensional algebra. For any K-algebra A, we denote by ModA the module

category of A, we denote by modA the full subcategory of ModA consisting of

finitely generated A-modules, and (in the case where A is infinite dimensional) we

denote by finA the full subcategory of modA consisting of finite dimensional A-

modules. Unless specified otherwise, all modules considered are right modules, and

thus, we typically read paths in a quiver from left to right and compose morphisms

between A-modules on the left. We freely use the fact throughout that for a path

algebra A = KQ/I, the category of K-representations of Q is equivalent to the

category of (right) A-modules. Thus, we frequently think of a K-representation

as a module and vice versa. We adopt the notation that we compose linear maps

in a K-representation on the left. Thus, any linear map ϕ : Km → Kn in a

K-representation can be written as an n×m matrix.

By the standard duality D, we mean the standard K-linear dual functor D =

8
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HomK(−, K), which assigns to each right A-module M the left A-module DM =

HomK(M,K) and to each morphism h : M → N the morphismDh = HomK(h,K) :

DN → DM . Recall that an algebra A is symmetric if A ∼= DA as an A-A-bimodule.

Most algebras considered in this thesis are symmetric.

For a right (resp. left) A-module M , we denote radM to be the radical of M .

That is, the intersection of all maximal right (resp. left) submodules of M . The top

of M is given by topM = M/ radM . By socM , we mean the socle of M . That is,

socM is the submodule of M generated by all simple right (resp. left) submodules

of M .

Given a module M ∈ modA, the projective module P (M) is given by the

projective cover of M . Recall that the syzygy operator Ω assigns to a module

M ∈ modA the kernel of the projective cover P (M) → M . By Ωn(M), we mean

the n-th syzygy module of M . Similarly, we mean by I(M) the injective module

given by the injective envelope of M and Ω−1(M) the cosyzygy of M , which is given

by the cokernel of the injective envelope M → I(M). We denote by Ω−n(M) the

n-th cosyzygy of M .

Given an algebra A = KQ/I, for any vertex x ∈ Q0, we denote by S(x) the

simple module corresponding to x. By P (x) and I(x) we denote the indecomposable

projective and indecomposable injective modules respectively corresponding to the

vertex x ∈ Q0. Specifically, P (x) = P (S(x)) and I(x) = I(S(x)). In a symmetric

algebra, P (x) = I(x) for all x ∈ Q0, and so we will often use P (x) only to refer to

the projective-injective corresponding to x ∈ Q0.

Given an arrow α ∈ Q1 we denote the vertex of Q at the source of α by s(α)

and the vertex of Q at the target of α by e(α). For any vertex x ∈ Q0, we denote

by εx the stationary path in KQ at the vertex x. Thus, for any basic path algebra

A = KQ/I, the set {εx : x ∈ Q0} forms a complete set of primitive orthogonal

idempotents of A.

We will denote Dynkin ADE diagrams (and quivers that are orientations of

Dynkin ADE diagrams) by blackboard bold characters An, Dn and Ep. Extended

Dynkin ADE diagrams and Euclidean quivers will be denoted by the corresponding

blackboard bold characters Ãn, D̃n and Ẽp. The shapes of these quivers may been
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found in [39].

1.1 Representation Theory Preliminaries

1.1.1 Auslander-Reiten Theory

Understanding the indecomposable modules of an algebra and the morphisms be-

tween them is an imporatant aim in representation theory, as it provides a useful

insight into the structure of the module category of an algebra. Auslander-Reiten

theory, which was first introduced by Maurice Auslander and Idun Reiten in [8], [9]

and [10], provides the tools by which we can calculate indecomposable modules and

irreducible morphisms for finite dimensional algebras via almost split sequences. We

provide a brief review of their work.

Almost Split Sequences

Definition 1.1.1 ([7], IV.1.1). Let A be a finite dimensional algebra over an alge-

braically closed field K. Let L,M,N ∈ modA.

(a) A morphism g : M → N is called right almost split if g does not admit

a right inverse and for every morphism v : Y → N that does not admit a

right inverse, there exists v′ : Y → M such that the following diagram is

commutative

Y
v′

~~
v
��

M
g // N

.

(b) A morphism f : L → M is called left almost split if f does not admit a left

inverse and for every morphism u : L→ X that does not admit a left inverse,

there exists u′ : M → X such that the following diagram is commutative

L
f //

u
��

M

u′~~
X

.
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(c) A morphism g : M → N is called right minimal if every morphism g′ ∈ EndM

such that gg′ = g is an automorphism. Similarly, a morphism f : L → M is

called left minimal if every morphism f ′ ∈ EndM such that f ′f = f is an

automorphism.

(d) A morphism is said to be right (resp. left) minimal almost split if it is both

right (resp. left) minimal and right (resp. left) almost split.

Definition 1.1.2 ([11], V.1, p. 144). We say an exact sequence

0 // L
f //M

g // N // 0

is an almost split sequence (or Auslander-Reiten sequence) if f is left almost split

and g is right almost split.

Definition 1.1.3 ([7], IV.1.4). A morphism g : M → N in mod A is called an

irreducible morphism if

(i) g does not admit a left or right inverse and

(ii) if g = g2g1 for some g1 : M → X and g2 : X → N then either g1 admits a

right inverse or g2 admits a left inverse.

X
g2

  
M

g1
>>

g // N

Irreducible morphisms are related to minimal almost split morphisms in the

following way.

Proposition 1.1.4 ([11], V.5.3). Let L and N be indecomposable A-modules. Then:

(i) A morphism g : M → N is irreducible if and only if there exists a morphism

g′ : M ′ → N such that the induced homomorphism (g, g′) : M ⊕M ′ → N is

right minimal almost split.
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(ii) A morphism f : L→ M is irreducible if and only if there exists a morphism

f ′ : L → M ′ such that the induced homomorphism
(
f
f ′

)
: L → M ⊕M ′ is

left minimal almost split.

Proposition 1.1.5 ([7], [11]). For an exact sequence

0 // L
f //M

g // N // 0 ,

the following are equivalent:

(a) The sequence is an almost split sequence.

(b) f is left minimal almost split.

(c) g is right minimal almost split.

(d) L is indecomposable and f is left almost split.

(e) N is indecomposable and g is right almost split.

(f) L and N are indecomposable, and f and g are irreducible.

Almost split sequences, if they exist, are unique in the following sense.

Proposition 1.1.6 ([11], V.1.16). Let

0 // L
f //M

g // N // 0

and

0 // L′
f ′ //M ′ g′ // N ′ // 0

be two almost split sequences. Then the following are equivalent:

(i) The two sequences are isomorphic.

(ii) L ∼= L′.

(iii) N ∼= N ′.
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Due to our main focus on symmetric algebras, it is of interest to know the

form of the almost split sequences involving an indecomposable projective-injective

module.

Proposition 1.1.7 ([11], V.5.5). Let P be an indecomposable projective-injective

A-module. Then there exists an almost split sequence

0 // radP // radP/ socP ⊕ P // P/ socP // 0 .

The Auslander-Reiten Translate

Almost split sequences can be constructed using the Auslander-Reiten translate,

which we will define here. For a finite dimensional algebra A, first consider the

A-dual functor (−)t = HomA(−, A). Then consider the minimal projective presen-

tation of a module M ∈ modA

P1
p1 // P0

p0 //M // 0 .

By applying the above functor, we obtain an exact sequence

0 //M // P t
0

pt0 // P t
1

pt1 // TrM // 0 ,

where TrM is called the transpose of M and is given by Coker pt1. Note that the

transpose Tr has the following property.

Proposition 1.1.8 ([7], IV.2.1). M is projective if and only if TrM = 0. If M is

not projective then TrM is indecomposable and Tr(TrM) ∼= M .

If we consider the composition of Tr with the standard K-duality functor D =

HomK(−, K), then we get the following result.

Proposition 1.1.9 ([11], IV.1.9). The composition DTr : modA → modA is an

equivalence of categories with inverse equivalence TrD : modA→ modA.

This motivates the following definition.



1. PRELIMINARIES AND NOTATION 14

Definition 1.1.10 ([7], IV.2.3). We define the Auslander-Reiten translate to be

the composition τ = DTr. We define its inverse to be τ−1 = TrD.

Remark 1.1.11. If the algebra A is weakly symmetric, then one can easily show

that τ = Ω2.

The Auslander-Reiten translations are of central importance due to the follow-

ing.

Proposition 1.1.12 ([7], IV.3.1).

(a) For any indecomposable non-projective module M , there exists an almost split

sequence

0 // τM // B //M // 0

in modA.

(b) For any indecomposable non-injective module N , there exists an almost split

sequence

0 // N // C // τ−1N // 0

in modA.

In view of Proposition 1.1.6, we then have the following:

Proposition 1.1.13 ([11], V.1.14). For an exact sequence

0 // L
f //M

g // N // 0 ,

the following are equivalent:

(i) The sequence is an almost split sequence.

(ii) L is isomorphic to τN and f is left almost split.

(iii) N is isomorphic to τ−1L and g is right almost split.
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The Auslander-Reiten Quiver

It is useful to present the information regarding the indecomposable modules of a

finite dimensional algebra and the morphisms between them in the form of a quiver.

Definition 1.1.14 ([7], IV.4.6). Let A be a basic and connected finite dimen-

sional algebra. The Auslander-Reiten quiver of A is defined to be the quiver ΓA

constructed as follows.

(i) The distinct vertices of ΓA correspond to the distinct isomorphism classes of

indecomposable modules in modA.

(ii) There exists an arrow [M ]→ [N ] in ΓA if and only if there exists an irreducible

morphism M → N .

The Auslander-Reiten quiver of an algebra is locally finite at the vertices (that

is, there are a finite number of arrows of source or target any given vertex in

ΓA). There are no loops in ΓA, however it is possible for there to exist multiple

arrows between vertices in ΓA, which is usually expressed by placing a valuation on

the arrows of the quiver. This can happen whenever there exists an almost split

sequence of the form

0 // τN // L⊕Mn // N // 0

in modA, where M is indecomposable and n > 1. This rarely happens in the

Auslander-Reiten quiver of the algebras we consider for this thesis (symmetric spe-

cial biserial), and so we do not go into the details of placing valuations on arrows

in ΓA. We instead direct the reader to consult [7] and [11] if they would like further

details on the construction of the Auslander-Reiten quiver with valuations.

The Auslander-Reiten quiver actually has the additional structure of being a

translation quiver, with the translation defined by the Auslander-Reiten translate

τ (see [12, 4.15] for details). Thus, for each almost split sequence

0 // τN //
⊕r

i=1 Mi
// N // 0 ,
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where the Mi are pairwise non-isomorphic, we have a mesh in the Auslander-Reiten

quiver of the following form.

M1

''
M2

++τN

77

33

++

''

... N

Mr−1

44

Mr

77

For self-injective algebras, it is often convenient to look at the stable Auslander-

Reiten quiver, denoted by sΓA. This is the full subquiver of ΓA given by removing

projective-injective objects.

Definition 1.1.15. Define an equivalence relation between indecomposable mod-

ules M,N modA by M ∼ N if and only if there exists a finite (undirected) walk

along the arrows of ΓA between M and N . We call the equivalence classes under

the relation ∼ the Auslander-Reiten components of ΓA.

It is easy to see that if an algebra A is representation-finite then the Auslander-

Reiten quiver of A consists of a single component. However, if the algebra is instead

representation-infinite, then ΓA may consist of many different components, which

could be of various different shapes (determined by the Auslander-Reiten translate

τ). We present a few examples of possible shapes of Auslander-Reiten components

here, which will become relevant later in the thesis.

Examples 1.1.16.

(a) Components of the shape ZA∞/〈τn〉 are called tubes of rank n and are of the

form given in Figure 1.1(a), where the modules along the dashed lines are

identified. The modules M1, . . . ,Mn above are said to sit at the mouth of the

tube.

(b) Components of the shape ZÃp,q are of the form given in Figure 1.1(b), where

the modules along the dashed lines are identified at the vertex N and along

its translations τnN . Informally, one can think of a ZÃp,q component as being
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Mn M1 M2 · · ·

· · ·

· · ·

Mn

...
...

· · ·· · ·

p arrows

q arrows

. .
.

. . .

N

N

M

.. . . .
.

. .
. . . .

(a) (b)

(c)

Figure 1.1: Examples of possible shapes of Auslander-Reiten components.

a horizontal tube with a potential τ -shift along the line of identification (if

p 6= q).

(c) Components of the shape ZA∞∞ are of the form given in Figure 1.1(c).

1.1.2 Tilting Complexes

Denote by projA the full subcategory of modA consisting of projective A-modules.

By Kb(projA), we mean the bounded homotopy category of chain complexes over

projA. That is, the category whose objects are bounded chain complexes over

projA and whose morphisms are chain maps modulo homotopy.

We call an object in Kb(projA) that has a non-zero term in at most one degree

a stalk complex. Given an object T ∈ Kb(projA), denote by add(T ) the full sub-

category of Kb(projA) consisting of direct summands of direct sums of copies of

T . We call an object T ∈ Kb(projA) a tilting complex if Hom(T, T [n]) = 0 for all

n 6= 0 and add(T ) generates Kb(projA) as a triangulated category.

Theorem 1.1.17 ([46], Theorem 1.1). Let A and B be finite dimensional algebras.

Then A and B are derived equivalent if and only if B ∼= EndKb(projA)(T ) for some

tilting complex T ∈ Kb(projA).
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An example of a tilting complex in a symmetric algebra A is an Okuyama-

Rickard complex (c.f. [2], [4], [44]). Let ε1, . . . , εn be complete set of primitive

orthogonal idempotents of A. Let E ′ be a subset of E = {1, . . . , n} and let ε =∑
i∈E′ εi. Define Ti to be either the stalk complex with degree zero term εiA if

i ∈ E ′ or the complex

0 //P (εiAεA)
f //εiA //0

if i 6∈ E ′, where P (εiAεA) is in degree zero and P (εiAεA)
f //εiA is the minimal

projective presentation of εiA/εiAεA. Then the complex T =
⊕

i∈E Ti is called the

Okuyama-Rickard tilting complex with respect to E ′.

1.1.3 The Representation Type of an Algebra

The representation type of an algebra is of primary importance to representation

theorists, as it essentially describes how complicated it is to classify the indecom-

posable modules over the algebra.

Definition 1.1.18 ([7]). A finite dimensional K-algebra is said to be of finite repre-

sentation type (or is said to be representation-finite) if the number of isomorphism

classes of indecomposable modules in modA is finite. Otherwise A is said to be of

infinite representation type (or is said to be representation-infinite).

Example 1.1.19. Let K be an algebraically closed field and let Q be an orientation

of one of the following Dynkin diagrams An, Dn and Ep (p ∈ {6, 7, 8}). Then by a

theorem of Gabriel ([28]), the (hereditary) path algebra KQ is representation-finite.

By [55], the trivial extension of KQ is also representation-finite (see Section 1.5 for

the definition of the trivial extension of an algebra).

Classifying the indecomposable modules of a representation-finite algebra is con-

sidered to be an easy problem, and thus, the representation theory of representation-

finite algebras is well understood. On the opposite end of the spectrum, we have

the algebras of wild representation type. To define wild representation type, we

need to introduce the notion of a representation embedding, as defined in [51].
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Definition 1.1.20 ([51], XIX.1). LetA andB be (not necessarily finite-dimensional)

algebras over K and let A ⊆ ModA and B ⊆ ModB be additive full exact sub-

categories that are closed under direct summands. Let F : A → B be a K-linear

functor.

(a) We say F respects isomorphism classes if for any modules M,N ∈ A, we have

FM ∼= FN ⇒M ∼= N .

(b) We say F is a representation embedding if it is exact, respects isomorphism

classes, and maps indecomposable modules in A to indecomposable modules

in B.

Given finite dimensional algebras A and B, a representation embedding F :

modA→ modB induces an injection from the set of isomorphism classes of inde-

composable modules in modA to the set of isomorphism classes of indecomposable

modules in modB. Thus, the classification of indecomposable modules in modB is

at least as complicated as the classification of indecomposable modules in modA.

The following observation is also useful.

Lemma 1.1.21 ([51], XIX.1). Let A and B be (not necessarily finite-dimensional)

algebras over K and let A ⊆ ModA be an additive full exact subcategory that is

closed under direct summands. Let F : A → ModB be a K-linear functor. If F is

exact and fully faithful, then F is a representation embedding.

We will call a representation embedding that is fully faithful a strict represen-

tation embedding.

Definition 1.1.22 ([51], XIX.1). Let B be a finite dimensional K-algebra.

(a) B is said to be of wild representation type (or shortly, is said to be wild) if for

every finite dimensional K-algebra A, there exists a representation embedding

F : modA→ modB.

(b) B is said to be of strictly wild representation type (or shortly, is said to be

strictly wild) if for every finite dimensional K-algebra A, there exists an exact

fully faithful K-linear functor F : modA→ modB.



1. PRELIMINARIES AND NOTATION 20

Essentially, the above definition says that the problem of classifying the inde-

composable modules in a wild algebra contains the problem of classifying the in-

decomposable modules of all finite dimensional algebras. Thus, gaining a complete

understanding of the representation theory of a wild algebra is often considered to

be hopeless. Note that an algebra that is strictly wild is wild, but the converse is

not necessarily true (for example, wild local algebras, as shown in [38]). We may

also observe that for some algebra B of unknown representation type and for some

algebra A of wild representation type, it follows that if there exists a representation

embedding F : modA→ modB, then B is also wild.

Example 1.1.23. Any acyclic (hereditary) path algebra KQ such that Q is not

an orientation of An, Ãn, Dn, D̃n, Ep and Ẽp (p ∈ {6, 7, 8}) is strictly wild. There

exists a fully faithful representation embedding from KQ into the trivial extension

of KQ, so this is also strictly wild.

Consider the algebra K〈a1, a2〉 and recall that this is the path algebra of the

following quiver.

Q : •a1 99 a2
yy

Whilst this algebra is not finite-dimensional, one can still construct a (strict) repre-

sentation embedding ModA→ ModK〈a1, a2〉 for any finitely generated K-algebra

A, which restricts to a (strict) representation embedding finA → finK〈a1, a2〉.

This motivates the following alternative and important characterisation of wild

(and strictly wild) algebras.

Theorem 1.1.24 ([51], XIX.1). Let A be a finite dimensional algebra.

(a) A is wild if and only if there exists a representation embedding functor F :

finK〈a1, a2〉 → modA.

(b) A is strictly wild if and only if there exists an exact fully faithful functor

F : finK〈a1, a2〉 → modA.

We present here a test for wild algebras due to Crawley-Boevey, where by almost

all, we mean all but finitely many.
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Theorem 1.1.25 ([19],Theorem D). Let K be an algebraically closed field. If A is a

tame K-algebra, then for each dimension d, M ∼= τM for almost all indecomposable

A-modules of dimension d.

For some representation-infinite algebras, there may still be some hope in classi-

fying the indecomposable modules over the algebra. This brings us to the definition

of tame representation type.

Definition 1.1.26 ([51], XIX.3). A finite dimensional algebra A over an alge-

braically closed field K is said to be of tame representation type (or shortly said to

be tame) if for each integer d ≥ 1, there exists a finite number of K[a]-A-bimodules

M1, . . . ,Mnd that are finitely generated and free left K[a]-modules such that almost

all indecomposable A-modules of dimension d are isomorphic to a module of the

form S ⊗K[a] Mi for some i and some simple K[a]-module S.

Recall that K[a] is the path algebra of the quiver consisting of one vertex and

a single arrow a, which is a loop. Also recall that the simple K[a]-modules are

precisely the modules of dimension 1 with quiver representation (K,ϕ), where

ϕ : K → K is a linear map such that ϕ(x) = λx for some λ ∈ K. Thus, the

above definition essentially says that in a tame algebra, almost all indecompos-

able modules (up to isomorphism) in each dimension occur in a finite number of

1-parameter families.

Remark 1.1.27. Some authors define tame representation type to include finite

representation type. We adopt this notation for this thesis.

We now present Drozd’s famous tame-wild dichotomy (which becomes a tri-

chotomy if one distinguishes between finite and tame representation type).

Theorem 1.1.28 ([21]). A finite-dimensional algebra is either of tame representa-

tion type or wild representation type, but not both.

It is sometimes of interest to count the number of K[a]-A-bimodules in each

dimension of a tame algebra A.

Definition 1.1.29 ([51], XIX.3). Let A be an algebra over an algebraically closed

field K. For each integer d ≥ 1, let {M1, . . . ,Mnd} be a set of K[a]-A-bimodules
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from Definition 1.1.26 such that the integer nd is minimal. Let µA : Z>0 → Z≥0 be

a function defined by µA(d) = nd.

(a) We say A is domestic if there exists an integer m ≥ 0 such that µA(d) ≤ m

for all d ≥ 1. Specifically, we say A is m-domestic if m is the minimal value

such that µA(d) ≤ m for all d ≥ 1.

(b) We say A is of polynomial growth if there exists an integer m ≥ 1 such that

µA(d) ≤ dm.

All domestic algebras are of polynomial growth.

Example 1.1.30 ([6]). The path algebra KQ for any algebraically closed field K

and any Euclidean quiver Q of the form Ãn, D̃n or Ẽp (p ∈ {6, 7, 8}) is tame (and

in fact, domestic). The trivial extension of KQ is also domestic.

We finish this section with an important theorem.

Theorem 1.1.31 ([42],[46]). Let A and B be derived equivalent selfinjective K-

algebras. Then A and B have the same representation type.

1.2 Special Multiserial Algebras

The study of multiserial algebras originates from Nakayama’s generalised uniserial

algebras, which were later generalised to the class of biserial algebras by Tachikawa

([54]) and Fuller ([27]). In 1983, Skowroński and Waschbüsch ([53]) discussed the

subclass of special biserial algebras, which have since been studied extensively. The

broader class of special multiserial algebras – the main focus of the third chapter

of this thesis – were first introduced in [56] and later investigated in [34], [35] and

[36]. They both generalise and contain the class of special biserial algebras.

Central to the definition of a multiserial algebra is the definition of a uniserial

module.

Definition 1.2.1 ([7], V.2). A left or right A-module M is called uniserial if

radi(M)/ radi+1(M) is simple or zero for all i.



1. PRELIMINARIES AND NOTATION 23

Definition 1.2.2 ([36]). Let A be a finite dimensional algebra. We say a left or

right A-module is multiserial if rad(M) can be written as a sum of uniserial modules

U1, . . . , Un such that Ui ∩ Uj is simple or zero for all i 6= j. We say that an algebra

is multiserial if A is multiserial as a left and right A-module.

Definition 1.2.3. We call a multiserial algebra A an n-serial algebra if for every

left or right indecomposable projective A-module P , the module rad(P ) is a sum

of at most n uniserial modules U1, . . . , Un such that Ui ∩Uj is simple or zero for all

i 6= j. In particular, if A is an n-serial algebra for n ∈ {1, 2, 3, 4}, then we say that

A is uniserial, biserial, triserial or quadserial respectively.

Biserial algebras are of particular interest of study, as a result of the following.

Theorem 1.2.4 ([18]). Let A be a biserial algebra. Then A is tame.

Thus, there is at least some hope of classifying the indecomposable modules

over a biserial algebra. To date, there is no complete classification for all biserial

algebras, but due to the functorial filtration method of Gel’fand and Ponomarev in

[31], there is a classification of the indecomposable modules over an algebra that is

special biserial ([17], [57]), which we define below. These are given by string and

band modules (defined in Section 1.6). The generalisation of the above statement

to the multiserial case is not true, since there are numerous examples of multiserial

algebras that are wild – indeed, many wild hereditary algebras are multiserial.

In this thesis, we are particularly interested in the subclass of mutliserial alge-

bras known as special multiserial algebras.

Definition 1.2.5 ([36]). We say that a finite dimensional algebra A is special

multiserial if it is Morita equivalent to a quotient KQ/I of a path algebra KQ by

an admissible ideal I such that the following property holds.

(S1) For any arrow α ∈ Q1, there exists at most one arrow β ∈ Q1 and at most

one arrow γ ∈ Q1 such that αβ 6∈ I and γα 6∈ I.

Note that special multiserial algebras are multiserial algebras ([36, Corollary

2.4]). The definition of a special biserial/triserial/quadserial algebra is similar.
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Definition 1.2.6. We say that a finite dimensional algebra A is special n-serial if

it is Morita equivalent to a quotient KQ/I of a path algebra KQ by an admissible

ideal I which satisfies property (S1), along with the following additional property.

(S2) For any vertex x ∈ Q0, there are at most n arrows in Q1 of source x and at

most n arrows in Q1 of target x.

An algebra that is special 2-serial, 3-serial or 4-serial is called a special biserial,

triserial or quadserial algebra, respectively.

The definition of special biserial algebras is due to Skowroński and Waschbüsch

in [53], where it is shown that special biserial algebras are biserial algebras.

An important class of examples of special multiserial algebras is the subclass of

gentle algebras and almost gentle algebras. These are defined as follows.

Definition 1.2.7 ([34]). We say that a finite dimensional algebra A is almost gentle

if it is Morita equivalent to a quotient KQ/I of a path algebra KQ by an admissible

ideal I which satisfies property (S1), along with the following additional property.

(G1) I is generated by paths of length two.

Definition 1.2.8 ([45]). We say that a finite dimensional algebra A is gentle if it is

Morita equivalent to a quotient KQ/I of a path algebra KQ by an admissible ideal

I which satisfies (S1), (S2) and (G1), along with the following additional property.

(G2) For any arrow α ∈ Q1, there exists at most one arrow β ∈ Q1 and at most

one arrow γ ∈ Q1 such that αβ ∈ I and γα ∈ I.

Trivially, one can see that the class of almost gentle algebras contains the class

of gentle algebras.

1.3 Locally Embedded Configurations

Configurations (also known as hypergraphs) are a generalisation of graphs. In this

thesis, we will be using configurations and graphs extensively, and thus, we will

need to review the relevant theory and establish a set of notation which we will
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use throughout. Many of the ideas presented in this section are based on the work

of Green and Schroll in [35]. To define a configuration, we need the notion of a

multiset, which we recall here.

Definition 1.3.1. A multiset is a pair (U, e) such that U is a set and e : U → Z>0

is a multiplicity function.

An (unordered) multiset is a generalisation of the concept of an (unordered)

set in the sense that a multiset can be viewed as a collection of objects where

repetitions are allowed. Thus, we will write a multiset ({u1, . . . , un}, e) as

{u1, . . . , u1︸ ︷︷ ︸
e(u1) times

, . . . , un, . . . , un︸ ︷︷ ︸
e(un) times

}.

We have the following further definitions, which generalise the relevant notions for

sets.

Definition 1.3.2.

(a) The cardinality of a multiset ({u1, . . . , un}, e) is the integer |({u1, . . . , un}, e)| =∑
e(ui).

(b) A submultiset (U ′, e′) of a multiset (U, e) is a multiset such that U ′ ⊆ U and

e′ ≤ e.

(c) The power set of a multiset (U, e) is the collection of all possible submultisets

of (U, e), which we denote by P(U, e).

We can now proceed with the definition of a configuration

Definition 1.3.3. A configuration is a pair χ = (χ0, χ1), where χ0 is a finite set of

vertices of χ and χ1 is a finite collection of finite multisets xi whose elements are

vertices in χ0. We require that |xi| ≥ 2 for all xi ∈ χ1. We call a multiset x ∈ χ1 a

polygon of χ. Specifically, we call x ∈ χ1 an n-gon if |x| = n.

Informally, one can realise a configuration as a generalisation of a graph, where

instead of vertices and connected edges, we have vertices and connected polygons.
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We typically realise 2-gons as edges in the configuration. If a configuration χ

consists entirely of 2-gons, then χ is indeed a graph. We have additional terminology

regarding the polygons of a configuration. The following definitions generalise the

notions of loops and multiple edges in a graph.

Definition 1.3.4. A polygon x in a configuration χ is said to be self-folded if there

exists a vertex v ∈ x such that v occurs more than once in x. In particular, we say

that x is self-folded at the vertex v. Specifically, if there are m occurrences of v in

x, then we say that x is m-self-folded at v. A self-folded 2-gon is called a loop.

Definition 1.3.5. Two vertices u and v in a configuration χ are said to have

multiple polygons between them if there exist at least two polygons x, y ∈ χ1 such

that u, v ∈ x and u, v ∈ y.

Example 1.3.6. Let χ0 = {v1, . . . , v6} and define multisets x = {v1, v2, v2, v2, v3},

y = {v1, v3, v4}, z1 = {v4, v5}, z2 = {v5, v5} and z3 = {v5, v6}. Then χ = (χ0, χ1),

where χ1 = {x, y, z1, z2, z3}, is an example of a configuration. Geometrically, we

may present this as follows.

χ : x y
z1

z2

z3

v1

v2

v3

v4 v5
v6

Here, x is a 5-gon that is 3-self-folded at the vertex v2 and y is a 3-gon. The

polygons z1, z2 and z3 are 2-gons (and hence edges in χ). In particular, z2 is a loop.

We can also see that there are multiple polygons between vertices v1 and v3.

Let y be a polygon in a configuration χ. We aim to construct a set Gy from

the multiset y. For each vertex u ∈ y such that u occurs precisely once in y, there

exists an element yu ∈ Gy. For each u ∈ y that has precisely m > 1 occurances in

the multiset y, there exist elements y1,u, . . . , ym,u ∈ Gy. Define a set

Gχ = {g : g ∈ Gy, y ∈ χ1}.
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We call the elements of the set Gχ germs of polygons.

Definition 1.3.7. A locally embedded configuration is a tuple χ = (χ0, χ1,Gχ),

where (χ0, χ1) is a configuration and Gχ is as defined above.

An n-gon x in a locally embedded configuration has precisely n germs of the

polygon associated to it. For each polygon x ∈ χ1, we define an operation ·̄ : Gx →

P(Gx) by xv = Gx \ {xv}.

In the case where χ is a graph – that is, a configuration where every polygon

is a 2-gon (or edge) – we have a specialised set of terminology. In this case, every

edge u
x

v has precisely two germs of polygons/edges xu and xv associated to

it. We call xu and xv the half-edges associated to x. Since Gx \ {xv} is a singleton

for any half-edge xv associated to x, the operation ·̄ can instead be viewed as an

involution operation on half-edges, where xv = xu and xu = xv. If u = v (that is,

x is a loop) then we distinguish the two half-edges associated to x by xv and xv.

Sometimes it is useful to count the number of germs of polygons associated to

a vertex. For this, we have the following.

Definition 1.3.8. The valency of a vertex v in a locally embedded configuration

χ is the number of germs of polygons in χ associated to the vertex v, which we

denote by val(v).

In graph theory, one often considers the paths in a graph. We use paths and

cycles extensively in this thesis, so we adapt the notion here to locally embedded

configurations.

Definition 1.3.9. A path of length n in a locally embedded configuration χ is a

sequence

p = (v0, x
v0
1 , x

v1
1 , v1, x

v1
2 , x

v2
2 , v2, . . . , vn−1, x

vn−1
n , xvnn , vn)

of vertices and germs of polygons such that xvii ∈ x
vi−1

i for all i (or in the case where

χ is a graph, xvii = x
vi−1

i for all i). We say x ∈ χ1 is a polygon in p if there exists a

vertex v ∈ χ0 such that xv is a germ of a polygon in p.

Where the context is clear and there are no ambiguities arising from self-folded

polygons and multiple polygons between vertices, we will write paths of the form
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in the above definition as

p = v0
x1 v1

x2 v2 · · · vn−1
xn vn .

In graph theory, there are the notions of simple paths, cycles, subgraphs, con-

nected graphs and trees. The generalisation of these concepts to locally embedded

configurations is as follows.

Definition 1.3.10. Let χ = (χ0, χ1) be a locally embedded configuration.

(a) A path p in χ is simple if it is non-crossing at polygons and vertices. That is,

for any polygon x in p, there are precisely two germs of polygons xvi−1 and

xvi in p associated to x, and for any vertices vi and vj in p, we have vi 6= vj

for any i 6= j.

(b) A cycle of length n in χ is a path

c = (v0, x
v0
1 , x

v1
1 , v1, . . . , vn−1, x

vn−1
n , xvnn , vn)

in which v0 = vn. A cycle in χ is said to be simple if c satisfies the conditions

of a simple path, except for the vertices v0 and vn.

(c) We say χ is connected if there exists a path between any two vertices of χ.

(d) We say χ′ = (χ′0, χ
′
1) is a subconfiguration of χ if χ′ is a connected configura-

tion such that χ′0 ⊆ χ0 and χ′1 ⊆ χ1.

(e) χ is said to be a tree if there exists a unique simple path between any two

vertices of χ (or equivalently, there exist no simple cycles in χ).

Example 1.3.11. Let χ be the configuration in Example 1.3.6. We can see that

χ is connected, but is not a tree. An example of a simple path in χ is

p1 = (v1, y
v1 , yv4 , v4, z

v4
1 , z

v5
1 , v5, z

v5
3 , z

v6
3 , v6).
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Examples of a paths that are not simple are

p2 = (v1, y
v1 , yv4 , v4, y

v4 , yv3 , v3),

since there are more than two germs of polygons associated to y in p2, and

p3 = (v4, z
v4
1 , z

v5
1 , v5, z

1,v5
2 , z2,v5

2 , v5),

since the vertex v5 repeats in p3. Examples of simple cycles in χ are

c1 = (v1, x
v1 , xv3 , v3, y

v3 , yv1 , v1),

c2 = (v5, z
1,v5
2 , z2,v5

2 , v5).

1.4 Brauer Configuration, Brauer Graph and Brauer

Tree Algebras

Brauer configuration algebras were defined in [35]. They are defined from a deco-

rated configuration called a Brauer configuration. These are useful, as the repre-

sentation theory of the algebra is encoded in the combinatorial data of the Brauer

configuration. In the special case where the configuration is a graph, we obtain

the well-studied classes of Brauer graph and Brauer tree algebras, which have been

instrumental to many topics in representation theory.

Definition 1.4.1 ([35]). A non-empty, connected, locally embedded configuration

χ = (χ0, χ1) is called a Brauer configuration if we have the following additional

structure and properties.

(i) To each v ∈ χ0, we equip a cyclic ordering ov of the germs of polygons around

v.

(ii) To each v ∈ χ0, we assign a strictly positive integer ev called the multiplicity

of the vertex.
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(iii) For any polygon x in χ with |x| > 2, there exists no vertex v ∈ x such that

val(v) = 1 and ev = 1.

A Brauer configuration may be realised as a local embedding of the polygons

around each vertex in the oriented plane. We shall use an anticlockwise cyclic

ordering throughout this thesis. The classical notion of Brauer graphs and Brauer

trees are also important, so we provide the definition of these here.

Definition 1.4.2 ([12], 4.18.1). Let χ be a Brauer configuration.

(a) We call χ a Brauer graph if every polygon of χ is a 2-gon (and thus, χ is a

graph).

(b) If χ is a Brauer graph, then we call χ a Brauer tree if χ is also a tree and at

most one vertex v in χ has multiplicity ev > 1.

The following are terms related to the vertices of Brauer configurations, which

we will use frequently.

Definition 1.4.3. Let χ be a Brauer configuration.

(a) We say a subconfiguration χ′ ⊆ χ is multiplicity-free if every vertex v in χ′ is

such that ev = 1.

(b) We say a vertex v of χ is truncated if val(v) = 1 and ev = 1. It follows from

the definition of a Brauer configuration that any such vertex is connected to

a unique polygon x, which is a 2-gon. We call such a polygon a truncated

edge of χ.

We will often need to describe which polygons are ‘next’ to each other in the

cyclic ordering around a vertex in a Brauer configuration. For this we have the

following terminology.

Definition 1.4.4 ([32], [33]). Let xv1 and xv2 be germs of polygons at the same

vertex in a Brauer configuration.



1. PRELIMINARIES AND NOTATION 31

(a) We say xv2 is the successor to xv1 if xv2 directly follows xv1 in the cyclic ordering

at v. We then say that the polygon x2 is the successor to x1 at v. From this

we obtain a sequence x1, x2, . . . , xval(v), where each xi is the successor to xi−1.

We call this the successor sequence of x1 at v.

(b) We say xv2 is the predecessor to xv1 if xv1 directly follows xv2 in the cyclic

ordering at v, and we say the polygon x2 is the predecessor to x1 at v. From

this we obtain a (descending) sequence xval(v), . . . , x2, x1, where each xi is the

predecessor to xi−1. We call this the predecessor sequence of x1 at v.

Given a Brauer configuration χ, we construct an algebra A as follows. If χ

is a Brauer tree consisting of a single edge and two distinct connected vertices of

multiplicity one, then we let A = KQ/I, where Q is the quiver consisting of a loop

α at a single vertex and I is generated by the relation α2. Otherwise, we define

Q to be the quiver whose vertices are in bijective correspondence with the distinct

polygons of χ. If xv2 is the successor to xv1 at some non-truncated vertex v in χ,

then there exists an arrow x1 → x2 in Q. If x is connected to a vertex v such that

val(v) = 1 and ev > 1, then there exists a loop at x in Q. If ev = 1 then no such

loop exists. Each non-truncated vertex of χ therefore induces a cycle in Q, and

no two such cycles share a common arrow. We denote by Cv the cycle of Q up to

permutation generated by the non-truncated vertex v in χ. By Cv,α, we denote the

permutation of the cycle Cv such that the first arrow is α.

We define a set of relations ρ on Q as follows. If x is a truncated edge of χ and

Cv,γ1 = γ1 . . . γn is the cycle induced by the non-truncated vertex v connected to

x with γ1 of source x, then (Cv,γ1)
evγ1 ∈ ρ. If u and v are (possibly equal) non-

truncated vertices connected to the same polygon x and Cu,γ and Cv,δ are cycles of

source x generated by the respective vertices u and v, then (Cu,γ)
eu − (Cv,δ)

ev ∈ ρ.

Finally, if αβ is a path of length two in Q such that αβ is not a subpath of any

cycle Cv of any non-truncated vertex of χ, then αβ ∈ ρ. One should note that these

relations are not usually minimal.

Definition 1.4.5 ([35]). The algebra A = KQ/I, where I is the ideal generated

by ρ, is called the Brauer configuration algebra associated to χ.
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Example 1.4.6. Consider the following Brauer configuration.

χ : 1 2

3

4

We define χ such that all vertices have multiplicity one, except the circled vertex,

which has multiplicity two. The cyclic ordering is induced by walking anticlockwise

around each vertex. There is only one truncated edge in χ, which is the edge labelled

by 4. The quiver associated to χ is as follows.

Q :

1 2

3

4
α1

α2

α3

β1β2
γ1

γ2

δ

We also have a set of relations

ρ = {γ2γ1γ2, α1α2α3 − β1β2, β1β2 − γ1γ2, α2α3α1 − α3α1α2, β2β1 − δ2, α3β1, α3γ1,

β2α1, β2γ1, γ2α1, γ2β1, α
2
2, α1α3, β1δ, δβ2}.

The Brauer configuration associated to χ is then KQ/I, where I is the ideal gen-

erated by ρ.

The terms Brauer configuration algebra and symmetric special multiserial can

be used interchangeably, as the next theorem shows. This is an incredibly use-

ful result, since it means that we can use Brauer configurations to describe any

symmetric special multiserial algebra. It also allows us to make statements on the

representation type of some Brauer configuration algebras.

Theorem 1.4.7 ([36], [48], [50]). An algebra A is a Brauer configuration algebra

if and only if it is symmetric special multiserial. In addition, A is a Brauer graph

algebra if and only if it is symmetric special biserial.
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Corollary 1.4.8. Brauer graph algebras are of tame representation type.

Theorem 1.4.9 ([12], 4.18.4). Let A be Brauer graph algebra associated to a Brauer

graph G. Then A is of finite representation type if and only if A is a Brauer tree.

1.4.1 The Indecomposable Projective-Injective Modules

Amongst the indecomposable modules over a symmetric algebra, those that are

projective-injective play an important role, since they essentially determine the

algebra. Thus, it is crucial to have an understanding of the structure of these

modules. In the context of Brauer configuration algebras, we begin by making the

elementary observation that the indecomposable projective-injective modules of a

Brauer configuration algebra A = KQ/I are in bijective correspondence with the

number of distinct polygons in the Brauer configuration χ. This follows from the

fact that the polygons in χ correspond to the vertices in Q, which in turn correspond

to the simple A-modules.

Given a Brauer graph algebra A associated to a Brauer graph G, it is known

([48], for example) that the Loewy structure of any indecomposable projective(-

injective) module is given by walking anticlockwise around the non-truncated ver-

tices connected to the associated edge (in accordance with the cyclic ordering and

and a number of times with respect to the multiplicity of the vertex), and recording

the edges along the walk. It follows from the relations in the definition of a Brauer

configuration algebra that this is also true in the multiserial case. We provide in

detail the structure of the indecomposable projective-injective modules of a Brauer

configuration algebra here, which is based on the results of [35].

So let A = KQ/I be a Brauer configuration algebra associated to a Brauer

configuration χ. Suppose x is a truncated edge of χ and let v be the non-truncated

vertex connected to x. Then it follows from the construction of Q that there exists

a unique arrow α1 ∈ Q1 of source x. Let m = val(v), Cv,α1 = α1 . . . αm and let

x1, . . . , xm be the successor sequence of x = x1 at v. Then s(αi) = xi. Consider

the following diagram.
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x1
α1
...

αm−1
xm

αm
...

x1
α1 ...

αm−1
xm

αm
x1



evm arrows

where the arrows αi each occur ev times. The indecomposable projective module

P (x) corresponding to x is as follows. The underling vector space of P (x) is given

by replacing each xi in the above diagram with a copy of K. The action of an

arrow β ∈ Q1 on P (x) is induced by the relevant identity maps if β = αi for some

1 ≤ i ≤ n, and is zero otherwise. It is easy to see that P (x) is uniserial in this case.

Suppose instead x = {v1, . . . , vn} is a polygon in χ that is not a truncated edge

(we allow for the possibility that vi = vj for some 1 ≤ i < j ≤ n). Then each

vertex vi connected to x is non-truncated. Let xv1 , . . . , xvn be a complete list of the

distinct germs of polygons associated to x. Then it follows from the construction of

Q that there exist precisely n arrows α1,1, . . . , αn,1 of source x in Q. For each i, let

mi = val(vi), Cvi,αi,1 = αi,1 . . . αi,mi and let xi,1, . . . , xi,mi be the successor sequence

of x = xi,1 at the vertex vi (or more precisely, the successor sequence of polygons

corresponding to the successor sequence of xvi). Consider the following diagram.

x
α1,1

...

x1,m1
α1,m1

...

x1,1
α1,1 ...

x1,m1

α1,m1

α2,1
...

x2,m2

α2,m2...

x2,1
α2,1...

x2,m2

α2,m2

· · ·

· · ·

· · ·

αn,1

...

xn,mn
αn,mn...

xn,1
αn,1...

xn,mn

αn,mn
x
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where for each 1 ≤ i ≤ n and each 1 ≤ j ≤ mi the arrows αi,j each occur evi times.

The indecomposable projective module P (x) corresponding to x is as follows. The

underling vector space of P (x) is given by replacing each xi,j in the above diagram

with a copy of K. The action of an arrow β ∈ Q1 on P (x) is induced by the relevant

identity maps if β = αi,j for some 1 ≤ i ≤ n and some 1 ≤ j ≤ mi, and is zero

otherwise. In this case, P (x) is n-serial.

From this, we can make some elementary observations.

Theorem 1.4.10. Let A = KQ/I be a Brauer configuration algebra associated to

a Brauer configuration χ. The following are equivalent.

(a) A is symmetric special n-serial.

(b) |x| ≤ n for all x in χ.

Moreover, if A is symmetric special n-serial then A is n-serial.

Proof. Let A be symmetric special n-serial. Then for each vertex x ∈ Q0, there are

at most n arrows of source x. Every vertex in x ∈ Q0 corresponds to a polygon

in χ, and it follows from the definition of a Brauer configuration algebra that x is

the source of precisely |x| arrows in Q. Since there are at most n arrows of source

x, |x| ≤ n for all x in χ. The converse holds by the same argument. That A is

also n-serial follows from the structure of the indecomposable projectives outlined

above (and detailed in [35]).

1.4.2 Projective resolutions in Brauer graph algebras

Let A = KQ/I be a Brauer graph algebra associated to a Brauer graph G. If G is a

Brauer tree, then it is well known (see [37]) that the minimal projective resolutions

of the simple modules associated to the truncated edges of G are periodic. In

particular, the projective modules occurring in the minimal projective resolution

are all indecomposable (and thus associated to certain edges in G), and these follow

a combinatorial walk around the Brauer tree. This combinatorial walk is often

referred to as a Green walk in honour of J. A. Green, who defined the walk for
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Brauer trees. In [48], it was later shown that the same result was true for the

minimal projective resolutions of the simple modules associated to the truncated

edges of a general Brauer graph G and the minimal projective resolutions of the

uniserial modules of maximal composition length in the Brauer graph algebra. We

summarise these results here.

Definition 1.4.11 ([22],[37]). Let G be a Brauer graph.

(a) We define a Green walk around G from an edge x0 via a vertex v0 to be a

(periodic) sequence (x
vj
j )j∈Z≥0

of half-edges such that xi is connected to xi+1

via the vertex vi and x
vi+1

i+1 is the successor to xvii .

(b) We define a clockwise Green walk from x0 via v0 to be a similar sequence

(x
vj
j )j∈Z≥0

to (a) that consists of half-edges such that each x
vi+1

i+1 is the prede-

cessor to xvii .

(c) By a double-stepped Green walk of G, we mean a subsequence (x
vjk
jk

)k∈Z≥0
of

a (anticlockwise or clockwise) Green walk (x
vj
j )j∈Z≥0

, where jk = 2k.

(d) We say a Green walk (anticlockwise, clockwise and/or double-stepped) is of

length l if it is of period l – that is, l is the least integer such that xvii = x
vl+i
l+i

for all i.

(e) We say two Green walks (x
vj
j )j∈Z≥0

and (y
uj
j )j∈Z≥0

are distinct if there exists

no integer k such that x
vi+k
i+k = yuii for all i.

Definition 1.4.12 ([48]). Let A be a Brauer graph algebra associated to a Brauer

graph G. Let M be the set of all simple A-modules whose projective covers are

uniserial and all maximal uniserial submodules of indecomposable projective A-

modules.

Theorem 1.4.13 ([48]). Let A be a Brauer graph algebra associated to a Brauer

graph G. Let M ∈M. Then the minimal projective resolution

· · · //P1
//P0

//M //0
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of M is periodic and the projective modules occurring are all indecomposable. More-

over, the sequence (Pi)i∈Z≥0
correspond to edges in G that follow a Green walk in

the Brauer graph.

Example 1.4.14. An example of a Green walk in a Brauer graph is given in

Figure 2.4.

1.5 Trivial Extensions of Gentle and Almost Gen-

tle Algebras

Given an algebra A, we can construct a new algebra by taking the trivial extension

of A.

Definition 1.5.1. Let K be an algebraically closed field, A be a finite-dimensional

associative K-algebra and DA be the standard K-linear dual of A. The trivial

extension algebra T (A) is the algebra with underlying K-vector space A⊕DA and

ring multiplication defined by (a, f)(b, g) = (ab, ag + fb).

It is well-known that the trivial extension of an algebra is a symmetric algebra.

We also have the following result.

Theorem 1.5.2 ([45], [47], [49]). The trivial extension T (A) of an algebra A is

special biserial if and only if A is gentle.

Since the class of symmetric special biserial algebras coincide with the class of

Brauer graph algebras ([48], [50]), we conclude that the trivial extension of a gentle

algebra is a Brauer graph algebra. A similar result was proven for the more general

setting of almost gentle algebras by Green and Schroll.

Theorem 1.5.3 ([34], [36]). The trivial extension T (A) of an almost gentle algebra

A is symmetric special multiserial (and hence, a Brauer configuration algebra).

The converse statement to the above theorem remains an open problem. Given

a Brauer configuration algebra B associated to a multiplicity-free Brauer configu-

ration, we can construct an almost gentle A such that T (A) = B. This is achieved
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by taking an admissible cut of the algebra B, which is defined in [34] (and which is

originally based on the definitions in [25] and [26]). We will present the definition

here, as this is required later in the thesis.

Definition 1.5.4 ([34]). Let B = KQ/I be a Brauer configuration algebra associ-

ated to a multiplicity-free Brauer configuration χ. Suppose χ0 = {v1, . . . , vn} and

let D be a set consisting of precisely one arrow from each cycle Cvi . We call D an

admissible cut of Q and we call KQ/〈I ∪D〉 the cut algebra associated to D, where

〈I ∪D〉 is the ideal generated by I ∪D.

Theorem 1.5.5 ([34]). Let B = KQ/I be a Brauer configuration algebra associated

to a multiplicity-free Brauer configuration. Let D be an admissible cut of Q. Define

a quiver Q′ by Q′0 = Q0 and Q′1 = Q1 \ D. Then the cut algebra KQ/〈I ∪ D〉 is

isomorphic to the (basic) algebra A = KQ′/(I ∩KQ′). Furthermore, A is almost

gentle and T (A) = B.

Note that different admissible cuts of a Brauer configuration algebra B may

give rise to many non-isomorphic, non-derived equivalent almost gentle algebras.

Thus, there may be many different almost gentle algebras A1, . . . , Am such that

T (A1) = . . . = T (Am) = B. In the case where B is a Brauer graph algebra

associated to a multiplicity-free Brauer graph G, the cut algebra associated to any

admissible cut of B is a gentle algebra ([50]).

1.6 String and Band Modules

Due to the functorial filtration method of Gel’fand and Ponomarev ([31]), the in-

decomposable modules of special biserial algebras have been classified in [17] and

[57]. These have been shown to be precisely the indecomposable projective-injective

modules over the algebra, and the string and band modules over the algebra, which

we will define here. We follow the definitions of [17] for string and band modules,

but in the context of Brauer configuration algebras.

Definition 1.6.1 ([17]). Let A = KQ/I be a Brauer configuration algebra. Given

an arrow α ∈ Q1, we define the formal inverse of α to be the symbolic arrow α−1
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such that s(α−1) = e(α) and e(α−1) = s(α). Denote the set of formal inverses of

all arrows in Q1 by Q−1
1 .

Let χ be the Brauer configuration associated to A and recall that the vertices

of Q0 are in correspondence with the polygons of χ. Then for each arrow α ∈ Q1,

we can consider s(α) and e(α) to be polygons in χ. Further recall that, the arrows

of Q1 correspond to ordered pairs of germs of polygons (xv, yv) such that yv is the

successor to xv. Thus, we can also consider α to be an arrow between two germs

of polygons in a Brauer configuration.

Definition 1.6.2. Let A = KQ/I be a Brauer configuration algebra and let α ∈

Q1. Denote by ŝ(α) the germ of the polygon at the source of α, and by ê(α) the

germ of the polygon at the target of α. We define ŝ(α−1) = ê(α) and ê(α−1) = ŝ(α).

In most cases, it is sufficient (and often simpler) to work with polygons instead

of germs of polygons. Thus for any symbol α ∈ Q1 ∪Q−1
1 , we are likely to use s(α)

and e(α) when it is sufficient to do so. However, wherever there is the potential

for ambiguity arising from multiple edges/polygons or loops/self-folded polygons,

we will need the additional information that ŝ and ê provide, since these eliminate

any ambiguities in a general argument. This is essential in Chapter 2 where Green

walks are used extensively, since Green walks are defined in terms of half-edges.

String and band modules over an algebra are defined using the notion of a string,

which is as follows.

Definition 1.6.3 ([17]). Let KQ/I be a path algebra modulo an admissible ideal.

We call a word w = α1 . . . αn, where each symbol αi ∈ Q1 ∪Q−1
1 , a string of length

n if w satisfies the following properties.

(i) αi 6= α−1
i+1 for all i,

(ii) e(αi) = s(αi+1) for all i, and

(iii) w avoids the relations in I.

We denote the length of w by |w| = n. For any string w = α1 . . . αn, we define

s(w) = s(α1) and e(w) = e(αn). The inverse of w is defined to be the string

w−1 = α−1
n . . . α−1

1 .
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There are many different types of strings, which we define below.

Definition 1.6.4 ([17]). Let KQ/I be a path algebra modulo an admissible ideal.

(a) We say a string w is a direct string if every symbol of w is in Q1 and we say

w is an inverse string if every symbol of w is in Q−1
1 .

(b) A stationary path εx at a vertex x ∈ Q0 is a string of length zero, which we

call a zero string. If w = εx, then we define s(w) = x = e(w). Zero strings

are defined to be both direct and inverse.

(c) A band is a cyclic string b such that bm is a string, but b is not a proper power

of any string w.

Note that we have not defined ŝ(w) and ê(w), since this is not possible for zero

strings.

Let w = α1 . . . αn be a string, let x0 = s(α1) and for each i, let xi = e(αi). From

the string w, we obtain an indecomposable module M(w) ∈ modA called a string

module. The underlying vector space of M(w) is given by replacing each xi with a

copy of the field K. We then say that the action of an arrow α ∈ Q1 is induced by

the relevant identity maps if α or its formal inverse is in w, and is zero otherwise.

It follows from the construction of string modules that M(εx) = S(x).

To each band b = β1 . . . βm, we obtain an infinite family of indecomposable

modules M(b, n, φ) called band modules, where n ∈ Z>0 and φ ∈ Aut(Kn). We

direct the reader to [17] for the full details on the construction of M(b, n, φ), however

we will provide a brief summary here. The underlying vector space of M(b, n, φ)

is given by replacing each vertex of b with a copy of Kn. The action of an arrow

in γ ∈ Q1 on M(b, n, φ) is given by the relevant identity morphism if γ = βi or

γ = β−1
i for some i 6= m. If we instead have γ = βm or γ = β−1

m , then the action of

γ on M(b, n, φ) is φ. Otherwise, γ has a zero action on M(b, n, φ).

1.6.1 Auslander-Reiten Theory for String and Band mod-

ules in Symmetric Special Biserial Algebras

Definition 1.6.5 ([17]). Let A = KQ/I be a special biserial algebra.
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(a) We say a string w starts on a peak (resp. ends on a peak) if no arrow α ∈ Q1

exists such that αw (resp. wα−1) is a string.

(b) We say w starts in a deep (resp. ends in a deep) if no arrow α ∈ Q1 exists

such that α−1w (resp. wα) is a string.

Definition 1.6.6 ([17]). Let A = KQ/I be a special biserial algebra and let w be

a string. For some arrow α ∈ Q1, let uα and vα be the unique inverse strings such

that uαα is a string that starts in a deep and αvα is a string that ends on a peak.

See Figure 1.2 for an illustration.

(a) Suppose w does not end on a peak. Then we say the string wh = wα−1u−1
α is

obtained from w by adding a hook to the end of w.

(a′) Suppose w = w−hα
−1u−1

α for some substring w−h. Then we say w−h is ob-

tained from w by deleting a hook from the end of w.

(b) Suppose w does not start on a peak. Then we say the string hw = uααw is

obtained from w by adding a hook to the start of w.

(b′) Suppose w = uαα(−hw) for some substring −hw. Then we say −hw is obtained

from w by deleting a hook from the start of w.

(c) Suppose w does not end in a deep. Then we say the string wc = wαvα is

obtained from w by adding a cohook to the end of w.

(c′) Suppose w = w−cαvα for some substring w−c. Then we say w−c is obtained

from w by deleting a cohook from the end of w.

(d) Suppose w does not start in a deep. Then we say the string cw = v−1
α α−1w is

obtained from w by adding a cohook to the start of w.

(d′) Suppose w = v−1
α α−1(−cw) for some substring −cw. Then we say −cw is

obtained from w by deleting a cohook from the start of w.

Note that it is possible for uα and vα to be zero strings in the definition above.

We caution the reader that our notation for wh, wc, hw and cw differ from that
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αuα

α vα

Figure 1.2: The strings uαα and αvα from Definition 1.6.6. The strings are read
from left to right and formal inverses are considered as going back along an arrow.

(a) wh :
u−1
α

α−1

w

α−1

w−h
(a′) w :

u−1
α

(b) hw :

αuα

α−1

w
(b′) w :

αuα

α−1

−hw

(c) wc : α vα
w

(c′) w : α vα
w−c

(d) cw : α−1

v−1
α w

(d′) w : α−1

v−1
α −cw

Figure 1.3: The strings in (a)-(d) and (a′)-(d′) of Definition 1.6.6.
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presented in other papers on the subject (in particular [17]). We prefer our nota-

tion as it allows for greater flexibility when it comes to describing the irreducible

morphisms in the Auslander-Reiten quiver of a symmetric special biserial algebra.

Theorem 1.6.7 ([17], [53]). Let A = KQ/I be a symmetric special biserial algebra

and let w be a string. Suppose M(w) is not the radical of some indecomposable

projective-injective P . Then the Auslander-Reiten sequence starting in M(w) is

(a)

0 //M(w) //M(hw)⊕M(wh) //M(hwh) //0

if w does not start or end on a peak;

(b)

0 //M(w) //M(−cw)⊕M(wh) //M(−cwh)
//0

if w starts on a peak but does not end on a peak;

(c)

0 //M(w) //M(hw)⊕M(w−c) //M(hw−c) //0

if w ends on a peak but does not start on a peak; or

(d)

0 //M(w) //M(−cw)⊕M(w−c) //M(−cw−c)
//0

if w starts and ends on a peak.



Chapter 2

Auslander-Reiten Components of

Brauer Graph Algebras

The material presented in this chapter appears in [22] in a similar format. Here,

we concern ourselves with a well-studied subclass of symmetric special multiserial

algebras – namely, those that are biserial. Many aspects of the representation

theory of this subclass is well-understood, which allows us to go into a great level

of detail about the module category of this class of algebras.

Recall that the class of symmetric special biserial algebras coincides with the

class of Brauer graph algebras. It is the aim of this chapter to give a specific and

detailed account of the Auslander-Reiten quiver of any given symmetric special

biserial algebra using only information from its underlying Brauer graph. In effect,

we show that all the information about the Auslander-Reiten quiver (such as the

shape, size and number of components, along with the indecomposable modules

that are situated in them) can be read-off from the Brauer graph.

In Section 2.1, we provide an algorithm for constructing the stable Auslander-

Reiten component of a given string module of a Brauer graph algebra using only

information from its underlying Brauer graph. This algorithm is of particular im-

portance because it allows us to describe the string combinatorics of the algebra in

terms of the Brauer graph. This algorithm thus allows us to prove several results

later in the chapter, which relate the number and shape of the components of the

44
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Auslander-Reiten quiver of the algebra to the Brauer graph.

In [24], the Auslander-Reiten components of self-injective special biserial alge-

bras have been described. In particular, any Brauer graph algebra has a finite

number of exceptional tubes in the stable Auslander-Reiten quiver. In Section 2.2,

we show that the rank and the total number of these tubes is closely related to the

distinct Green walks around the Brauer graph. Specifically, we prove the following.

Theorem. Let A be a representation-infinite Brauer graph algebra with Brauer

graph G and let sΓA be its stable Auslander-Reiten quiver. Then

(a) there is a bijective correspondence between the exceptional tubes in sΓA and

the distinct double-stepped Green walks along G; and

(b) the rank of an exceptional tube is given by the length of its associated double-

stepped Green walk along G.

It is shown in [24] that the Auslander-Reiten components of Brauer graph al-

gebras are strongly related to the growth type of the algebra. The algebra, for

example, contains a Euclidean component of the form ZÃp,q if and only if the al-

gebra is domestic and of infinite representation type. We use a simple application

of the above theorem to show the following results regarding the values of p and q.

Theorem. Let A be a Brauer graph algebra constructed from a graph G of n edges

and suppose sΓA has a ZÃp,q component.

(a) If A is 1-domestic, then p+ q = 2n.

(b) If A is 2-domestic, then p+ q = n.

Furthermore, if G is a tree, then p = q = n.

Corollary. For a domestic Brauer graph algebra, if the Brauer graph contains a

unique cycle of length l and there are n1 additional edges on the inside of the cycle

and n2 additional edges along the outside, then the ZÃp,q components are given by

p =

l + 2n1 l odd,

l
2

+ n1 l even,

and q =

l + 2n2 l odd,

l
2

+ n2 l even.
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In of Section 2.3, we use the algorithm presented in Section 2.1 to prove results

which show how one can determine the specific component containing a given simple

or indecomposable projective module from its associated edge in the Brauer graph

G.

We first divide the edges of G into two distinct classes, which we call exceptional

and non-exceptional edges. The exceptional edges of a Brauer graph belong to a

special class of subtrees of the graph, which we refer to as the exceptional subtrees

of the Brauer graph. Intuitively, one can think of these subtrees as belonging to

parts of the algebra that behave locally as a Brauer tree algebra. We then prove

the following regarding the exceptional edges of a Brauer graph.

Theorem. Let A be a representation-infinite Brauer graph algebra associated to a

graph G and let x be an edge in G. Then the simple module and the radical of the

indecomposable projective module associated to x belong to exceptional tubes of sΓA

if and only if x is an exceptional edge.

We also determine when a simple module and the radical of an indecomposable

projective module belong to the same Auslander-Reiten component. For excep-

tional edges, we have the following.

Corollary. Given an exceptional edge x in a Brauer graph, the simple module and

the radical of the indecomposable projective module associated to x belong to the

same exceptional tube if and only if we walk over both vertices connected to x in

the same double-stepped Green walk.

We then finally prove a similar result for non-exceptional edges,

Theorem. Let A be a representation-infinite Brauer graph algebra associated to a

Brauer graph G and let ev denote the multiplicity of a vertex v in G. Let x and y

be non-exceptional edges of G. Then the simple module associated x is in the same

component of sΓA as the radical of the indecomposable projective module associated

to y if and only if either A is 1-domestic or there exists a path

p : u0
x1=x

v1
x2

v2 · · · vn−2
xn−1

vn−1
xn=y

u1
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of even length in G consisting of non-exceptional edges such that

(i) every edge xi is not a loop;

(ii) evi = 1 if xi 6= xi+1 and evi = 2 if xi = xi+1;

(iii) xi and xi+1 are the only non-exceptional edges incident to vi in G.

Whilst this chapter assumes the algebras we are dealing with are symmetric

special biserial, many of the results in this chapter should carry over to the weakly

symmetric case (and hence, should work for the quantised Brauer graph algebras

defined, for example, in [32]). Indeed, the indecomposable modules of a weakly

symmetric special biserial algebra are again given by string and band modules (see

for example [23]).

2.1 A Constructive Algorithm

It is already known that the non-projective indecomposable modules of a Brauer

graph algebra A are given by string and band modules. Given a string module

M in a Brauer graph algebra A = KQ/I constructed from a graph G, we wish to

be able to read off the (stable) Auslander-Reiten component containing M from

G. Since the irreducible morphisms between string modules are given by adding or

deleting hooks and cohooks to strings, our algorithm will need to take hooks and

cohooks into account.

2.1.1 Presenting strings on a Brauer graph

To achieve the aim of this section, we must first describe a method for presenting

strings on Brauer graphs. This technique appears to be well known within the

subject area. However, it forms an essential part of this chapter and thus, we will

outline the process here.

Let w = α1 . . . αn be a (not necessarily direct) string in A. Since each vertex

in G generates a cycle in Q and no two such cycles share a common arrow in Q,

we can associate to each arrow (or formal inverse) αi in the string a vertex in G.
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1
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3

4 5
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7

8
1

23

4 5

6

7

8

α1

α2

β1

β2

γ1

Figure 2.1: A Brauer tree T (left) and its corresponding quiver (right) with the
string w = α1α2β

−1
2 β−1

1 β−1
2 γ1 drawn on the graph in red. The circled vertex in T

has a multiplicity of 2.

Suppose αi ∈ Q1 is an arrow belonging to the cycle generated by a vertex v and

s(αi) = x and e(αi) = y. Since x and y are edges in the graph, we realise this

arrow on G as an anticlockwise arrow around the vertex v of source x and target

y. Similarly, if we instead have αi ∈ Q−1
1 such that the arrow α−1

i belongs to the

cycle generated by v, then we realise this as moving clockwise in G around v from

s(αi) to e(αi). An example is given in Figure 2.1. Note that if we wish to invert a

string, we simply flip the direction of the arrows and formal inverses drawn on the

Brauer graph.

We often wish to perform this procedure in reverse. That is, we may wish

to draw a sequence (or path) of connected ‘arrows’ through the edges of G and

interpret this as a string in the algebra. To do this, we must describe which of

these paths give valid strings. First recall that for a string w = α1 . . . αn, we

require αi+1 6= α−1
i . Thus, we cannot draw an arrow anticlockwise around a vertex

v from an edge x to an edge y followed by a clockwise formal inverse around v from

y to x (and vice versa). Furthermore, if v is a truncated vertex, then v generates

no arrows in Q and thus, we cannot draw any arrows around v in the graph.

A string must also avoid the relations in I, so if we have edges x v
y
v′ z ,

we cannot draw an anticlockwise (resp. clockwise) arrow (resp. formal inverse)

around v from x to y followed by an anticlockwise (resp. clockwise) arrow (resp.

formal inverse) around v′ from y to z. Finally, if a vertex v has multiplicity ev and

v generates a cycle γ1 . . . γm in Q, then we generally cannot draw an anticlockwise

cycle of arrows (γ1 . . . γm)ev or a clockwise cycle of formal inverses (γ−1
m . . . γ−1

1 )ev

around v on the graph. An exception to this rule is the string given by a unise-
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Figure 2.2: Examples of sequences of arrows and formal inverses presented on
Brauer graphs that are not valid strings. All vertices are of multiplicity 1.

rial indecomposable projective. However, since we only wish to consider the stable

Auslander-Reiten quiver of A, we will ignore this exception. In all other cases,

we obtain a valid string. For examples of sequences of arrows and formal inverse

presented on the graphs that are not valid strings, see Figure 2.2.

Remark 2.1.1. For any string αβ of length 2, we have ê(α) = ŝ(β) if and only if αβ

is direct or inverse. This follows from the fact that αβ ∈ I if αβ is direct/inverse

and ê(α) 6= ŝ(β), since in this case, α does not directly follow β in any cycle Cv for

any vertex v in G. Conversely, α = β−1 if ê(α) = ŝ(β) but αβ is not direct/inverse.

2.1.2 Maximal direct and inverse strings

To construct hooks and cohooks, we will need to know precisely when a string w

ends in a deep or on a peak. Specifically, we have the following.

Lemma 2.1.2. Let A be a Brauer graph algebra constructed from a graph G and

let w be a string in A. Suppose M(w) is non-projective. Then

(a) w ends in a deep if and only if either

(i) w = w0α
−1, where w0 is a string and α−1 ∈ Q−1

1 is a formal inverse

such that e(α−1) is a truncated edge in G; or

(ii) w = w0γ
ev−1γ1 . . . γm−1, such that w0 is a string, γ = γ1 . . . γm is a cycle

generated by a vertex v in G, and if w0 is a zero string then s(w) is not

truncated.

(b) w ends on a peak if and only if either

(i) w = w0α, where w0 is a string and α ∈ Q1 is an arrow such that e(α) is

a truncated edge in G; or
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(ii) w = w0(γ−1)ev−1γ−1
m . . . γ−1

2 , such that w0 is a string, γ = γ1 . . . γm is a

cycle generated by a vertex v in G, and if w0 is a zero string then s(w)

is not truncated.

Proof. (a) (⇐:) We will first prove (i) implies w ends in a deep. So suppose w =

w0α
−1 and e(w) = x, where x is truncated. Then P (x) is uniserial and thus there

exists precisely one arrow of source x and precisely one arrow of target x in Q. But

this implies the only arrow in Q of source x is α. So there exists no arrow β ∈ Q1

such that wβ is a string and hence, w ends in a deep.

Now suppose w is instead of the form in (ii). We will show that this also implies

w ends in a deep. Let x = s(γ1). The first case to consider is where x is non-

truncated. In this case, there exists a relation γev − δeu ∈ I for some cycle δ in Q

generated by a vertex u connected to x. Thus, γev is not a string. Furthermore,

following the definition of a Brauer graph algebra, if γiβ ∈ I for some arrow β, then

β 6= γi+1. Since there are no other relations involving each arrow γi of the cycle γ,

we conclude γev−1γ1 . . . γm−1 is a string that ends in a deep.

The other case to consider is where x is truncated. Since w is of the form in

(ii), w0 is not a zero string. Suppose for a contradiction that w does not end in

a deep. Then wγm is a string, since γm−1β ∈ I for any arrow β 6= γm. But then

w0γ
ev is a string for some non-zero string w0. This is not possible, since δγ1 ∈ I for

any δ 6= γm, and γmγ
ev ∈ I. So w must end in a deep.

(⇒:) Suppose conditions (i) and (ii) do not hold. If w is a zero string, then w

clearly does not end in a deep. So let w = α1 . . . αn. First consider the case where

αn ∈ Q−1
1 . Note that the arrow α−1

n belongs to a cycle Cv for some vertex v in

G. Since condition (i) does not hold, P (e(w)) is biserial and is the source of two

distinct arrows in Q, so there exists an arrow β not in Cv such that s(β) = e(αn).

So clearly wβ is a string.

Now suppose αn ∈ Q1. Let w′′ be the direct substring at the end of w such that

either w = w′′ or w = w′β−1w′′ for some substring w′ and some β−1 ∈ Q−1
1 . Let γ1

be the first symbol of w′′. Then γ1 belongs to a cycle of Q generated by some vertex

v in G. Suppose γ = γ1 . . . γm is the cycle generated by v. Then αn = γi for some
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i. Since condition (ii) does not hold, w′′ forms a proper subword of γev−1γ1 . . . γm−1

and i 6= m − 1. Since γev−1γ1 . . . γm−1 is a string, wγi+1 is a string and so w does

not end in a deep.

(b) The proof is similar to (a).

We may also describe when a string w presented on G starts in a deep or on a

peak – we simply consider the string w−1 in the context of the lemma above.

Remark 2.1.3. Suppose x is a non-truncated edge of G connected to a vertex v

and γ = γ1 . . . γn is the cycle of Q generated by v with s(γ1) = x. Then it follows

trivially from the above that a maximal direct string of source x is γev−1γ1 . . . γn−1

and a maximal inverse string of source x is (γ−1)ev−1γ−1
n . . . γ−1

2 . Furthermore, to

each non-truncated edge in G, we can associate two maximal direct strings and two

maximal inverse strings – one for each vertex connected to the edge (or in the case

of a loop, one for each half-edge associated to the edge).

2.1.3 Hooks and cohooks

Suppose a string w does not end on a peak. If w is a zero string, then there are

at most two ways in which we can add a formal inverse to w. The precise number

of ways we can do this is determined by the number of arrows of target e(w) in Q.

Thus, if e(w) is truncated then there is only one way in which we can add a formal

inverse to w. Similarly, if w is not a zero string, it follows from the definition of

strings and the fact that A is special biserial that there is only one way to add a

formal inverse to the end of w.

Adding a hook to the end of w is by definition a string wh = wα−1β1 . . . βn that

ends in a deep. For any given w, this string is necessarily unique unless w is a zero

string arising from a non-truncated edge in the Brauer graph. Let e(α−1) be the

edge u
x

v such that ê(α−1) = xu. If x is a truncated edge, then wα−1 ends in

a deep by Lemma 2.1.2(a)(i) and hence wh = wα−1. Otherwise, β1 . . . βn is given

by the maximal direct string around the vertex v such that ŝ(β1) = xv, described

in Remark 2.1.3.

Similarly, if w does not end in a deep, then wc = wαβ−1
1 . . . β−1

n and wc ends
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on a peak. Let e(α) be the edge u x
v such that ê(α) = xu. If x is a truncated

edge, then wc = wα by Lemma 2.1.2(b)(i). Otherwise, β−1
1 . . . β−1

n is given by the

maximal inverse string around the vertex v such that ŝ(β−1
1 ) = xv, described in

Remark 2.1.3.

Informally, the process of adding or deleting hooks and cohooks to a string w

presented on a Brauer graph can be summarised as follows:

(A1) To add a hook to the end of w, we add a clockwise formal inverse to the end

of w around a vertex u onto a connected edge u x v and then, if x is not

truncated, add a maximal direct string of anticlockwise arrows around the

vertex v.

(A2) To add a cohook to the end of w, we add an anticlockwise arrow to the end

of w around a vertex u onto a connected edge u x v and then, if x is not

truncated, add a maximal inverse string of clockwise formal inverses around

the vertex v.

(A3) To delete a hook from the end of w, we delete as many anticlockwise arrows

as we can from the end of the string, and then we delete a single clockwise

formal inverse.

(A4) To delete a cohook from the end of w, we delete as many clockwise formal

inverses as we can from the end of the string, and then we delete a single

anticlockwise arrow.

(A5) To add or delete hooks or cohooks from the start of w, we follow (A1)-(A4)

with the string w−1.

We further note from the almost split sequences given in Theorem 1.6.7, that

given a string module M = M(w), the rays of source and target M in the sta-

ble Auslander-Reiten quiver are given by Figure 2.3, where τM(w+) = M(w′−),

τM(w′+) = M(w−) and

w′− =

−hw if w starts in a deep,

cw otherwise,

w+ =

w−c if w ends on a peak,

wh otherwise,
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w− =

w−h if w ends in a deep,

wc otherwise,

w′+ =

−cw if w starts on a peak,

hw otherwise.

M(w)

M(w′−) M(w+)

M(w−) M(w′+)

. . .

. . .

. .
.

. .
.

Figure 2.3: The rays of source and target a given string module in the stable
Auslander-Reiten quiver of a Brauer graph algebra.

Combining this information with (A1)-(A5) above, we obtain a constructive

algorithm for reading off the stable Auslander-Reiten component containing M

from the Brauer graph.

Example 2.1.4. With the Brauer tree algebra given in Figure 2.1, let w be the

string such that M(w) = S(1). Then the string presented in Figure 2.1 is the 4th

module along the ray of target S(1) in the direction of M(w−) of Figure 2.3.

Another example is given in Figure 2.8 in Section 2.3. Here w0 = w and

w1 = w+.

Whilst the above algorithm is for constructing the stable Auslander-Reiten

quiver, one can easily obtain the Auslander-Reiten quiver with the indecompos-

able projectives (which are also injective) using the almost split sequence

0 //radP //radP/ socP ⊕ P //P/ socP //0

for each indecomposable projective P .
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2.2 Components

Throughout this section, we will assume (unless specified otherwise) that our Brauer

graph algebras are of infinite representation type. In [24], Erdmann and Skowroński

classified the Auslander-Reiten components for self-injective special biserial alge-

bras. For convenience, we shall restate part of their main results here.

Theorem 2.2.1 ([24]). Let A be a special biserial self-injective algebra. Then the

following are equivalent:

(i) A is representation-infinite domestic.

(ii) A is representation-infinite of polynomial growth.

(iii) There are positive integers m, p, q such that sΓA is a disjoint union of m

components of the form ZÃp,q, m components of the form ZA∞/ 〈τ p〉, m

components of the form ZA∞/ 〈τ q〉, and infinitely many components of the

form ZA∞/ 〈τ〉.

Theorem 2.2.2 ([24]). Let A ∼= KQ/I be a special biserial self-injective algebra.

Then the following are equivalent:

(i) A is not of polynomial growth.

(ii) (Q, I) has infinitely many bands.

(iii) sΓA is a disjoint union of a finite number of components of the form ZA∞/ 〈τn〉

with n > 1, infinitely many components of the form ZA∞/ 〈τ〉, and infinitely

many components of the form ZA∞∞.

Note that the n in Theorem 2.2.2(iii) can vary. That is, in a non-domestic

self-injective special biserial algebra A, there exist integers n1, . . . , nr > 1 such that

sΓA contains components of the form ZA∞/ 〈τni〉 for each i. For the purposes of

this chapter, we will distinguish between the exceptional tubes of rank 1 – that is,

the tubes of rank 1 consisting of string modules, of which there are finitely many –

and the homogeneous tubes of rank 1, which consist solely of band modules.
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It follows from the above that A is domestic if and only if there are finitely

many distinct bands in A. In [16], Bocian and Skowroński described the symmetric

special biserial algebras that are domestic. Specifically, those that are 1-domestic

are associated to a Brauer graph that is either a tree with precisely two exceptional

vertices of multiplicity 2 and with all other vertices of multiplicity 1, or a graph

with a unique simple cycle of odd length and with all vertices of multiplicity 1.

Those that are 2-domestic are associated to a Brauer graph with a unique simple

cycle of even length and with all vertices of multiplicity 1. All other graphs (with

the exception of Brauer trees) produce non-domestic algebras.

2.2.1 Exceptional Tubes

We are interested in counting the number of exceptional tubes in sΓA. To do this

we must use the results of [48] outlined in Section 1.4.2. Recall that for a Brauer

graph algebra A, the set M consists of all simple modules whose projective covers

are uniserial and all maximal uniserial submodules of indecomposable projective

A-modules. We also recall from [48] that Ω(M) ∈ M for all M ∈ M and the

minimal projective resolutions of M ∈ M are periodic, which will be required in

the proof of the following.

Lemma 2.2.3. Let A be a Brauer graph algebra. An indecomposable string module

M is at the mouth of a tube in the stable Auslander-Reiten quiver sΓA of A if and

only if M ∈M.

Proof. (⇒:) Let M be at the mouth of a tube in sΓA. Then there exists precisely

one irreducible morphism M → N in sΓA for some indecomposable A-module N .

Suppose for a contradiction that M is not uniserial and let w = α1 . . . αm be the

string such that M(w) = M . Then w is not direct (or inverse). If w ends on a peak,

then deleting a cohook from the end of w gives a string w−c. Note that in the case

where w consists only of an arrow followed by an inverse string, then w−c is a zero

string and M(w−c) is simple. Similarly, if w starts on a peak then deleting a cohook

from the start of w gives a string −cw such that M(−cw) is indecomposable. By

the results of [17], the Auslander-Reiten sequence starting in M therefore has two
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non-projective middle terms. This implies that there are two irreducible morphisms

of source M in sΓA – a contradiction to our assumption that M(w) is not uniserial.

It is easy to see that the same contradiction occurs in the cases where w does not

start or end on a peak. Therefore w must be direct (or inverse) and M is uniserial.

Suppose M is a simple module corresponding to the stationary path εx in Q.

Then the injective envelope I(M) must be uniserial, since if I(M) is biserial, then

there are two distinct arrows of target x in Q and hence two non-projective middle

terms in the Auslander-Reiten sequence starting in M . Thus, if M is a simple

module at the mouth of a tube in sΓA then M ∈M.

Now suppose M is not simple. For a contradiction, suppose that M 6∈ M. Note

that this implies that M is not the radical of a uniserial indecomposable projective.

Let w be the inverse string such that M(w) = M . Then M is not maximal and

therefore the inverse string w is not maximal, which implies w does not end on a

peak. Hence, the Auslander-Reiten sequence starting in M has an indecomposable

middle term M(wh). If w does not start on a peak, then the there exists another

middle term M(hw) in the Auslander-Reiten sequence. Otherwise, if w starts on

a peak, then −cw = α2 . . . αm. Thus, the Auslander-Reiten sequence starting in M

must have two non-projective middle terms by the results of [17] – a contradiction.

So M ∈M.

(⇐:) Suppose M ∈ M. We will show that the Auslander-Reiten sequence

starting in M has precisely one non-projective middle term. If M is the radical of a

uniserial indecomposable projective-injective P then the Auslander-Reiten sequence

starting in M is of the form

0 //M //M/ soc(P )⊕ P //P/ soc(P ) //0

and M/ soc(P ) is indecomposable since P is uniserial. Thus, there exists precisely

one irreducible morphism of source M/ soc(P ) in sΓA, as required. So suppose

instead M ∈M is not the radical of a uniserial indecomposable projective and let

w0 be the direct string such that M(w0) = M . By [48], Ω−1(M) ∈M. So Ω−1(M)

is associated to a maximal direct string w1 and s(w1) = e(w0), which follows from
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the fact that A is symmetric and Ω−1(M) is a maximal uniserial quotient of I(M).

Also note that Ω−1(M) must be non-simple, since this would otherwise contradict

our assumption that M is not the radical of a uniserial indecomposable projective.

Thus, there exists an arrow β ∈ Q1 such that s(β) = e(w1) and e(β) = e(w0) =

s(w1). Now let w2 be the (maximal) direct string associated to Ω−2(M) ∈ M.

Then by a similar argument used for the strings w0 and w1, we have s(w2) = e(w1).

Thus, there exists a string w0β
−1w2 and the sequence

0 //M(w0)
f //M(w0β

−1w2)
g //M(w2) //0

is exact. Note that in the case that M (resp. Ω−2(M)) is simple, the string w0

(resp. w2) is a zero string. Now w0β
−1w2 is obtained from w0 by adding a hook

and w0β
−1w2 is obtained from w2 by adding a cohook. So f and g are irreducible

and hence, the above sequence is an Auslander-Reiten sequence.

To each edge x in a Brauer graph G, we can associate precisely two modules

M1,M2 ∈M. These two modules have the property that top(M1) = top(M2) = x.

For each half-edge xv associated to x and incident to a non-truncated vertex v, we

have a string module M(w) ∈ M such that w = (γ1 . . . γn)ev−1γ1 . . . γn−1, where

Cv,γ1 = γ1 . . . γn and ŝ(γ1) = xv. If x is incident to a truncated vertex u, then

then P (x) is uniserial and we associate to xu the module S(x) ∈ M. Thus, each

half-edge in G corresponds (bijectively) to a module in M.

We further recall from [48] that the minimal projective resolution of a module in

M follows a Green walk (described in [37]) around the Brauer graph. Specifically,

it follows from [48, Remark 3.6] that if M ∈M corresponds to a half-edge xv in G

(in the sense described above) and the i-th step along a Green walk from xv is a

half-edge xvii , then Ωi(M) ∈M corresponds to the half-edge xvii .

The relation M ∼ N for M,N ∈M⇔ N = Ω2i(M) for some i is an equivalence

relation. Thus, we can partition the set M of a Brauer graph algebra into orbits

described by the distinct double-stepped Green walks around the Brauer graph (a

similar relation can be constructed for single-stepped Green walks, but this is not of

interest to us). Since Brauer graph algebras are symmetric, which implies τ = Ω2,
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a consequence of Lemma 2.2.3 is the following.

Theorem 2.2.4. Let A be a representation-infinite Brauer graph algebra with

Brauer graph G and let sΓA be its stable Auslander-Reiten quiver. Then

(a) there is a bijective correspondence between the exceptional tubes in sΓA and

the distinct double-stepped Green walks along G; and

(b) the rank of an exceptional tube is given by the length of its associated double-

stepped Green walk along G.

2.2.2 Domestic Brauer Graph Algebras

For Brauer graph algebras that are infinite-domestic, the above theorem allows us

to determine the precise shape of the ZÃp,q components.

Theorem 2.2.5. Let A be a Brauer graph algebra constructed from a graph G of

n edges and suppose sΓA has a ZÃp,q component.

(a) If A is 1-domestic, then p+ q = 2n.

(b) If A is 2-domestic, then p+ q = n.

Furthermore, if G is a tree, then p = q = n.

Proof. Suppose A is a 1-domestic Brauer graph algebra constructed from a tree.

For any tree, there is only one possible single-stepped Green walk. This walk steps

along each edge exactly twice – that is, we walk along both sides of each edge –

and thus, the walk is of length 2n, which is even. This therefore amounts to two

distinct double-stepped walks of length n. By Theorem 2.2.4 and [24, Theorem 2.1],

p = q = n.

Suppose instead we have a Brauer graph consisting solely of a cycle of odd

length, say l. Then there are two distinct single-stepped Green walks of odd length

l – one along the ‘inside’ of the cycle and one along the ‘outside’. Since Green walks

are periodic, this amounts to two distinct double-stepped Green walks of length l.

Inserting an additional edge to any vertex in the graph will add another two steps
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Figure 2.4: A 2-domestic Brauer graph algebra with distinct Green walks on the
inside (blue) and outside (green) of the cycle in the Brauer graph.

to one of the two distinct single-stepped Green walks, and thus, an additional

two steps along one of the two distinct double-stepped Green walks. Proceeding

inductively, the result for (a) follows.

The argument for (b) is similar, except our initial cycle of length l is even. The

two distinct single-stepped Green walks are then of even length, and hence each

split into a pair of distinct double-stepped Green walks of length l
2
, making a total

of four distinct double-stepped Green walks. Inserting an additional edge to any

vertex in the graph will add a single additional step along a pair of the four distinct

double-stepped Green walks. Proceeding inductively, the result follows.

The above proof implies that by distinguishing between the two sides of a cycle

(an ‘inside’ and an ‘outside’) in a domestic Brauer graph algebra, one can actually

read off p and q directly.

Corollary 2.2.6. For a domestic Brauer graph algebra, if the Brauer graph con-

tains a unique cycle of length l and there are n1 additional edges on the inside of

the cycle and n2 additional edges along the outside, then the ZÃp,q components are

given by

p =

l + 2n1 l odd,

l
2

+ n1 l even,

and q =

l + 2n2 l odd,

l
2

+ n2 l even.

Example 2.2.7. In Figure 2.4, we have l = 4, n1 = 1 and n2 = 3. So the

Auslander-Reiten quiver has two components ZÃ3,5, two components ZA∞/ 〈τ 3〉,

two components ZA∞/ 〈τ 5〉 and two infinite families of homogeneous tubes.
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2.3 Components containing Simple and Indecom-

posable Projective-Injective Modules

There has been some work on the string modules that occur in certain Auslander-

Reiten components (for example, in [30]). We are particularly interested in the

components containing simple modules and indecomposable projective modules.

In this section, we will show that it is possible to determine exactly which simple

modules belong to the exceptional tubes of sΓA by looking at the Brauer graph.

Similarly, one can also determine the location in the stable Auslander-Reiten quiver

of the radical of a projective P by the edge associated to P in the Brauer graph.

In [17], the irreducible morphisms in sΓA between string modules is described.

In order to consider whether a string module M(w) belongs to an exceptional tube,

we will need to look at the rays in the Auslander-Reiten quiver of source and

target M(w), of which there are at most two each. If at least one of these rays

terminates, then M(w) must belong to an exceptional tube. Otherwise, if all rays

are infinite, then M(w) must belong to either a ZÃp,q component (if A is domestic)

or a ZA∞∞ component (if A is non-domestic). Therefore in what follows, we will

need to consider the bi-directional sequence (wj)j∈Z defined by

wj+1 =

(wj)−c if wj ends on a peak,

(wj)h otherwise,

wj−1 =

(wj)−h if wj ends in a deep,

(wj)c otherwise,

(∗)

with w0 = w. We will refer to this sequence frequently throughout this section of

the thesis. Any string module M(wi) then lies along the line through M(w) in sΓA

given by adding or deleting from the end of w. This is precisely the south west to

north east line through M(w) illustrated in Figure 2.3 at the end of Section 2.1.

To obtain the line through M(w) in sΓA given by adding or deleting from the start

of w (the north west to south east line through M(w) illustrated in Figure 2.3), we
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need only consider the sequence (∗) with w0 = w−1.

Note that in the case where w0 is the zero string εx at a non-truncated edge

u x v , there exists an ambiguity in the sequence (∗), as there are two possible

ways in which we can add a hook (resp. cohook) to w0. We may either add a

hook (resp. cohook) starting with the formal inverse (resp. arrow) α such that

ŝ(α) = xu, or with the formal inverse (resp. arrow) α′ such that ŝ(α′) = xv. In this

case, we must define either w1 or w−1. The following shows that it is sufficient to

define only one of these terms.

Lemma 2.3.1. Let A = KQ/I be a Brauer graph algebra associated to a Brauer

graph G, and let xv be a half-edge associated to an edge x incident to a vertex v in

G. Suppose there exists a segment

· · · →M(w)→ S(x)→M(w′)→ · · ·

of a line L in sΓA for some strings w = (εx)c and w′ = (εx)h. If the first symbol α

of w is such that ŝ(α) = xv, then the first symbol β−1 of w′ is such that ŝ(β−1) = xv.

Proof. There exist two irreducible morphisms of source S(x) in sΓA. Suppose

S(x) → M(w′′) is an irreducible morphism such that M(w′′) 6∼= M(w′). Then

w′′ = h(εx) and the morphism S(x) → M(w′′) does not belong to the line L. In

particular, M(w′′) = τ−1M(w). Let γ be the last symbol of w′′ and let β−1 be the

first symbol of w′. It is sufficient to show that ê(γ) = xv, since it then follows that

ŝ(β−1) = xv.

To calculate w′′, we will investigate the Auslander-Reiten sequences starting in

M(w). Let y = e(α). The string w necessarily ends on a peak. Suppose w also

starts on a peak. Then M(w) is a maximal submodule of P (y) (since w is obtained

by adding a cohook to a zero string), so M(w) = radP (y). Note that P (y) must

be biserial, since if P (y) were uniserial then P (y) would be isomorphic to M(w0α)

for some non-zero string w0 (and hence, our assumption that w starts on a peak

would be false). Thus, there exists an Auslander-Reiten sequence

0→ radP (y)→ radP (y)/ socP (y)⊕ P (y)→ P (y)/ socP (y)→ 0.
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with three middle terms (since radP (y)/ socP (y) is a direct sum of two uniserial

modules) and M(w′′) = P (y)/ socP (y). Let w = αδ−1
n . . . δ−1

1 . Then necessarily,

w′′ = δ−1
n−1 . . . δ

−1
1 δ−1

0 γ for some formal inverse δ−1
0 and some arrow γ such that

e(δ−1
0 ) = y = s(γ). Note that by Remark 2.1.1, ê(α) 6= ŝ(δ−1

n ), ê(δ−1
i ) = ŝ(δ−1

i+1)

and ê(δ−1
0 ) 6= ŝ(γ). Since ŝ(δ−1

n ), ê(δ−1
0 ), ê(α) and ŝ(γ) are all half-edges associated

to y (of which there are precisely two) and e(γ) = x = s(α), we conclude that

ê(γ) = ŝ(α) = xv, as required.

Suppose instead that w does not start on a peak. Then by [17], there exists an

Auslander-Reiten sequence

0→M(w)→M(w−c)⊕M(hw)→M(hw−c)→ 0.

So M(w′′) ∼= M(hw−c). Again let γ be the last symbol of w′′ and α be the first

symbol of w. Then γα is a direct substring of hw. Thus, ê(γ) = ŝ(α) = xv by

Remark 2.1.1, as required. The result then follows.

To prove the results of this section, it will be helpful to track the end of the

strings along a ray of source or target a given module in sΓA.

Proposition 2.3.2. Let A = KQ/I be a Brauer graph algebra associated to a

Brauer graph G. Let w0 be a string such that either w0 is the zero string εx or

w0 = α1 . . . αn, where ê(αn) = xv and xv is a half-edge associated to an edge x

connected to a vertex v in G.

(a) Suppose there exists a ray in sΓA

M(w0)→M(w1)→ . . .→M(wk)→ · · ·

such that w1 is given by adding or deleting from the end of w0.

(i) If αn ∈ Q−1
1 (resp. αn ∈ Q1) then the edge e(wi) corresponds to the half-

edge at the i-th step along a clockwise double-stepped Green walk from

xv (resp. xv) for all i ≤ k.
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(ii) If w0 = εx and w1 = β−1γ1 . . . γm, where ŝ(β−1) = xv, then the edge e(wi)

corresponds to the half-edge at the i-th step along a clockwise double-

stepped Green walk from xv for all i ≤ k.

(b) Suppose there exists a ray in sΓA

· · · →M(w−k)→ . . .→M(w−1)→M(w0)

such that w1 is given by adding or deleting from the end of w0.

(i) If αn ∈ Q1 (resp. αn ∈ Q−1
1 ) then the edge e(wi) corresponds to the half-

edge at the i-th step along a double-stepped Green walk from xv (resp.

xv) for all i ≤ k.

(ii) If w0 = εx and w−1 = βγ−1
1 . . . γ−1

m , where ŝ(β) = xv, then the edge

e(w−i) corresponds to the half-edge at the i-th step along a double-stepped

Green walk from xv for all i ≤ k.

Proof. (a) Let xv00 be a half-edge associated to the edge x = x0 and label the i-th

step along a double-stepped clockwise Green walk from xv00 as xvii . Let α be the

last symbol of wi. Assume that one of the following holds for the string wi.

(i) α ∈ Q−1
1 and ê(α) = xvii

(ii) α ∈ Q1 and ê(α) = xvii

(iii) wi is the zero string εxi

We aim to show that the string wi+1 satisfies the analogous properties of (i)-(iii).

The proof of this claim requires us to investigate multiple cases related to the end

of wi.

Case 1: α ∈ Q−1
1 and wi ends on a peak. By Lemma 2.1.2(b)(ii), there must

exist a maximal inverse substring w′ = γ−1
1 . . . γ−1

r at the end of wi. Moreover, it

follows from the maximality of w′ that ŝ(γ−1
1 ) = yvi , where yvi is the predecessor to

xvii . Since wi ends on a peak, wi+1 is given by deleting a cohook from the end of wi.

Thus, wi = wi+1βw
′ for some arrow β (which exists since otherwise M(wi) ∈ M
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and wi+1 would not be defined). Necessarily, ŝ(β) = zu, where zu is the predecessor

to yvi . This is illustrated in Figure 2.5(a).

The first two steps along a clockwise Green walk from xvii are yvi and zu. Thus,

zu = x
vi+1

i+1 . If wi+1 is a zero string, then e(wi+1) = xi+1 and hence, wi+1 = εxi+1
. So

wi+1 satisfies property (iii) at the start of the proof. Otherwise, let γ be the last

symbol of wi+1. If γ ∈ Q−1
1 , then we necessarily have ê(γ) = zu = x

vi+1

i+1 . So wi+1

satisfies property (i). If γ ∈ Q1, then ê(γ) = zu = x
vi+1

i+1 and hence, wi+1 satisfies

property (ii).

Case 2: α ∈ Q−1
1 and wi does not end on a peak. In this case, wi+1 is given by

adding a hook to the end of wi. We first add a formal inverse β−1 to the end of

wi. It follows that the arrow β is lies in the cycle Cvi and therefore ê(β−1) = yvi ,

where yvi is the predecessor to xvii . If the edge y associated to yvi is truncated then

wi+1 = wiβ
−1, as illustrated in Figure 2.6(a)(i). In this subcase, the first two steps

along a clockwise Green walk from xvii are yvi and yvi respectively. Thus x
vi+1

i+1 = yvi

and hence, ê(β−1) = x
vi+1

i+1 . So wi+1 satisfies property (i) at the start of the proof.

On the other hand, if y is not truncated then wi+1 = wiβ
−1w′, where w′ =

γ1 . . . γr is a maximal direct string. It follows from the maximality of w′ that

ê(γr) = zu, where zu is the predecessor to yvi , as illustrated in Figure 2.6(a)(ii).

The first two steps along a clockwise Green walk from xvii are yvi and zu. Thus

x
vi+1

i+1 = zu and hence, ê(γr) = x
vi+1

i+1 . So wi+1 satisfies property (ii).

Case 3: α ∈ Q1 and wi ends on a peak. By Lemma 2.1.2(b)(i), e(w) is truncated.

Since wi+1 = (wi)−c and there are no formal inverses at the end of wi, it follows

that wi = wi+1α. In this case, ŝ(α) = yu, where yu is the predecessor to xvii , as

illustrated in Figure 2.5(b). The first two steps along a clockwise Green walk from

xvii are xvii and yu respectively. Thus x
vi+1

i+1 = yu. If wi+1 is a zero string, then

e(wi+1) = xi+1 and hence, wi+1 = εxi+1
. So wi+1 satisfies property (iii) at the start

(a) Case 1:
...

viu

xi
y

z
wi+1

β

w′

(b) Case 3:
u vixi

y
wi+1

α

Figure 2.5: Examples of Cases 1 and 3 in the proof of Proposition 2.3.2(a).
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of the proof. Otherwise, let γ be the last symbol of wi+1. If γ ∈ Q−1
1 , then we

necessarily have ê(γ) = yu = x
vi+1

i+1 . So wi+1 satisfies property (i). If γ ∈ Q1, then

ê(γ) = yu = x
vi+1

i+1 and hence, wi+1 satisfies property (ii).

Case 4: α ∈ Q1 and wi does not end on a peak. The string combinatorics,

illustrated in Figure 2.6(b), is similar to Case 2. The clockwise Green walk from

xvii is also identical, so the result follows for this case by similar arguments.

Case 5: wi is the zero string εxi . This is only possible if either i = 0 or wi =

(wi−1)−c. Assume 0 < i < k. So wi−1 = (wi)c = γw′ and wi+1 = (wi)h = β−1w′′

for some maximal inverse string w′ and some maximal direct string w′′. It follows

from the string combinatorics detailed in Cases 1 and 3, that ŝ(γ) = xvii . It then

follows from Lemma 2.3.1 that ŝ(β−1) = xvii . The string combinatorics of adding

a hook starting with β−1 and the clockwise Green walk from xvii is investigated in

Case 2. Thus, the result for Case 5 follows by similar arguments to those used in

Case 2. If i = 0, then w1 is defined in the proposition statement. The result then

follows from setting xv00 = xv and again using similar arguments to those in Case 2.

The Proposition result follows from the inductive step outlined above, since

setting xv00 = xv in the cases where w0 = εx or w0 ends with αn ∈ Q−1
1 , or setting

xv00 = xv in the case where w0 ends with αn ∈ Q1 satisfies properties (i)-(iii) at the

start of the proof.

(b) The proof is similar to (a).

Recall that the stable Auslander-Reiten quiver of a Brauer tree algebra is a

finite tube (see for example [29]). We will first distinguish between certain edges in

the Brauer graph by introducing the notion of exceptional subtrees of a graph. The

(a) Case 2: (i) (ii)
vixi

ywi

β−1

...
vi uxi

y

z

wi

β−1

w′

(b) Case 4: (i) (ii)
vi

xi y
wi

β−1

...
vi u

xi y

z

wi

β−1

w′

Figure 2.6: Examples of Cases 2 and 4 in the proof of Proposition 2.3.2(a).
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motivation behind this definition lies in the fact that these particular subtrees of

the Brauer graph have the same local structure of some Brauer tree, and hence, the

string combinatorics along these subtrees behave in a similar manner to a Brauer

tree algebra with exceptional multiplicity. Since the sequence (∗) defined at the

start of Section 2.3 terminates (in both directions) in a Brauer tree algebra, one

might expect the sequence (∗) to terminate (in one direction) for certain modules

related to the edges of the exceptional subtrees. This is indeed the case, and we

will later show that the simple modules and the radicals of the indecomposable

projectives associated to the edges of these subtrees belong to a tube.

Definition 2.3.3. Let G be a Brauer graph that is not a Brauer tree. Consider a

subgraph T of G satisfying the following properties:

(i) T is a tree,

(ii) T has a unique vertex v such that the graph (G \ T ) ∪ {v} is connected,

(iii) T shares no vertex with any cycle of G, except at perhaps v,

(iv) every vertex of T has multiplicity 1, except for perhaps v.

We will call such a subgraph an exceptional subtree of G and the vertex v the

connecting vertex of T .

Given a graph with exceptional subtrees, we can partition the edges of the graph

into two distinct classes.

Definition 2.3.4. An edge of a Brauer graph G is called an exceptional edge if

it belongs to some exceptional subtree of G. An edge of G is otherwise called a

non-exceptional edge.

Examples of exceptional subtrees are given in Figure 2.7. The coloured edges

of Figure 2.7 are the exceptional edges of G. All others are non-exceptional.

Remark 2.3.5. An exceptional subtree of a Brauer graph can also contain as sub-

graphs further exceptional subtrees in the following sense. Suppose x is an edge

that belongs to an exceptional subtree T of G. Consider the maximal subtree T ′
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Figure 2.7: Three distinct exceptional subtrees of a Brauer graph, coloured red,
green and blue respectively. A vertex represented by a circle has multiplicity e > 1.

of T connected to (and possibly containing) x via a vertex v such that T ′ shares

no vertex with any non-exceptional edge. Then T ′ satisfies properties (i)-(iv) of

Definition 2.3.3 and is hence exceptional with connecting vertex v.

There is a simple characterisation of the non-exceptional edges of a Brauer

graph, as shown by the following.

Lemma 2.3.6. Let G be a Brauer graph and x be an edge in G. Then x is non-

exceptional if and only if it belongs to:

(i) a cycle, or

(ii) a simple path between two vertices u, v belonging to cycles of G, or

(iii) a simple path between a vertex u belonging to a cycle and a vertex v with

ev > 1, or

(iv) a simple path between vertices u, v with eu, ev > 1.

Proof. If x belongs to a cycle, then either x is a loop or both its vertices belong to

a cycle, and hence, x cannot be exceptional. Suppose x instead belongs to simple

path

p : u · · · x · · · v

in G, where u and v satisfy either of (ii)-(iv). Suppose for a contradiction that there

exists an exceptional subtree T of G containing x. Then T has at most one vertex

v′ that belongs to a cycle or has multiplicity ev′ > 1. Thus, T cannot contain both

the vertices u and v of p. Consider the subgraph G′ = (G \ T ) ∪ {v′}. It follows
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that G′ is not connected, since T would otherwise contain multiple vertices that

belong to a cycle of G, which would result from a simple path which avoids the

edge x from p. So no such tree T exists and x is non-exceptional.

For the converse argument, we first assume G is not a Brauer tree, and hence,

that there exist edges in G satisfying (i)-(iv). Suppose x is an edge of G that does

not belong to any of (i)-(iv). Then at least one vertex connected to x does not

belong to a cycle and does not have multiplicity e > 1. If both vertices satisfy this

condition, we note that since G is connected and is not a Brauer tree, there must

exist a simple path

q : u · · · u′ ,

where u is a vertex connected to x and u′ is a vertex that belongs to a cycle of G

or is such that eu′ > 1. Let v be the other vertex connected to x. Since x does not

satisfy (ii)-(iv), every path of source v in G not containing x has no vertex belonging

to a cycle and has no vertex of multiplicity e > 1. Since G is finite, the subgraph

generated by all such paths of source v is a tree T , which is an exceptional subtree

of G. It follows that the subgraph T ′ = T ∪ {x} ∪ {u} of G is also an exceptional

subtree of G and u is the connecting vertex of T ′. Hence, x is exceptional.

Remark 2.3.7. It follows from the above that non-exceptional edges in a graph are

all connected to each other. Specifically, if G contains at least two non-exceptional

edges and x is a non-exceptional edge of G, then there exists a non-exceptional

edge y connected to x via a common vertex. It also follows from the above that a

non-exceptional edge is never truncated.

We will now need to introduce some technical lemmata, which will be used

extensively in the proofs of the main theorems. The first lemma, given below, is

used primarily to construct direct or inverse strings through exceptional edges.

Lemma 2.3.8. Let A = KQ/I be a representation-infinite Brauer graph algebra

associated to a Brauer graph G. Let v be a vertex in G and α1 . . . αmβ1 . . . βn be

the cycle Cv,α1 in Q, where s(α1) = x and s(β1) = y for some edges x and y in G

such that x 6= y.
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(a) Suppose that s(β1), . . . , s(βn) each belong to an exceptional subtree of G with

connecting vertex v and let w0 be a string such that e(w0) = x and w0β
−1
n . . . β−1

1

is a string. Then there exists a ray

M(w0)→M(w1)→ · · · →M(wk)→ · · ·

in sΓA such that wk = w0β
−1
n . . . β−1

1 and |wi| > |w0| for all 0 < i ≤ k.

(b) Suppose that e(α1), . . . , e(αn) each belong to an exceptional subtree of G with

connecting vertex v and let w0 be a string such that e(w0) = x and w0α1 . . . αn

is a string. Then there exists a ray

· · · →M(w−k)→ · · · →M(w−1)→M(w0)

in sΓA such that w−k = w0α1 . . . αn and |w−i| > |w0| for all 0 < i ≤ k.

Proof. (a) Let (wj) be the sequence in (∗). If w0 is a zero string, then let w1 =

γ−1δ1 . . . δr such that ŝ(γ−1) = xv. Otherwise, let α be the last symbol of w0. Since

w0β
−1
n is a string, we may conclude that if α ∈ Q−1

1 then ê(α) = xv and if α ∈ Q1

then ê(α) = xv. Thus by Proposition 2.3.2, e(wi) is determined by the i-th step

along a double-stepped clockwise Green walk from xv.

Let T be the exceptional subtree of G with connecting vertex v such that T

contains the edges y1 = s(β1), . . . , yn = s(βn). The first k steps along a clockwise

double-stepped Green walk from xv step along the half-edges of T until we reach the

(k + 1)-th step where we then reach a half-edge not in T . So by Proposition 2.3.2,

e(wi) belongs to T for all i ≤ k. At each step, wi is of the form w0β
−1
n w′i, where

w′i is a string such that each symbol starts and ends at an edge in T . It therefore

follows that |wi| > |w0| for all 0 < i ≤ k.

We further note that a clockwise Green walk along a tree steps on both half-

edges associated to each edge in the tree, so a clockwise double-stepped Green walk

steps on precisely one half-edge for each edge in the tree (until we step on a half-

edge not in T ). One can show that the clockwise double-stepped Green walk from

xv steps along the half-edges yvn, . . . , y
v
1 . In particular, one can show that yv1 is the
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k-th step along such a walk. Thus, e(wk) = y1 = y.

Since T is a tree and all vertices of T (except perhaps v) are of multiplicity 1,

it is impossible to construct a string ending at y1 that contains arrows or formal

inverses around any vertex of T other than v. Moreover, since each wi is determined

by adding hooks or deleting cohooks from the end of the string and e(wi) belongs

to T for all i ≤ k, we conclude that wk = w0β
−1
n . . . β−1

1 .

(b) The proof is similar to (a).

In what follows, it is helpful to define a new form of Green walk, called a non-

exceptional Green walk. This is a Green walk that ignores exceptional edges.

Definition 2.3.9. By a non-exceptional Green walk from a non-exceptional edge x0

via a vertex v0, we mean a sequence of half-edges (x
vj
j )j∈Z≥0

, where xi+1 is connected

to xi via the vertex vi and x
vi+1

i+1 is the first half-edge in the successor sequence of

xvii such that xi+1 is non-exceptional. By a non-exceptional clockwise Green walk

from a non-exceptional edge x0 via v0, we mean a similar sequence (x
vj
j )j∈Z≥0

of

half-edges where each x
vi+1

i+1 is the first half-edge in the predecessor sequence of xvii

such that xi+1 is non-exceptional.

The next lemma shows that by skipping certain modules along a ray of source

or target a string module M(w0), one can ignore the effect of exceptional edges

when adding hooks or cohooks.

Lemma 2.3.10. Let A = KQ/I be a representation-infinite Brauer graph algebra

constructed from a Brauer graph G. Suppose x1 and x2 are non-exceptional edges

incident to a vertex v1 and let Cv1,α1 = α1 . . . αmβ1 . . . βn, where ŝ(α1) = xv11 and

ŝ(β1) = xv12 . Suppose w0 is a string such that e(w0) = x1.

(a) Suppose xv22 and xv33 are the first and second steps along a non-exceptional

clockwise Green walk from xv11 respectively and suppose w0β
−1
n . . . β−1

1 is a

string. Then there exists a ray

M(w0)→M(w1)→ · · · →M(wk)→ · · ·
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in sΓA such that wk = w0β
−1
n . . . β−1

1 w′, where w′ = γ1 . . . γr is the direct string

of greatest length such that ê(γr) = xv33 . Furthermore, e(wi) is exceptional for

all 0 < i < k and |wi| > |w0| for all 0 < i ≤ k.

(b) Suppose xv22 and xv33 are the first and second steps along a non-exceptional

Green walk from xv11 respectively and suppose w0α1 . . . αm is a string. Then

there exists a ray

· · · →M(w−k)→ · · · →M(w−1)→M(w0)

in sΓA such that w−k = w0α1 . . . αmw
′, where w′ = γ−1

1 . . . γ−1
r is the inverse

string of greatest length such that ê(γ−1
r ) = xv33 . Furthermore, e(w−i) is ex-

ceptional for all 0 < i < k and |w−i| > |w0| for all 0 < i ≤ k.

Proof. (a) Let (wj) be the sequence in (∗) with w0 as defined in the lemma. If w0

is a zero string, then assume the first symbol α−1 of w1 is such that ŝ(α−1) = xv11 .

Since x2 is given by a non-exceptional clockwise Green walk from x1 via v1, it

follows that s(βi) is exceptional for all i > 1. Additionally, since w0β
−1
n . . . β−1

2 is a

string, Lemma 2.3.8(a) applies and there exists a ray

M(w0)→M(w1)→ · · · →M(wl)→ · · ·

in sΓA such that wl = w0β
−1
n . . . β−1

2 and |wi| > |w0| for all 0 < i ≤ l. It follows

from Proposition 2.3.2(a) and the proof of Lemma 2.3.8(a) that e(wi) is exceptional

for all 0 < i ≤ l.

Since wlβ
−1
1 is a string, wl does not end on a peak and hence, wl+1 = (wl)h =

wlβ
−1
1 w′′, where w′′ = γ1 . . . γt is a maximal direct string. So |wl+1| > |w0|. If

e(wl+1) is non-exceptional, then ê(γt) = xv33 , as required. So suppose instead e(wl+1)

is exceptional. Then there exists an integer r such that ê(γr) = xv33 and e(γi) is

exceptional for all r < i ≤ t. In particular, the string w′ = γ1 . . . γr is the direct

string of greatest length such that ê(γr) = xv33 . By Lemma 2.3.8(b), there exists a

ray

· · · →M(wl+1)→ · · · →M(wk−1)→M(wk)
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in sΓA such that wk = wlβ
−1
1 w′ and wl+1 is as above. Moreover, |wi| > |wk| > |w0|

for all l + 1 ≤ i < k. This ray belongs to the same ray containing M(w0) and

M(wl), as all changes are made to the end of the string. The result then follows.

(b) The proof is similar to (a).

Example 2.3.11. Consider the following Brauer graph G, where the circled ver-

tices u3 and u4 have a multiplicity of two and all other vertices have multiplicity

one.

u1 u2

u3

u4

u5

u6 u7

u8y1

y2

y3

y4

y5

y6
y7

y8

The exceptional edges of G are y5, y6, y7 and y8. The non-exceptional edges of G

are y1, y2, y3 and y4.

Let Cu2,β1 = β1β2β3 and Cu4,γ1 = γ1γ2γ3, where s(β1) = y2 and s(γ1) = y4.

Consider the string w0 = β−1
1 . The first two steps along a non-exceptional clock-

wise Green walk from yu22 are yu44 and yu24 respectively. Since w0β
−1
3 is a string,

Lemma 2.3.10(a) implies there exists a ray

M(w0)→M(w1)→ · · · →M(wk)→ · · ·

in sΓA such that wk = w0β
−1
3 γ1γ2γ3. Moreover, e(wi) is exceptional for all 0 < i < k

and |wi| > |w0| for all 0 < i ≤ k. One can verify that k = 5 in this example, as

illustrated in Figure 2.8.

One may also notice from Figure 2.8 the use of Lemma 2.3.8(b) in the proof of

Lemma 2.3.10(a) on the ray segment

M(w1)→ · · · →M(w5).

The following remark is useful for the next lemma.
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w0

w1 w2

w3 w4 w5

Figure 2.8: The first 5 terms in a sequence of strings given by (∗).

Remark 2.3.12. Non-exceptional Green walks are periodic. Thus, one can perform

a non-exceptional (clockwise or anticlockwise) Green walk to construct a cycle

c : v0
x1 v1

x2 v2 · · · vm−1
xm v0 ,

of G consisting of non-exceptional-edges such that xvii+1 is the first half-edge in the

predecessor (resp. successor) sequence of xvii such that xi+1 is non-exceptional.

Lemma 2.3.13. Let A = KQ/I be a Brauer graph algebra associated to a Brauer

graph G. Let M(w0) be the string module associated to a string w0 = α1 . . . αn.

(a) (i) If e(w0) is a non-exceptional edge in G and αn ∈ Q1, then the ray in

sΓA of source M(w0) given by adding or deleting from the end of w0

is infinite. Furthermore, each module M(wi) along the ray is such that

|wi| > |w0| for all i > 0.

(ii) If x is a non-exceptional edge in G and w0 = εx, then both rays in sΓA

of source M(w0) are infinite. Furthermore, |w| > |w0| for any module

M(w) 6∼= M(w0) along any such ray.

(b) (i) If e(w0) is a non-exceptional edge in G and αn ∈ Q−1
1 , then the ray in

sΓA of target M(w0) given by adding or deleting from the end of w0 is

infinite. Furthermore, each module M(w−i) along the ray is such that

|w−i| > |w0| for all i > 0.
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(ii) If x is a non-exceptional edge in G and w0 = εx, then both rays in sΓA

of target M(w0) are infinite. Furthermore, |w| > |w0| for any module

M(w) 6∼= M(w0) along any such ray.

Proof. The proof relies upon the iterative use of Lemma 2.3.10.

(a)(i) Let (wj) be sequence (∗). Let x1 be the non-exceptional edge such that

e(w0) = x1 and let xv01 be a half-edge associated to x1 such that ê(αn) = xv01 . We

may perform a non-exceptional clockwise Green walk from xv11 = xv01 to construct

a (not necessarily simple) cycle c in G of the form given in Remark 2.3.12.

Since αn ∈ Q1, there exists a non-zero inverse string β−1
1 . . . β−1

r such that

ŝ(β−1
1 ) = xv11 , ê(β−1

r ) = xv12 and w0β
−1
1 . . . β−1

r is a string. Thus by Lemma 2.3.10(a),

there exists a ray

M(w0)→M(w1)→ · · · →M(wk)→ · · ·

in sΓA such that e(wk) = x3 and |wi| > |w0| for all 0 < i ≤ k. Furthermore, the

last symbol α of wk is an arrow such that ê(α) = xv23 .

Since wk satisfies similar properties to w0, we may use the above argument

iteratively along the cycle c. Thus, the sequence (∗) never terminates, and hence,

the ray of source M(w0) given by adding or deleting from the end of w0 is infinite.

Moreover, |wi| > |w0| for all i > 0.

(a)(ii) Let (wj) be sequence (∗) and let xv be a half-edge associated to x. There

are two rays of source S(x) in sΓA. These are obtained by choosing w1 such that the

first symbol β−1 of w1 is a formal inverse with either ŝ(β−1) = xv or ŝ(β−1) = xv.

A clockwise non-exceptional Green walk from either xv or xv induces a cy-

cle of non-exceptional edges similar to that in Remark 2.3.12. The conditions of

Lemma 2.3.10(a) are satisfied for any zero string associated to a non-exceptional

edge, so similar arguments to (i) show that both possible sequences (wj) starting

with w0 are infinite and |wi| > |w0| for all i > 0. Thus, both rays in sΓA of source

M(w0) are infinite and |w| > |w0| for any module M(w) 6∼= M(w0) along any such

ray.

(b) The proof of (b)(i) and (b)(ii) is similar to (a)(i) and (a)(ii) respectively.
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We now prove the main results of this section.

Theorem 2.3.14. Let A be a representation-infinite Brauer graph algebra associ-

ated to a Brauer graph G and let x be an edge in G. Then the simple module S(x)

and the radical of the projective P (x) belong to exceptional tubes of sΓA if and only

if x is an exceptional edge.

Proof. (⇒:) Suppose x is non-exceptional and consider the simple module S(x).

This is associated to the zero string w = εx. Thus, Lemma 2.3.13(a)(ii) applies and

so both rays of source S(x) in sΓA are infinite. Hence, S(x) does not belong to a

tube.

Now consider the module radP (x) and instead let w be the string such that

M(w) = P (x)/ socP (x) = τ−1 radP (x). We aim to show that M(w) does not

belong to a tube, since it then follows that radP (x) does not belong to a tube.

Note that w = w′w′′, where M(w′),M(w′′) ∈ M. That is, w′ is a maximal inverse

string and w′′ is a maximal direct string such that e(w′) = x = s(w′′).

If e(w) is non-exceptional, then we can apply Lemma 2.3.13(a)(i) to show that

the ray of source M(w) given by adding or deleting from the end of the string is

infinite. Otherwise if e(w) is exceptional, then suppose w′′ = β1 . . . βn and let r

be the greatest integer such that ê(βr) is the first half-edge associated to a non-

exceptional edge in the predecessor sequence from ê(βn). Then by Lemma 2.3.8(b),

there exists a ray

· · · →M(w−k)→ · · · →M(w−1)→M(w0)

in sΓA such that w0 = w′β1 . . . βr and w−k = w. The string w0 satisfies the con-

ditions of Lemma 2.3.13(a)(i), and therefore the ray in sΓA of source M(w0) given

by adding or deleting from the end of w0 is infinite. This is contained within the

ray of source M(w−k) given by adding or deleting from the end of w−k, and so this

ray is also infinite. A similar argument shows that the other ray of source M(w),

which is given by adding or deleting from the start of the string, is infinite – we

simply use the same arguments with the string w−1.
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(⇐:) Suppose x is an exceptional edge. If x is truncated, then P (x) is uniserial

and S(x) ∈ M, radP (x) ∈ M. Hence, it follows trivially from Lemma 2.2.3 that

S(x) and radP (x) belong to an exceptional tube. So suppose instead that x is non-

truncated. Let v be a vertex incident to x and consider the maximal exceptional

subtree T (Remark 2.3.5) with connecting vertex v. We choose v such that T does

not contain x.

To show that S(x) belongs to an exceptional tube, we first note that ev = 1

(since x is exceptional). Let w = β−1
n . . . β−1

1 be the maximal inverse string such

that ŝ(β−1
n ) = xv. Then e(β−1

i ) belongs to T and e(β−1
i ) 6= x for all i. Hence by

Lemma 2.3.8(a), there exists a ray

M(w0)→M(w1)→ · · · →M(wk)→ · · ·

in sΓA such that w0 = εx and wk = w. But M(w0) = S(x) and M(wk) ∈M. Thus,

M(wk) sits at the mouth of an exceptional tube by Lemma 2.2.3 and hence, S(x)

belongs to an exceptional tube.

To show that radP (x) also belongs to an exceptional tube, let w′ = γ1 . . . γm be

the maximal direct string such that ê(γn) = xv. Then a similar argument to that

used above for S(x) shows that there exists a ray

M(w0)→M(w1)→ · · · →M(wk)→ · · ·

in sΓA such that w0 = w′ and wk = w′w. Since M(w0) ∈M and M(wk) = radP (x),

we conclude that radP (x) belongs to an exceptional tube.

The above theorem as stated shows that the modules S(x) and radP (x) for

an exceptional edge x belong to exceptional tubes of sΓA. However, S(x) and

radP (x) may not necessarily belong to the same exceptional tube. This is due to

the construction in the latter part of the proof, where we show that there exist

modules M1,M2 ∈ M with M1 6= M2, such that S(x) and M1 belong to the same

tube and radP (x) and M2 belong to the same tube. We cannot however, guarantee

that M1 and M2 belong to the same tube. However, we can use Theorem 2.2.4 to
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describe when S(x) and radP (x) do belong to the same exceptional tube of sΓA.

Corollary 2.3.15. Given an exceptional edge u x v in a Brauer graph, S(x) and

radP (x) belong to the same exceptional tube if and only if xu and xv occur within

the same double-stepped Green walk.

Proof. Let u, v be the vertices connected to x. Let w be the string such that

M(w) = radP (x). Then w = w′w′′, where w′ is the maximal direct with last

symbol α such that ê(α) = xu and w′′ is the maximal inverse string with first

symbol β such that ŝ(α) = xv. Let M1 = M(w′′) and M2 = M(w′). Then by the

construction in the proof of Theorem 2.3.14, S(x) and M1 belong to the same tube

and radP (x) and M2 belong to the same tube. In the case where x is truncated,

we actually have S(x) = M1 and radP (x) = M2

Recall from Section 2.2.1 that to each half-edge yt in G, we have a corresponding

string module M = M(w′′′) ∈ M. If t is a truncated vertex, then w′′′ = εy.

Otherwise, w′′′ is a direct string with first symbol γ such that ŝ(γ) = yt. Also recall

from [48, Remark 3.6] that if the i-th step along a Green walk from yt is a half-edge

ytii , then Ωi(M) ∈M corresponds to the half-edge ytii .

Let α′ be the first symbol of w′ and β′ be the last symbol of w′′. Then ê(β′)

and ŝ(α′) correspond to the modules M1 and M2 respectively. Let M ′
1 and M ′

2 be

the modules in M corresponding to the half-edges xu and xv respectively. Since

ê(β′) is the first step along a Green walk from xu = xv and ŝ(α′) is the first step

along a Green walk from xv = xu, we have Ω(M ′
1) = M1 and Ω(M ′

2) = M2. Note

that M1 belongs to the same tube as M2 if and only if M1 = τ iM2 = Ω2iM2 for

some i. This is possible if and only if M ′
1 = τ iM ′

2 for some i. Since M ′
1 and M ′

2

correspond to xu and xv respectively, it follows that xu and xv belong to the same

double-stepped Green walk, as required.

Theorem 2.3.16. Let A be a representation-infinite Brauer graph algebra and let

x and y be (not necessarily distinct) non-exceptional edges of the associated Brauer

graph G. Then S(x) and radP (y) belong to the same component of sΓA if and only
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if either A is 1-domestic or there exists a (not necessarily simple) path

p : u0
x1 v1

x2 v2 · · · vn−2
xn−1

vn−1
xn u1

of even length in G consisting of non-exceptional edges such that

(i) x1 = x and xn = y;

(ii) every edge xi is not a loop;

(iii) if xi 6= xi+1 then evi = 1;

(iv) if xi = xi+1 then evi = 2;

(v) xi and xi+1 are the only non-exceptional edges incident to vi in G.

Proof. (⇐:) Suppose A is 1-domestic. Then there exists precisely one component

of sΓA that is not a tube. Thus by Theorem 2.3.14, the simple modules and the

radicals of the projectives associated to the non-exceptional edges of G all belong

to the same component of sΓA. So suppose instead A is not 1-domestic and a path

p satisfying the properties (i)-(v) exists. We will show that S(xi) is in the same

component of sΓA as radP (xi+1) and S(xi+1) is in the same component of sΓA as

radP (xi) for all i. Since p is of even length, it will follow from this that S(x) is in

the same component as radP (y).

There are two possible cases, which arise from conditions (iii) and (iv) respec-

tively. The proof for both cases is similar. In either case, if there are no exceptional

edges incident to vi, then S(xi) is a direct summand of radP (xi+1)/ socP (xi+1).

Thus, there exists an irreducible morpism S(xi) → radP (xi+1) and so S(xi) and

radP (xi+1) belong to the same component of sΓA. Suppose instead there are ex-

ceptional edges incident to vi and let Cvi,γ1 = γ1 . . . γrδ1 . . . δt, where s(γ1) = xi

and s(δ1) = xi+1. If xi = xi+1 and evi = 2 (condition (iv)) then t = r and

δ1 = γ1, . . . , δt = γr. Note that (in both cases) the edges s(δ2), . . . , s(δt) and

e(γ1), . . . , e(γr−1) each belong to an exceptional subtree with connecting vertex vi
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and that xi 6= s(δ2), e(γr−1). By Lemma 2.3.8(a), there exists a ray

R : M(w0)→M(w1)→ · · · →M(wk)→ · · ·

in sΓA such that w0 = εxi and wk = δ−1
t . . . δ−1

2 . Since (wk)
−1γ1 . . . γr−1 is a string,

it follows from Lemma 2.3.8(b) that there exists a ray

R′ : · · · →M(w′−l)→ · · · →M(w′−1)→M(w′0)

in sΓA (which is perpendicular toR) such that w′0 = (wk)
−1 and w′−l = (wk)

−1γ1 . . . γr−1.

Now M(w′−l) is direct summand of radP (xi+1)/ socP (xi+1), and thus, there exists

an irreducible morphism radP (xi+1) → M(w′−l). Hence, S(xi) = M(w0) is in the

same component of sΓA as radP (xi+1), as required. A similar argument shows

S(xi+1) is in the same component of sΓA as radP (xi). Since n is even and x1 = x

and xn = y, this implies S(x) and radP (y) lie in the same component of sΓA.

(⇒:) Suppose S(x) and radP (y) lie in the same component of sΓA and consider

the strings w0 and w′0 such that M(w0) = radP (y) and M(w′0) = S(x). Let L be

the line in sΓA through M(w0) given by adding or deleting from the end of w0 and

let L′ be the line in sΓA through M(w′0) given by adding or deleting from the start

of w′0. Then L is perpendicular to L′ and there exists a module M(w) along L

and a module M(w′) along L′ such that M(w) = M(w′). Note that this trivially

implies that w = w′. We aim to show that this implies that either there exists

a path p of the form given in the theorem statement, or G contains precisely one

non-exceptional edge, which is a loop (and hence, A is 1-domestic).

First suppose the module at the intersection point of L and L′ lies along the

ray of target M(w0). Note that w0 is of the form γ1 . . . γrδ
−1
1 . . . δ−1

t , where γ1 . . . γr

is maximal direct and δ−1
1 . . . δ−1

t is maximal inverse. Let d be the greatest integer

such that e(δ−1
d ) is non-exceptional and let w−k be the string γ1 . . . γrδ

−1
1 . . . δ−1

d .

Then it follows from Lemma 2.3.8(a) that there exists a ray

M(w−k)→M(w−k+1)→ · · · →M(w0)→ · · ·



2. AR COMPONENTS OF BRAUER GRAPH ALGEBRAS 80

in sΓA such that |w−i| > |w−k| > 0 for all 0 ≤ i < k. Suppose ŝ(δ−1
1 ) = yu. Then it

follows that e(δ−1
d ) is the edge associated to the first step along a non-exceptional

Green walk from yu. Using Lemma 2.3.10(b) iteratively starting with the string

w−k and the half-edge ê(δ−1
d ), we conclude that if M(w−i) is a module along the ray

of target M(w0) such that w−i ends at a non-exceptional edge z, then z belongs to

the cycle c of G constructed by performing a non-exceptional Green walk from yu

(described in Remark 2.3.12). In particular, since L and L′ intersect at a module

along the ray of target M(w0), there exists a module M(w−i) along this ray such

that e(w−i) = x. Thus, x belongs to c. So perform a non-exceptional Green walk

from yu to construct a path

q : u0
y1

u1 · · · um−2
ym−1

um−1
ym

um (†)

of even length in G, where ym = y, u = um−1 and y1 = x. Also note that ê(δ−1
d ) =

y
um−1

m−1 .

Use Lemma 2.3.10(b) iteratively along q starting with w−k until we obtain a ray

M(w−l)→ · · · →M(w−k−1)→M(w−k)→ · · · →M(w0)

along L such that e(w−l) = y1 = x. Note that it follows from Lemma 2.3.10(b)

that |w−i| > |w−k| > 0 for all i > k. It also follows that w−l is of the form

w−l = γ1 . . . γrw
+
m−1w

−
m−2w

+
m−3 . . . w

−
2 w

+
1 ,

where w−i is the direct string of shortest length with first symbol αi and last symbol

βi such that ŝ(αi) = yuii+1 and ê(βi) = yuii , and w+
i is the inverse string of greatest

length with first symbol ζ−1
i and last symbol η−1

i such that ŝ(ζ−1
i ) = yuii+1 and

ê(η−1
i ) = yuii . Also note that further use of Lemma 2.3.10(b) implies that w−l is a

prefix to any string further along the ray of target M(w0).

Now consider the zero string w′0 = εx. We aim to construct the string w−l by

adding to the start of w′0, and hence locate M(w−l) along the line L′. We note that

since w′0 is a zero string and since the last symbol β−1 of w−l is a formal inverse,
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w−l can only be constructed by adding cohooks to the start of w′0, and hence, w−l

lies along the ray of target M(w′0). In particular, the last symbol of w′−1 = c(w
′
0)

must be β−1.

Suppose ê(β−1) = xv1 . Let x1 = x and label the (i − 1)-th step along a non-

exceptional Green walk from xv11 by xvii . The i-th use of Lemma 2.3.10(b) on w′0

produces a string w′−ki along the ray of target M(w′0) of the form

w′−ki = w′+2i w
′−
2i−1 . . . w

′+
4 w

′−
3 w

′+
2 w

′−
1 ,

where w′−j is the inverse string of shortest length with first symbol ζ ′−1
j and last

symbol η′−1
j such that ŝ(ζ ′−1

j ) = x
vj−1

j and ê(η′−1
j ) = x

vj
j , and w′+j is the direct string

of greatest length with first symbol α′j and last symbol β′j such that ŝ(α′j) = x
vj
j+1

and ê(β′j) = x
vj
j . Moreover, w−ki is a suffix of any string w′ further along the ray

of target M(w′0).

Since the module M(w−l) exists along the ray of target M(w′0), we may conclude

that w′−j = w+
j and w′+j = w−j . Thus, ŝ(α′j) = ŝ(αj), ŝ(ζ

′−1
j ) = ŝ(ζ−1

j ), ê(β′j) = ê(βj)

and ê(η′−1
j ) = ê(η−1

j ). Hence, x
vj
j+1 = y

uj
j+1 and x

vj
j = y

uj
j . Since each x

vj
j is a step

along a non-exceptional Green walk from x
vj−1

j−1 and each y
uj−1

j−1 is a step along a non-

exceptional Green walk from y
uj
j , this implies that x

vj
j is the first non-exceptional

successor to x
vj−1

j−1 and x
vj−1

j−1 is the first non-exceptional successor to x
vj
j . This is

possible only if there is no half-edge zui incident to any ui in q such that z is non-

exceptional and zui 6= yuii , y
ui
i+1. Moreover, w′−j = w+

j and w′+j = w−j only if evj = 1

if x
vj
j 6= x

vj
j+1 or evj = 2 if x

vj
j = x

vj
j+1. Thus, either q is a path of the form p in

the theorem statement, or q is a path of length 2 along a loop x in G with incident

vertex v such that ev = 1 and x is the only non-exceptional edge of G. In the latter

case, A is 1-domestic, as required.

Next suppose the module at the intersection point of L and L′ instead lies along

the ray of source M(w0) = radP (y) (along L). Again let w0 = γ1 . . . γrδ
−1
1 . . . δ−1

t .

Note that w0 ends on a peak, so let w1 = (w0)−c = γ1 . . . γr−1. Now let d be the

greatest integer such that s(γd) is non-exceptional and let wk = γ1 . . . γd−1 if d > 1

or let wk = εs(γ1) if d = 1. Then by Lemma 2.3.8(b), there exists a ray in sΓA of
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the form

· · · →M(w0)→M(w1)→ · · · →M(wk−1)→M(wk).

In the case where wk = εx, we note that x and y share a common vertex v.

Moreover, it follows from the maximality of the string γ1 . . . γr that xv and yv

are the only half-edges incident to v such that their corresponding edges are non-

exceptional, and that ev = 1 if xv 6= yv or ev = 2 if xv = yv. Thus in this special

case, x and y belong to a path of length 2 that is either of the form p in the theorem

statement, or is either a path along a loop x in G with incident vertex v such that

ev = 1 and x is the only non-exceptional edge of G.

Otherwise, we note that e(wk) is non-exceptional and is associated to the first

step along a non-exceptional clockwise Green walk from ê(γr). The proof for the

case of the intersection point of L and L′ belonging to the ray of source M(w0) is

then similar to the proof of the of the case where the intersection point belongs to

the ray of target M(w0). We will summarise the argument. We first construct a

path q of the form (†) above by performing a clockwise non-exceptional Green walk

from ê(γr), which we label by yum−1
m . We then use Lemma 2.3.10(a) iteratively to

produce a string wl such that e(wl) = x and M(wl) is at the intersection of L and

L′. It follows that wl is of the form.

wl = γ1 . . . γd−1w
−
m−2w

+
m−3 . . . w

−
2 w

+
1 ,

where w−i is the inverse string of shortest length between yuii+1 and yuii and w+
i is

the direct string of greatest length between yuii+1 and yuii . Since the last symbol of

wl is an arrow, wl lies in the ray (along L′) of source M(w′0). Let x1 = x and label

the (i − 1)-th step along a non-exceptional clockwise Green walk from xv11 by xvii .

The i-th use of Lemma 2.3.10(a) on w′0 produces a string

w′+2i w
′−
2i−1 . . . w

′+
2 w

′−
1 ,

where w′−j is the inverse string of shortest length between x
vj
j+1 and x

vj
j and w′+j

is the direct string of greatest length between x
vj
j+1 and x

vj
j . So w′−j = w+

j and
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w′+j = w−j . By similar arguments as presented earlier in the proof, this implies that

q is a path of the form p in the theorem statement, or A is 1-domestic.



Chapter 3

Tame and Wild Symmetric

Special Multiserial Algebras

In this chapter, we aim to provide some of examples of tame symmetric special

multiserial algebras. Namely, we aim to prove the following two Theorems.

Theorem. Let A be a Brauer configuration algebra. If A is tame then A is at most

quadserial. In particular, A is a tame symmetric special quadserial algebra if and

only if A is given by the Brauer configuration

in which every vertex has multiplicity one.

Theorem. Let A = KQ/I be a Brauer configuration algebra associated to a Brauer

configuration χ. Suppose χ is of the form

T1

T2

T3

84
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where T1, T2 and T3 are distinct multiplicity-free Brauer trees containing m1, m2

and m3 polygons respectively. Suppose further that at least two of m1, m2 and m3

are strictly greater than 1. Then A is tame if and only if the values of the triple

(m1,m2,m3) conform to a column of the following table.

m1 1 1 1 1 1 2

m2 2 2 2 2 3 2

m3 2 3 4 5 3 2

Both classes of tame algebras above are domestic, since they appear in the

derived equivalence classification of domestic symmetric algebras in [40]. For the

symmetric special multiserial algebras that are representation-finite, we actually

obtain two corollaries from the proof of the second theorem above that show the

forms of the Brauer configurations associated to these algberas.

Corollary. Let A be the Brauer configuration algebra associated to the configuration

χ in the second theorem above. Then A is of finite representation type if and only

if the unordered triple (m1,m2,m3) conforms to a value in the following table.

m1 1 1 1

m2 2 2 2

m3 2 3 4

Corollary 3.0.1. Let A be a Brauer configuration algebra associated to a multiplicity-

free Brauer configuration of the form

T

where T is a (multiplicity-free) Brauer tree. Then A is of finite representation type.

To prove the first theorem, we use the classification of tame symmetric radical

cubed zero algebras in [13]. We also use the contrapositve of Boevey’s theorem on

the Auslander-Reiten components of a tame algebra (Theorem 1.1.25) to show that
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all symmetric special n-serial algebras with n ≥ 5 and all other quadserial algebras

not of the form in [13] are wild. To achieve the latter goal, we first define two infinite

families of indecomposable modules of the same dimension in Section 3.1. The proof

in Section 3.2 then relies upon calculating the Auslander-Reiten translate of these

indecomposable modules to show that infinitely many of them do not belong to a

homogeneous tube in the Auslander-Reiten quiver.

The proof of the second theorem is addressed in Section 3.3. The proof is

inspired by Rickard’s Brauer star theorem in [46]. We construct a tilting complex

similar to the one used by Rickard and calculate the endomorphism algebra of

the tilting complex explicitly. We then show that this is isomorphic to a Brauer

configuration algebra in which all 2-gons of the Brauer configuration are truncated

edges connected to the vertices of a unique 3-gon. That the representation type of

this algebra is determined by the number of polygons attached to each vertex of

the 3-gon follows from the results of [34], which are summarised in Section 1.5.

3.1 One-Parameter Families of Modules in Sym-

metric Special Multiserial Algebras

We will be utilising the contrapositive of Theorem 1.1.25 to show an algebra is wild.

We restate the theorem here for convenience, where by almost all, we mean all but

finitely many.

Theorem ([19],Theorem D). Let K be an algebraically closed field. If A is a tame

K-algebra, then for each dimension d, M ∼= τM for almost all indecomposable

A-modules of dimension d.

We will need to construct modules that are technically not band modules, but

are ‘band-like’ in the sense that they have a cyclic presentation and form a one-

parameter family of indecomposable modules. The motivation for this is that the

dimension vector of these one-parameter families of modules is independent of the

parameter. Thus, if the family of A-modules Mλ is such a one-parameter family,

where λ ∈ K then the algebra A is wild if dim(Mλ) 6= dim(τMλ) for (almost) all



3. TAME AND WILD SYMMETRIC SPECIAL MULTISERIAL ALGEBRAS 87

λ, since then Mλ 6∼= τMλ for (almost) all λ. Note that since the algebras we are

interested in are symmetric, we have τ = Ω2, where Ω2Mλ is the second syzygy of

Mλ.

We will begin by defining a form of directed graph (with additional structure)

that has a cyclic presentation. We will then associate to this directed graph a mod-

ule, which we will call a circle module. However, we caution the reader that unlike

band modules, the definitions that follow do not guarantee that circle modules are

indecomposable – this is something we must prove on a case by case basis.

Definition 3.1.1. Let B = (B0, B1, κ,∆), where (B0, B1) is a finite, connected,

directed graph with vertex set B0 and arrow set B1, and κ and ∆ are maps

κ : B0 → Q0 : v 7→ κ(v)

∆ : B1 → Q1 : a 7→ ∆(a).

We call B a circle provided the following conditions are satisfied.

(B1) The underlying graph of B contains a unique cycle.

(B2) s(∆(a)) = κ(u) and e(∆(a)) = κ(v) for any arrow u a //v ∈ B

(B3) For any (directed) path

v0
a1 //v1

a2 //· · · an //vn

in B, ∆(a1) . . .∆(an) is a direct string.

(B4) There exists no connected subtree B′ = (B′0, B
′
1, κ
′,∆′) of B such that B′

satisfies (B2) and (B3), B′0 contains vertices u and v with κ′(u) = κ′(v), and

such that B is equivalent to a connected, directed graph given by glueing

n distinct copies of B′, where each copy of the vertex u is identified with

precisely one copy of the vertex v.

Condition (B4) of the above definition is analogous to the condition that a band

is not a proper power of a string. The definition above differs from that of a band
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in the sense that each vertex may be the source or target of more than two arrows.

In addition, we allow for the possibility that there exists a subgraph of B of the

form

a //· boo or ·aoo b // (∗)

where ∆(a) = ∆(b), which is not possible in a band and can possibly give rise to

decomposable modules.

To each circle B, we define a family of circle modules M(B, n, φ), where n

is a strictly positive integer and φ ∈ Aut(Kn). The underlying vector space of

M(B, n, φ) is given by replacing each vertex of B with a copy of Kn. We then

distinguish an arrow a ∈ B1 and say that the action of the arrow α = ∆(a) on

M(B, n, φ) is induced by the automorphism φ. The action of any other arrow

β ∈ Q1 \ {α} on M(B, n, φ) is induced by the relevant identity morphisms if there

exists an arrow b ∈ B1 \ {a} such that ∆(b) = β, and is zero otherwise.

For the purposes of this chapter, we are only interested in circle modules of the

form M(B, 1, φλ) for some circle B and some λ ∈ K∗, where φλ : K → K is the

automorphism defined by φλ(x) = λx. As previously stated, the definition of a

circle module presented here does not guarantee that we obtain an infinite family

of indecomposable modules (unlike bands and band modules). Indeed, there are

numerous examples where this is not the case, such as when a circleB is of Euclidean

type Ãn and contains a subgraph as in (∗) with ∆(a) = ∆(b). Given a specific

example of a circle B, we are therefore required to show firstly that M(B, 1, φλ) is

indecomposable for all λ ∈ K∗; and secondly that M(B, 1, φλ1) 6∼= M(B, 1, φλ2) for

all λ1 6= λ2. For the purposes of readability, when presenting specific examples of

circles, we will label the vertices and arrows by their respective images under κ and

∆.

Example 3.1.2. Let A be a Brauer configuration algebra associated to a Brauer

configuration χ. Suppose χ contains a polygon x with |x| > 3 and let α, β, δ, γ ∈ Q1

be distinct arrows of source x. The following is an example of a circle.

B :
x x

α β
γ γ

δ
α

y1 y2 y3 y4 y1



3. TAME AND WILD SYMMETRIC SPECIAL MULTISERIAL ALGEBRAS 89

where the two copies of y1 are identified. The structure of the module Mλ =

M(B, 1, φλ) is as follows.

Mλ :

S(x) S(x)
1

1
1 1

1
φλ

S(y1)S(y2)S(y3)S(y4)S(y1)

We will assume x, y1, y2, y3 and y4 are pairwise distinct and calculate the space

HomA(Mλ1 ,Mλ2). Let K(x) and K(yi) denote the underlying K-vector spaces of

S(x) and S(yi) respectively. Then we have the following commutative squares.

(i)

(K(x))2

(K(x))2

K(y1)

K(y1)

( 1 λ1 )

( 1 λ2 )

ϕx ϕy1 (ii)

(K(x))2

(K(x))2

K(y2)

K(y2)

( 1 0 )

( 1 0 )

ϕx ϕy2

(iii)

(K(x))2

(K(x))2

K(y3)

K(y3)

( 1 1 )

( 1 1 )

ϕx ϕy3 (iv)

(K(x))2

(K(x))2

K(y4)

K(y4)

( 0 1 )

( 0 1 )

ϕx ϕy4

Squares (ii), (iii) and (iv) imply that ϕx is a matrix

ϕx =

a 0

0 a

 ,

where a = ϕy2(1) = ϕy3(1) = ϕy4(1). Square (i) implies that ϕy1(1) = a and

aλ1 = aλ2. Thus, a ∈ K if λ1 = λ2 and a = 0 if λ1 6= λ2. From this, we conclude

firstly that dim EndA(Mλ) = 1, and so Mλ is indecomposable for all λ ∈ K∗; and

secondly that dim HomA(Mλ1 ,Mλ2) = 0 for all λ1 6= λ2. Thus, Mλ1 6∼= Mλ2 for all

λ1 6= λ2 and so Mλ describes a 1-parameter family of indecomposable A-modules.

Example 3.1.3. Let B be the circle in Example 3.1.2, except we will now assume

x, y2, y3 and y4 are pairwise distinct and y1 = x. Consider the family of modules

Mλ = M(B, 1, φλ). To calculate HomA(Mλ1 ,Mλ2) we will need to consider the

following commutative squares.
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(i)

(K(x))3

(K(x))3

K(y3)

K(y3)

( 1 1 0 )

( 1 1 0 )

ϕx ϕy3

(ii)

(K(x))3

(K(x))3

K(y2)

K(y2)

( 1 0 0 )

( 1 0 0 )

ϕx ϕy2

(iii)

(K(x))3

(K(x))3

(K(x))3

(K(x))3

(
0 0 0
0 0 0
1 λ1 0

)

(
0 0 0
0 0 0
1 λ2 0

)ϕx ϕx

(iv)

(K(x))3

(K(x))3

K(y4)

K(y4)

( 0 1 0 )

( 0 1 0 )

ϕx ϕy4

The above squares imply that ϕx is a matrix

ϕx =


c 0 0

0 c 0

a b c

 ,

where c = ϕy2(1) = ϕy3(1) = ϕy4(1) and cλ1 = cλ2. Thus, c ∈ K if λ1 = λ2 and

c = 0 if λ1 6= λ2. Thus, we conclude that

EndA(Mλ) ∼=



c 0 0

0 c 0

a b c


∣∣∣∣∣∣∣∣∣a, b, c ∈ K


and hence, EndA(Mλ) contains no non-trivial idempotents. So Mλ is indecompos-

able for all λ ∈ K∗. In addition, if λ1 6= λ2 then we note that Mλ1 6∼= Mλ2 , since

then

HomA(Mλ1 ,Mλ2)
∼=




0 0 0

0 0 0

a b 0


∣∣∣∣∣∣∣∣∣a, b ∈ K


and every X ∈ HomA(Mλ1 ,Mλ2) is not invertible. Hence, Mλ describes a 1-

parameter family of indecomposable A-modules.



3. TAME AND WILD SYMMETRIC SPECIAL MULTISERIAL ALGEBRAS 91

3.2 Symmetric Special n-Serial Algebras with n ≥

3

The following result is a particularly useful tool for reducing the number of cases

for later results.

Proposition 3.2.1. Let A be a Brauer configuration algebra associated to a Brauer

configuration χ and suppose there exists an n-gon x in χ with n > 2. Suppose either

x is self-folded or x is locally of the form

· · ·

χ′ χ′′
u v

where χ′ and χ′′ are subconfigurations of χ that both contain a cycle or a vertex of

multiplicity strictly greater than 1. Then A is wild.

Proof. Given a simple path of polygons passing through vertices u1, . . . , un in a

Brauer configuration χ, one can construct a string by alternating between the

arrows around the vertices u2i and the formal inverses of arrows around the vertices

u2i+1. If a Brauer configuration contains two vertices of multiplicity strictly greater

than one, a cycle, or a combination of both cycles and vertices of higher multiplicity,

then this enables one to construct a band. It follows from the proposition statement

that there exists a band b which consists of arrows and formal inverses associated

to either a vertex at which x is self-folded, or to the vertices u and v connected to x.

Thus there exists a substring αβ of b such that αβ is neither direct nor inverse and

e(α) = x = s(β). This implies that for any band module M associated to b, S(x) is

a direct summand of either topM or socM . Define a family of band modules Mλ

by Mλ = M(b, 1, φλ), where λ ∈ K∗ and φλ : K → K is the automorphism defined

by φλ(a) = λa. Then S(x) is a direct summand of either topMλ or socMλ.

Fix a choice of λ and let

topMλ =
m⊕
i=1

S(xi) and socMλ =
m⊕
i=1

S(x′i).
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Then we note that Mλ has the following module structure.

S(x′m)

U1

S(x1)

V1

S(x′1)

U2

S(x2) · · ·
· · ·

· · ·

S(xm)

Vm

S(x′m)

where the two copies of S(x′m) are identified and Ui and Vi are uniserial modules.

Since Mλ is a band module, none of the modules P (xi) or P (x′j) are uniserial

(otherwise, b would not be a cyclic string). Suppose xi and x′j are such that P (xi)

and P (x′j) are biserial respectively. Then the structure of P (xi) and P (x′j) is

P (xi) :

S(xi)

Ui Vi

S(x′i−1) S(x′i)

U ′i V ′i

S(xi)

and P (x′j) :

S(x′j)

V ′j U ′i+1

S(xj) S(xj+1)

Vj Uj+1

S(x′j)

respectively, where U ′i and V ′i are uniserial modules.

Suppose there exists an integer r such that S(xr) ∼= S(x). Then the structure

of P (xr) is of the form

P (xr) :

S(xr)

Ur Vr

S(x′r−1) S(x′r)

U ′r V ′r

S(xr)

S(y1) · · · S(yn−2)

W1 · · · Wn−2

where Ur, U
′
r, Vr, V

′
r , W1, . . . ,Wn−2 are uniserial modules and y1, . . . , yn−2 are the

successors to x at the other vertices connected to x. It follows that

top Ω(Mλ) ∼=
m⊕
i=1

S(x′i)⊕
n−2⊕
i=1

(S(yi))
t,

where t is the number of direct summands in topMλ that are isomorphic to S(x).
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Define the following non-negative integers.

u =
m∑
i=1

dim(Uiεx), u′ =
m∑
i=1

dim(U ′iεx),

v =
m∑
i=1

dim(Viεx), v′ =
m∑
i=1

dim(V ′i εx),

k =
n−2∑
i=1

dim(S(yi)εx), w =
n−2∑
i=1

dim(Wiεx),

t = dim((topMλ)εx), s = dim((socMλ)εx).

Then we have

dim(Mλεx) = t+ u+ v + s,

dim(Ω(Mλ)εx) =
m∑
i=1

dim(P (xi)εx)− dim(Mλεx)

= 2t+ u+ v + 2s+ u′ + v′ + tk + tw − dim(Mλεx)

= t+ s+ u′ + v′ + tk + tw,

dim(Ω2(Mλ)εx) =
m∑
i=1

dim(P (x′i)εx) + t
n−2∑
i=1

dim(P (yi)εx)− dim(Ω(Mλ)εx).

Now

m∑
i=1

dim(P (x′i)εx) = 2s+ u′ + v′ + 2t+ u+ v + sk + sw and

n−2∑
i=1

dim(P (yi)εx) ≥ k + w + n− 2.

So

dim(Ω2(Mλ)εx) ≥ t+ u+ v + s+ sk + sw + t(n− 2)

≥ dim(Mλεx) + sk + sw + t(n− 2) > dim(Mλεx)

if t > 0. Thus, if S(x) is a direct summand of topMλ, then Mλ 6∼= Ω2(Mλ) = τMλ.

Since Mλ describes an infinite family of non-isomorphic indecomposable modules,
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we conclude in this case that the algebra A must be wild by the contrapositive of

Theorem 1.1.25.

The proof for the case where S(x) is a direct summand of socMλ is similar. Since

A is symmetric, we simply compute Ω−2(Mλ) ∼= τ−1Mλ and note that Mλ 6∼= τ−1Mλ

implies Mλ 6∼= τMλ.

Example 3.2.2. Let A1, A2, A3 and A4 be Brauer configuration algebras associated

to the following Brauer configurations.

χ1 :

v1 v2

χ2 :

χ3 :

v3

χ4 :

α1 α2

β1

β2

γ1

γ2

γ3

γ4 δ1

δ2
δ3 δ4

δ5

δ6

where evi > 1 for each i ∈ {1, 2, 3} and all other vertices have multiplicity 1. The

following are examples of the bands used in Proposition 3.2.1. For A1, we have

α1α
−1
2 . For A2, we have β1β

−1
2 . For A3, we have γ1γ

−1
4 γ3γ

−1
2 .For A4, we have

δ1δ
−1
2 δ3δ

−1
6 δ5δ

−1
4 .

Theorem 3.2.3. Let A be a Brauer configuration algebra. If A is tame then A is

at most quadserial. In particular, A is a tame symmetric special quadserial algebra

if and only if A is given by the Brauer configuration

in which every vertex has multiplicity one.

Proof. We first note that the quadserial Brauer configuration algebra presented in

the theorem is a tame radical cube zero algebra from the classification in [13]. So
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suppose instead that χ is a Brauer configuration not of the above form and there

exists an n-gon x with n > 3 in χ. It follows from Proposition 3.2.1 that A is tame

only if x is not self-folded at any vertex connected to x. We shall therefore assume

that u 6= v for all u, v ∈ x. There are multiple cases to consider in the proof.

Case 1: Suppose there exists a vertex v ∈ x such that val(v) = 1. Then it

follows from the definition of a Brauer configuration that ev > 1. We will show

that A is wild in this case. We may assume that eu = 1 for all vertices u 6= v

in χ, and that χ is a tree, since A would otherwise be wild by Proposition 3.2.1.

Now choose a 4-tuple (v, u2, u3, u4) of distinct vertices connected to x. Let α be the

arrow (which is a loop in the quiver) generated by the vertex v and let β, γ and

δ be the arrows of source x such that e(β) = y2, e(γ) = y3 and e(δ) = y4 are the

successors to x at the vertices u2, u3 and u4 respectively. Let Mλ be the family of

circle modules defined in Example 3.1.3.

Note that there are two copies of S(x) in topMλ and one copy of S(x) in socMλ.

We further note that P (x) has the following structure

P (x) :

S(x)

S(x)
S(y2)S(y3)S(y4)S(z1) · · · S(zm)

...

S(x)
Y2 Y3 Y4 Z1 · · · Zm

S(x)

where the Yi and Zi are all uniserial modules. It follows from the structure of P (x)

and the structure of Mλ that

S(x)⊕
4⊕
i=2

S(yi) ⊆ top Ω(Mλ).

To show that Case 1 is wild, we will calculate the y2 entry of the dimension

vector of Ω2(Mλ), although the following calculations also hold for any yi. Since

we have assumed that χ is a tree and eu = 1 for any vertex u 6= v, we have
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dim(Ziεy2) = dim(S(zi)εy2) = dim(Yiεy2) = 0 for all i. So

dim(Ω(Mλ)εy2) = 2 dim(P (x)εy2)− dim(Mλεy2) = 2− 1 = 1

dim(Ω2(Mλ)εy2) ≥ dim(P (x)εy2) +
4∑
i=2

dim(P (yi)εy2)− dim(Ω(Mλ)εy2)

≥ 1 + 2− 1 = 2 > dim(Mλεy2).

Thus, τ(Mλ) = Ω2(Mλ) 6∼= Mλ. Since Mλ describes an infinite family of non-

isomorphic indecomposable modules, we conclude in this case that the algebra A

must be wild by the contrapositive of Theorem 1.1.25.

Case 2: Now assume that there is no vertex v ∈ x such that val(v) = 1. Note

that in this case, we cannot make the assumption that χ is a tree. Choose a 4-tuple

(u1, u2, u3, u4) of distinct vertices connected to x. Let α, β, γ and δ be the arrows of

source x such that e(α) = y1, e(β) = y2, e(γ) = y3 and e(δ) = y4 are the successors

to x at the vertices u1, u2, u3 and u4 respectively. Let Mλ be the family of circle

modules defined in Example 3.1.2. We have various subcases to consider.

Case 2a: Suppose |x| > 4. Then P (x) is of the form

P (x) :

S(x)

S(z1) · · · S(zm)

Z1 · · · Zm

S(x)

S(y1)S(y2)S(y3)S(y4)

Y1 Y2 Y3 Y4

where m > 0 and the Yi and Zi are all uniserial modules. We note in this case that

there are two copies of each S(zi) in top Ω(Mλ) and that soc Ω(Mλ) = S(x)⊕S(x).

Since socP (zi) = S(zi) for all i, there must exist a copy of S(zi) in soc Ω2(Mλ).

Thus, τ(Mλ) 6∼= Mλ for any λ ∈ K∗, and so A is wild.

Case 2b: Suppose |x| = 4 and that there exists an integer r such that yr is not

uniserial. Then P (yr) has the following structure.
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P (yr) :

S(yr)

S(yr)

Yr
V1 · · · Vn

S(x)

where Yr, V1, . . . , Vm are uniserial. We note that radP (yr)/ socP (yr) contains a

direct summand which is a uniserial submodule of P (x). This is precisely the

module with top isomorphic to topYr and socle isomorphic to S(x) presented in

the structure of P (yr) above. We further note that no other direct summand of

radP (yr)/ socP (yr) is a submodule of P (x). Since topMλ = S(x) ⊕ S(x) and

S(yr) is a direct summand of top Ω(Mλ), it follows that for each i, topVi is a direct

summand of top Ω2(Mλ). Thus, τ(Mλ) 6∼= Mλ for any λ ∈ K∗, and so A is wild by

the contrapositive of Theorem 1.1.25.

Case 2c: Suppose that |x| = 4, that every yi is such that P (yi) is uniserial, and

that for some r, we have rad3 P (yr) 6= 0. We will calculate τ−1Mλ in this case, as

it is a simpler calculation. Let v be the vertex connected to x and yr. Let z be the

predecessor to x at v and let ai = dim(Yiεz). Then ar ≥ 1. If ai > 0 for some i 6= r,

then this implies that there exists a polygon connecting two distinct vertices of x,

which induces a cycle. This implies A is wild by Proposition 3.2.1, so assume that

this is not the case. Similarly, we have dim(S(yi)εz) = 0 for all i 6= r. Note that

soc Ω−1(Mλ) = S(x)⊕ S(x). So

dim(Ω−1(Mλ)εz) =
4∑
i=1

dim(P (yi)εz)− dim(Mλεz)

= 2 dim(S(yr)εz) + ar − dim(S(yr)εz)

= dim(S(yr)εz) + ar

dim(Ω−2(Mλ)εz) ≥ 2
4∑
i=1

dim(P (x)εz)− dim(Ω−1(Mλ)εz)

≥ 2 (dim(S(yr)εz) + ar)− (dim(S(yr)εz) + ar)

≥ dim(S(yr)εz) + ar
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≥ dim(Mλεz) + 1 > dim(Mλεz).

Thus, τ−1(Mλ) 6∼= Mλ for any λ ∈ K∗. Hence, τ(Mλ) 6∼= Mλ for any λ ∈ K∗, and so

A is wild by the contrapositive of Theorem 1.1.25.

In conclusion, if A is not wild, then χ does not contain a polygon x with |x| > 4.

If χ contains a polygon x with |x| = 4, then x is not self-folded and no vertex

incident to x has valency one. Each vertex must therefore have an edge yi 6= x

incident to it. Moreover, every edge yi incident to x must be such that P (yi) is

uniserial and rad3 P (yi) = 0. Thus, χ is precisely the Brauer configuration

in which every vertex has multiplicity one, which is known to be associated to a

tame algebra.

3.3 Symmetric Special Triserial Algebras Derived

Equivalent to the Trivial Extension of a Hered-

itary Algebra

Throughout this section, we will assume that A is a symmetric special triserial

algebra. That is, A is a Brauer configuration algebra associated to a configuration

χ such that for any polygon x in χ, we have |x| ≤ 3.

We aim to prove the following Theorem.

Theorem 3.3.1. Let A = KQ/I be a Brauer configuration algebra associated to a

Brauer configuration χ. Suppose χ is of the form
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T1

T2

T3

where T1, T2 and T3 are distinct multiplicity-free Brauer trees containing m1, m2

and m3 polygons respectively. Suppose further that at least two of m1, m2 and m3

are strictly greater than 1. Then A is tame if and only if the values of the unordered

triple (m1,m2,m3) conform to a column of the following table.

m1 1 1 1 1 1 2

m2 2 2 2 2 3 2

m3 2 3 4 5 3 2

The columns of the above table correspond to the Dynkin and Euclidean di-

agrams of type Ep and Ẽp (p ∈ {6, 7, 8}). The first step of the proof is to show

that any algebra of the above form is derived equivalent to a Brauer configuration

algebra Ã associated to a Brauer configuration of the form

...

· · ·

... m1 edges

m2 edges

m3 edges

}
︷ ︸︸ ︷

{

This is essentially Rickard’s Brauer Star Theorem [46, Theorem 4.2] applied to

Brauer configuration algebras. By the results of [34], we then know that Ã is the

trivial extension of a hereditary algebra KQ′, where Q′ is a quiver of the form

Q′ :

· · ·

...

· · · ︸ ︷︷ ︸


︸ ︷︷ ︸
m2 arrows

m1 arrowsm3 arrows

Under the assumption that at least two of m1, m2 and m3 are strictly greater

than 1, Ã = T (KQ′) is tame if and only if the triple (m1,m2,m3) conforms to a
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column in the table of Theorem 3.3.1, in which case, Q′ is an orientation of Ep or

Ẽp (p ∈ {6, 7, 8}). In fact, the algebra Ã is either of finite representation type [55,

Theorem 1.4] or is representation-infinite domestic [6].

Many details of the proof for [46, Theorem 4.2] carry over to the multiserial

case. However, for the benefit of the reader, we will run through the full details of

the proof here.

3.3.1 Initial assumptions

We will later need to use the results in this section for a slightly broader class of

symmetric special triserial algebras. Thus, we will outline precisely what assump-

tions we are making in the construction of the tilting complex that follows.

Assumption 3.3.2. Let A = KQ/I be any Brauer configuration algebra associated

to a Brauer configuration χ. Assume the following.

(i) χ is a tree.

(ii) χ contains precisely one 3-gon and no n-gons with n > 3.

(iii) At most one vertex of χ has a multiplicity strictly greater than one.

Assumptions (ii) and (iii) are mainly for the purposes of simplicity, as we do not

need to consider other cases. The construction that follows can be adapted to an

algebra where assumptions (ii) and (iii) do not hold. We will use these assumptions

to prove the following.

Proposition 3.3.3. Let A be a Brauer configuration algebra associated to a config-

uration χ satisfying Assumption 3.3.2(i), (ii) and (iii). Let x be the unique 3-gon

of χ under Assumption 3.3.2(ii) and suppose χ contains a subtree χ′ of the form

χ′ :
y1

y2

...

yval(u)

u u′
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such that y2, . . . , yval(u) are truncated, y1 6= x and eu = eu′ = 1. Let y1, y
′
2, . . . , y

′
val(u′)

be the successor sequence of y1 at u′. Then A is derived equivalent to a Brauer

configuration algebra associated to a Brauer configuration χ̃ such that

χ̃ = χ \ {y2, . . . , yval(u)} ∪ {ỹ2, . . . , ỹval(u)},

where ỹ2, . . . , ỹval(u) are truncated edges connected to u′ in χ̃, every vertex in χ̃ has

the same multiplicity as its corresponding vertex in χ, and the successor sequence

of y1 at u′ in χ̃ is

y1, ỹ2, . . . , ỹval(u), y
′
2, . . . , y

′
val(u′).

3.3.2 The maps between indecomposable projective mod-

ules

We will begin by investigating the morphisms between the indecomposable projec-

tive modules in A. We have the following remark from Rickard, which is a trivial

consequence of the multiserial nature of the indecomposable projective modules.

Remark 3.3.4 ([46],Remark 4.1). Let x and y be distinct polygons in a Brauer

configuration χ satisfying Assumption 3.3.2.

(a) If x and y have no common vertex, then dimK HomA(P (x), P (y)) = 0. Other-

wise, dimK HomA(P (x), P (y)) = eu, where u is the (unique) vertex common

to x and y.

(b) Suppose x is connected to the vertex v in χ such that ev > 1. Then

dimK EndA(P (x)) = ev + 1.

Otherwise, dimK EndA(P (x)) = 2.

It will later be convenient to know the maps between indecomposable projective

modules associated to consecutive polygons in the cyclic ordering at any vertex in

χ in detail.
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Remark 3.3.5. If y is the direct predecessor to x at some vertex in χ, then S(x) ⊆

top(radP (y)). Thus, the canonical surjection of P (x) into the maximal uniserial

submodule V ⊂ P (y) with topV = S(x) is a basis element of HomA(P (x), P (y)).

Lemma 3.3.6. Let A be a Brauer configuration algebra associated to a Brauer

configuration χ such that χ is a tree with at most one vertex v′ with multiplicity

strictly greater than one. Let x1 be a polygon connected to a non-truncated vertex

v in χ. If x1 is connected to v′ then let v = v′ (otherwise, v may be any other non-

truncated vertex). Let x1, . . . , xval(v) be the successor sequence of x1 at v. Denote

by fj the basis element of Hom(P (xj+1), P (xj)) given in Remark 3.3.5. Let g =

f1 . . . fval(v).

(a) {idP (x1), g, g
2, . . . , gev} is a basis for EndA(P (x1)).

(b) Let h ∈ HomA(P (xr), P (x1)) be the map h = f1 . . . fr−1. Then

{h, gh, . . . , gev−1h}

is a basis for HomA(P (xr), P (x1)) when r 6= 1.

Proof. First note that fj is the canonical surjection of P (xj+1) into the unise-

rial submodule Vj ⊆ radP (xj) such that Vj is also a quotient of radP (xj). It

follows that fj−1fj is equivalent to the canonical surjection of P (xj+1) into the

uniserial submodule Vj−1 ⊆ rad2 P (xj−1) such that Vj−1 is also a quotient of

rad2 P (xj−1). This follows since topP (xj) ⊆ radP (xj−1)/ rad2 P (xj−1), S(xj+1) ⊆

rad2 P (xj−1)/ rad3 P (xj−1), and topP (xj) ⊆ Coker fj. Using this argument itera-

tively, we can see that the map fj−n . . . fj is equivalent to the canonical surjection

of P (xj+1) into the uniserial submodule Vj−n ⊆ radn+1 P (xj−n) such that Vj−n is

also a quotient of radn+1 P (xj−n).

(a) Let

U1 ⊂ U2 ⊂ . . . ⊂ Uev ⊂ P (x1)

be the chain of uniserial submodules of P (x1) such that topUi = S(x1) for all

i. Note that EndA(P (x1)) has a basis {idP (x1), b1, . . . , bev}, where each bi is the
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canonical surjection of P (x1) into Ui. It follows from the structure of P (x1) that

for each i ≤ ev, S(x1) is a direct summand of top(rad(ev−i+1) val(v) P (x1)). Thus,

Im bi = Ui is a quotient of rad(ev−i+1) val(v) P (x1). Hence,

bi = (f1 . . . fval(v))
ev−i+1 = gev−i+1

by the arguments above. So

{idP (x1), b1, . . . , bev} = {idP (x1), g1, . . . , gev},

as required.

(b) Now instead let

U1 ⊂ U2 ⊂ . . . ⊂ Uev ⊂ P (x1)

be the chain of uniserial submodules of P (x1) such that topUi = S(xr) for all i.

Then HomA(P (xr), P (x1)) has a basis {b1, . . . , bev}, where each bi is the canonical

surjection of P (x1) into Ui. Note that for each i ≤ ev, S(xr) is a direct summand of

top(rada P (x1)), where a = (ev − i) val(v) + r− 1. So Ui is a quotient of rada P (x1)

and thus,

bi = f1 . . . fr−1(fr . . . fval(v)f1 . . . fr−1)ev−i = (f1 . . . fval(v))
ev−if1 . . . fr−1 = gev−ih,

as required.

Remark 3.3.7. Note that the condition in Lemma 3.3.6 that v is the vertex of higher

multiplicity if x1 is connected to such a vertex is only necessary for part (a) of the

Lemma. Part (b) of the lemma applies to any other vertex connected to x1.

3.3.3 Construction of the tilting complex

Let x be the unique 3-gon of χ under Assumption 3.3.2(ii). Suppose χ contains a

subtree χ′ of the form
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χ′ :
y1

y2

...

yval(u)

u u′

such that y2, . . . yval(u) are truncated, y1 6= x and eu = eu′ = 1.

For the polygon y1 in χ′, define a stalk complex

T (y1) : 0 //P (y1) //0 ,

where P (y1) is in degree zero. For every other polygon yi in χ′, define a complex

T (yi) : 0 //P (y1)
fi //P (yi) //0 ,

where the P (y1) term is in degree zero. Note that by Remark 3.3.4, such a complex

is unique up to isomorphism in Kb(projA). For every other polygon z in χ (that

is, for any polygon z not in χ′), we define a stalk complex

T (z) : 0 //P (z) //0 ,

where P (z) is in degree zero. Then define T =
⊕

x∈Q0
T (x). Note that for any i 6= 1,

we have εyiAεzA = 0 whenever z 6= yj for any j. Moreover, P (y1) = P (εyiAεy1A)

for all i 6= 1, since each P (yi) is uniserial. Thus, T is an Okuyama-Rickard tilting

complex.

3.3.4 The maps between the direct summands of T

We aim to calculate EndKb(projA)(T ). For maps between stalk complexes, this can

simply be viewed as a map between indecomposable projective modules. We will

investigate the morphisms in HomKb(projA)(T (yi), T (yj)).

Suppose j < i. Then by Lemma 3.3.6(b), any map fj ∈ HomA(P (y1), P (yj))

can be written as a map fj = hfi, where fi ∈ HomA(P (y1), P (yi)). Thus, given a
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morphism

0 // P (y1)
fi //

g0

��

P (yi) //

g1

��

0

0 // P (y1)
fj // P (yj) // 0

,

we can see that dimK HomKb(projA)(T (yi), T (yj)) ≤ 2. Namely,

HomKb(projA)(T (yi), T (yj)) = span{(idP (y1), h), (t1, 0)},

where t1 ∈ EndA(P (y1)) maps an element from topP (y1) to socP (y1). But (t1, 0) '

0, since any map in EndA(P (y1)) that factors through fi is a scalar multiple of t1 and

any map in HomA(P (yi), P (yj)) that factors through fj is zero (by the assumption

that eu = 1). So dimK HomKb(projA)(T (yi), T (yj)) = 1.

Now suppose j > i. Then for any map g1 ∈ HomA(P (yi), P (yj)), the composi-

tion g1fi factors through the map t1. Such a factorisation is non-trivial, so g1fi = 0.

So

HomKb(projA)(T (yi), T (yj)) = span{(t1, 0), (0, g1)},

In addition, there exists a map h ∈ HomA(P (yi), P (y1)) such that hfi = t1 and

g1 = fjh. So (t1, 0) ' (0,−g1). Hence,

dimK HomKb(projA)(T (yi), T (yj)) = 1.

Now suppose i = j. Then

EndKb(projA)(T (yi)) = span{(idP (y1), idP (yi)), (t1, 0), (0, ti)},

where ti ∈ EndA(P (yi)) maps an element from topP (yi) to socP (yi). In fact,

(t1, 0) ' (0,−ti), since there exists a map h ∈ HomA(P (yi), P (y1)) such that t1 =

hfi and ti = fih. Moreover, (t1, 0) 6' (idP (y1), idP (yi)), since for any morphism

h : P (yi)→ P (y1), we have fih 6= λ idP (yi) for any λ 6= 0. Thus,

dimK EndKb(projA)(T (yi)) = 2.



3. TAME AND WILD SYMMETRIC SPECIAL MULTISERIAL ALGEBRAS106

Lemma 3.3.8. Let y1, y
′
2, . . . , y

′
val(u′) be the successor sequence of y1 at u′. For all

1 ≤ i < val(u), let αi : T (yi+1) → T (yi) denote the morphism such that the degree

zero map is the identity. Let αval(u) : T (y′2) → T (yval(u)) denote the morphism

such that the degree zero map is the basis element of HomA(P (y′2), P (y1)) given

in Remark 3.3.5. Finally, for all 2 ≤ i ≤ val(u′), let αval(u)+i−1 : T (y′i+1) →

T (y′i) denote the morphism such that the degree zero map is the basis element of

HomA(P (y′i+1), P (y′i)) given in Remark 3.3.5, where y′val(u′)+1 := y1. For any 1 ≤

i, j < val(u) + val(u′), consider the vector space HomKb(projA)(T (zi), T (zj)), where

zk = yk if k ≤ val(u), zk = y′k−val(u)+1 if val(u) < k < val(u) + val(u′) and

zval(u)+val(u′) = z1 = y1.

(a) For all j < i, {αjαj+1 . . . αi−1} is a basis for HomKb(projA)(T (zi), T (zj)).

(b) For all j > i,

{αjαj+1 . . . αval(u)+val(u′)−1α1 . . . αi−1}

is a basis for HomKb(projA)(T (zi), T (zj)).

(c) A basis for EndKb(projA)(T (zj)) is

{idT (zj), αjαj+1 . . . αval(u)+val(u′)−1α1 . . . αj−1}.

Proof. (a) For val(u) < j < i ≤ val(u) + val(u′), this follows from Lemma 3.3.6(b),

since T (zi) and T (zj) are stalk complexes. A similar argument for holds for val(u) <

i < val(u) + val(u′) and j = val(u) when considering the maps between degree zero

terms.

For 1 < j < i ≤ val(u), it follows from the reasoning at the start of this

subsection that the degree zero map is the identity and the degree −1 map is in

the space HomA(P (i), P (j)). Thus, the result again follows from Lemma 3.3.6(b)

when considering the degree −1 maps. For 1 < i ≤ val(u) and j = 1. The de-

gree zero map is either the identity map or the map t1 : topP (y1) → socP (y1).

But by Lemma 3.3.6(a), t1 factors through a map in HomA(P (y1), P (yi)). So

any morphism in HomKb(projA)(T (yi), T (y1)) with degree zero map t1 is homo-
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topic to zero. If the degree zero map is instead the identity then any morphism

in HomKb(projA)(T (yi), T (y1)) is equal to the composition of some morphism in

HomKb(projA)(T (yi), T (y2)) with the morphism α1. By considering Lemma 3.3.6(b)

on the degree −1 terms, the result follows.

(b) The arguments used in the proof for (a) form a cycle of maps. The proof

for (b) is hence similar.

(c) If f ∈ EndKb(projA)(T (zj)) is a non-identity map, then the degree zero map

must be a map from the top to the socle of the projective module in degree zero. By

Lemma 3.3.6(a), this is equivalent to a cycle of maps between the indecomposable

projective modules corresponding to the polygons around the vertex u′. The result

then follows from the proof of (a) and (b).

Lemma 3.3.9. Define the following set of pairs of vertices and connected polygons

in χ.

Z = {(v, z)|v ∈ z ∈ χ1 such that v is non-truncated, v 6= u′ and z 6= yi for all i}

Let (v, z) ∈ Z and let z′ be the successor to z at v. Denote by βv,z the mor-

phism in HomKb(projA)(T (z′), T (z)) whose degree zero map is the basis element of

HomA(P (z′), P (z)) given in Remark 3.3.5. Then

〈
α1, . . . , αval(u)+val(u′)−1, βv,z

〉
(v,z)∈Z = EndKb(projA)(T ),

where α1, . . . , αval(u)+val(u′)−1 are as in Lemma 3.3.8.

Proof. This is a trivial consequence of both Lemma 3.3.6(b) and Lemma 3.3.8.

3.3.5 The relations of the endomorphism algebra of T

We will now explicitly calculate the algebra EndKb(projA)(T ) = KQ̃/Ĩ. By Lemma 3.3.9,

the arrows of Q̃ are given by the maps α1, . . . , αval(u)+val(u′)−1 and (βv,z)(v,z)∈Z . It

remains to calculate the relations that generate Ĩ.
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Lemma 3.3.10. Suppose a polygon z of χ is connected to non-truncated vertices

v, v′ 6∈ {u, u′}. Let z = z1, . . . , zval(v) and z = z′1, . . . , z
′
val(v′) be the successor se-

quences of z at v and v′ respectively. Then

(a) (βv,z1 . . . βv,zval(v))
ev = (βv′,z′1 . . . βv′,z′val(v′))

ev′ 6= 0.

(b) βv,zval(v)βv′,z′1 = 0 and βv′,z′
val(v′)

βv,z1 = 0.

If z is instead connected to only one non-truncated vertex v, then

(c) (βv,z1 . . . βv,zval(v))
evβv,z1 = 0.

Proof. (a) Since all morphisms are maps between stalk complexes, this is a trivial

consequence of Lemma 3.3.6(a). Namely, (βv,z1 . . . βv,zval(v))
ev is the morphism such

that the degree zero map corresponds to the basis element of EndA(P (z1)) that

maps topP (z1) to socP (z1). The same is true for (βv′,z′1 . . . βv′,z′val(v′))
ev′ .

(b) This follows from Remark 3.3.4(a), since this corresponds a map between the

indecomposable projective modules of two polygons that have no common vertex.

(c) Similar to (a), (βv,z2 . . . βv,zval(v)βv,z1)
ev maps topP (z2) to socP (z2). But

socP (z2) is in the kernel of the degree zero map of βv,z1 . Thus, the result follows.

Lemma 3.3.11. Suppose a polygon z1 of χ is connected to a non-truncated vertex

v′ ∈ {u, u′}. Suppose z1 is connected to another non-truncated vertex v 6∈ {u, u′, v′}

and let z1, . . . , zval(v) be the successor sequence of z1 at v. Suppose T (z1) is the

domain of a map αr from Lemma 3.3.8 and let

Cr = αrαr+1 . . . αval(u)+val(u′)−1α1 . . . αr−1.

Then

(a) (βv,z1 . . . βv,zval(v))
ev = Cr 6= 0.

(b) αr−1βv,z1 = 0 and βv,zval(v)αr = 0.

Suppose instead that there is no non-truncated vertex v 6∈ {u, u′, v′} connected to

z1. Then
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(c) Crαr = 0.

Proof. The degree zero map of Cr corresponds to a non-identity map in EndA(P (z1)).

Thus, the degree zero map of Cr maps topP (z1) to socP (z1). It follows from the

calculations in Subsection 3.3.4 that if T (z1) is not a stalk complex, then Cr is

equivalent in Kb(projA) to a morphism in which the map in degree −1 is zero.

The proofs to (a), (b) and (c) are then similar to the corresponding proofs in

Lemma 3.3.10.

Every arrow of Q̃ belongs to either a cycle of the form βv,z1 . . . βv,zval(v) for

some non-truncated vertex v in χ or belongs to the cycle Cr. The only possi-

ble paths in Q̃ that are non-zero are subpaths of the paths in Lemma 3.3.10(a)

and Lemma 3.3.11(a). One can see that there are no further relations in Ã, since

otherwise these maps would be zero. Furthermore, these are precisely the relations

of the (opposite) Brauer configuration algebra associated the Brauer configuration

χ̃ in Proposition 3.3.3, thus proving the proposition by Theorem 1.1.17 (since the

algebra is symmetric).

3.3.6 The proof of Theorem 3.3.1

Proposition 3.3.12. Let A be a Brauer configuration algebra associated to a

Brauer configuration χ of the form

χ′

χ′′

χ′′′
v1

v2

v3

where χ′, χ′′ and χ′′′ are subconfigurations of χ. Suppose χ is a tree with precisely

one 3-gon and at most one vertex v such that ev > 1. If such a vertex exists,

then suppose v is in χ′. Suppose further that χ′, χ′′ and χ′′′ contain m1, m2 and

m3 polygons respectively. Then A is derived equivalent to a Brauer configuration

algebra associated to the following Brauer configuration.
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· · ·

...

m2 edges

m3 edges

︷ ︸︸ ︷
{

χ′

where χ′ is as in χ. If in particular, χ has no vertex v such that ev > 1, then A

is derived equivalent to a Brauer configuration algebra associated to the following

Brauer configuration.

...

· · ·

... m1 edges

m2 edges

m3 edges

}
︷ ︸︸ ︷

{

Proof. Using Proposition 3.3.3 iteratively on the truncated edges attached to non-

truncated 2-gons, the result follows.

By the reasoning at the start of this section, the above proposition proves The-

orem 3.3.1. We actually obtain some further results regarding Brauer configuration

algebras of finite representation type.

Corollary 3.3.13. Let A be the Brauer configuration algebra associated to the

configuration χ in Theorem 3.3.1. Then A is of finite representation type if and

only if the unordered triple (m1,m2,m3) conforms to a value in the following table.

m1 1 1 1

m2 2 2 2

m3 2 3 4

Proof. A is derived equivalent to the trivial extension of a hereditary path algebra

KQ′, where Q′ is an orientation of Ep for some p ∈ {6, 7, 8}. By [55, Theorem 1.4],

A is then representation-finite. All other values in the table of Theorem 3.3.1 give

rise to representation-infinite algebras by [6].
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Corollary 3.3.14. Let A be a Brauer configuration algebra associated to a multiplicity-

free Brauer configuration of the form

T

where T is a Brauer tree. Then A is of finite representation type.

Proof. Proposition 3.3.12 implies that A is derived equivalent to a Brauer configu-

ration algebra associated to a Brauer configuration of the following form.

... n edges

}

This is the trivial extension of a hereditary path algebra KQ′, where Q′ is an

orientation of Dn. Thus, A is representation-finite by [55, Theorem 1.4].



Chapter 4

Wild Symmetric Special Triserial

Algebras

In this chapter, we investigate the representation type of symmetric special triserial

algebras with the aim of providing a description of the Brauer configuration algebras

containing 3-gons that are wild. Ultimately, this leads us to the proof of the Main

Theorem at the end of the Introduction. Building on the work of Chapter 3, there is

one final class of symmetric special triserial algebras to consider in the main proof.

Theorem. Let A be a symmetric special triserial algebra associated to a Brauer

configuration χ. Suppose χ is not of any form given in Theorem 3.3.1. Suppose χ

is also not of the form

G

u1

u2

u3

ur−1

ur

v1

v′1
w1

w′1

v2

v′2

w2w′2

v3
v′3

w3

w′3

vr−1

v′r−1

wr−1

w′r−1

vr v′r

wr

w′r

where G is a Brauer graph connecting the (not necessarily distinct) vertices u1, . . . , ur

and evi = ev′i = ewi = ew′i = 1 for all i. Then A is wild.

112
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The proof of the above is fairly involved. We begin in Section 4.1 by considering

the case where there exists a cycle or vertex of multiplicity strictly greater than one

in χ. We then show that every 3-gon in χ must locally be of the same form as each

of the 3-gons in the above theorem. To do this, we construct a representation em-

bedding from the category finK〈a1, a2〉 to the module category of a wild hereditary

algebra KQ′. We then construct another functor which takes the indecomposable

representations of KQ′ and, informally speaking, folds them onto the quiver of the

Brauer configuration algebra A. The composite of these two functors is then a

representation embedding finK〈a1, a2〉 → modA, which proves A is wild.

The other case to consider is where we assume that there is more than one

3-gon in χ. This case is addressed in Section 4.2. For this, we show that the Brauer

configuration algebra A = KQ/I contains a wild subquiver Q′, and we describe a

strict representation embedding modKQ′ → modA.

4.1 Brauer Configurations with Cycles or Multi-

plicities

The aim of this section is to prove the following proposition.

Proposition 4.1.1. Let A be a Brauer configuration algebra associated to a Brauer

configuration χ. Suppose χ contains a 3-gon x. Suppose further that χ contains a

cycle or a vertex v such that ev > 1. If χ is not of the form

χ′x

where χ′ is a subconfiguration of χ and all vertices except those in χ′ have multi-

plicity one, then A is wild.

To prove this, we will explicitly construct a representation embedding H :

finK〈a1, a2〉 → modA. The construction is fairly involved, so we will provide

examples throughout. Before we proceed, we need the following lemma.
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Lemma 4.1.2. Let A = KQ/I be a Brauer configuration algebra associated to a

Brauer configuration χ. Suppose χ contains a 3-gon x connected to pairwise distinct

vertices v1, v2 and v3 that is locally of the form

χ′

χ′′

χ′′′
v1

v2

v3

where χ′, χ′′ and χ′′′ are pairwise disjoint subconfigurations of χ. Suppose further

that χ′ contains a cycle or a vertex u such that eu > 1. Then there exists a string

w = α1 . . . αn such that ŝ(α1) = xv1 = ê(αn) and α1, αn ∈ Q1.

Proof. Case 1: Suppose χ′ contains a vertex u such that eu > 1. If u = v1 then

the required string is a direct string of source and target x. Otherwise, since χ is

connected, there exists a simple path

p : v1 = u0
y1

u1
y2

u2 · · · um−1
ym

um = u.

between the vertices v1 and u, consisting of polygons yi in χ′. Set y0 := x and let

w(i,+) be the direct string of minimal length with first symbol βi and last symbol γi

such that ŝ(βi) = yuii and ê(γi) = yuii+1. Similarly, let w(i,−) be the direct string of

minimal length with first symbol δi and last symbol ζi such that ŝ(δi) = yuii+1 and

ê(ζi) = yuii . Finally, let w′ be the direct string of minimal length with first symbol

η and last symbol ξ such that ŝ(η) = yumm = ê(ξ). If m is of even length, then the

required string is

w = w(0,+)w
−1
(1,−) . . . w(m−2,+)w

−1
(m−1,−)w

′w−1
(m−1,+)w(m−2,−) . . . w

−1
(1,+)w(0,−).

If m is of odd length, then the required string is instead

w = w(0,+)w
−1
(1,−) . . . w(m−1,+)(w

′)−1w(m−1,−) . . . w
−1
(1,+)w(0,−).

Case 2: Suppose χ′ contains a cycle c. Then there again exists a simple path



4. WILD SYMMETRIC SPECIAL TRISERIAL ALGEBRAS 115

p of the same form as in Case 1, where u is a vertex connected to the cycle c. We

choose p such that no vertex ui is a vertex of c for i < m. By considering c as

a path, similar arguments to those used in Case 1 on the path p show that there

exists a string w′ (that is neither direct nor inverse) with first symbol η ∈ Q1 and

last symbol ξ ∈ Q1 such that ŝ(η) = yumm = ê(ξ) – one can show that w′ has arrows

and formal inverses that start and end on each polygon of c once if c is of even

length, and twice if c is of odd length. The required string is then of the same form

as in Case 1.

Examples 4.1.3. Let A1, A2, A3 and A4 be Brauer configuration algebras associ-

ated to the following respective Brauer configurations.

χ1 :
α1

α2

α3

α4

α5α6α7

α8

χ2 :

β1

β2
β3

β4

β5

β6

β7
β8

β9

χ3 :

γ1

γ2

γ3

γ4

γ5

χ4 :

δ1 δ2

δ3

δ4

The circled vertex in χ1 has multiplicity strictly greater than one. We will describe

the strings presented in the proof of Lemma 4.1.2 for each algebra. For A1, we

have the string w1 = α1α
−1
2 α3α4α

−1
5 α−1

6 α−1
7 α8. For A2, we have the string w2 =

β1β
−1
2 β3β

−1
4 β5β

−1
6 β7β

−1
8 β9. For A3, we have the string w3 = γ1γ

−1
2 γ3γ

−1
4 γ5. Finally,

for A4, we have the string w4 = δ1δ2δ
−1
3 δ4.

Remark 4.1.4. Let v be a vertex in χ′′ ∪ χ′′′. Then no symbol αi of the string w

constructed in the above proof is such that αi or α−1
i is an arrow in Cv.

For the construction that follows, we will make the following additional assump-

tion.

Assumption 4.1.5. Let A = KQ/I be the Brauer configuration algebra and w =
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α1 . . . αn be the string from Lemma 4.1.2. Assume that both χ′′ and χ′′′ are

multiplicity-free trees and that χ′′′ contains at least two distinct polygons.

Consider the wild acyclic graph

−3
β′1

n+ 3

Xn : 0
α′1 · · · α′n

n

β′2

γ′2
(n > 0)

−2
δ′1 −1

γ′1

n+ 1
δ′2

n+ 2.

From the graph Xn, we define a quiver Q′. Let Q′ be a quiver with vertex set

identical to the vertex set of Xn. We define the arrow set of Q′ as follows. We say

that there exists an arrow α′i : i → i + 1 in Q′ whenever αi ∈ Q1 and an arrow

α′i : i← i + 1 in Q′ whenever αi ∈ Q−1
1 . In addition, we have arrows β′1 : 0→ −3,

γ′1 : 0 → −1, β′2 : n ← n + 3 and γ′2 : n ← n + 1 in Q′. If val(v3) > 2 then we say

that there exist arrows δ′1 : −1 → −2 and δ′2 : n + 1 ← n + 2 in Q′. Otherwise if

val(v3) = 2, then we say that there exist arrows δ′1 : −1← −2 and δ′2 : n+1→ n+2

in Q′.

It is easy to see that KQ′ is a finite-dimensional wild hereditary algebra (in fact,

strictly wild). We will explicitly describe a fully faithful representation embedding

F : finK〈a1, a2〉 → modKQ′. Recall that K〈a1, a2〉 is an infinite-dimensional

path algebra associated to a quiver with a single vertex and two loops. Let M =

(M0, λ, µ) be a K-representation of some finite-dimensional K〈a1, a2〉-module M .

That is, M0 is a finite-dimensional vector space and λ, µ ∈ EndK(M0) are K-linear

maps. Define a K-representation FM = ((FM)i, ϕζ′)i∈Q′0,ζ′∈Q′1 of Q′, which is either

of the form

M2
0 bb (

1 λ 0 0
0 0 µ 1

) M2
0

M4
0

(
1 0 1 0
0 1 0 0
0 0 0 1

)
//M3

0

(
1 0 0
0 1 0
0 0 1

)
· · ·

(
1 0 0
0 1 0
0 0 1

)
M3

0

( 1 0 0
0 1 0
1 0 0
0 0 1

)
//M4

0

||

( 1 0
1 0
0 1
0 1

)

bb

( 1 0
0 0
0 1
0 0

)

M0
oo ( 0 1 )

M2
0

||

( 1 0 0 0
0 0 1 0 )

M2
0
oo
( 0

1 )
M0
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if val(v3) > 2, or of the form

M2
0 bb (

λ 1 0 0
0 0 1 µ

) M2
0

M4
0

(
1 0 1 0
0 1 0 0
0 0 0 1

)
//M3

0

(
1 0 0
0 1 0
0 0 1

)
· · ·

(
1 0 0
0 1 0
0 0 1

)
M3

0

( 1 0 0
0 1 0
1 0 0
0 0 1

)
//M4

0

||

( 1 0
1 0
0 1
0 1

)

bb

( 1 0
0 0
0 1
0 0

)

M0

( 0
1 )
//M2

0

||

( 1 0 0 0
0 0 1 0 )

M2
0

( 0 1 ) //M0

if val(v3) = 2. If n = 1 then we simply have a linear map

ϕα′1 =


1 0 0

0 1 0

1 0 0

0 0 1




1 0 1 0

0 1 0 0

0 0 0 1

 =


1 0 1 0

0 1 0 0

1 0 1 0

0 0 0 1

 .

where ϕα′1 is the linear map corresponding to the arrow α′1 ∈ Q′1.

Let N be a K〈a1, a2〉-module with corresponding K-representation (N0, λ
′, µ′).

Then f ∈ HomK〈a1,a2〉(M,N) can be viewed as a K-linear map f0 : M0 → N0

such that λ′f0 = f0λ and µ′f0 = f0µ. Define Ff ∈ HomKQ′(FM,FN) to be

the morphism Ff = (Ff)i∈Q′0 , where each (Ff)i is a block diagonal matrix with

diagonal entires f0. It is easy to verify that this definition satisfies the necessary

commutativity relations for Ff to be a genuine morphism of KQ′-modules.

Lemma 4.1.6. The functor F : finK〈a1, a2〉 → modKQ′ is K-linear, exact and

fully faithful. Hence, F is a strict representation embedding.

Proof. That F is K-linear follows trivially from the definition. It is also easy to see

from the definition that given any morphisms f, g ∈ HomK〈a1,a2〉(M,N), Ff = Fg if

and only if f = g. So F is faithful. To show that F is exact, it is sufficient to show

that KerFf = F (Ker f) and ImFf = F (Im f) for any f ∈ HomK〈a1,a2〉(M,N),

since given any pair of morphisms f, g ∈ HomK〈a1,a2〉(M,N) such that Ker f = Im g,

we have KerFf = ImFg.

We will first calculate KerFf . Let θ : Ker f → M be an inclusion morphism

such that fθ = 0. Note that θ is unique up to the universal property. Since each
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(Ff)i is a block diagonal matrix, we have (KerFf)i = Ker((Ff)i) = (F (Ker f))i

for all i. Moreover, (Fθ)i is an inclusion morphism such that (Ff)i(Fθ)i = 0 for

all i. Thus, for any arrow ζ ′ : i → j in Q′, we have commutative squares of the

following form.

Kerf0

M0

N0

λ̃µ̃

λµ

λ′µ′

θ0

f0

(Kerf0)ri (Kerf0)rj

M ri
0 M

rj
0

N ri
0 N

rj
0

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

(Fθ)i =

(
θ0 0

. . .
0 θ0

) (
θ0 0

. . .
0 θ0

)
= (Fθ)j

(Ff)i =

(
f0 0

. . .
0 f0

) (
f0 0

. . .
0 f0

)
= (Ff)j

ϕ̃ζ′

ϕζ′

ϕ′ζ′

F

If the block matrix entry (ϕζ′)kl of ϕζ′ is an identity map, then it follows that

(ϕ̃ζ′)kl is also an identity map. Similarly, if (ϕζ′)kl = 0 then (ϕ̃ζ′)kl = 0, since θ0

is an inclusion morphism. If (ϕζ′)kl is either the map λ or µ, then we simply note

that λθ0 = θ0λ̃ and µθ0 = θ0µ̃. So (ϕ̃ζ′)kl is the map λ̃ or µ̃ respectively. This

is precisely the K-representation F (Ker f), as required. The proof for showing

ImFf = F (Im f) is similar – we simply look at the canonical surjection ξ of M

into the image of f and show that Fξ is a surjection into the ImFf . Thus, the

functor F is exact.

It remains to show that F is full. Let M = (M0, λ, µ) and N = (N0, λ
′, µ′)

and let FM,N : HomK〈a1,a2〉(M,N) → HomKQ′(FM,FN) be the function defined

by FM,N(f) = Ff . We will calculate HomKQ′(FM,FN) and show that ImFM,N =

HomKQ′(FM,FN). We will only give the proof for the case where val(v3) > 2, as

the proof for the other case is similar. Let Φ = (Φi)i∈Q′0 ∈ HomKQ′(FM,FN). We

have the following commutative squares.

(i):

M2
0

( 0 1 ) //

Φ−1

��

M0

Φ−2

��
N2

0

( 0 1 ) // N0

(ii):

M4
0

( 1 0 0 0
0 0 1 0 )

//

Φ0

��

M2
0

Φ−1

��
N4

0

( 1 0 0 0
0 0 1 0 )

// N2
0

(iii):

M4
0

( 1 0 1 0
0 1 0 0
1 0 1 0
0 0 0 1

)
//

Φ0

��

M4
0

Φn
��

N4
0

( 1 0 1 0
0 1 0 0
1 0 1 0
0 0 0 1

)
// N4

0
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(iv):

M2
0

( 1 0
1 0
0 1
0 1

)
//

Φn+3

��

M4
0

Φn
��

N2
0

( 1 0
1 0
0 1
0 1

)
// N4

0

(v):

M2
0

( 1 0
0 0
0 1
0 0

)
//

Φn+1

��

M4
0

Φn
��

N2
0

( 1 0
0 0
0 1
0 0

)
// N4

0

(vi):

M0

( 0
1 )
//

Φn+2

��

M2
0

Φn+1

��
N0

( 0
1 )
// N2

0

Note that if the length n of the string w used to construct Q′ is such that n > 1,

then square (iii) is obtained by composing the linear maps between the vertices 0

and n of Q′. Square (i) implies that

Φ−1 =

f g

0 h

 ,

where f, g, h ∈ HomK(M0, N0) and h = Φ−2. Square (ii) then implies that

(Φ0)11 = f, (Φ0)12 = 0, (Φ0)13 = g, (Φ0)14 = 0,

(Φ0)31 = 0, (Φ0)32 = 0, (Φ0)33 = h, (Φ0)34 = 0.

Similarly, square (vi) implies that

Φn+1 =

f ′ 0

g′ h′

 ,

where f ′, g′, h′ ∈ HomK(M0, N0) and h′ = Φn+2. Square (v) then implies that

(Φn)11 = f ′, (Φn)13 = 0,

(Φn)21 = 0, (Φn)23 = 0,

(Φn)31 = g′, (Φn)33 = h′,

(Φn)41 = 0, (Φn)43 = 0.
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By square (iii), we have


f 0 g + h 0

(Φ0)21 (Φ0)22 (Φ0)23 (Φ0)24

f 0 g + h 0

(Φ0)41 (Φ0)42 (Φ0)43 (Φ0)44

 =


f ′ (Φn)12 f ′ (Φn)14

0 (Φn)22 0 (Φn)24

g′ + h′ (Φn)32 g′ + h′ (Φn)34

0 (Φn)42 0 (Φn)44

 .

So f = f ′. In addition, square (iv) implies

(Φn)22 = f, (Φn)24 = 0,

(Φn)42 = g′, (Φn)44 = h′.

and

Φn+3 =

f 0

g′ h′

 .

So

Φ0 =


f 0 g 0

0 f 0 0

0 0 h 0

0 g′ 0 h′

 and Φn =


f 0 0 0

0 f 0 0

g′ 0 h′ 0

0 g′ 0 h′


with the relation f = g+ h = g′+ h′. Finally, we consider the commutative square

M4
0

(
1 λ 0 0
0 0 µ 1

)
//

Φ0

��

M2
0

Φ−3

��
N4

0

(
1 λ′ 0 0
0 0 µ′ 1

)
// N2

0

which gives us g = g′ = 0 and therefore f = h = h′. The above square also gives us

Φ−3 =

f 0

0 f


and commutativity relations λ′f = fλ and µ′f = fµ. Thus f can also be con-

sidered as a morphism in HomK〈a1,a2〉(M,N). It is easy to see that the commu-
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tative squares involving Φi for 0 < i < n give diagonal matrices with diagonal

entries f . Thus, we have shown Φi is a block diagonal matrix with diagonal entries

f ∈ HomK〈a1,a2〉(M,N) for all i. So

ImFM,N = HomKQ′(FM,FN)

and hence, F is a full functor. So F is a strict representation embedding.

Now that we have a representation embedding F : finK〈a1, a2〉 → modKQ′, we

aim to construct a functor G : modKQ′ → modA such that the composite functor

H = GF is a representation embedding. We give advance notice to the reader that

H will not be strict. Thus, we must prove that H is exact, respects isomorphism

classes and maps indecomposable K〈a1, a2〉-modules to indecomposable A-modules

Recall that Q′ is defined using the Brauer configuration algebra A associated to

a Brauer configuration χ that contains a 3-gon x, and a string w = α1 . . . αn, which

both satisfy Assumption 4.1.5. Define a morphism of quivers π = (π0, π1) : Q′ → Q.

That is, we will define maps π0 : Q′0 → Q0 and π1 : Q′1 → Q1 such that any arrow

α′ : i → j in Q′ is mapped to an arrow π1(α′) : π0(i) → π0(j) in Q. Define

π0(0) = x = π0(n). Then for all 1 ≤ i ≤ n, define π1(α′i) = αi if αi ∈ Q1 and

π1(α′i) = α−1
i if αi ∈ Q−1

1 . Let β1, β2, γ1 and γ2 be the distinct arrows of Q such

that ŝ(β1) = xv2 , ê(β2) = xv2 , ŝ(γ1) = xv3 and ê(γ2) = xv3 . Then define π1(β′1) = β1,

π1(β′2) = β2, π1(γ′1) = γ1 and π1(γ′2) = γ2.

If val(v3) > 2, then γ′1δ
′
1 and δ′2γ

′
2 form directed paths in Q′. In this case, we

define π1(δ′1) to be the unique arrow of Q such that π1(γ′1)π1(δ′1) 6∈ I and define

π1(δ′2) to be the unique arrow of Q such that π1(δ′2)π1(γ′2) 6∈ I. See Figure 4.1(b)

for a visual illustration.

Otherwise if val(v3) = 2, then there exists a polygon y = π0(e(γ′1)) = π0(s(γ′2)).

Let u be any vertex distinct from v3 connected to y. Such a choice of vertex u is not

necessarily unique (for example, if π0(e(γ′1)) is not a 2-gon). However, the proof is

not dependent on the choice of the vertex u, and so any choice of u will do. Then

let δ1 and δ2 be the arrows of Q such that ê(δ1) = yu = ŝ(δ2) and define π1(δ′1) = δ1

and π1(δ′2) = δ2. See Figure 4.1(a) for a visual illustration.
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(a)
x

v1

v2

v3

...

. .
.

. . .

w
α1

αn
β1

β2

γ1

γ2δ2

δ1

(b) x
v1

v2

v3

...

. . .

. .
.

w
α1

αn
β1

β2

γ1

γ2
δ1

δ2

Figure 4.1: The image of the map π in the cases where (a) val(v3) = 2 and (b)
val(v3) > 2. Primed arrows in Q′ are mapped to the corresponding unprimed arrow
in the figure. For example, π1(α′1) = α1.

Remark 4.1.7. We have the following notes on the image of π.

(a) The image of any directed path in Q′ under π avoids the relations in I.

(b) For any i, j ∈ Q′0, define an equivalence relation i ∼ j ⇔ π0(i) = π0(j) and

denote the equivalence class of i ∈ Q′0 by [i]. Then for example, we have the

following.

[−3] =

{−3, n+ 3} if val(v2) = 2,

{−3} otherwise,

[0] = [n]

[n+ 3] =

{−3, n+ 3} if val(v2) = 2,

{n+ 3} otherwise.

(c) For any ζ ′, η′ ∈ Q′1, define an equivalence relation ζ ′ ∼ η′ ⇔ π1(ζ ′) = π1(η′)

and denote the equivalence class of ζ ′ ∈ Q′1 by [ζ ′]. Then by Remark 4.1.4,

β′1, β
′
2, γ
′
1, γ
′
2, δ
′
1, δ
′
2 6∈ [α′i] for any 1 ≤ i ≤ n.

In addition, since it follows from Assumption 4.1.5 that val(v2), val(v3) ≥ 2,
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we have

[β′1] = {β′1}, [β′2] = {β′2},

[γ′1] = {γ′1}, [γ′2] = {γ′2},

[δ′1] =

{δ
′
1, δ
′
2} if val(v3) = 3,

{δ′1} otherwise,

[δ′2] =

{δ
′
1, δ
′
2} if val(v3) = 3,

{δ′2} otherwise.

.

Let M ′ = (M ′
i , ϕζ′)i∈Q′0,ζ′∈Q′1 be a representation of the quiver Q′ over the field

K. Define a representation GM ′ = ((GM ′)y, φζ)y∈Q0,ζ∈Q1 of the quiver Q over K

in the following way. For each i ∈ Q′0, we say that the vector space M ′
i is a direct

summand of the vector space (GM ′)π0(i). If y 6∈ Im π0, then we define (GM ′)y = 0.

Consider an arrow ζ : y → z in Q such that (GM ′)y and (GM ′)z are non-zero.

Suppose

(GM ′)y =
⊕

π0(i)=y

M ′
i and (GM ′)z =

⊕
π0(k)=z

M ′
k

Then the linear map φζ is given by a block matrix ((φζ)k,i)k∈R,i∈C with row and

column index sets

R = {k : π(k) = z} and C = {i : π(i) = y}

respectively, where (φζ)k,i : M ′
i →M ′

k is a linear map defined by ϕζ′ if ζ ′ : i→ k is

an arrow in Q′ such that π1(ζ ′) = ζ, and is zero otherwise. Since the image of any

directed path in Q′ under π avoids the relations in I, φζφη = 0 for any path ζη ∈ I.

Thus the representation GM ′ respects the relations in I and hence corresponds to

an A-module.

Remark 4.1.8. We have the following notes on the K-linear maps φζ in the K-

representation GM ′.

(a) Let ζ ∈ {π1(β′j), π1(γ′j) : j = 1, 2}. Then by Remark 4.1.7(c), the map φζ

contains at most one non-zero entry when considered as a block matrix.

(b) For any arrow α′i ∈ Q′1 (1 ≤ i ≤ n), each row and column of the block matrix
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φπ1(α′i)
contains at most one non-zero entry. This follows from the fact that

the arrows π1(α′i) follow a string of length n.

(c) It follows from Remark 4.1.7(c) that if val(v3) = 3, then φπ1(δ′1) = φπ1(δ′2)

is a diagonal 2 × 2 block matrix with possibly non-zero diagonal entries.

Otherwise, φπ1(δ′1) 6= φπ1(δ′2) and both φπ1(δ′1) and φπ1(δ′2) contain at most one

non-zero entry.

Let f ′ = (f ′i)i∈Q′0 : M ′ → N ′ be a morphism of representations of Q′ over K. We

define a morphism Gf ′ = ((Gf ′)y)y∈Q0 : GM ′ → GN ′ of representations of Q over

K as follows. If y 6∈ Im π0 (and hence, (GM ′)y = 0) then (Gf ′)y = 0. Otherwise,

suppose

(GM ′)y =
⊕

π0(i)=y

M ′
i and (GN ′)y =

⊕
π0(i)=y

N ′i

Then we define (Gf ′)y to be a block diagonal matrix ((Gf ′)i,j)i,j∈C in which each

(i, i)-th diagonal entry is precisely the linear map f ′i : M ′
i → N ′i . One can verify

that Gf ′ is a genuine morphism of A-modules by considering commutative squares

(GM ′)y

(Gf ′)y
��

φζ // (GM ′)z

(Gf ′)z
��

(GN ′)y
φ′ζ // (GN ′)z

which induce commutativity relations f ′k(φζ)k,i = (φ′ζ)k,if
′
i for each arrow ζ : y → z

in Q. By definition, either (φζ)k,i = (φ′ζ)k,i = 0, or (φζ)k,i = ϕζ′ and (φ′ζ)k,i = ϕ′ζ′

for some arrow ζ ′ : i → k in Q′. Since f ′ is a morphism of KQ′-modules (and

hence the commutativity relation f ′kϕζ′ = ϕ′ζ′f
′
i is satisfied), we deduce that Gf ′ is

a morphism of A-modules. Thus, we have defined a functor G : modKQ′ → modA

which maps a KQ′-module M ′ to an A-module GM ′ and a morphism f ′ : M ′ → N ′

to a morphism Gf ′ : GM ′ → GN ′.

Remark 4.1.9. Given K〈a1, a2〉-modules M and N and a morphism f = (f0) : M →

N , the linear map (GFf)y is a block diagonal matrix with diagonal entries f0 for

all y ∈ Q0.

Example 4.1.10. Consider the Brauer configuration algebra A4 and string w4 from
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Example 4.1.3. The quiver Q′ is the following orientation of X4.

−3 cc 7

0 // 1 // 2 3oo // 4
}}
aa

−2 // −1
{{

5 // 6

Consider the following K-representation of Q′.

M ′
−3 dd ϕβ′1

M ′
7

M ′
0

ϕα′1 //M ′
1

ϕα′2 //M ′
2
oo
ϕα′3 M ′

3

ϕα′4 //M ′
4

{{

ϕβ′2

cc ϕγ′2

M ′
−2

ϕδ′1 //M ′
−1

zz

ϕγ′1

M ′
5

ϕδ′2 //M ′
6

Then the A-module GM ′ is given by the following K-representation.

GM ′ : M ′
0 ⊕M ′

4

M ′
−1 ⊕M ′

5M ′
−2 ⊕M ′

6

M ′
−3 ⊕M ′

7

M ′
1

M ′
2 ⊕M ′

3(
ϕγ′1

0

0 0

)

(
ϕδ′1

0

0 0

)

(
ϕβ′1

0

0 0

)

(
0 0
0 ϕγ′2

)(
0 0
0 ϕδ′2

)
(

0 0
0 ϕβ′2

)
( ϕα′

1
0 ) (

ϕα′
2

0

)
(

0 0
ϕα′

3
0

)(
0 0
0 ϕα′

4

)

Given an A-module N ′ and a morphism f ′ = (f ′−3, . . . , f
′
7) : M ′ → N ′, we have a

morphism Gf ′ : GM ′ → GN ′ of the form

Gf ′ =

f ′−3 0

0 f ′7

 ,

f ′−2 0

0 f ′6

 ,

f ′−1 0

0 f ′5

 ,

f ′0 0

0 f ′4

 , f ′1,

f ′2 0

0 f ′3


Given a K〈a1, a2〉-module M associated to the K-representation (M0, λ, µ), the

composite functor H = GF gives us an A-module HM associated to the following

K-representation.
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HM : M8
0

M4
0M2

0

M4
0

M3
0

M6
0(

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

)

(
0 0
1 0
0 0
0 0

)

(
λ 1 0 0 0 0 0 0
0 0 1 µ 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

)


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1
0 0 0 0

( 0 0 0 0
0 0 0 1 )


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1


(

1 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0

) 1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0



 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1



Let N = (N0, λ
′, µ′). Given a morphism f = (f0) : M → N , we have a morphism

Hf = ((Hf)y)y∈Q0 : HM → HN such that each (Hf)y is a block diagonal matrix

with diagonal entries f0.

It is clear that the functor G is not a representation embedding, since it does

not respect isomorphism classes. A counterexample is formed with the simple

modules S ′0 and S ′n associated to the vertices 0 and n of Q′, respectively. Clearly, it

follows from Remark 4.1.7(b) that we have GS ′0
∼= GS ′n but S ′0 6∼= S ′n. However, the

functor G should respect isomorphism classes for all modules M ′ ∈ modKQ′ that

do not contain a string module as a direct summand. Indeed, we will show with

the following lemmata that G satisfies the necessary properties of a representation

embedding under the image of the functor F . That is, we will show that the

composite functor H = GF is a representation embedding.

Lemma 4.1.11. The functor H = GF : finK〈a1, a2〉 → modA is exact.

Proof. Let M = (M0, λ, µ) and N = (N0, λ
′, µ′) be K-representations of K〈a1, a2〉-

modules M and N . Note that each vertex in the K-representation associated to

HM (resp. HN) is a direct sum of copies of M0 (resp. N0), and for any morphism

f = (f0) ∈ HomK〈a1,a2〉(M,N), the linear map (Hf)y is a block diagonal matrix

with diagonal entries f0 for all y ∈ Q0. Thus, the proof of the exactness of H is

identical to the proof of the exactness of the functor F in Lemma 4.1.6.

Lemma 4.1.12. The functor H = GF : finK〈a1, a2〉 → modA maps indecompos-

able K〈a1, a2〉-modules to indecomposable A-modules.
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Proof. We will prove that G maps indecomposable KQ′-modules to indecomposable

A-modules. It is sufficient to prove the contrapositive statement. Namely, that if

M ′ = (M ′
i , ϕζ′)i∈Q′0,ζ′∈Q′1 is a representation associated to a KQ′-module such that

GM ′ is decomposable, then M ′ is decomposable.

So suppose GM ′ = ((GM ′)y, φζ)y∈Q0,ζ∈Q1 is decomposable. Then there exists

an isomorphism of representations Φ = (Φy)y∈Q0 : GM ′ → N⊕L for some non-zero

K-representations N = (Ny, θζ)y∈Q0,ζ∈Q1 and L = (Ly, ψζ)y∈Q0,ζ∈Q1 of Q such that

for any arrow ζ : y → z in Q, the square

(GM ′)y
φζ //

Φy
��

(GM ′)z

Φz
��

Ny ⊕ Ly

(
θζ 0
0 ψζ

)
// Nz ⊕ Lz

commutes. For each y ∈ Q0, write

(GM ′)y =
⊕

π0(i)=y

M ′
i and (GM ′)z =

⊕
π0(k)=z

M ′
k

and consider each map φζ as a block matrix. Since, Φy and Φz are bijective, we

may then write

Ny =
⊕

π0(i)=y

Ui, Nz =
⊕

π0(k)=z

Uk,

Ly =
⊕

π0(i)=y

Vi, Lz =
⊕

π0(k)=z

Vk,

where Ui and Vi are vector subspaces such that Ui ⊕ Vi = Φy(M
′
i)
∼= M ′

i for all

i such that π0(i) = y, and Uk and Vk are vector subspaces such that Uk ⊕ Vk =

Φz(M
′
k)
∼= M ′

k for all k such that π0(k) = z.

For each arrow ζ : y → z in Q and for each i such that π0(i) = y, define K-linear

maps

θ′i = ΦzφζΦ
−1
y |Ui : Ui → Nz, and
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ψ′i = ΦzφζΦ
−1
y |Vi : Vi → Lz.

Note that Im Φ−1
y |Ui , Im Φ−1

y |Vi ⊆M ′
i . Thus, we have linear maps

θ′k,i = (Φzφζ)k,iΦ
−1
y |Ui =

 ∑
π0(j)=z

(Φz)k,j(φζ)j,i

Φ−1
y |Ui , and

ψ′k,i = (Φzφζ)k,iΦ
−1
y |Vi =

 ∑
π0(j)=z

(Φz)k,j(φζ)j,i

Φ−1
y |Vi ,

where (Φz)k,j : M ′
j → Uk ⊕ Vk and (φζ)j,i : M ′

i → M ′
j are linear maps, as defined.

But by Remark 4.1.8(a), (b) and (c), each row and column of φζ contains at most

one non-zero entry. In particular, an entry (φζ)j,i is non-zero only if (φζ)j,i = ϕζ′

for some arrow ζ ′ : i→ j in Q′ such that π1(ζ ′) = ζ (this follows from the definition

of G). So

θ′k,i = (Φz)k,jϕζ′Φ
−1
y |Ui , and

ψ′k,i = (Φz)k,jϕζ′Φ
−1
y |Vi

for some arrow ζ ′ : i→ j inQ′ such that π1(ζ ′) = ζ. But Imϕζ′Φ
−1
y |Ui , Imϕζ′Φ

−1
y |Vi ⊆

M ′
j and M ′

j
∼= Φz(M

′
j) = Uj ⊕ Vj. So (Φz)k,j = 0 whenever k 6= j. Thus, θ′k,i = 0 if

there exists no arrow ζ ′ : i→ k in Q′. So for each i such that π0(i) = y and each j

such that π0(j) = z, define vector spaces N ′i = Ui, L
′
i = Vi, N

′
j = Uj and L′j = Vj.

Then for each arrow ζ ′ : i→ j in Q′, there exist K-linear maps θ′′i = θ′j,i : N ′i → N ′j

and ψ′′i = ψ′j,i : L′i → L′j such that the square

M ′
i

ϕζ′ //

Ξi
��

M ′
j

Ξj
��

N ′i ⊕ L′i

(
θ′′i 0

0 ψ′′i

)
// N ′j ⊕ L′j

commutes, where Ξi : M ′
i → N ′i ⊕ L′i is defined such that Ξi = Φy|M ′i for all i

such that π0(i) = y. Since the maps Ξi are bijections for all i, we have shown that

M ′ ∼= N ′ ⊕ L′ for some KQ′-modules N ′ and L′. Thus M ′ is decomposable, as
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required.

Since F : finK〈a1, a2〉 → modKQ′ is a representation embedding, it maps

indecomposable finK〈a1, a2〉-modules to indecomposable KQ′-modules. Since G

maps indecomposable KQ′-modules to indecomposable A-modules, the composite

functor H = GF maps indecomposable finK〈a1, a2〉-modules to indecomposable

A-modules, as required.

Lemma 4.1.13. The functor H = GF : finK〈a1, a2〉 → modA respects isomor-

phism classes. That is, if HM ∼= HN then M ∼= N for all M,N ∈ finK〈a1, a2〉.

Proof. Let M and N be finite-dimesnional K〈a1, a2〉-modules such that GFM ∼=

GFN . Let

FM = ((FM)i, ϕζ′)i∈Q′0,ζ′∈Q′1 , FN = ((FN)i, ϕ
′
ζ′)i∈Q′0,ζ′∈Q′1

GFM = ((GFM)y, φζ)y∈Q0,ζ∈Q1 , GFN = ((GFN)y, φ
′
ζ)y∈Q0,ζ∈Q1 .

Then there exists a bijective K-linear map (Φy)y∈Q0 such that the squares

(GFM)y

Φy
��

φζ // (GFM)z

Φz
��

(GFN)y
φ′ζ // (GFN)z

commute. Write

(GFM)y =
⊕

π0(i)=y

(FM)i, (GFM)z =
⊕

π0(k)=z

(FM)k,

(GFN)y =
⊕

π0(i)=y

(FN)i, (GFN)z =
⊕

π0(k)=z

(FN)k.

Then each Φy can be viewed as a block matrix, where each entry (Φy)j,i : (FM)i →

(FN)j is a K-linear map such that π0(i) = π0(j) = y. Recall further that for any

arrow ζ : y → z in Q, the maps φζ and φ′ζ can be viewed as a block matrices

such that the entries (φζ)k,i : (FM)i → (FM)k and (φ′ζ)k,i : (FN)i → (FN)k are

K-linear maps such that π0(i) = y and π0(k) = z. If (φζ)k,i (resp. (φ′ζ)k,i) is a

non-zero entry of φζ (resp. φ′ζ), then (φζ)k,i = ϕζ′ and (φ′ζ)k,i = ϕ′ζ′ for some arrow
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ζ ′ : i→ k in Q′ such that π1(ζ ′) = ζ. By Remark 4.1.8(a), (b) and (c), each row and

column of φζ contains at most one non-zero entry. Thus for each arrow ζ ′ : i → k

in Q′, we have commutativity relations of the form

(φ′π1(ζ′)Φπ0(i))k,i = ϕ′ζ′(Φπ0(i))i,i = (Φπ0(k))k,kϕζ′ = (Φπ0(k)φπ1(ζ′))k,i. (∗)

Note that the relations (∗) are precisely the commutativity relations that deter-

mine the space HomKQ′(FM,FN). So Φ′ = (Φ′i)i∈Q′0 ∈ HomKQ′(FM,FN), where

Φ′i = (Φπ0(i))i,i. Recall that the space HomKQ′(FM,FN) was calculated in the proof

of Lemma 4.1.6. Specifically, each K-linear map Φ′i : (FM)i → (FN)i is a block

diagonal matrix with diagonal entries f0, where (f0) = f ∈ HomK〈a1,a2〉(M,N).

Recall that Q′ is constructed using a string. It follows from Remark 4.1.7(a)

that

(GFM)π0(n+3) =

(FM)n+3 if val(v2) > 2

(FM)−3 ⊕ (FM)n+3 if val(v2) = 2.

(GFN)π0(n+3) =

(FN)n+3 if val(v2) > 2

(FN)−3 ⊕ (FN)n+3 if val(v2) = 2.

In the case where val(v2) > 2, we have Φπ0(n+3) = Φ′n+3, which by assumption is

bijective. But since Φ′n+3 is a block diagonal matrix with diagonal entries f0 = f ∈

HomK〈a1,a2〉(M,N) it follows that Φ′n+3 is bijective only if f0 is bijective. Thus in

this case, there exists an isomorphism f : M → N .

In the case where val(v2) = 2, we have

Φπ0(n+3) =

 (Φπ0(n+3))−3,−3 (Φπ0(n+3))−3,n+3

(Φπ0(n+3))n+3,−3 (Φπ0(n+3))n+3,n+3

 .

Firstly, we will make the observation that dimKM = dimK N , sinceGFM ∼= GFN ,

which implies

dimK GFM = (3n+ 15) dimKM0 = (3n+ 15) dimK N0 = dimK GFN,
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where n is the length of the string used in the construction of Q′. Secondly, note

from the definition of F and the above observation that

dimK(FM)−3 = dimK(FM)n+3 = dimK(FN)−3 = dimK(FN)n+3,

so each block entry of Φπ0(n+3) is a square matrix. Thirdly, note from the definition

of F that the map

ϕβ′2 = ϕ′β′2 =


1 0

1 0

0 1

0 1


is injective (where β′2 : n+3→ n ∈ Q′1, as defined earlier in this section). Fourthly,

by Remark 4.1.8(a), the map φπ1(β′2) (resp. φ′π1(β′2)) has at most one non-zero en-

try, which is (φπ1(β′2))n,n+3 = ϕβ′2 (resp. (φ′π1(β′2))n+3,n = ϕ′β′2
). Thus, we have a

commutative square of the form

(FM)−3 ⊕ (FM)n+3

Φπ0(n+3)

��

(
0 ϕβ′2
0 0

)
// (FM)n ⊕X

Φπ0(n)
��

(FN)−3 ⊕ (FN)n+3

(
0 ϕ′

β′2
0 0

)
// (FN)n ⊕X ′

where X = (GFM)π0(n)/(FM)n and X ′ = (GFN)π0(n)/(FN)n. From this, we

obtain the relation ϕ′β′2
(Φπ0(n+3))n+3,−3 = 0. Since ϕ′β′2

is injective, it has a left

inverse. This implies that (Φπ0(n+3))n+3,−3 = 0, so Φπ0(n+3) is a block triangular

matrix. Thus,

det Φπ0(n+3) = det(Φπ0(n+3))−3,−3 det(Φπ0(n+3))n+3,n+3.

But Φπ0(n+3) is bijective by assumption and hence has non-zero determinant. Thus,

both (Φπ0(n+3))−3,−3 and (Φπ0(n+3))n+3,n+3 have non-zero determinant, and hence

both are bijections. But both (Φπ0(n+3))−3,−3 and (Φπ0(n+3))n+3,n+3 are diagonal

matrices with diagonal entries f0, where (f0) = f ∈ HomK〈a1,a2〉(M,N). Thus,

there must exist an isomorphism f ∈ HomK〈a1,a2〉(M,N), as required.
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We can now prove Proposition 4.1.1, which we restate here for convenience.

Proposition. Let A be a Brauer configuration algebra associated to a Brauer con-

figuration χ. Suppose χ contains a 3-gon x. Suppose further that χ contains a cycle

or a vertex v such that ev > 1. If χ is not of the form

χ′x

where χ′ is a subconfiguration of χ and all vertices except those in χ′ have multi-

plicity one, then A is wild.

Proof. Suppose χ is not of the form above. If x is self-folded then A is wild by

Proposition 3.2.1, so assume that this is not the case. Suppose then that χ is locally

of the form

χ′

χ′′

χ′′′
v1

v2

v3

where χ′, χ′′ and χ′′′ are subconfigurations of χ. If any two of the subconfigurations

χ′, χ′′ and χ′′′ contain a polygons belonging to a cycle or vertices of multiplicity

strictly greater than one, then A is also wild by Proposition 3.2.1, so assume that

this is not the case either. Thus, χ′, χ′′ and χ′′′ are pairwaise disjoint and all

cycles and vertices of χ of higher multiplicity must belong to precisely one of χ′,

χ′′ and χ′′′. Let χ′ be this subconfiguration, which we may assume without loss of

generality. Then χ′′ and χ′′′ are multiplicity-free trees. Since χ is not of the form

given in the Proposition statement, there necessarily exists at least two polygons

in χ′′ or χ′′′. Suppose (without loss of generality) that χ′′′ contains at least two

polygons. Then χ satisfies Assumption 4.1.5. Thus, there exists a K-linear functor

H : finK〈a1, a2〉 → modA (defined above) that is exact (Lemma 4.1.11), maps

indecomposable K〈a1, a2〉-modules to indecomposable A-modules (Lemma 4.1.12),
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and respects isomorphism classes (Lemma 4.1.13), and hence, is a representation

embedding. Thus, A is wild.

4.2 Brauer Configurations with at Least Two 3-

gons

We will address the final case of wild symmetric special triserial algebras, which

is where the Brauer configuration contains multiple 3-gons. We begin with the

following lemma.

Lemma 4.2.1. Let A = KQ/I be a Brauer configuration algebra. Suppose there

exists a connected acyclic subquiver Q′ ⊂ Q such that KQ′ is a wild hereditary

algebra and every (directed) path α1 . . . αn in Q′ is not in I. Then A is wild.

Proof. Define a functor F : modKQ′ → modA in the following way. For any KQ′-

module M defined by a quiver representation (Mx, ϕα)x∈Q′0,α∈Q′1 , we define FM to

be the A-module given by the quiver representation ((FM)x, φα)x∈Q0,α∈Q1 such that

(FM)x =

Mx, if x ∈ Q′0

0, otherwise

and φα =

ϕα, if α ∈ Q′1

0, otherwise.

For any KQ′-modules M and N and any morphism Φ = (Φx)x∈Q′0 : M → N , we

define a morphism FΦ = ((FΦ)x)x∈Q0 : FM → FN by (FΦ)x = Φx if x ∈ Q′0 and

(FΦ)x = 0 otherwise. It is easy to see that this functor is exact and fully faithful,

and hence, is a (strict) representation embedding. Since, KQ′ is a wild algebra,

this implies A is also a wild algebra.

Proposition 4.2.2. Let A = KQ/I be a Brauer configuration algebra associated to

a Brauer configuration χ. Suppose χ contains at least two 3-gons. Suppose further

that χ is not of the form



4. WILD SYMMETRIC SPECIAL TRISERIAL ALGEBRAS 134

G

u1

u2

u3

ur−1

ur

v1

v′1
w1

w′1

v2

v′2

w2w′2

v3
v′3

w3

w′3

vr−1

v′r−1

wr−1

w′r−1

vr v′r

wr

w′r

where G is a Brauer graph connecting the (not necessarily distinct) vertices u1, . . . , ur

and evi = ev′i = ewi = ew′i = 1 for all i. Then A is wild.

Proof. If χ contains a 3-gon and an n-gon with n > 3, then A is wild by Theo-

rem 3.2.3. If χ contains a cycle or a vertex with multiplicity strictly greater than

one, then the result follows from Proposition 4.1.1. So assume that χ contains no

n-gon with n > 3, no cycles and no vertices with multiplicity strictly greater than

one. (Note that this implies that no 3-gon of χ is self-folded.) Under this assump-

tion, if χ is not of the form given in the proposition statement, then χ contains a

3-gon x that is locally of the form

χ′

χ′′

χ′′′
u0

u1

u2
x

where χ′, χ′′ and χ′′′ are pairwise disjoint subconfigurations of χ such that at least

two of χ′, χ′′ and χ′′′ contain more than one polygon distinct from x.

Let y be some 3-gon in χ distinct from x. Since Q is connected, there exists a

string w = β1 . . . βn such that s(w) = x and e(w) = y. Recall that since x is a 3-gon

in χ, x is the source of 3 distinct arrows and the target of 3 distinct arrows in Q.

Since at least two of χ′, χ′′ and χ′′′ contain more than one polygon distinct from

x, there exist pairwise distinct symbols α1, α2, α3 ∈ Q1 ∪Q−1
1 such that α1, α2 and

α3 are not symbols of w and α1w and α2α3w are strings. Since y is the source of 3

distinct arrows and the target of 3 distinct arrows in Q, there exist pairwise distinct
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symbols γ1, γ2,∈ Q1 ∪Q−1
1 such that γ1 and γ2 are not symbols of w and wγ1 and

wγ2 are strings. Thus, there exists a wild subquiver Q′ of Q with underlying graph

X :

•
α1

•
γ1

• α2 • α3
x

β1 • · · · • βn
y

γ2 •

The orientation of Q′ is determined by the string w and the symbols α1, α2, α3, γ1

and γ2. Since Q′ is constructed from strings, every directed path of Q′ avoids the

relations in I. Thus KQ′ is a wild hereditary algebra and by Lemma 4.2.1, A is

wild.

4.3 The Proof of the Main Theorem

We can now bring together all of the results in Sections 3.2 and 3.3 to prove the Main

Theorem in the Introduction. Let A be a Brauer configuration algebra associated

to a Brauer configuration χ. Cases (a) and (b) of the Main Theorem follow from

Theorem 3.2.3. For Case (c) of the main theorem, if χ contains at least two 3-gons,

then χ cannot be of the form in (c)(ii) of the main theorem. By Proposition 4.2.2,

A is wild if it is also not of the form in (c)(i). Now suppose χ contains precisely

one 3-gon. If χ contains a cycle or a vertex of multiplicity strictly greater than one,

then χ is necessarily not of the form in (c)(ii). By Proposition 4.1.1, if χ is also not

of the form in (c)(i) of the main theorem (with r = 1), then A is wild.

The only remaining case is where χ contains precisely one 3-gon and χ is a

multiplicity-free tree. If χ is of the form in (c)(i) with r = 1, then A is tame (in

fact, of finite representation type), as by Proposition 3.3.12, it is derived equivalent

to the trivial extension of some orientation of Dn. So suppose this is not the case.

Then at least two of the distinct subtrees connected to the unique 3-gon in χ contain

at least two polygons each. By Theorem 3.3.1, if χ is not of the form in (c)(ii) of

the main theorem, then A is wild. This completes the proof.



Glossary of Notation

An,Dn,Ep Dynkin diagrams of respective types.

Ãn, D̃n, Ẽp Euclidean diagrams of respective types.

add(T ) The full subcategory of Kb(projA) consisting of direct sum-

mands of direct sums of copies of T .

Cv The cycle of arrows in a quiver generated by a vertex v in

a Brauer tree/graph/configuration.

Cokerφ The cokernel of a morphism φ.

D The standard K-linear dual D = HomK(−, K).

det The determinant of a matrix.

dim The dimension of a vector space or module.

e(α) The target of an arrow α.

ê(α) The half-edge or germ of a polygon corresponding to the

target of an arrow α.

ev The multiplicity of a vertex v in a Brauer

tree/graph/configuration.

EndA(M) The algebra of endomorphisms M →M ∈ modA.

EndKb(projA)(T ) The algebra of endomorphisms T → T ∈ Kb(projA).

finA The category of finite dimensional right A-modules.

G A Brauer graph.

HomA(M,N) The vector space of morphisms M → N ∈ modA.

HomKb(projA)(T1, T2) The vector space of morphisms T1 → T2 ∈ Kb(projA).

I An admissible ideal of a path algebra.

I(M) The injective envelope of a module M .

136
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I(x) The indecomposable (right) injective module corresponding

to a vertex x in a quiver/Brauer graph/Brauer configura-

tion.

idX An identity morphism X → X.

Imφ The image of a morphism φ.

K An algebraically closed field.

KQ The path algebra of Q over the field K.

Kb(projA) The bounded homotopy category of chain complexes over

projA.

Kerφ The kernel of a morphism φ.

modA The category of finitely generated right A-modules.

modA The injectively stable category of finitely generated right

A-modules.

modA The projectively stable category of finitely generated right

A-modules.

ov The cyclic ordering of a vertex v in a Brauer

tree/graph/configuration.

P(S) The power set of S.

P (M) The projective cover of a module M .

P (x) The indecomposable (right) projective module correspond-

ing to a vertex x in a quiver/Brauer graph/Brauer config-

uration.

projA The full subcategory of modA consisting of projective A-

modules.

Q A quiver, unless otherwise stated.

Q0 The vertex set of a quiver Q.

Q1 The arrow set of a quiver Q.

radM The radical of a module M .

s(α) The source of an arrow α.

ŝ(α) The half-edge or germ of a polygon corresponding to the

source of an arrow α.
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S(x) The simple (right) module corresponding to a vertex x in a

quiver/Brauer graph/Brauer configuration.

socM The socle of a module M .

topM The top of a module M . That is, the module M/ radM .

Tr The Auslander-Reiten transpose.

val The valency of a vertex.

εx The stationary path at a vertex x in a quiver.

χ A configuration or Brauer configuration.

χ0 The vertex set of a configuration or Brauer configuration.

χ1 The polygon set of a configuration or Brauer configuration.

Ω(M) The syzygy of a module M .

τ The Auslander-Reiten translate τ = DTr.



Bibliography

[1] T. Adachi, T. Aihara, A. Chan, Classification of two-term tilting complexes

over Brauer graph algebras, arXiv:1504.04827.

[2] T. Aihara, Mutating Brauer trees, Math. J. Okayama Univ. 56 (2014), 1–16.

[3] T. Aihara, Derived equivalences between symmetric special biserial algebras, J.

Pure Appl. Algebra 219 (2015), no. 5, 1800–1825.
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