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“If people do not believe that mathematics is simple, it is only because they do not

realize how complicated life is."

John von Neumann

“The only way to do great work is to love what you do. If you haven’t found it yet,

keep looking. Don’t settle."

Steve Jobs



Abstract

Options are financial derivatives on an underlying security. The Schrodinger and

Heisenberg approach to the quantum mechanics together with the Dirac matrix

approaches are applied to derive the Black-Scholes formula and the quantum Cox-

Rubinstein formula.

The quantum mechanics approach to option pricing is based on the interpretation

of the option price as the Schrodinger wave function of a certain quantum mechan-

ics model determined by Hamiltonian H. We apply this approach to continuous

time market models generated by Levy processes.

In the discrete time formulization, we construct both self-adjoint and non self-

adjoint quantum market. Moreover, we apply the discrete time formulization

and analyse the quantum version of the Cox-Ross-Rubinstein Binomial Model.

We find the limit of the N -period bond market, which convergences to planar

Brownian motion and then we made an application to option pricing in planar

Brownian motion compared with Levy models by Fourier techniques and Monte

Carlo method.

Furthermore, we analyse the quantum conditional option price and compare for

the conditional option pricing in the quantum formulization. Additionally, we

establish the limit of the spectral measures proving the convergence to the geo-

metric Brownian motion model. Finally, we found Binomial Model formula and

Path integral formulization gave are close to the Black-Scholes formula.
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Chapter 1

Introduction

Options are financial derivatives on an underlying security [31]. Black-Scholes
model of continuous time market is based on the Ito calculus [32] [34]. Together
with the Stochastic Modelling it gives the comprehensive analysis of the option
pricing. On the other hand, Cox-Ross-Rubinstein Binomial Model of the discrete
time market provides a powerful alternative for the overall justification of the no-
arbitrage market assumption, hedging strategies and option pricing derivations
[33].

Because of the shortfalls and holes within the Black-Scholes model based on its
restrictive assumptions, establishing some models can make a reasonable explana-
tion for financial market, which is why so many researchers are looking for new
ways to price derivatives. The beginnings of this approach can be traced back to
several papers [54] and [55] where the interest rates and option prices are treated as
quantum field. Segal and Segal in [16] on the Black-Scholes pricing formula in the
quantum context [24]. Chen shows a quantization of the classical Black-Scholes-
Merton based binomial option pricing model developed by Cox-Ross-Rubinstein
[11]. Quantum model based on quantum probability, instead of classical proba-
bility, which is generalisation for classical probability. It is not clear how existing
methods in classical probability can cover the quantum models. On the other
hand, we have proved that quantum models do cover the classical non-quantum
models. In this thesis, we start to extend Chen’s work and analyse the quantum
conditional option price. Also, we establish several quantum market and the re-
lated quantum model in the discrete time version, which is does not considered by
Baaquie too much.

1



Introduction 2

The Schrodinger and Heisenberg approach to the quantum mechanics together
with the Dirac matrix approaches are applied to derive the Black-Scholes formula
and the quantum Cox-Rubinstein formula.

The quantum mechanics approach to option pricing, as stated in Belal E. Baaquie
[1],[2], is based on the interpretation of the option price as the Schrodinger wave
function of a certain quantum mechanics model determined by Hamiltonian H.
Considering H, the Hamiltonian for the Black-Scholes, we derive the Black-Scholes
formula for the option price. The quantum mechanics formulization is based on
the identity decomposition. We apply this approach to continuous time market
models generated by Levy processes.

In the discrete time formulization, following CHEN Zeqian (2002) [4] and (2004)
[5], we construct self-adjoint and non self-adjoint quantum markets. Instead of
considering the eigenvalues, we consider the diagonal elements, apply the discrete
time formalizm and analyse the quantum version of the Cox-Ross-Rubinstein Bi-
nomial Model. We find the limit of the N -period bond market, which convergences
to planar Brownian motion and we compare the option pricing for planar Brow-
nian motion with the option pricing for Levy models by Fourier techniques and
Monte Carlo method.

Furthermore, we analyse the quantum conditional option price via the quantum
conditional expectation [9], [10], [12], [29] and we give a proof for the conditional
option pricing in the quantum formulization. Besides, we establish the limit of
the spectral measures proving the convergence to the geometric Brownian motion
model.

An efficient computational algorithm to price financial derivatives needs to be
considered. The path integral method is a very famous and powerful method
in Physics. This method is nowadays widely employed in physics [23], and very
recently in finance too [19], [20], [21] because it gives the possibility of applying
powerful analytical and numerical techniques.

1.1 Results

Results have been presented at the conferences in Samos (Greece) in May, 2016
and Beijing (China) in June, 2016 (both were oral presentations).
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The joint paper with S. Utev is under preparation, which is based on [35].

1.1.1 Theoretical Results

New findings are presented in Chapter 3 to Chapter 6.

• Several quantum markets have been established in the discrete time formulization
in the section 4.2.

• Several relative examples on quantum markets are provided in the sections 5.1
and 5.2.

• The limit of N-period bond market, it connected with planar Brownian motion
in the section 4.4.

• The non self-adjoint quantum market, it made a connection with Jordan matrices
in the section 4.3.

• In the continuous time quantum formulization, lengthy calculations for hamil-
tonians and OP have been presented in the sections 3.4, 3.5 and 3.6.

• The analysis and proofs of the conditional option pricing for generalized quantum
N period Binomial model have been presented in the section 4.5.

• Establishing the limit of the spectral measures proving the convergence to the
geometric Brownian motion model has been presented in the section 4.6.

1.1.2 Numerical Results

• The results of Binomial Model formula and Path integral are close to the Black-
Scholes formula even for relatively small n ∼ 40 in the section 6.1.

• Calibration for European option by Fourier techniques and Monte Carlo com-
pared with planar Brownian motion model and Levy model have been presented
in the section 6.2.

• Calibration for the coefficient of interest rate is given in the section 6.3.
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1.2 Structure of the Dissertation

Chapter 2. It covers preliminary knowledge based on probability theory from 2.1.1
up to 2.1.16, including definitions, examples, and selected proofs in the chapter
2. Moreover, it covers random walks, stochastic processes on finite dimensional
and infinite dimensional linear algebra from 2.2.1 to 2.2.6, continuous semigroups
and generators between 2.2.7 and 2.2.8, quantum mechanics, Hamiltonian, and
Dirac notaion from 2.2.9 to 2.2.11, quantum probability notations from 2.3.1 to
2.3.6, Tensor product and diagonal decomposion on 2.3.7 and 2.3.8, and financial
markets on 2.4.

Chapter 3. It covers the main structure in terms of quantum formalism on 3.2.
Moreover, it introduces the calculation for different resolvents for different stochas-
tic processes from 3.3.1 to 3.3.3. Also, it covers several examples for Hamilto-
nian and pricing kernels from 3.4.1 to 3.4.10. Furthermore, it covers Transformed
Hamiltoinian from 3.5.1 to 3.5.3. Besides, it covers resolvent method for Hamilto-
nian operators from 3.6.1 to 3.6.3.

Chapter 4. Considering the quantum observable [10], we apply the discrete time
quantum formalizm and construct Option pricing of Tensor product of non- com-
mutative Market on 4.2. Also, we analyse the quantum version of the Cox-Ross-
Rubinstein Binomial Model. Furthermore, on 4.3, we analyse the quantum con-
ditional option price via the quantum conditional expectation [9], [10], [12], [29].
Besides, we establish the limit of the spectral measures proving the convergence
to the geometric Brownian motion model (GBM model) on 4.4.

Chapter 5. It covers some examples for quantum markets. On the one hand,
starting from the one period quantum market, we introduce one step quantum
market, including the one step bond market. In this part, we consider the non-
commutative case and non-self adjoint case on 5.1.1 and 5.1.2. Moreover, we
consider the 5× 5 non-Diagonalizable case on 5.1.3. Furthermore, we consider the
commuitative market on 5.1.4. On the other hand, considering the tensor product
of market, we introduce two period quantum market, including self-adjoint and
non self-adjoint case.

Chapter 6. It covers some numerical implementations. Firstly, we introduce the
Path integral for Black-Scholes Lagrangian on 6.1. Secondly, we introduce the
Calibration for European option by Fourier techniques and Monte Carlo compared
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with Black-Scholes model and Levy model. Finally, we introduce Calibration for
the coefficient of interest rate.



Chapter 2

Preliminary knowledge

2.1 Introduction

Let us give some preliminary knowledge for this chapter. We introduce some
basic definition in terms of probability theory and some stochastic processes, such
as Brownian motion, Poisson process, Levy process, and Markov process. And
we give the definition and theorem for Itô lemma and resolvent for the mainly
derivations in this chapter. Moreover, we start from vector space, and introduce
some spaces we used. Furthermore, we give a review about quantum probability,
quantum mechanics, such as Hamiltonian operator, dirac notation, Schördinger
equation, and so forth. Besides, we introduce some basic concept for finance, such
as Black-Scholes, Binomial model, and so on.

2.2 Preliminary knowledge for Classical market and

Markov market

2.2.1 σ-field

The Definition 2.1 follows [36] on the page 15.

Definition 2.1. Let S be a non-empty set. A collection of subsets of S is called
a σ-field F on S if it satisfies

6



Preliminary knowledge 7

i) S ∈ F ;
ii) If A ∈ F , then Ac ∈ F ;
iii) If Ai, where i = 1, 2, . . ., is a sequence of sets in F , then ∪∞i=1Ai ∈ F .

2.2.2 Measurable space and Measurable sets

The Definition 2.2 follows [36] on the page 16.

Definition 2.2. Let S be a set and F is a σ-field on S. A pair (S,F) is called a
measurable space. An element of F is called a F -measurable subset of S.

Example Let Ω = {1, 2, 3, 4, 5, 6} and F1 = {∅,Ω, {1, 3, 5}, {2, 4, 6}}. F1 is a
σ-field. Then, we obtain

i) Ω ∈ F1;
ii) Ωc = ∅ ∈ F1, ∅c = Ω ∈ F1, {1, 3, 5}c = {2, 4, 6} ∈ F1, and {2, 4, 6}c =

{1, 3, 5} ∈ F1;
iii) ∅ ∪ {1, 3, 5} = {1, 3, 5} ∈ F1, ∅ ∪ {2, 4, 6} = {2, 4, 6} ∈ F1, Ω ∪ ∅ = Ω ∈ F1,
{1, 3, 5} ∪ {2, 4, 6} = Ω ∈ F1, Ω ∪ {1, 3, 5} = Ω ∈ F1, and Ω ∪ {2, 4, 6} = Ω ∈ F1.

Example

F0 = {∅,Ω} is the smallest σ-field.

A family of all subsets F2 = P (Ω) = {A : A ⊆ Ω} is the largest σ-field of subsets
of Ω.

2.2.3 Borel set

The Definition 2.3 follows [36] on the page 8.

Definition 2.3. Let S be a set, a topology on S is a collection X of subsets of S
if it satisfies:
i) ∅ ∈ X and S ∈ X ;
ii) For any intersection U ∩ V ∈ X , where U ∈ X and V ∈ X ;
iii) For any union ∪ U ∈ X , where U ⊂ X .

If X is a topology on S, then the pair (S,X ) is called a topology space. The
members of X are called open sets in S. A subset of S is called closed if its
complement is in X . A subset of S may be open, closed, clopen set, or neither.
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The most familiar topological spaces are the metric spaces. The Definition 2.4
follows [36] on the page 9.

Definition 2.4. A metric space is a set S in which a distance function (or metric)
ρ is defined, with the following properties:
i) 0 ≤ ρ(x, y) <∞ for all x and y ∈ S;
ii) ρ(x, y) = 0 if and only if x = y;
iii) ρ(x, y) = ρ(y, x) for all x and y ∈ S;
iv) ρ(x, y) ≤ ρ(x, z) + ρ(y, z) for all x, y, and z ∈ S.

The Definition 2.5 follows [40] on the page 4.

Definition 2.5. In any metric space, the open ball with center at x and radius r
is the set

Br(x) = {y : d(x, y) < r}.

Definition 2.6. Let S be a set and B(R) be the σ-field generated by the family
of open subsets of S. One can say that the Borel σ-field on S. Subsets of B(R)

belong to B(R) are called Borel sets.

Example Let us fix Ω be {1, 2, 3, 4, 5, 6}.

a) Suppose we have the pseudo distance

d(x, y) =

1, if x 6= y

0, if x = y.

If the distance is more than 1, we have all set Ω. And if the distance is less than
or equal to 1, we only have one point x.

Br(x) =

Ω, if r > 1,

x, if r ≤ 1.
.

For this situation, the topology here is that any set is open so that Borel σ-algebra
B(Ω) is a class of all subsets in Ω.

b) Suppose we have the pseudo distance d(x, y) = 0 for all x, y, then

Br(x) = Ω, r > 0.

This topology is for F0 = {∅,Ω}.
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2.2.4 Measure space

The Definition 2.7 follows [36] on the page 18 in the book.

Definition 2.7. Let (S,F) be a measurable space, F is a σ-field on S. A map

µ : S → [0,∞]

is called a measure on (S,F) if µ is countablely additive. The triple (S,F , µ) is
called a measure space.

2.2.5 Measurable function

The Definition 2.8 follows [36] on the page 18.

Definition 2.8. Suppose that (S1,F1) and (S2,F2) are measurable spaces and h
is a map

h : S1 → S2.

Then, h is measurable if

h−1 : F2 → F1;

if the inverse image

h−1(A) := {s ∈ S : h(s) ∈ A}

of every set A ∈ F2 is in F1.

2.2.6 Measure and Probability measure

The Definition 2.9 follows [36] on the page 18.

Definition 2.9. A measure is a countably additive set function such that a func-
tion µ : F → R with
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i) µ(A) ≥ µ(∅) = 0 for all A ∈ F ;
ii) If Ai ∈ F is a countable sequence of disjoint sets, then

µ(∪iAi) =
∑
i

µ(Ai).

If µ(S) = 1, then we call µ a probability measure.

2.2.7 Probability space

Definition 2.10. A probability space is a triple (Ω,F , P ), where Ω is the sample
space, F is a σ-field on Ω and P is the probability measure on F .

Example Suppse F1 = {{1, 3, 5}, {2, 4, 6}}. Let {1, 3, 5}, {2, 4, 6} be A1, A2,
respectively. Clearly, Ai ∈ F1, where i = 1, 2. Then,

µ1(∪2
i=1Ai) =

2∑
i=1

µ1(Ai) = 1.

Therefore, µ1 is a probability measure on F1.

2.2.8 Event

The Definition 2.11 follows [36] on the page 23.

Definition 2.11. The σ-field F on Ω is called the family of events, then an event
is an element of F , which is an F -measurable subset of Ω.

2.2.9 Random variable

The Definition 2.12 follows [36] on the page 31.

Definition 2.12. Let (Ω,F , P ) be a probability space. Let (Ω,F) and (R,B)

be measurable spaces. If an element X : (Ω,F) → (R,B), for any A ∈ B,
X−1(A) ∈ F , then X is randorm variable.
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2.2.10 Filtration

The Definition 2.13 follows [36] on the page 93.

Definition 2.13. For any time t, we define the σ-field Ft generated by the random
variables {Bs, s ≤ t} and the events in F of probability zero. That is, Ft is the
smallest σ-field that contains the sets of the form

{Bs ∈ A} ∪ N,

where 0 ≤ s ≤ t, A is a Borel subset of R, and N ∈ F is such that P (N) = 0.
Notice that Fs ⊂ Ft if s ≤ t, that is , {Ft, t ≥ 0} is a non-decreasing family of
σ-fields. We say that {Ft, t ≥ 0} is a filtration in the probability space (Ω,F , P ).

Example Ω = {1, 2, 3, 4, 5, 6}, F0 = {∅,Ω}, F1 = {{1, 3, 5}, {2, 4, 6}} are defined.
And F2 are all subsets in Ω. Then, we have

F0 ⊂ F1 ⊂ F2,

which is a collection {Ft, t = 0, 1, 2} of σ-fields is a filtration.

Example Let Ω be a set {1, 2, 3, 4, 5, 6}. Ft is Filtration of σ-algebra if Fs ⊆ Ft
for s ≤ t. Xt is Ft adapted if Xt ∈ Ft. As we know,

X(i) = i, where i ∈ Ω.

However, we have

X−1({1}) = {1} /∈ F1.

Therefore, X is not F1-measurable.

2.2.11 Distribution

The Definition 2.14 follows [36] on the page 32.

Definition 2.14. A random variable defines a probability measure on the Borel
σ-field BR, that is

PX(B) = P (X−1(B)) = P ({ω : X(ω) ∈ B}).
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The probability measure PX is called the law or the distribution of X.

Example A random variable has the Uniform distribution U(0, 1) if

P (x) =
x− a
b− a

,

for a ≤ x ≤ b, P (x) = 0 for x < a, and P (x) = 1 for x > b.

Example A random variable has the Binomial distribution B(n, p) if

P (X = k) =

(
n

k

)
pk(1− p)n−k,

for k = 0, . . . , n.

Example A random variable has the normal distribution N(µ, σ2) if

P (a < X < b) =
1√

2πσ2

∫ b

a

e−
(x−µ)2

2σ2 dx,

for all a < b.

2.2.12 Expectation

The Definition 2.15 follows [36] on the page 58.

Definition 2.15. Let (Ω,F , P ) be the probability space. If a random variable X
on (Ω,F , P ), then we define the expectation E(X) of X as the integral of X with
respect to the probability measure P as follows

E(X) =

∫
Ω

XdP.

If X is a discrete variable that takes the values v1, . . . , on the sets A1, . . . , then
its expectation will be

E(X) = P (A1)v1 + . . . .
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Example If X is a random variable with normal distribution N(0, σ2) and x is a
constant, then we obtain

E(ecX) =
1√

2πσ2

∫ ∞
∞

ecxe−
x2

2σ2 dx

=
1√

2πσ2

∫ ∞
∞

e
σ2c2

2
− (x−σ2c)2

2σ2 dx

= e
c2σ2

2 .

2.2.13 Independence

The Definition 2.16 follows [36] on the page 38.

Definition 2.16. The event A and B are said to be independent if P (A ∩ B) =

P (A)P (B).

Theorem 2.17. Random variables X1, ..., Xn are independent if

E[f(X1)...fn(Xn)] = E[f1(X1)]...E[fn(Xn)]

for all measurable functions fj when all expectations are defined.

2.2.14 Conditional Probability

Definition 2.18. The conditional probability of an event A given event B such
that P (B) > 0 is defined by

P (A|B) =
P (A ∩B)

P (B)
.

2.2.15 Conditional Expectation

The Definition 2.19 follows [36] on the page 84.

Definition 2.19. The expectation of an integrable random variable X with re-
spect to this new probability will be the conditional expectation of X given B and
it can be computed as follows:

E(X|B) =
1

P (B)
E(X1B),
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where 1B is indicator function.

2.2.16 Characteristic function

The Definition 2.20 follows [36] on the page 172.

Definition 2.20. The characteristic function ψ = ψX of a random variable X is
defined to be the map

ψ : R→ C,

which is defined by

ψ(ξ) := E(eiξX).

Let F := FX be the distribution function of X, and let µ = µX be the distribution
of X. Then,

ψ(ξ) =

∫
R

eiξxdF (x) :=

∫
R

eiξxµ(dx),

where ψ is the Fourier transform of µ.

2.2.17 Random Walk

Definition 2.21. Let {Xk}∞k=1 be a sequence of independent, identically dis-
tributed discrete random variables. For each positive integer n, we let Sn denote
the sum X1 + . . . + Xn. The sequence {Sn}∞n=1 is called a random walk. If the
common range of the Xk’s is Rm, then we say that {Sn} is a random walk in Rm.

2.2.18 Brownian motion

These definitions and theorems given bellow follows [39].

Definition 2.22. A stochastic process B(t), t ≥ 0 is called a Brownian motion,
if it satisfies the following conditions:
(i) B(0) = 0 a.s..;
(ii) For all positive integer n ≥ 2 and 0 ≤ t1 < · · · < tn, the increments B(tn) −
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B(tn−1), ..., B(t2)−B(t1), are independent random variables;
(iii) If 0 ≤ s < t, the increment B(t)−B(s) has the normal distribution N(0, t−s);
(iv) The process {B(t)} has continuous trajectories.

Lemma 2.23. Let B(t) be a Brownian motion, then we have

E[B(a)B(b)] = min(a, b)

Proof: let 0 < a < b, then we have

E[B(a)B(b)] = E[(B(b)−B(a))B(a) + (B(a))2]

= E[(B(b)−B(a))(B(a)−B(0)) + (B(a)− (B(0))2]

= E[(B(b)−B(a))]E[(B(a)−B(0)) + E(B(a)−B(0))2

= 0 + a = a.

Notice that a Brownian motion is standard if it satisfies

B(0) = 0 a.s., E[B(t)] = 0 and E[(B(t))2] = t.

Example Let {B(t), t ≥ 0} be a standard Brownian motion. By the definition,
B(1) and B(3)−B(1) are independent cause

E[B(1)(B(3)−B(1))] = E[B(1)]E[B(3)−B(1)] = 0.

But, B(3) and B(1) are not independent since

E[B(1)B(3)] = 1.

Since as it follows from the lemma below.

The Definition 2.24 follows [9] on the page 89.

Definition 2.24. Suppose that D and R are sets that possess an addition opera-
tion as well as a scalar multiplication operation. A function f that maps points in
D to points in R is said to be a linear function whenever f satisfies the conditions
that

f(x+ y) = f(x) + f(y)
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and

f(αx) = αf(x)

for every x and y in D and for all scalars α.

Definition 2.25. If B1, B2 are independent linear Brownian motions started in
x1, x2, then the stochastic process {B(t) : t ≥ 0} given by

B(t) = (B1(t), B2(t))T

is called a 2-dimensional Brownian motion started in (x1, x2)T . The d-dimensional
Brownian motion started in the origin is also called started Brownian motion.
One-dimensional Brownian is also called linear, two-dimensional Brownian motion,
planar Brownian motion.

2.2.19 Poisson process

These definitions and theorems given bellow follows [39].

Definition 2.26. A stochastic process Nt ≥ 0 defined on a probability space
(Ω, F, P ) is said to be a Poisson process of rate λ if it verifies these properties:
i) Nt = 0 a.s..;
ii) for any n ≥ 1 and for any 0 ≤ t1 < ... < tn, the increments Ntn−Ntn−1 , ..., Nt2−
Nt1 , are independent random variables;
iii) for any 0 ≤ s < t, the increment Nt − Ns has a Poisson distribution with
parameter λ(t− s), that is,

P (Nt −Ns = k) = e−λ(t−s) (λ(t− s))k

k!

k = 0, 1, 2, . . . , where λ > 0 is a fixed constant;
iv) The sample paths Nt, t ≥ 0 are increasing functions of t changing only by the
jump of size 1.

Example Let {Nt, t ≥ 0} be a Poisson process with parameter λ = 10. Assume
that k = 5, then we obtain

P (N2 −N1 ≤ 5) =
5∑

n=0

e−10 10n

n!
.
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The variance of Possion variable is calculated by

V ar(X) = E(X2)− (E(X))2

= E((X)(X − 1) +X)− (E(X))2

= E((X)(X − 1)) + E(X)− (E(X))2

= E((X)(X − 1)) + λ− λ2

= λ.

Example If X is a random variable with Poisson distribution with parameter λ,
then we obtain

E(X) =
∞∑
j=0

j
e−jλj

j!
= λe−λ

∞∑
j=1

e−λλj−1

(j − 1)!
= λ.

Definition 2.27. Let X and Y be two random variables with means E(X) and
E(Y ), respectively. Covariance is the expected value of the products of deviations
from the means:

Cov(X, Y ) = E(XY )− E(X)E(Y ).

Example Given a Poisson process {Nt, t ≥ 0} with parameter λ, calculate the
covariance of N(2) and N(3).

From the definition (2.24), according to the independent increments, we derive

Cov(N(2), N(3)) = Cov(N(2), N(3)−N(2)) + Cov(N(2), N(2))

= V ar(N(2))

= 2λ.

2.2.20 Levy Process

These definitions and theorems given bellow follows [30].

Definition 2.28. A 1-dimensional Levy process on a probability space (Ω,F , P )

is a collection X = {Xt}t≥0 of R-valued random variables on Ω satisfying the
following properties:
i) Given an integer n ≥ 1 and a collection of times 0 ≤ t0 < t1 < ... < tn, the
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random variables Xt0 , Xt1 −Xt0 , ..., Xtn −Xtn−1 are independent.
ii) X0 = 0 almost surely.
iii) For any t ≥ 0, the distribution of Xs+t −Xs is independent of s ≥ 0.
iv) Stochastic continuity: given t ≥ 0 and ε > 0, we have lims→t P [|Xs − Xt| >
ε] = 0.
v) There exists a subset Ω0 ∈ Ω such that P [Ω0] = 1 such that for every ω ∈ Ω0,
the trajectory t → Xt(ω) is right continuous in t ≥ 0, and has left limits for all
t > 0.

Remark For the property v), a function f : R+ → Rd is càdlàg if it is right
continuous with left limits, such a function has jump discontinuities. Here is the
definition about right continuous with left limit.

Definition 2.29. A function f on R is said to be right continuous with left limit
at a point a = b if it satisfies the following properties:
i) f(b) is defined, where a point b is in the domain of a function f ;
ii) Right limit of the function as a approaches b from the right hand side exists,
i.e. lima→b+ f(a) = f(b+). Left limit of the function as a approaches b from the
left hand side exists, i.e. lima→b− f(a) = f(b−).
iii) f(b+) = f(b).

Lemma 2.30. Consider X+Y , where P (Y = 0) = 1. Then, E[f(X+Y)]=E[f(X)].
We write X + Y = X a.s..

Example Consider the process Zt, we have

Zt = Xt + I(t = U),

where Xt is a Levy process and I is an indicator function and U follows the uni-
form distribution U [0, 1].

According to the lemma 2.30, for the variable Y , we have P (Y = 0) = 1 and
P (1t=a = 1) = 0. If we take supermum of this point, then P (sup0≤t≤1 1t=a = 1) =

1. Therefore, Xt is càdlàg, but Zt is not.

Before the discussion of characteristic funtion for Levy process, we need to give
the definition of infinite divisibility. Motivated by Andreas E. Kyprianou, the
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finite divisible is given in his book, named Introductory Lectures on Fluctuations
of Levy Processes with Applications (2006).

Definition 2.31. Let X be a random variable taking values in R with the law
µX . We say that X is infinitely divisible if, for all n ∈ N , there exist independent
and identically distributed random variables Y1, . . . , Yn such that

X
d
= Y1 + . . .+ Yn.

The characteristic function of the distribution of Xt admits the representation

E[eiξXt ] = e−tψ(ξ),ξ ∈ R, t ≥ 0.

The function ψ is called the characteristic exponent of X. The Levy-Khintchine
formula describes all possible characteristic exponents. Motivated by Andreas E.
Kyprianou, the explaination of the characteristic function for Levy process is given
in his book, named Introductory Lectures on Fluctuations of Levy Processes with
Applications (2006).

Proof of characteristic function for Levy process: From the definition of
a Levy process, we know Xt, which is a random variable belonging to the class of
infinitely divisible distributions for any t > 0,. It follows

Xt = X + t/n+ (X2t/n −Xt/n) + . . .+ (Xt −X(n−1)t/n). (2.1)

Assume that

ψt(θ) = −logE(eiθXt).

By using (2.1) twice, we have two integers m,n such that

mψt(θ) = ψm(θ) = nψm/n(θ).

Therefore, for any Levy process, it has the property

E(eiθXt) = e−tψ(θ).

The proof of the theorem is motivated by Levy Processes and Stochastic Calculus
(2004) written by David Applebaum.
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Theorem 2.32. Let X be a Levy process on R. Then its characteristic exponent
admits the representation

ψ(ξ) =
σ2

2
ξ2 − ibξ +

∫
R\0

(1 + iξx1[−1,1] − eixξ)F (dx),

where σ2 ≥ 0, b ∈ R, and F is a measure on R \ 0 satisfying∫
R\0

min{|x|2, 1}F (dx) ≤ ∞.

Example The Brownian motion with drift µ and valatility σ is a Levy process.
Let P (x) be the probability density function for Xt. Note that the characteristic
function of the Brownian motion can be obtained by using the definition of a
characteristic function.

E[eiξXt ] =

∫ ∞
−∞

eiξxP (x)dx

=

∫ ∞
−∞

eiξx
1√

2πσ2t
exp(−(x− µt)2

2σ2t
)dx

= e(iµtξ−σ2tξ2/2)

= e−t(−iµξ+σ
2ξ2/2).

Example The Possion process with parameter λ is a Levy process. Let P (x)

be the probability density function for Xt. The characteristic function of Possion
process is

E[eiξXt ] =
∞∑
k=0

P (Xt = k)eiξk

=
∞∑
k=0

(λt)ke−λt

k!
eiξk

= e−λt
∞∑
k=0

(λteiξ)k

k!

= eλt(e
iξ−1).

Example If F (dx) = 0, then this Levy process is a Brownian notion with variance
σ2 and drift µ. Note that the Brownian motion is the only (subclass of) Levy
process(es) with continuous sample paths. Sample paths of any other Levy process
exhibit jumps.
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Example Assume that σ = 0 and F (dx) = cλe−λx1(0,1)(x)dx, where λ > 0 and c
is a non-negative constant. For this Levy measure, the characteristic exponent is

ψ(ξ) =
σ2

2
ξ2 − ibξ +

∫ 1

0

(1− eixξ)cλe−λxdx

=
σ2

2
ξ2 − ibξ +

∫ 1

0

cλe−λxdx−
∫ 1

0

cλe(−λ+iξ)xdx

=
σ2

2
ξ2 − ibξ + c(1− e−1)− cλ

λ− iξ
(1− e−(λ−iξ)).

Definition 2.33. Suppose that a probability space (Ω,F , P ) and a filtration F
are given. A geometric Levy process is given by

St = S0e
Xt ,

where Xt is a Levy process with the generating triplet (σ2, F (dx), b).

2.2.21 Markov Process

Notice that the Definition 2.34 follows [38] on the page 227.

Definition 2.34. A Markov process X with state space (S,F) is defined by
Markov kernel as follows

X = (Ω, {Ft}, {Xt}, {Pt : t ≥ 0}, {PX : x ∈ S}),

which is a S-valued stochastic process adapted to {Ft}, such that, for 0 ≤ s ≤ t,
and f ∈ B(S) and x ∈ S,

Ex[f(Xs+t)|Fs] = (Ptf)(Xs), PX a.s.,

where {Pt} is a transition function on (S,F), a family of kernels Pt : S×F → [0, 1]

such that

(i) for t ≥ 0 and x ∈ S, Pt(x, ·) is a measure on F with Pt(x, S) = 1;
(ii) for t ≥ 0 and Γ ∈ F , Pt(·,Γ) is F -measurable;
(iii) for s, t ≥ 0, x ∈ S and Γ ∈ F ,

Pt+s(x,Γ) =

∫
E

Ps(x, dy)Pt(y,Γ).
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Important example is the class of Levy and geometric Levy processes.

2.2.22 Itô’s formula

These definitions and theorems follows [34].

Definition 2.35. Let L be the class of funtions

f : [0,∞)× Ω→ R

such that
i) (t, ω) → f(t, ω) is B × F -measurable, where B denotes the Borel σ-algebra on
[0,∞).
ii) f(t, ω) is Ft-adapted.
iii) E[

∫ T
S
f(t, ω)2dt] <∞.

The Itô integral
∫
fdB can be defined for a larger class of integrals f than L.

First, the measurability condition ii) of the definition can be changed as follows,
we say a):
a) There exists an increasing family of σ-algebras Ht, t ≥ 0 such that Bt is a
martingale with respect to Ht and ft is Ht-adapted.
b) The extension of the Itô integral consists of weakening condition iii) of the
definition to P [

∫ T
S
f(s, ω)2ds <∞] = 1.

Let La,T be the space of processes satisfied with a) and b). And let L1
a,T be the

space of processes ν satisfied with a) and the following condition c) instead of b)

c) P [

∫ T

0

|νt|dt <∞] = 1.

.

Definition 2.36. A continuous and adapted stochastic process {Xt, 0 ≤ t ≤ T}
is called an Itô process as follows

Xt = X0 +

∫ t

0

usdBs +

∫ t

0

νsds,

where u ∈ La,T and ν ∈ L1
a,T .

Theorem 2.37. Let Xt be an Itô process given by

dXt = utdt+ νtdBt. (2.2)
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Let f(t, x) ∈ C2([0,∞)×R). Then,

Yt = f(t,Xt)

is an Ito process and

dYt =
∂f

∂t
(t,Xt)dt+

∂f

∂x
(t,Xt)dXt +

1

2

∂2f

∂x2
(t,Xt) · (dXt)

2,

which follows the product rules

dt · dt = dt · dBt = dBt · dt = 0 and dBt · dBt = dt.

Theorem 2.38. Suppose that X is an Itô process of the form (2.2). Let f(t, x) be
a function twice differentiable with respect to the variable x and once differentiable
with respect to t, with continuous partial derivatives ∂f

∂x
, ∂

2f
∂x2

, and ∂f
∂t

(we say that
f is of class C1,2). Then, the process Yt = f(t,Xt) is again an Itô process with the
representation

Yt = f(0, X0) +

∫ t

0

∂f

∂t
(s,Xs)ds+

∫ t

0

∂f

∂x
(x,Xs)usdBs

+

∫ t

0

∂f

∂x
(s,Xs)vsds+

1

2

∫ t

0

∂2f

∂x2
(s,Xs)u

2
sds.

2.3 Preliminary knowledge for Hamiltonian and

Markov kernel

2.3.1 Vector space

The Definition 2.39 follows [9] on the page 159.

Definition 2.39. A set V is called a vector space over F , where F is a scalar field
(the field R of real numbers or the field C of complex numbers), when the vector
addition and scalar multiplication operations satisfy the following properties:

i) x+y ∈ V for all x, y ∈ V . This is called the closure property for vector addition;
ii) (x+ y) + z = x+ (y + z) for every x, y, z ∈ V ;
iii) x+ y = y + x for every x, y ∈ V ;
iv) There is an element 0 ∈ V such that x+ 0 = x for every x ∈ V ;
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v) For each x ∈ V , there is an element (−x) ∈ V such that x+ (−x) = 0;
vi) αx ∈ V for all α ∈ F and x ∈ V . This is the closure property for scalar
multiplication;
vii) (αβ)x = α(βx) for all α, β ∈ F and every x ∈ V ;
viii) α(x+ y) = αx+ αy for every α ∈ F and all x, y ∈ V ;
iv) (α + β)x = αx+ βx for all α, β ∈ F and every x ∈ V ;
x) 1x = x for every x ∈ V .

Definition 2.40. Let E be a vector space over C. A subset M of E is called a
subspace of E if and only if it satisfies the following properties:

i) If u and v are in M , then u+ v is in M .
ii) If u is in M and α is in C, then αu is in M .

2.3.2 Banach space

The following definition follows [41] on the page 194.

Definition 2.41. Let V be a vector space over C. A norm || · || on V is a real
valued function on V , which has the following properties:

i) ||x|| ≥ 0, ||x|| = 0 implies x = 0.
ii) ||ax|| = |a|||x||, a ∈ C.
iii) ||x+ y|| ≤ ||x||+ ||y||.
Then, V is called a normed linear space.

A sequence {xn} in a normed linear space V is called a Cauchy sequence if ||xn −
xm|| → 0 as n,m → ∞. V is complete if every Cauchy sequence in V converges.
A complete normed linear space is called a Banach space.

2.3.3 Dual space

The Definition 2.42 follows [42] on the page 169 in the book.

Definition 2.42. A linear functional on V is a function f : V → F such that

f(αx+ βy) = αf(x) + βf(x2)

for all α, β ∈ F and all x, y ∈ V .



Preliminary knowledge 25

Definition 2.43. Let V be a linear vector space and C be the field of complex
numbers. The dual space Vdual of V is defined as

Vdual = {f : V → C, where f is linear functional}.

The dual space is also a linear vector space.

Let us give a simple proof for that the dual space is a linear verctor space.

Lemma 2.44. Let f1, f2 be linear functionals and k1, k2 are in C. f = k1f1 +k2f2,
then f is linear. We need to show that f(αx+βy) = k1f1(αx+βy)+k2f1(αx+βy).

Proof:

f(αx+ βy) = k1f1(αx+ βy) + k2f1(αx+ βy)

since f1, f2 are linear.

then k1(αf1(x) + βf2(y)) + k2(αf2(x) + βf2(y))

= k1αf1(x) + k1βf2(y) + k2αf2(x) + k2βf2(y)

= α(k1f1(x) + k2f2(x)) + β(k1f1(y) + k2f2(y))

= αf(x) + βf(y).

2.3.4 Hilbert space

The Definition 2.45 follows [42] on the page 105.

Definition 2.45. A complex vector space H is called an inner product space if to
each ordered pair of vectors x and y in H is associated a complex number (x, y),
called the inner product or scalar product of x and y, such that the following rules
hold:

(1) (y, x) = (x, y). (The bar denotes complex conjugation.)
(2) (x+ y, z) = (x, z) + (y, z).
(3) (αx, y) = α(x, y) if x ∈ H, y ∈ H, α ∈ C.
(4) (x, x) ≥ 0 for all x ∈ H.
(5) (x, x) = 0 only if x = 0.
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Every inner product space can be normed by defining

||x|| = (x, x)1/2. (2.3)

If the normed space is complete, it is called a Hilbert space.

Definition 2.46. Given two vector spaces E and F over the complex field C, a
function f : E → F is semilinear if

f(u+ ν) = f(u) + f(ν) and f(λu) = λ̄f(u),

for all u, ν ∈ E and all λ ∈ C. The set of all semilinear maps f : E → C is denoted
by Ē∗.

Notice that the inner product is not linear, but it is semi-linear with respect to
second coordinate by the following proof.

Proof.

(x, iy) = (iy, x)

= i(y, x)

= i(y, x)

= −i(y, x)

= −i(x, y).

2.3.5 Bounded linear operator

These definitions follows [41] on the page 51 and 52.

Definition 2.47. A function A which maps H1 to H2 is called a linear operator
if for all x, y in H1 and α ∈ C satisfied the following properties:

i) A(x+ y) = A(x) + A(y);
ii) A(αx) = αA(x).

Notice that H1,H2 are two separate Hilbert spaces.
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Definition 2.48. The linear operator A : H1 → H2 is called bounded if

sup
||x||≤1

||Ax|| <∞.

The norm of A, written ||A||, is given by

||A|| = sup
||x||≤1

||Ax||.

Lemma 2.49. For any Γ > 0, A is linear and K = sup||x||≤1 ||Ax|| <∞, then we
have

sup
||x||≤Γ

||Ax|| <∞.

Proof. Let y = x
Γ
. Then, we obtain

||Ax|| = ||AΓ
x

Γ
||

= ||Γ(A
x

Γ
)||

= Γ||Ax
Γ
||

since ||x
Γ
|| = ||x||

Γ
≤ 1

≤ ΓK <∞.

2.3.6 Eigenfunction and Eigenvalue

Definition 2.50. Let A ∈ Cn×n be a n by n matrix. The eigenvalues λ of A are
the zeros of the characteristic polynomial

p(λ) = det(A− λI),

where I is an identity martix. If the eigenvalues of A are real, then we index them
from largest to smallest

λn(A) ≤ . . . ≤ λ1(A).
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Let λ(A) be a set of all possible eigenvalues of A is called its spectrum. If λ ∈ λ(A),
then there exists a nonzero vector x so that

Ax = λx.

Such a vector is called an eigenvector for A associated with λ.

Notice that the Definition 2.50 follows [43].

2.3.7 Strongly continuous semigroup

Definition 2.51. A family T (t) of bounded linear operators on a Banach space
X is a strongly continuous semigroup such that
i) T (0) = I , (identity property);
ii) ∀t, s > 0 : T (t+ s) = T (t)T (s);
iii) ∀x0 ∈ X : ‖T (t)x0 − x0‖ → 0, as t→ 0.

Notice that the Definition 2.51 follows [38] on the page 234.

For the Definition of Chaos follows [53] on the page 50.

Here is an example about non-continuous semigroup.
Example Let {Xt : t > 0} be a set of i.i.d. Chaos and X0 = 0 if it satisfies with
i) T0 = I.
ii) Let P = FXt = Tt, where P is the distribution of Xt and is a projection. Then,
we have Tt+s = P = TtTs = P 2.
iii) ||Ttx0 − x0|| = ||Px0 − x0|| 6= 0.

Then, T (s) = P is a projection, for s > 0. And {Xt : t > 0} is a non-continuous
semigroup.

Notice that x0 is a function, say f , and Px0 = E[f(X)], where X = Xt is a
number. Then, E[f(X)] is not equal to f .
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2.3.8 Infinitesimal Generator

Definition 2.52. Let T (t) be a strongly continuous semigroup. The Infinitesimal
Generator of T (t) is defined by

Aν = lim
t→0

T (t)ν − ν
t

for ν ∈ D(A),

where D(A) is the domain of A, which defined as

D(A) = {ν ∈ X : lim
t→0

T (t)ν − ν
t

exists.}

The Definition 2.52 follows [34].

2.3.9 Quantum Mechanics Approach

"Quantum mechanics is the description of the behavior of matter and light in
all its details and, in particular, of the happenings on an atomic scale." This is
given by Feymann in 1964. Quantum mechanics is a branch of physics which is
the fundamental theory of nature in terms of the small scales and energy levels of
atoms. In quantum mechanics, the particle’s evolution is random. The quantum
particle’s position at each instant t is a degree of freedom in physics, which is a
random variable in probability theory. If one collects all the degrees of freedom
over time, one would obtain a collection of random variables.

In quantum mechanics, the Hamiltonian is the operator corresponding to the total
energy of the system in most of the cases. It is the sum of the kinetic energies of all
the particles, plus the potential energy of the particles associated with the system.
For different situations or number of particles, the Hamiltonian is different since
it includes the sum of kinetic energies of the particles, and the potential energy
function corresponding to the situation.

We introduce special Hamiltonian and apply Dirac continuous formalism for con-
tinuous markets. For discrete markets, we apply the traditional trace technique.
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2.3.10 Dirac notation

In quantum mechanics, a state space is a complex Hilbert space, which is defined
as the Definition 2.45. Introduce V is a quantum state space, which is a linear
vector space defined as the Definition 2.39. ψ is a state vector in V . Vdual is a dual
space, which is also a linear vector space. χ is a state vector in Vdual. In Dirac’s
bracket notation:

• |ψ >: a ket vector in V .

• < χ|: a bra vector in Vdual.

• < χ|ψ >: a scalar product.

• |ψ >< χ|: an operator( or called a dyad).

Example For ket vectors a and b, we write

|a >=


a1

...
an

 and |b >=


b1

...
bn

 .

Consider one of them as a bra vector

< a| =
(
a∗1, . . . , a

∗
n

)
and |b >=


b1

...
bn

 ,

then, we have the inner product

< a|b >=
(
a∗1, . . . , a

∗
n

)
·


b1

...
bn

 = a∗1b1 + . . .+ a∗nbn.

We can write operators in terms of bras and kets by the outer product.

|b >< a| =


b1

...
bn

( a∗1, . . . , a
∗
n

)
=


b1a
∗
1 . . . b1a

∗
n

... . . . ...
bna
∗
1 . . . bna

∗
n

 .

In the Dirac formalism, the Hamiltonian is typically implemented as an operator
on a Hilbert space. That is the eigenvectors of H, denoted |x >, provide an
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orthonormal basis for the Hilbert space. Ex is the spectrum of allowed energy
levels of the system is given by the set of eigenvalues,

H|x >= Ex|x > .

2.3.11 Schördinger equation

We are motivated by Belal E. Baaquie for Schordinger equation, which is given at
[3] on the page 20.

For describing a quantum system, one of the fundamental goals of physics is to
obtain the dynamical equations that predict the future state of a system. Let ψ be
a state funtion. This requirement in quantum mechanics is met by the Schrödinger
partial differential equation that determines the future time evolution of the state
function ψ(t,F), where t parameterizes time. And the Schrödinger equation is
time reversible.

The Schrödinger equation is expressed by the state space and operators and de-
termines the time evolution of the state function |ψ(t) >, with t being the time
parameter. One needs to specify the degrees of freedom of the system in question,
that in turn specifies the nature of the state space V ; one also needs to specify the
Hamiltonian H.

Then, the Schrödinger equation is given by

∂|ψ(t) >

∂t
= −iH|ψ(t) > . (2.4)

Let |ψ > be the initial value of the state vector at t = 0 with < ψ|ψ >= 1. From
Stone Theorem, the Schrödinger equation can be integrated to yield the following
formal solution

|ψ(t) >= e−itH |ψ >= U(t)|ψ > . (2.5)

the Hamiltonian H is an operator that translates the initial state vector in time,
as in the Schördinger equation. The evolution operator U(t) is defined by

U(t) = e−itH , U †(t) = eitH (2.6)

and is unitary since H is Hermitian.
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The operator U(t) is the exponential of the Hamiltonian H that in many cases,
as is the case given in the Schrödinger equation, is a differential operator. The
Feynman path integral is a mathematical tool for analyzing U(t).

2.3.12 Fourier transform

Let f is an integrable function f : R→ C. The Fourier transform of the function
f is f̂ ,

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πixξdx, where ξ ∈ R.

If f̂ is an integrable function, then f is continuous and is determined by f̂ via the
inverse transform:

f(x) =

∫ ∞
−∞

f̂(ξ)e2πiξxdξ, where x ∈ R.

2.3.13 Fourier transform of tempered distributions

We begin by introducing the Schwart space which is the basic space to define the
Fourier transform of tempered distributions.

Definition 2.53. The Schwartz space or space of rapidly decreasing functions on
Rn is the function space

S(Rn) = {f ∈ C∞(Rn) : ||f ||α,β ≤ ∞,∀α, β ∈ Zn
+},

where α, β are multi-indices, C∞(Rn) is the set of smooth functions from Rn to
C, and

||f ||α,β = sup
x∈Rn

|xαDβf(x)|.

Notice that if f is infinitely differentiable, all the Dβf are infinitely differentiable
functions.

The Definition 2.54 and 2.55 follows [42] on the page 220.
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Definition 2.54. Let S be a Schwartz space. The set T consists of all the linear
continuous mappings

T : S → C,

i.e., we have T ∈ T if and only if

T (αx+ βy) = αTx+ βTy for all α, β ∈ C, x, y ∈ S,

and, as n→∞,

xn
S−→ x implies Txn → Tx.

The elements T of T are called tempered distribution.

Definition 2.55. Let T ∈ T . The Fourier transform FT of T is defined by

(FT )(x) := T (Fx) for all x ∈ S.

2.3.14 Completeness equation

We follows [2] on the page 48.

Definition 2.56. A projection on a linear space X is a linear map P : X → X

such that

P 2 = P.

Definition 2.57. An orthogonal projection on a Hilbert space H is a linear map
P : H → H that satisfies

P 2 = P, < Px, y >=< x, Py > for all x, y ∈ H.

The completeness equation for the degree of freedom is given by∫ ∞
−∞

dx|x >< x| = I : Completeness Equation (2.7)

where I is the identity operator on state space.
Let {ϕi} be an orthonormal system, ϕi is an orthonormal basis. If |a > is a vector,
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then
|ϕi >< ϕi|(|a >) = |ϕi >< ϕi|a >=< ϕi|a > |ϕi >= Pϕia, (2.8)

LetM be the subspace of H consisting of all linear combinations of kets belonging
to an orthonormal collection {|ϕi >},∑

Pϕia = |a > . (2.9)

Here, the projector R onto M is the sum of the dyad projectors:

R =
∑
|ϕi >< ϕi| (2.10)

If every element of R can be in the equation (2.10), the orthonormal collection
form an orthonormal basis of H and the decomposition of the identity is

∞∑
i=−∞

|ϕi >< ϕi| = I. (2.11)

For the continuous time version, it justified via Fourier of tempered distributions.∫ ∞
−∞

dx|x >< x| = I. (2.12)

2.3.15 Hamiltonian for a periodic completeness equation

We follows [3] on the page 39. If the Hamiltonian operator of particle freely moving
on a circle S1 with radius L, we are going to apply it with L = 1 and m = 1. And
the free particle Hamiltonian operator H, which is given by

H = −1

2

∂2

∂x2
, (2.13)

where x ∈ S1 is defined on a periodic domain [0, 2π], the variable x has the
periodicity

x = x+ 2π. (2.14)

Consider the normalized eigenfunctions of H given by

Hψn(x) = EnψE(x), (2.15)∫ 2π

0

dx|ψn(x)|2 = 1. (2.16)
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2.3.16 Resolvent

Notice that the Definition 3.4 follows [38] on the page 233.

Definition 2.58. Suppose that {Pt} is the transition function of joint measura-
bility with respect to time and space on the measurable space (S,F), so that we
have

∀Γ ∈ F , the map (x, t) → Pt(x,Γ) is (F × B[0,∞))-measurable from E × [0,∞)

to R.

For λ > 0, we define a map Rλ : mBX → mBX : for x ∈ S, we have

Rλf(x) :=

∫
[0,∞)

e−λtPtf(x)dt =

∫
S

Rλ(x, dy)f(y),

where

Rλ(x,Γ) :=

∫
[0,∞)

e−λtPt(x,Γ)dt.

Thus, for each Markov process, we can write down its resolvent.

2.4 Preliminary knowledge for Quantum Market

Quantum probability is the generalisation of the classical theory of probability
made necessary by the noncommutative multiplication of quantum observables,
which are usually represented by self-adjoint operators in a Hilbert space.

2.4.1 Projection

Definition 2.59. A projection on a linear space X is a linear map P : X → X

such that

P 2 = P.

Definition 2.60. An orthogonal projection on a Hilbert space H is a linear map
P : H → H that satisfies

P 2 = P, < Px, y >=< x, Py > for all x, y ∈ H.
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Example The orthographic projection which maps the point (a, b, c) in three-
dimensional space R3 to the point (a, b, 0) is an orthogonal projection onto the
x− y plane. The orthographic projection is give by

P =


1 0 0

0 1 0

0 0 0

 .

The action of the matrix on the arbitrary vector is

P


a

b

c

 =


a

b

0

 .

Then, we obtain

P 2


a

b

c

 = P


a

b

0

 =


a

b

0

 = P


a

b

c

 .

Definition 2.61. A bounded linear operator A : H → H on a Hilbert space H is
self-adjoint if A∗ = A.

If A is a self-adjoint operator, it has the following fact.

If A∗ = A and A admits a representation A = UDU∗. Then, f(A) = Uf(D)U∗

for any function f .

2.4.2 Quantum state

The Definition 2.62, 2.63, 2.64 follows [44] on the page 28.

Definition 2.62. An involution on an algebra A is a map a→ a∗ of A onto itself
such that
i) (a∗)∗ = a;
ii) (ab)∗ = b∗a∗;
iii) (a+ γb)∗ = a∗ + γ̄b∗;
for all a, b ∈ A and γ ∈ C.
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Definition 2.63. A *-algebra is an algebra A together with an involution. A
Banach *-algebra is a Banach algebra A together with an isometric involution. An
algebra homomorphism ψ : A→ B between *-algebras is called a *-homomorphism
if ψ(a∗) = ψ(a)∗ for all a ∈ A.

Definition 2.64. A Banach *-algebra is called a C *-algebra if ||a∗a|| = ||a||2 for
all a ∈ A.

The Definition 2.65 and the Theorem 2.66 follow [45] on the page 63.

Definition 2.65. A quantum state on a given C∗-algebra A is a positive self-
adjoint operator with unit-trace, i.e., tr(ρ) = 1.

The class of all quantum states on the C∗-algebra A shall be denoted by S(A),
where

S(A) = {ρ ∈ A|ρ ≥ 0, tr(ρ) = 1}.

The theorem 2.66 follows [45].

Theorem 2.66. A quantum state ρ ∈ S(A) has a canonial convex decomposition
of the form

ρ =
∞∑
j=1

λjPj, (2.17)

where {λj} is a sequence of non-negative numbers with
∑∞

j=1 λj = 1 summing to
one and (Pj)

∞
j=1 is an orthonormal sequence of one-dimensional projections. If

there are infinitely many nonzero terms, then the sum convergences with respect
to the trace norm || · ||1.

2.4.3 Quantum probability space

A positive operator ρ of unit trace is called a state. The set of all states in H
is denoted by P . For any fixed state ρ, the triple (H,P(H), ρ) is called a finite
dimensional quantum probability space.

Definition 2.67. A quantum probability space is a pair (A, ρ), where A is a von
Neumann algebra and ρ is a normal (i.e., σ-weakly continous) state. The events
in (A, ρ) are the orthogonal projections p ∈ A. The probability that p occurs is
ρ(p).
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2.4.4 Quantum observable

This section follows [48] on the page 9.

Let H be a Hilbert space of dimension n ≤ ∞. Elements of O(H), i.e., Hermitian
operators in H, are called observables. An observable in quantum probability is
what a random variable is in classical probability. Any observable X, being a self-
adjoint operator, has the spectral resolution X =

∑
j xjE

X
j , where x1, x2, . . . are

its distinct eigenvalues and EX
i is the event that X takes the value xi.

Definition 2.68. A linear map U : H1 → H2 between real or complex Hilbert
spaces H1 and H2 is said to be orthogonal or unitary, respectively, if it is invertible
and if

< Ux,Uy >H2=< x, y >H1 for all x, y ∈ H1.

Two Hilbert spacesH1 andH2 are isomorphic as Hilbert spaces if there is a unitary
linear map between them.

A unitary operator is one-to-one and onto, and preserves the inner product. A
map U : H1 → H2 is unitary if and only if U∗U = UU∗ = I.

Example Let H = Cn with its canonical orthonormal basis {ej, 0 ≤ j ≤ n− 1}.
For any set {x0, x1, . . . , xn−1} of n distinct real numbers consider the pure state
e0 and the observable X =

∑
j xj|ej >< ej|. In the canonical basis X has the

diagonal matrix representation

X =


x0 0 0 . . . 0

0 x1 0 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . xn−1

 .

For any unitary operator U = ((uij)), the observable U∗XU takes the values
x0, x1, . . . , x+ n− 1 and

< e0, (U
∗XU)ke0 > = < Ue0, X

kUe0 >

=
n−1∑
j=0

xkj |uj0|2.
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2.4.5 Quantum expectation

Let ρ be a state and the probability of event EX
j , X takes the value xj in the state

ρ, is equal to trρEX
j . X has expectation Eρ(X) in the state ρ,

Eρ(X) =
∑
j

xjtrρE
X
j

= trρ
∑
j

xjE
X
j

= trρX.

Definition 2.69. (Projection-valued measure) Let H be a Hilbert space and let
P (H) be the set of orthogonal projections in the Banach algebra L(H). A (finite)
projection valued measure a on H is a map B(R)→ P (H) and A→ aA from the
σ-algebra of Borel subsets of R to the set of projections, such that the following
conditions hold:
(i) a = 0, aR = Id;
(ii) For some constant R > 0, we have a[−R,R] = Id;
(iii) If An, n ≥ 1, is an arbitrary sequence of pairwise disjoint Borel subsets of R,
let

A =
⋃
n≥1

An ∈ B(R),

and then we have

aA =
∑
n≥1

aAn

where the series converges in the strong operator topology of H.

Let A be a positive self-adjoint operator with the eigenvalues {x1, x2, . . . , xn} and
associated projections P1, P2, . . . , Pn so that the projection-valued measure a(E)

on the σ-field of Borel subsets of the real line R can be defined by
∑

xi∈E Pi for all
E ⊆ R. For any eigenvalue xi, assume that a measurement which gives the values
xi transforms the state ρ into the new state ρ̂x.



Preliminary knowledge 40

2.4.6 Quantum conditional expectation

First, we consider a set of points such that the probability of points is equal to
tr(ρPx), where x takes the value of xi in the state ρ, then

tr(ρPx) = tr(ρP 2
x )

= tr(PxρPx)

= tr(ρx).

If we have a random variable ξ such that P (ξ = x) = Px, then we can derive the
new density

tr(ρPi) =
tr(ρxPi)

tr(ρx)

=
ρx

tr(ρx)

= ρ̂x.

For the quantum condition probability P [Y |A = x],

quantum
tr(ρxY )

tr(ρx)
=

tr(PxρPxY )

tr(PxρPx)

=
tr(PxρPxSN)

tr(PxρPx)
, where Y = SN .

The quantum conditional expectation E[Y = x′|A = x],

quantum
∑

x′
tr(PxρPxY )

tr(PxρPx)
. (2.18)

2.4.7 Tensor product

Definition 2.70. Let F be a field. The kronecker product of A = [aij] ∈Mm,n(F )

and B = [bij] ∈Mp,q(F ) is denoted by A⊗B and is defined to be the block matrix

A⊗B ≡


a11B ... a1nB

. ... .

am1B ... amnB

 ∈Mmp,nq(F ).
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Theorem 2.71. Let A ∈Mm,n, B ∈Mp,q, C ∈Mn,k, and D ∈Mq,r. Then,

(A⊗B)(C ⊗D) = (AC)⊗ (BD). (2.19)

Proof. Let A = [aih] and C = [chj]. By the definition of Kronecker product,
A⊗B = [aihB] and (C ⊗D) = C = [chjD]. The i, jth block of (A⊗B)(C ⊗D) is∑n

n=1 aihchj which implies that the i, jth block of (AC)⊗(BD) is [
∑n

n=1 aihchj](BD).
Thus, (A⊗B)(C ⊗D) = (AC)⊗ (BD).

Theorem 2.72. Let A ∈Mm,n(F ). Then,

(A⊗B)∗ = A∗ ⊗B∗ for B ∈Mp,q(F ). (2.20)

Proof.

(A⊗B)∗ =


a11B ... a1nB

. ... .

am1B ... amnB


∗

=


ā11B

∗ ... ā1nB
∗

. ... .

¯am1B
∗ ... ¯amnB

∗


= A∗ ⊗B∗.

Corollary 2.73. The above Theorem can be generalized in the following way:

(A1 ⊗ A2 ⊗ ...⊗ Ak)(B1 ⊗B2 ⊗ ...⊗Bk) = A1B1 ⊗ A2B2 ⊗ ...⊗ AkBk. (2.21)

Proof. By the above Theorem, since (A1 ⊗ A2)(B1 ⊗ B2) = A1B1 ⊗ A2B2, which
is given by

the L.H.S of (2.21) = [(A1 ⊗ A2 ⊗ ...⊗ An)⊗ An+1][(B1 ⊗B2 ⊗ ...⊗Bn)⊗Bn+1]

= [(A1 ⊗ A2 ⊗ ...⊗ An)][(B1 ⊗B2 ⊗ ...⊗Bn)]⊗ [An+1Bn+1]

= [A1B1 ⊗ A2B2 ⊗ ...⊗ AnBn]⊗ [An+1Bn+1]

= A1B1 ⊗ A2B2 ⊗ ...⊗ AnBn ⊗ An+1Bn+1.
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2.4.8 Diagonal decomposition

Theorem 2.74. (Symmetric Schur Dcomposition) If A ∈ Rn×n is symmetric,
then there exists a real orthogonal Q such that

Q∗AQ = Λ = diag(λ1, . . . , λn).

Moreover, for k = 1 : n,AQ(:, k) = λkQ(:, k).

Theorem 2.75. (Schur Decomposition) If A ∈ Cn×n, then there exists a unitary
Q ∈ Cn×n such that

Q−1AQ = D +N,

where D = diag(λ1, . . . , λn) and N ∈ Cn×n is strictly upper triangular. Further-
more, Q can be chosen so that the eigenvalues λi appear in any order along the
diagonal.

2.4.9 Jordan Matrix

Motivated by Darl D. Meyer, the definition 2.76 follows [9] on the page 590.

First, we present some general results about Jordan decomposition.

Definition 2.76. Function of a Jordan Blocks For a k× k Jordan block Jk×k
with eigenvalue u and for a function f such that f(u), f ′(u), . . . , f (k−1)(u) exist,
f(Jk,k) is defined to be

f(Jk,k) = f



u 1 . . . . . . 0

0 u 1 . . . 0

. . . . . . . . . . . . . . .

0 0 . . . u 1

0 . . . . . . . . . u



=



f(u) f ′(u)
1!

f ′′(u)
2!

. . . f (k−1)(u)
(k−1)!

0 f(u) f ′(u)
1!

. . . . . .

. . . . . . . . . . . . . . .

0 0 . . . f(u) f ′(u)
1!

0 . . . . . . . . . f(u)


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where

Jk,k =



u 1 . . . . . . 0

0 u 1 . . . 0

. . . . . . . . . . . . . . .

0 0 . . . u 1

0 . . . . . . . . . u


.

Functions of Matrix For A with σ(A) = {u, u, . . . , u}, let kk = index(u).
(i) A funtion f is said to be defined (or to exist) at A when f(u), f ′(u), . . . , f (k−1)(u)

exist for each u ∈ σ(A).
(ii) Suppose A = PJP−1, where J is in Jordan form with representing the various
Jordan blocks. If f exists at A, then the value of f at A is defined to

f(A) = P



f(Jk1,k1) 0 . . . . . . 0

0 f(Jk2,k2) 0 . . . 0

. . . . . . . . . . . . . . .

0 0 . . . f(Jkk−1,kk−1
) 0

0 . . . . . . . . . f(Jkk,kk)


P−1,

where

A = P



Jk1,k1 0 . . . . . . 0

0 Jk2,k2 0 . . . 0

. . . . . . . . . . . . . . .

0 0 . . . Jkk−1,kk−1
0

0 . . . . . . . . . Jkk,kk


P−1.

2.4.10 Monte Carlo

Monte Carlo simulation is a method by using random numbers for iteratively eval-
uating a deterministic model. For derivative pricing, it simulates a large number
of price paths of the underlying assets with probability corresponding to the un-
derlying stochastic process, calculates the discounted payoff of the derivative for
each path, and averages the discounted payoffs to yield the derivative price. The
validity of Monte Carlo simulation relies on the law of large numbers.
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2.5 Geometric Levy processes market

2.5.1 Binomial market (Cox-Rubinstein model) by Hedging

and No Arbitrage

Consider a discrete market with one non-risky asset (bond) and one risky asset
(share). One can take t = 0, 1, . . . , N . Assume that one non-risky asset is a riskless
bond or bank account B, which yields

B(t+ 1) = (1 + ρ)B(t), B(0) = 1,

where ρ > 0 is a riskless rate of return in each time interval [t, t + 1]. Thus, its
price process is B(t) = (1 + ρ)t, t = 0, 1, . . . , N .

Suppose that the interest rate r is fixed and the share price S, where S0, S1, . . .,
are defined by the N -step binomial model

S0, St = St−1Yt,

where Y, Y1, Y2, . . . are iid random variables with the probability P (Y = u) +

P (Y = d) = 1. Here, each share price can rise to a value Su or fall to a value Sd
go down. The no-arbitrage condition d < 1 + ρ < u holds.

Motivated by the lecture notes, I state the following derivation of hedging for both
Binomial market and Black-Scholes market.

The option game Suppose we want to find the initial portfolio (x0, x1), where
x1 invested in shares and x0 invested in bonds, such that the final capital W1 = C

is payoff or the option claim. Let ρ be the risk-free interest rate. Let us remind
that

W1 = capital at time 1 = x0(1 + r) + x1S1.

Notice that the C payoff is the function of S1. Therefore, the equation W1 = C

consists of two equations with two unknowns

[W1|S1 = S0u] = x0(1 + r) + x1S0u = Cu,
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and

[W1|S1 = S0d] = x0(1 + r) + x1S0d = Cd.

The solution are

x1 =
Cu − Cd
S0(u− d)

,

which means that the number of units of stock you must be held in a portfolio
that replicates the payoff to the option and

x0 =
uCu − dCd

(1 + ρ)(u− d)
,

which it means that the value of the borrowing (or a short position in bonds)
required in a portfolio that replicates the payoff to the option. Then the option
price

OP = OP (C) = how much to invest to get the option claim C

= W0 = x0 + x1S0

=
uCu − dCd

(1 + ρ)(u− d)
+ S0

Cu − Cd
S0(u− d)

= Cu
−d+ 1 + ρ

(1 + ρ)(u− d)
+ Cd

u− (1 + ρ)

(1 + ρ)(u− d)

=
1

1 + ρ
[Cu

1 + ρ− d
u− d

+ Cd
u− (1 + ρ)

u− d
]

=
1

1 + ρ
[Cuqu + Cdqd],

where

qu =
1 + ρ− d
u− d

and qd =
u− (1 + ρ)

u− d
.

The definition 2.77 and the theorem 2.78 follows [46].

Definition 2.77. Consider the binomial asset-pricing model. LetW0,W1, . . . ,WT

be a sequence of random variables, with each Wj depending only on the first
j paths. Such a sequence of random variables is called an adapted stochastic
process. If

Wj = Ej[Wj+1], j = 0, 1, . . . , T,
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we say this process is a martingale.

Theorem 2.78. Suppose that the general binomial model with 0 < d < 1 + ρ < u

satisfy the risk-neutral probabilities be given by

qu =
1 + ρ− d
u− d

and qd =
u− (1 + ρ)

u− d
.

Then, under the risk-neutral measure, the discounted stock price is a martingale.

Then, the arbitrage free option price formula of the option claim C = f(ST ) is
defined by

W0 = OP (f(ST )) = (1 + ρ)−TEQ[f(ST )]

= (1 + ρ)−T
T∑
j=0

f(S0u
jdT−j)

T !

j!(T − j)!
qjuq

T−j
d .

Notice that risk-neutral measure allows the option to be priced as the discounted
value of its expected payoff with the risk-free interest rate.

2.5.2 Black-Scholes market by Hedging and No Arbitrage

Consider a continuous time market with one non-risky bond with the fixed interest
rate ρ, no transaction costs, and an risky asset. Assume that the share price process
{St; t ≥ 0} is modelled by the following stochastic differential equation

dSt = µStdt+ σStdBt. (2.22)

Then, {St; t ≥ 0} is a Geometric Brownian Motion (GBM) with mean parameter
µ and variance parameter σ2, i.e. St follows the following lemma:

Lemma 2.79. The process S given by the formula

St = S0e
(µ− 1

2
σ2)t+σBt ,∀t ∈ [0, T ],

is the unique solution of the stochastic differential equation (2.22).

The lemma 2.79 follows [47].

Then, we know
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(i) {St; t ≥ 0} is a GBM with mean a = µ− σ2

2
and variance σ2;

(ii) The discounted share process e−ρtSt is a martingale and the no-arbitrage con-
dition holds if and only if a = ρ− σ2

2
;

(iii) The Black-Scholes formula holds

OP (f(ST |t)) = EQ[e−ρ(T−t)f(ST )|Ft]

= e−ρ(T−t)E[f(Ste
N(a(T−t),σ2(T−t)))|St].

To derive the Black-Scholes market via hedging, we recall some terminology for
the option game:
(θt, δt) is the portfolio at time t, where θ is the number of shares to hold at time t
(invest in shares) and δ is the number of bonds to hold at time t (invest in bonds);
ρ is the risk-free interest rate;
Xt is the capital at time t;
f(ST ) is option claim;
St is the risky asset (share price) at time t.
1 is the price of the bond at time 0.

Note we have the following connection

Xt = θtSt + δt.

The target is to get option claim f(ST ) at time T to hedge

XT = f(ST ).

Then, Xt denotes how much to invest at time t to get the option claim and the
option price of the option claim f(ST ) at time t is OP (f(ST )|t).

Again, we assume that the share price follows the GBM and is defined via the
stochastic differential equation

dSt = Stµdt+ StσdSt,

where {Bt; t ≥ 0} is a standard Brownian motion.
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Under the risk-neutral measure, the drift of a stock is changed to the risk-free rate
of return so that

dSt = Stρdt+ StσdSt.

It reflects the fact that the hedging strategy ensures that the underlying drift of
the stock is balanced against the drift of the option. The drifts are balanced since
drift reflects the risk premium demanded by investors to account for uncertainty
and that uncertainty has been hedged away.

As before, let us follow the capital change process and use its differential t→ t+dt.
At time t, we have the capital

Xt = θtSt + 1δt.

And at time t+ dt, we have the capital

Xt + dXt = θtSt + 1δt + θtdSt + δtρdt.

Then, we obtain

dXt = θtdSt + δtρdt

= θt(Stρdt+ StσdBt) + δtρdt

= θtStσdBt + (δtρ+ θtStρ)dt.

Notice that it changes in share price: St → St + dSt; it gains from shares:
θtSt → θ(St + dSt); it gains from interest rate: δ → δedt = δ(1 + ρdt).

On the other hand, by BS formula

Xt = OP (f(ST )|t) = BS formula = EQ[eρ(T−t)f(ST )|St]

= g(t, St),
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which is an Ito process, and hence by the Ito formula

dXt = dg(t, St)g
′
StdSt + g′tdt+

1

2
g′′St,St(dSt)

2

= g′StStσdBt + (g′StStρ+ g′t +
1

2
g′′St,StS

2
t σ

2)dt.

Recall that

dXt = θtStσdBt + (δtρ+ θtStρ)dt.

Then, we derive

g′StStσ = θtStσ and θt = g′St =
∂g(t, St)

∂St
,

where ∂g(t, x)/∂x is called delta. So, the portfolio policy corresponding to this
option game is referred to as the data hedging and it means we need to hold delta
(∂g(t, St)/∂St) shares.

Finally, to derive the Blach-Scholes equation, consider f(t,Xt) = e−ρtXt, which is
an Ito martingale. By the Ito formula,

de−ρtXt = df(t,Xt) = f ′XtdXt + f ′tdt+
1

2
f ′′Xt,Xt(dXt)

2

= e−ρtdXt − ρe−ρtXtdt.

Now, applying from above

dXt = g′StStσdBt + (g′StStρ+ g′t +
1

2
g′′St,StS

2
t σ

2)dt,

we derive

de−ρtXt = e−ρtg′StStσdBt + e−ρt(−ρg + g′StStρ+ g′t +
1

2
g′′St,StS

2
t σ

2)dt

= σtdBt since Ito martingale,

It means that our option price is expected to grow at the same rate as the bank
account and hence the growth of each cancels out in the given process. That is
what it means to be a martingale. We do not expect change over time so we have
zero expected growth. Hence, the dt term is zero implying

0 = e−ρt(−ρg + g′StStρ+ g′t +
1

2
g′′St,StS

2
t σ

2)
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which is with x = St after rearrangement gives Black-scholes equation for the
option price:

ρg = g′t + g′xxρ+
1

2
g′′x,xx

2σ2.

The equation is derived for the European call option

C(t, x) = EQ[e−ρ(T−t)(ST−K)+|St=x]

= OP ((ST −K)+|t, x).

The Black-Scholes equation is then

ρC(t, x) =
∂C(t, x)

∂t
+
∂C(t, x)

∂x
µx+

1

2

∂2C(t, x)

∂x2
x2σ2.

If you sell an option, the BS model says that you can completely remove the risk
of the call by continuously rebalancing your stock holding to neutralize the delta
of the option.

C(t) = S(t)e−ρ(T−t)N(d1)− e−r(T−t)KN(d2),

where

d1 =
ln(S(t))
K

+ (r − ρ+ 1
2
σ2)(T − t)

σ
√
T − t

and
d2 = d1 − σ

√
T − t.

Here, N(x) is the cumulative density function of the standard normal distribution
and N ′(x) is the probability density function of the standard normal distribution:

N(x) =

∫ x

∞

1√
2π
e−y

2/2dy,

and

N ′(x) =
1√
2π
e−x

2/2dx.

The option’s delta is given by ∂c(t)
∂S(t)

= e−ρ(T−t)N(d1). It measures how the call
price changes per unit change in the price of the underlying and is the number of
units of stock you must hold in a continuously rebalanced portfolio that replicates
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the payoff to the call. The term S(t)N(d1) is the discounted value of the expected
benefit of owning the option expectations taken under risk-neutral probability
measure. The term e−r(T−t)KN(d2) is the discounted value of the expected cost of
owning the option with expectations taken under risk-neutral probability measure.
N(d2) is the risk-neutral probability that the call option finishes in the money.

2.5.3 Geometric Levy Market

For the content in this section, it follows [49].

Consider a continuous time market with one non-risky bond with the fixed interest
rate ρ and on risky asset. The share price process {St = S0e

Xt ; t ≥ 0} is defined by
the Geometric Levy process since {Xt; t ≥ 0} is a Levy process. There are several
properties as follows:

(i) Markov property

E[g(ST )|Ft] = E[g(ST )|St];

(ii) GL-conditioning [ST |St = u] = ueXTt .
(iv) Mt = e−ρtSt is a martingale if and only if

ρ = H(1)

where the function H(u) is defined by

E[ezXt ] = etH(z).

(v) The transformed Levy process X̃t is the Levy process with

EQ[f(XT )] = E[f(XT )euXT ]/E[euXT ]

with the transformed function H̃(z) = H(z + u) − H(z) which can be chosen to
satisfy H̃(1) = ρ. Then the new measure is called martingale measure.
(vi) Option pricing holds for the Geometric Levy process with the martingale
measure Q in the following form

OP (f(ST )|t, x) = EQ[e−ρ(T−t)f(ST )|St = x]

= EQ[e−ρ(T−t)f(xeXT−t)]



Preliminary knowledge 52

2.5.4 Markov Property

Filtration (Ft)t is a non-decreasing set of σ-fields. i.e.

Fs ⊂ Ft, for t ≥ s.

Let Xt be a stochastic process which is adapted to the filtration, i.e. Xt ∈ Ft or
Xt is Ft-measurable. Then, Xt satisfies the Markov Property if for all t ≤ T and
f (for which the Lebesgue integral is finite E|f(XT )| ≤ ∞)

E[f(XT )|Ft] = E[f(XT )|Xt].

The Markov Property shows how the general conditional expectation is reduced
to a usual conditional expectation of one variable on another.

In other words, OP (ST |t) = St, works in any market (hedging via buying one
share).

OP (f(ST )|t) = e−ρ(T−t)E[f(ST )|Ft].

Then, by Markov property, we obtain

OP (f(ST )|t) = e−ρ(T−t)E[f(ST )|St].
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Hamiltonians and Markov kernels

3.1 Introduction

In this chapter, the objective is to derive option pricing via quantum formalism.
Firstly, we apply the quantum formalism to derive several Hamiltonian operators,
such as Hamiltonian for standard Brownian motion, Hamiltonian for Brownian
motion, Hamiltonian for geometric Brownian motion, Hamiltonian for possion pro-
cess, Hamiltonian for compound poisson process, Hamiltonian for possion process
with shift, and even Hamiltonian for Levy process. Then, we use these Hamilto-
nian operators to derive pricing kernel and the relative option price defined via
Feynman-Kac formula.

3.2 Main Structure

In my thesis, the quantum model starts from the derivation of eigenvalues of the
Hamiltonian operator according to different stochastic processes.

Let us outline the structure of the next subsection.

Lemma 3.1. Let H be a Hamiltonian operator, f be an eigenvector of H, and K
be the related eigenvalue. Then,

Hsf = Ksf.

53
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If we consider the exponential form, it will become

etHf = etKf. (3.1)

Proof: For the simple connection, it based on the following expression

etHf =
∞∑
s=0

(tH)sf

s!
=

∑∞
s=0K

stsf

s!
= feKt.

3.2.1 Quantum formalism

In this section, the objective is to derive Option Pricing via Quantum formalism.
The formalism is based on the Fourier transform of tempered distributions on the
|p > basis to momentum space. Let us write

< x|p >= eipx , < p|x >= e−ipx. (3.2)

Then,

< x|x′ >= δ(x− x′) =

∫ ∞
−∞

dp

2π
eip(x−x

′) =

∫ ∞
−∞

dp

2π
< x|p >< p|x′ > .

This is equivalent to the the completeness equation for momentum space basis
|p > ∫ ∞

−∞

dp

2π
|p >< p| = I

We first apply the formalism to compute the pricing kernel

p(x, τ ;x′) = < x|e−τH |x′ >

=

∫ ∞
−∞

dp

2π
< x|e−τH |p >< p|x′ >

The option pricing is based on the following assumptions
(1) All financial instruments, including the price of the option, are elements of a
state space. The stock price is given by

S(x) =< x|S >= ex.
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The option price is given by a state vector. For the call option price, the payoff
function is given by

C(t, x) =< x|C, t > , g(x) =< x|g >,

and similarly for the put option.
(2) The option price is evolved by a Hamiltonian operator H, that, due to put-call
parity, evolves both the call and put options.
(3) The price of the option satisfies the Schrödinger equation

H|C, t >=
∂

∂t
|C, t >

Notice that solution to the Schrödinger equation is derived by the Feynman-Kac
formula (form of the completeness equation)

C(t, x) =

∫ ∞
−∞

dx′ < x|e−(T−t)H |x′ > g(x′).

Before the final step, we need to introduce the Feynman-Kac formula. The
Feynman-Kac formula estabilishes a connection between parabolic partial differ-
ential equations and stochastic processes. The Definition 3.2 follows [34] on the
page 143.

Definition 3.2. Let f ∈ C2
0(R) and g ∈ C(R). Suppose that g is a nonegative,

continuous function and f is a bounded and continuous funtion. Assume that
u(t, x) is a bounded funtion that satisfies

∂u

∂t
=

1

2

∂2u

∂x2
− g(x)u.

and the initial condition

u(0, x) = f(x).

Then, the Feynman-Kac formula is

u(t, x) = Ex[e−
∫ t
0 g(Xs)dsf(Xt)],

where, under the probability measure P x, the process {Xs}t≥0 is the Brownian
motion started at x.
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Finally, to find the option price of the option claim Q(S(T )) for the risky price
S(t), we have the following lemma.

Lemma 3.3. Let S(t) be the risky price and Q(S(T )) detemrined via Hamiltonian
H be the option claim. Then, Option Price is defined via Feynman-Kac formula.

OP(Q(S(T ))|S(t) = x) =

∫ ∞
−∞

< x|e−(T−t)H |x′ > Q(x′)dx′.

3.3 Resolvents

We begin with calculating resolvents for several Levy processes.

3.3.1 The Resolvent for Brownian motion

Let f(y) = 1√
2πt
e−

x2

2t be the Brownian motion transition function. Then, we
motivated by and derive the resolvent for the Brownian motion. We start from
the the definition of resolvent 3.4, and we plug in the Brownian motion transition
funtion as follows

(Rαf)(x) =
1√
2α

∫ ∞
∞

e−
√

2α|y−x|f(y)dy,

Then, we derive the resolvent for Brownian motion, which is

(

∫ ∞
−∞

e−αt
1√
2πt

e−
x2

2t dt =
1√
2α
e−
√

2α|x|)

t=s2
=⇒ 2

∫ ∞
0

e−αs
2 1√

2π
e−

x2

2s2 ds

s=
√
cu

=⇒ 2
√
c√

2π

∫ ∞
0

e−αcu
2− x2

2cu2 du

c=
|x|√
2α
,β=
√

α
2
|x|

=⇒ 2
√
c√

2π

∫ ∞
0

e−β(u2+ 1
u2

)du

=
2
√
c√

2π
e−β

∫ ∞
0

exp(−β(u− 1

u
)2)du.

The map u 7→ s(u) := u− 1
u
maps (0,∞) one-to-one onto (−∞,∞) and the inverse

map s 7→ u(s) satifies

u(s) = s+ u(−s)⇒ u′(s) + u′(−s) = 1.
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Proof:

s(u) = u− 1

u

s(
1

u
) =

1

u
− u = −s(u)

⇒ s(
1

u
) = −s(u)

Because the map s(u) := u− 1

u
maps (0,∞) one-to-one onto (−∞,∞)

and the inverse map s 7→ u(s).

Therefore given u, we can get u− 1

u

given
1

u
, we can get − s

⇒ s 7→ u(s) = s− 1

s
= s+ u(−s).

3.3.2 The Resolvent for Poisson process

Let Pt = e−λt(λt)n−1/Γ(n) be Poisson transition function. Then, we derive the
resolvent for Poisson process, which is

Rλ :=

∫ ∞
0

e−ztPtdt =
λn−1

(z + λ)n
,

We start from the the definition of resolvent (Definition 3.4), then we plug in the
Poisson transition funtion as follows

Rλ =

∫ ∞
0

e−ztPtdt

=

∫ ∞
0

e−zt
e−λt(λt)n−1

Γ(n)
dt

=
1

Γ(n)

∫ ∞
0

e−t(z+λ)λn−1tn−1dt.

Let (t(z + λ))n = a. Then we obtain t(z + λ) = a
1
n , x ∈ (0,∞), a ∈ (0,∞). Also,

we have da = n(t(z + λ))n−1(z + λ) = ntn−1(z + λ) = ntn−1(z + λ)ndt. Then, we
get

λn−1

Γ(n)n(z + λ)n

∫ ∞
0

e−a
1
n da
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Let a
1
n = x. Then xn = a, da = nxn−1dx. Therefore, we get

λn−1

Γ(n)n(z + λ)n

∫ ∞
0

e−xnxn−1dx =
λn−1

Γ(n)(z + λ)n

∫ ∞
0

e−xxn−1dx

=
λn−1

(z + λ)n
.

3.3.3 The Resolvent for Compound Poisson process

Let Pt be the transition function for the Compound Poisson process as follows

P (Xt ≤ X) =
∞∑
n=0

P (
mt∑
k=1

Yk ≤ x|mt = n)
(λt)ne−λt

n!
=
∞∑
n=0

(λt)ne−λt

n!
G(n)(x).

As before, we derive the resolvent for Poisson process, which is

Rλ :=

∫ ∞
0

e−ztPtdt =
λn−1

(z + λ)n
.

Similarly, we start from the the definition of resolvent (Definition 3.4), then we
plug in the Compound Poisson transition funtion as follows∫ ∞

0

E[f(Xt)|X0 = a]dt =
∞∑
n=0

E[f(a+
n∑
k=1

Yk)]

∫ ∞
0

e−ztPtdt

=
∞∑
n=0

E[f(a+
n∑
k=1

Yk)]
λn−1

(λ+ z)n

=
∞∑
n=0

E[f(a+Xn)]
λn−1

(λ+ z)n
.

3.4 Examples for Hamiltonian and pricing kernel

Here are several examples for the Option Pricing Calculation.

3.4.1 Hamiltonian andMarkov kernel for the Standard Brow-

nian Motion

The objective in this part is to compute the Option Pricing OP(f(BT )|t) for the
Standard Brownian Motion (SBM) case via the Quantum Mechanics Formalism.
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Assume that the interest rate ρ = 0. Firstly, we show that Hamiltonian H for
SBM is defined by

H = −1∂2f

2∂x2
. (3.3)

Then, we derive the Markov kernel (pricing kernel) p(x, τ ;x′) via the continuous
time and continuous space quantum mechanics formalism

p(x, τ ;x′) = < x|e−τH |x′ >

=

∫ ∞
−∞

dp

2π
< x|e−τH |p >< p|x′ > .

Firstly, we notice that

H =
If − Atf

t
(x)

=
f(x)− E[f(Bt)|B0 = x]

t

=
f(x)− E[f(x+Bt)]

t

= −E[
f(x+Bt)− f(x)

t
].

Then, via the Ito formula,

f(x+Bt) = f(x) +

∫ t

0

f ′(x+Bs)dBs +
1

2

∫ t

0

f ′′(x+Bs)ds

implying

H = −1

t
[E(Ito) +

1

2

∫ t

0

E[f ′′(x+Bs)ds]]

= − 1

2t

∫ t

0

E[f ′′(x+Bs)ds]

→ −1

2
f ′′(x)

since f ′′(Bs) = f ′′(x+Bs)→ f ′′(x) as s→ 0 a.s..
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Then, we apply QMF approach to obtain the SBM Markov kernel. It can be seen
that

p(x, τ ;x′) = < x|e−τH |x′ >

=

∫ ∞
−∞

dp

2π
< x|e−τH |p >< p|x′ >

=

∫ ∞
−∞

dp

2π
e−τ(− 1

2
(ip)2)eip(x−x

′)

by applying that e−τH |p >= e−τ(− 1
2

(ip)2)|p >, < x|p >= eipx, and < p|x >= e−ipx

(See before (3.2)).

From the Gaussian kernel,

p(x, τ ;x′) =

∫ ∞
−∞

dp

2π
e

1
2
τ(ip)2eip(x−x

′)

=

∫ ∞
−∞

dp

2π
ef(ip)2eipA, where f =

1

2
τ and A = x− x′

=

∫ ∞
−∞

dp

2π
e
f((ip)2+ ip

f
A+ A2

4f2
− A2

4f2
)

=

∫ ∞
−∞

dp

2π
ef(ip+ A

2f
)2−A

2

4f
).

Let y = p+ A
2f

and z =
√
fy, and then dy = 1√

f
dz. Thus, by simple algebra

p(x, τ ;x′) =

√
π

2π
√
f
e−

A2

4f

=
1√
2πτ

e−
1
2τA2

=
1√
2πτ

e−
1
2τ (x− x′)2

= pdfN(0,τ)(x
′ − x).

Notice that according to the main Markov argument (see main structure (3.1)).
As we know Bt is a martingale and F is a natural filtration. Then, we define

OP (f(BT )|t) = E[f(BT )|Ft]

= E[f(BT )|Bt] by Markov Property

= AT−tf(Bt) by Semigroup Property

= e−(T−t)Hf(Bt).

Then, using the pricing kernel we derive
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OP (f(BT )|t, x)) =

∫ ∞
−∞

p(x, T − t;x′)f(x′)dx′

=

∫ ∞
−∞

1√
2π(T − t)

e−
1

2(T−t) (x− x′)2f(x′)dx′

=

∫ ∞
−∞

pdfN(0,T−t)(x
′ − x)f(x′)dx′

= E[f(x+N(0, T − t))].

Example 1: Notice that f(x) = ehx is eigenvector of H with eigenvalue Kh =

−h2/2. Then, for the particular option claim f(x),

OP (f(BT )|Bt = x) = AT−tf(x)

= e−(T−t)Hf(x)

=
∞∑
j=0

[−(T − t)]jHjf(x)

j!

= f(x)
∞∑
j=0

[−(T − t)]j(Kh)
j

j!

= e−(T−t)Khf(x), where Kh = −h
2

2
via x→ Bt

OP (ehBT |t) = OP (f(BT )|t) = OP (f(BT )|Bt)

= e(T−t)h2/2f(Bt) = e(T−t)h2/2ehBt .

3.4.2 Hamiltonian and Markov kernel for the Geometric

Standard Brownian motion

Now, the goal in this part is to compute the similar Option Pricing OP(f(ST )|t)
for the Geometric Standard Brownian Motion (GSBM) case via the Quantum
Mechanics Formalism. As before, we assume that the interest rate ρ = 0. Acutally,
the option price is not justified. In the geometric standard brownian motion model
St = S0e

Bt , where a = 0, σ = 1. Under the no arbitrage condition a = µ− σ2

2
= 0,

we obtain µ = σ2

2
, which means that ρ = µ = 1

2
.
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Then, the option pricing formula becomes

OP (f(ST )|t) = e−ρ(T−t)E(f(ST )|St)

= e−
1
2

(T−t)E(f(ST )|St).

We define that Hamiltonian H for GSBM as

H = −1

2
(x2∂

2f

∂x2
+ x

∂f

∂x
). (3.4)

Similarly, we derive the Markov kernel via the continuous time continuous space
quantum mechanics formalism, which is

p(x, τ ;x′) = < x|e−τH |x′ >

=

∫ ∞
−∞

dp

2π
< x|e−τH |p >< p|x′ > .

Now, we notice that

H =
If − Atf

t
(x)

=
f(x)− E[f(St)|S0 = x]

t

=
f(x)− E[f(xeBt)]

t

= −E[
f(xeBt)− f(x)

t
]

and , via the Ito formula,

f(St) = f(x) +

∫ t

0

f ′(xeBt)dBs +
1

2

∫ t

0

f ′′(xeBt)ds).

This yields

H = −1

t
[E(Ito) +

1

2

∫ t

0

E[f ′′(xeBt)ds]]

= − 1

2t

∫ t

0

E[f ′′(xeBt)ds]

→ −1

2
(x2f ′′(x) + xf ′(x))

since f ′(xeBt) = xey∗f ′(xey) and f ′′(xeBt) = (xey∗f ′)′ = f ′′(xey) = (xey)2f ′′(xey)+

xeyf ′(xey).
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Next step is to apply the QMF approach implying

p(x, τ ;x′) = < x|e−τH |x′ >

=

∫ ∞
−∞

dp

2π
< x|e−τH |p >< p|x′ > .

However, |p > is no more eigenvector and the approach can not be applied.

Example 2: Now, we choose a particular class of claims f(x) = xm = fm. Notice
that fm is an eigenvector of H with the eigenvalue Km i.e. Hfm = Kmfm where
Km = −m2/2. Then, for the particular class of option claims f(x),

OP (f(XT )|Xt = x) = AT−tf(x)

= e−H(T−t)f(x)

=
∞∑
j=0

[−(T − t)]jHjf(x)

j!

= e−
1
2

(T−t)f(x)
∞∑
j=0

[−(T − t)]j(Km)j

j!

= e−
1
2

(T−t)e−(T−t)Kmf(x), where Km = −m
2

2
via x→ Xt

OP (Xm
T |t) = OP (f(XT )|t) = OP (f(XT )|Xt)

= e−
1
2

(T−t)e(T−t)m2/2f(Xt) = e−
1
2

(T−t)e(T−t)m2/2emBt .

Notice that Xm
T = emBT and not surprisingly the answers in Examples 1 and 2 are

the same.

3.4.3 Hamiltonian and Markov kernel for the Brownian Mo-

tion

The objective in this part is to compute the Option Pricing OP(f(BT )|t) for the
Brownian Motion (BM) case via the Quantum Mechanics Formalism. Again, we
assume that the interest rate ρ = 0.

Firstly, we show that Hamiltonian H for BM is defined by

H = −1

2
σ2∂

2f

∂x2
− a∂f

∂x
. (3.5)
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Then, we derive the Makrov kernel (pricing kernel) p(x, τ ;x′) via the continuous
time continuous space quantum mechanics formalism

p(x, τ ;x′) = < x|e−τH |x′ >

=

∫ ∞
−∞

dp

2π
< x|e−τH |p >< p|x′ > .

First, we notice that

H =
If − Atf

t
(x)

=
f(x)− E[f(Bt)|σB0 = x]

t

=
f(x)− E[f(x+ at+ σBt)]

t

= −E[
f(x+ at+ σBt)− f(x)

t
].

Then, via the Ito formula,

f(t, Bt) = f(0, B0) +

∫ t

0

f ′(s, Bs)BsdBs +
1

2

∫ t

0

f ′′Bs,Bs(s, Bs)ds+

∫ t

0

f ′′u,Bs(Bu)ds

implying

H = −1

t
[E(Ito) +

1

2

∫ t

0

E[f ′′(x+ at+ σBt)ds] +

∫ t

0

E[f ′′(x+ at+ σBt)ds]]

= − 1

2t

∫ t

0

E[f ′(x+Bs)ds]

→ −1

2
σ2∂

2f

∂x2
− a∂f

∂x

since f ′B(0) = σf ′(x), f ′′(0)BB = σ2f ′′(x), f ′t(0) = af ′(x).

Then, we apply QMF approach to obtain the BM Markov kernel.

p(x, τ ;x′) = < x|e−τH |x′ >

=

∫ ∞
−∞

dp

2π
< x|e−τH |p >< p|x′ >

=

∫ ∞
−∞

dp

2π
e−τ(− 1

2
σ2(ip)2−ap)eip(x−x

′)

applying that e−τH |p >= e−τ(− 1
2

(ip)2)|p >, < x|p >= eipx, and < p|x >= e−ipx (See
before (3.2)).
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From the Gaussian kernel,

p(x, τ ;x′) =

∫ ∞
−∞

dp

2π
e

1
2
τσ2(ip)2eip(x−x

′+τa)

=

∫ ∞
−∞

dp

2π
ef(ip)2eipA, where f =

1

2
τσ2 and A = x− x′ + τa

=

∫ ∞
−∞

dp

2π
e
f((ip)2+ ip

f
A+ A2

4f2
− A2

4f2
)

=

∫ ∞
−∞

dp

2π
ef(ip+ A

2f
)2−A

2

4f
)

Let y = p+ A
2f

and z =
√
fy, then dy = 1√

f
dz

p(x, τ ;x′) =

√
π

2π
√
f
e−

A2

4f

=
1√

2πτσ2
e−

1
2τσ2A2

=
1√

2πτσ2
e−

1
2τσ2 (x− x′ + τa)2.

= pdfN(0,τ)(x
′ − x+ τa).

Notice that according to the main Markov argument (see main structure (3.1)).
As we know Bt is a martingale and F is a natural filtration. Then, we define

OP (f(BT )|t) = E[f(BT )|Ft]

= E[f(BT )|Bt] by Markov Property

= AT−tf(Bt)

= e−(T−t)Hf(Bt).

Then, using the pricing kernel we derive

OP (f(BT )|t, x)) =

∫ ∞
−∞

p(x, T − t;x′)f(x′)dx′

=

∫ ∞
−∞

1√
2π(T − t)σ2

e
− 1

2(T−t)σ2 (x− x′ + τa)2f(x′)dx′

=

∫ ∞
−∞

pdfN(0,T−t)(x
′ − x+ τa)f(x′)dx′

= E[f(x+N(0, T − t))].
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Example 3: Notice that f(x) = eĥx is the eigenvector of H with eigenvalue
Kĥ = −σ2ĥ2

2
− aĥ. Then, for the particular option claim f(x),

OP (f(BT )|t) = OP (f(BT )|Bt = x)

= AT−tf(x)

= e−(T−t)Hf(x)

=
∞∑
j=0

[−(T − t)]jHjf(x)

j!

= f(x)
∞∑
j=0

[−(T − t)]j(Kĥ)
j

j!

= e−(T−t)K
ĥf(x), Kĥ = −σ

2ĥ2

2
− aĥ

via x→ Bt

= e−(T−t)K
ĥf(Bt), Kĥ = −σ

2ĥ2

2
− aĥ.

3.4.4 Hamiltonian and Markov kernel for the Brownian Mo-

tion with constant interest rate

The objective in this part is to compute the Option Pricing OP(f(BT )|t) for
the Brownian Motion with constant interest rate (BMR) case via the Quantum
Mechanics Formalism.

Firstly, we show that Hamiltonian H for BMR is defined by

H = −1

2
σ2∂

2f

∂x2
− a∂f

∂x
+ ρ. (3.6)

Then, we derive the Makrov kernel (pricing kernel) p(x, τ ;x′) via the continuous
time continuous space quantum mechanics formalism

p(x, τ ;x′) = < x|e−τH |x′ >

=

∫ ∞
−∞

dp

2π
< x|e−τH |p >< p|x′ > .
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First, we notice that

H =
If − Atf

t
(x)

=
f(x)− E[f(Bt)|σB0 = x]

t

=
f(x)− E[f(x+ at+ σBt)]

t

= −E[
f(x+ at+ σBt)− f(x)

t
]

Then, via the Ito formula,

f(t, Bt) = f(0, B0) +

∫ t

0

f ′(s, Bs)BsdBs +
1

2

∫ t

0

f ′′Bs,Bs(s, Bs)ds+

∫ t

0

f ′′u,Bs(Bu)ds

implying

H = −1

t
[E(Ito) +

1

2

∫ t

0

E[f ′′(x+ at+ σBt)ds] +

∫ t

0

E[f ′′(x+ at+ σBt)ds]]

= − 1

2t

∫ t

0

E[f ′(x+Bs)ds]

→ −1

2
σ2∂

2f

∂x2
− a∂f

∂x
+ ρ

since f ′B(0) = σf ′(x), f ′′(0)BB = σ2f ′′(x), f ′t(0) = af ′(x)− ρ.

Then, we apply QMF approach to obtain the BMR Markov kernel.

p(x, τ ;x′) = < x|e−τH |x′ >

=

∫ ∞
−∞

dp

2π
< x|e−τH |p >< p|x′ >

=

∫ ∞
−∞

dp

2π
e−τ(− 1

2
σ2(ip)2−aip+ρ)eip(x−x

′)

applying that e−τH |p >= e−τ(− 1
2
σ2(ip)2−aip+ρ)|p >, < x|p >= eipx, and < p|x >=

e−ipx (See before (3.2)).
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From the Gaussian kernel,

p(x, τ ;x′) = e−(T−t)ρ
∫ ∞
−∞

dp

2π
e

1
2
τσ2(ip)2eip(x−x

′+τa)

= e−(T−t)ρ
∫ ∞
−∞

dp

2π
ef(ip)2eipA, where f =

1

2
τσ2 and A = x− x′ + τa

= e−(T−t)ρ
∫ ∞
−∞

dp

2π
e
f((ip)2+ ip

f
A+ A2

4f2
− A2

4f2
)

= e−(T−t)ρ
∫ ∞
−∞

dp

2π
ef(ip+ A

2f
)2−A

2

4f
).

Let y = p+ A
2f

and z =
√
fy, then dy = 1√

f
dz

p(x, τ ;x′) = e−(T−t)ρ
√
π

2π
√
f
e−

A2

4f

= e−(T−t)ρ 1√
2πτσ2

e−
1

2τσ2A2

= e−(T−t)ρ 1√
2πτσ2

e−
1

2τσ2 (x− x′ + τa)2

= e−(T−t)ρpdfN(0,τ)(x
′ − x).

Notice that according to the main Markov argument (see main structure (3.1)).
As we know Bt is a martingale, and F is a natural filtration. Then, we define

OP (f(BT )|t) = E[f(BT )|Ft]

= E[f(BT )|Bt] by Markov Property

= AT−tf(Bt)

= e−(T−t)Hf(Bt)

Then, using the pricing kernel we derive

OP (f(BT )|t, x)) =

∫ ∞
−∞

p(x, T − t;x′)f(x′)dx′

= e−(T−t)ρ
∫ ∞
−∞

1√
2π(T − t)

e−
1

2(T−t) (x− x′ + τa)2f(x′)dx′

= e−(T−t)ρ
∫ ∞
−∞

pdfN(0,T−t)(x
′ − x+ τa)f(x′)dx′

= e−(T−t)ρE[f(x+N(0, T − t))].
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Example 4: Notice that f(x) = eĥx is eigenvector of H with eigenvalue Kĥ =

−σ2ĥ2

2
− aĥ. Then, for the particular option claim f(x),

OP (f(BT )|t) = OP (f(BT )|Bt = x)

= AT−tf(x)

= e−(T−t)Hf(x)

=
∞∑
j=0

[−(T − t)]jHjf(x)

j!

= f(x)
∞∑
j=0

[−(T − t)]j(Kĥ)
j

j!

= e−(T−t)ρe−(T−t)K
ĥf(x), where Kĥ = −σ

2ĥ2

2
− aĥ

via x→ Bt

= e−(T−t)ρe−(T−t)K
ĥf(Bt), where Kĥ = −σ

2ĥ2

2
− aĥ.

3.4.5 Hamiltonian and Markov kernel for the Geometric

Brownian Motion

The objective in this part is to compute the Option Pricing OP(f(ST )|t) for the
Geometric Brownian Motion (GBM) case via the Quantum Mechanics Formalism.
Assume that the intereat rate ρ = 0.

Firstly, we show that Hamiltonian H for GBM is defined by

H = −1

2
σ2x2∂

2f

∂x2
− 1

2
σ2x

∂f

∂x
− ax∂f

∂x
. (3.7)

Then, we derive the Makrov kernel (pricing kernel) p(x, τ ;x′) via the continuous
time continuous space quantum mechanics formalism

p(x, τ ;x′) = < x|e−τH |x′ >

=

∫ ∞
−∞

dp

2π
< x|e−τH |p >< p|x′ > .
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First, we notice that

H =
If − Atf

t
(x)

=
f(x)− E[f(St)|σS0 = x]

t

=
f(x)− E[f(xeat+σSt)]

t

= −E[
f(xeat+σSt)− f(x)

t
]

Then, via the Ito formula,

f(t, Bt) = f(0, B0) +

∫ t

0

f ′Bs(s, Bs)dBs +
1

2

∫ t

0

f ′′Bs,Bs(s, Bs)ds+

∫ t

0

f ′′u,Bs(Bu)ds

implying

H = −1

t
[E(Ito) +

1

2

∫ t

0

E[f ′′Bs,Bs(s, Bs)dt] +

∫ t

0

E[f ′s(u,Bu)dt]]

→ −1

2
σ2x2∂

2f

∂x2
− 1

2
σ2x

∂f

∂x
− ax∂f

∂x

since f ′B(0) = σxeat+σBtf ′(x), f ′t(0) = axeat+σBtf ′(x), f ′′BB(0) = σ2x2eat+σBtf ′′(x)+

σ2xeat+σBtf ′(x).

Then, we apply QMF approach to obtain the GBM Markov kernel.

p(x, τ ;x′) = < x|e−τH |x′ >

=

∫ ∞
−∞

dp

2π
< x|e−τH |p >< p|x′ >

However, |p > is no more eigenvector and the approach does not apply.

Example 5: Now, we choose a particular class of claims f(x) = xm̂ = fm̂. Assume
that fm̂ is an eigenvector of H with the eigenvalue Km̂ i.e. Hfm̂ = Km̂fm̂ where
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Km̂ = −σ2m̂2

2
− am̂. Then, for the particular class of option claims f(x),

OP (f(XT )|t) = OP (f(XT )|Xt = x)

= AT−tf(x)

= e−H(T−t)f(x)

=
∞∑
j=0

−(T − t)jHjf(x)

j!

= f(x)
∞∑
j=0

−(T − t)j(Km̂)j

j!

= e−(T−t)Km̂f(x), where Km̂ = −σ
2m̂2

2
− am̂

via x→ Xt

= e−(T−t)Km̂f(Xt), where Km̂ = −σ
2m̂2

2
− am̂.

3.4.6 Hamiltonian and Markov kernel for the Geometric

Brownian Motion with constant interest rate

The objective in this part is to compute the Option Pricing OP(f(ST )|t) for the
Geometric Brownian Motion with constant interest rate (GBMR) case via the
Quantum Mechanics Formalism.

Firstly, we show that Hamiltonian H for GBMR is defined by

H = −1

2
σ2x2∂

2f

∂x2
− 1

2
σ2x

∂f

∂x
− ax∂f

∂x
+ ρ. (3.8)

Then, we derive the Makrov kernel (pricing kernel) p(x, τ ;x′) via the continuous
time continuous space quantum mechanics formalism

p(x, τ ;x′) = < x|e−τH |x′ >

=

∫ ∞
−∞

dp

2π
< x|e−τH |p >< p|x′ > .
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First, we notice that

H =
If − Atf

t
(x)

=
f(x)− E[f(St)|σS0 = x]

t

=
f(x)− E[f(xeat+σSt)]

t

= −E[
f(xeat+σSt)− f(x)

t
].

Then, via the Ito formula,

f(t, Bt) = f(0, B0) +

∫ t

0

f ′Bs(s, Bs)dBs +
1

2

∫ t

0

f ′′Bs,Bs(s, Bs)ds+

∫ t

0

f ′′u,Bs(Bu)ds

implying

H = −1

t
[E(Ito) +

1

2

∫ t

0

E[f ′′Bs,Bs(s, Bs)dt] +

∫ t

0

E[f ′s(u,Bu)dt]]

→ −1

2
σ2x2∂

2f

∂x2
− 1

2
σ2x

∂f

∂x
− ax∂f

∂x
+ ρ

since f ′B(0) = σxeat+σBtf ′(x), f ′t(0) = axeat+σBtf ′(x)−ρ, f ′′BB(0) = σ2x2eat+σBtf ′′(x)+

σ2xeat+σBtf ′(x).

Then, we apply QMF approach to obtain the GBMR Markov kernel.

p(x, τ ;x′) = < x|e−τH |x′ >

=

∫ ∞
−∞

dp

2π
< x|e−τH |p >< p|x′ >

And the option claim as before is the example 5.
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3.4.7 Hamiltonian and Markov kernel for the Poisson pro-

cess

The objective in this part is to compute the Option Pricing OP(f(Nt)|t) for the
Poisson process case via the QuantumMechanics Formalism. As before, we assume
that the interest rate ρ = 0.

Firstly, we show that Hamiltonian H for Poisson process is defined by

H = −λ(f(x+ 1)− f(x)). (3.9)

Then, to derive the Makrov kernel (pricing kernel) p(x, τ ;x′) we apply the contin-
uous time discrete space (Z+) quantum mechanics formalism

p(x, τ ;x′) = < x|e−τH |x′ >

=

∫ ∞
−∞

dp

2π
< x|e−τH |p >< p|x′ >

where

< x|p >= eixp, < p|x >= e−ixp

and x and x′ are both treated as positive integers and Dirac functions are concen-
trated at x and x′.

Firstly, we notice that

H =
f(x)− E[f(x+Nt)]

t

=
f(x)−

∑∞
k=0 f(x+ k)P (Nt = k)

t
.

Assume that f(x) is a real-valued function that is infinitely differentiable at real
number a. Then, via the Taylor expansion, f(x) is the power series

∞∑
n=0

f (n)(a)

n!
(x− a)n = f(a) +

f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + . . .
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which yields

H =
f(x)− (f(x)e−λt + f(x+ 1)e−λtλt+ o(t2))

t

=
f(x)(1− e−λt)− f(x+ 1)e−λtλt− o(t2)

t
→ f(x)λ− λf(x+ 1)

= λ(f(x)− f(x+ 1)).

Finally, we obtain

H = −λ(f(x+ 1)− f(x)).

Notice that the space of eigenvalues BZ+ is now the class of functions

< k|p >= eikp, < p|j >=defn < j|p > = e−ijp.

Then, we apply QMF approach to obtain the Poisson process Markov kernel pP (·).

The formalism now yields

pP (x, τ ;x′) = < x|e−τH |p >

=

∫ 2π

0

dp

2π
< x|e−τH |p >< p|x′ >

=
1

2π

∫ 2π

0

< x|p >< p|x′ > eλτ(eip−1)dp.

Notice that x and x′ are both treated as positive integers and Dirac functions are
concentrated at x and x′. More exactly, for k ∈ Z+, we set up k = δk (the Dirac
function δk(y), equal to 1 at point k and 0 otherwise, i.e

δk(k) = 1, δk(y) = 0, y 6= k.

Overall, we get

pP (x, τ ;x′) =
1

2π

∫ 2π

0

eip(x−x
′)eλτ(eip−1)dp.

Then by changing the variable z = eip

pP (x, τ ;x′) =
1

2πi

∫
Γ

eλτ(z−1)

zj−k+1
dz.
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Applying the Cauchy formula,

1

2πi

∫
Γ

f(z)

za+1
dz =

f (a)(0)

a!

with f(z) = eλτ(z−1) and a = j − k we then derive

pP (x, τ ;x′) =
f (j−k)(0)

(j − k)!

=
e−λτ (λτ)j−k

(j − k)!
.

Notice that according to the main Markov argument (See before (3.1)). As we
know Nt is a martingale, and F is a natural filtration. Then, we define

OP (f(NT )|t) = E[G(T,NT )|Ft]

= E[G(T,NT )|Nt] by Markov Property

= AT−tf(Nt)

= e−(T−t)Hf(Nt).

Then, using the pricing kernel derived in above we get

OP (f(NT )|t, x) =
∞∑
j=x

pP (x, T − t, j)f(j)

=
∞∑
j=x

e−λτ (λτ)j−x

(j − x)!
f(j).

By changing j to j − x, we have

OP (f(NT )|t) =
∞∑
j=0

e−λτ (λτ)j

(j)!
f(j + x).

Now, writing it as an expectation of the Poisson variable, we eventually derive
the analogue of the Black-Schole formula when share price is modelled by the
Geometric Poisson process.

OP (f(NT )|t, x) = E[f(x+ Po(λ(T − t))].

Example 6: Now, we choose a particular class of claims f(x) = ehx = fh. Notice
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that fh is an eigenvector of H with the eigenvalue Kh i.e. Hfh = Khfh where
Kh = −λ(ehx − 1). Then, for the particular class of option claims f(x),

OP (f(NT )|t) = OP (f(NT )|Nt = x)

= AT−tf(x)

= e−(T−t)Hf(x)

=
∞∑
j=0

[−(T − t)]jHjf(x)

j!

= f(x)
∞∑
j=0

[−(T − t)]j(Kh)
j

j!

= e−(T−t)Khf(x), where Kh = −λ(eh − 1)

via x→ Nt

= e−(T−t)Khf(Nt), where Kh = −λ(eh − 1).

3.4.8 Hamiltonian and Markov kernel for the Geometric

Poisson process

The objective in this part is to compute the Option Pricing OP(f(St)|t) for the
Geometric Poisson process case via the Quantum Mechanics Formalism. Again,
we assume that the interest rate ρ = 0.

Firstly, we show that Hamiltonian H for Geometric Poisson process is defined by

H = −λ(f(xe)− f(x)). (3.10)

Then, we derive the Makrov kernel (pricing kernel) p(x, τ ;x′) via the continuous
time discrete space (eZ+) quantum mechanics formalism

p(x, τ ;x′) = < x|e−τH |x′ >

=

∫ ∞
−∞

dp

2π
< x|e−τH |p >< p|x′ > .

where

< x|p >= xip, < p|x >= x−ip

and x and x′ are both treated as elements in eZ+ and Z+ positive integers and
Dirac functions are concentrated at x and x′.
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Firstly, we notice that

H =
f(x)− E[f(xZNt)]

t

=
f(x)−

∑∞
k=0 f(xZk)P (Nt = k)

t
.

Then, via the taylor expansion, here, f(x) is a real-valued function that is infinitely
differentiable at real number a is the power series

∞∑
n=0

f (n)(a)

n!
(x− a)n = f(a) +

f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + . . .

implying

H =
f(x)− (f(x)e−λt + f(xz)e−λtλt+ o(t2))

t

=
f(x)(1− e−λt)− f(xz)e−λtλt− o(t2)

t
→ f(x)λ− λf(xz)

= −λ(f(xz)− f(x)).

Finally, we obtain

H = −λ(f(xe)− f(x)).

Then, we apply QMF approach to obtain the Geometric Poisson process Markov
kernel pGP (·).

pGP (x, τ ;x′) = < x|e−τH |p >

=

∫ 2π

0

dp

2π
< x|e−τH |p >< p|x′ >

=
1

2π

∫ 2π

0

< x|p >< p|x′ > e−λτ(zim−1)dp.

Notice that x and x′ are both treated as ek and ej where k, j are positive integers
and also as a functions concentrated at x and x′. Remind that now

< x|p >= xip, < p|x >= x−ip.
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Overall, we get

pGP (x, τ ;x′) =
1

2π

∫ 2π

0

xip(x′)−ipeλτ(eip−1)dp

=
1

2π

∫ 2π

0

e−λτ(eip−1)eip(k−j)dp.

Notice that this is exactly the same formula as we derived for the Poisson case
with lnx = k and lnx′ = j that is

pGP (x, τ ;x′) = pP (lnx, τ ; lnx′)

Notice that according to the main Markov argument (See before (3.1)). As we
know Nt is a martingale and F is a natural filtration. Then, we define

OP (f(NT )|t) = E[G(T,NT )|Ft]

= E[G(T,NT )|Nt] by Markov Property

= AT−tf(ZNt)

= e−(T−t)Hf(ZNt).

Then, using the pricing kernel we derive

OP (f(NT )|t, x)) =
∞∑
j=x

pGP (x, T − t;x′)f(lnx′)

=
e−λτ (λτ)lnx′−lnx

(lnx′ − lnx)!
f(lnx′).

By changing lnx′ to lnx,

OP (f(ZNT )|t) =
∞∑

lnx′=0

eλτ (λτ)lnx′

(lnx′)!
f(lnx′ + lnx).

As before, we write it as an expectation form to derive the relative Black-Scholes
formula as follows

OP (f(ZNT )|t, lnx) = E[f(lnx+ Po(λ(T − t)))].

Example 7: Now, we choose as a particular class of claims f(x) = zm = fm.
Notice that fm is an eigenvector of H with the eigenvalue Km i.e. Hfm = Kmfm



Hamiltonians and Markov kernels 79

where Km = −λ(zm − 1). Then, for the particular class of option claims f(x),

OP (f(NT )|t) = OP (ZmNt|t), where ehx = Zmx = e(mlnZ)x

= OP (f(XT )|t)

= AT−tf(Xt)

= e−H(T−t)f(x)

=
∞∑
j=0

−(T − t)jHjf(x)

j!

= f(x)
∞∑
j=0

−(T − t)j(Km)j

j!

= e−(T−t)Kmf(x), where Km = −λ(zm − 1) = −λ(eh − 1)

via x→ Nt

= e−(T−t)Kmf(Nt), where Km = −λ(eh − 1).

3.4.9 Hamiltonian and Markov kernel for the Poisson pro-

cess with shift

The objective in this part is to compute the Option Pricing OP(f(Nt+ct)|t) for the
Poisson process with shift case via the Quantum Mechanics Formalism. Assume
that the interest rate ρ = 0.

Firstly, we show that Hamiltonian H for Poisson process with shift is defined by

H = −λ(f(ω + 1)− f(ω))− cf ′(ω), where ω = x+ y. (3.11)

Then, to derive the Makrov kernel (pricing kernel) pS(x, τ ;x′) we apply the con-
tinuous time discrete space (Z+) quantum mechanics formalism

pS(x, τ ;x′) = < x|e−τH |x′ >

=

∫ 2π

0

dp

2π
< x|e−τH |p >< p|x′ >

where

< x|p >= eixp, < p|x >= e−ixp
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and x and x′ are both treated as positive integers and Dirac functions are concen-
trated at x and x′.
Derive hamiltonian via probability method

First, we notice that

H =
f(ω)− E[f(Xt)|X0 = ω]

t
, where Xt = Nt + ct

=
f(ω)−

∑∞
k=0 f(Nt + ct+ ω)P (Nt = k)

t
.

Then, via the taylor expansion, here, f(x) is a real-valued function that is infinitely
differentiable at real number a is the power series

∞∑
n=0

f (n)(a)

n!
(x− a)n = f(a) +

f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + . . .

which yields

H =
f(ω)− (f(ct+ ω)P (Nt = 0) + f(ct+ ω)P (Nt = 1))

t
+ o(1)

=
f(ω)− ((f(ω) + f ′(ω))(1− λt) + f(ω + 1)λt)

t
+ o(1)

→ (λf(ω)− f ′(ω)c− f(ω + 1)λ) + o(1)

= −λ(f(ω + 1)− f(ω))− cf ′(ω).

Finally, we obtain

H = −λ(f(ω + 1)− f(ω))− cf ′(ω), where ω = x+ y.

Notice that the space of eigenvalues BZ+ is now the class of functions

< k|p >= eikp, < p|j >=defn < j|p > = e−ijp.

Then, we apply QMF approach to obtain the Poisson process Markov kernel pP (·).

The formalism now yields

pS(x, τ ;x′) = < x|e−τH |p >

=

∫ 2π

0

dp

2π
< x|e−τH |p >< p|x′ >

=
1

2π

∫ 2π

0

< x|p >< p|x′ > eλτ(eip−1)−iceipdp.
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Notice that x and x′ are both treated as positive integers and Dirac functions are
concentrated at x and x′. More exactly, for k ∈ Z+, we set up k = δk (the Dirac
function δk(y)), is equal 1 at point k and 0 otherwise, i.e.

δk(k) = 1, δk(y) = 0, y 6= k.

Overall, we get

pS(x, τ ;x′) =
1

2π

∫ 2π

0

eip(x−x
′)eλτ(eip−1)−iceipdp.

And then, we derive the Hamiltonian for poisson process with drift via pair and
transform as follows.
Derive Hamiltonian via pair

Suppose we have a pair ξt = (Nt, Yt) and

Atf(x, y) = E[f(Nt, Yt)|N0 = x, Y0 = y] = E[f(x+Nt, y + ct)].

Recall that

[NT |Nt = u] = u+ P0(t− t) = u+NT−t and [YT |Yt = ω] = ω + c(T − t).

H =
f(x, y)− Ef(x+Nt, y + ct)

t

=
1

t
(f(x, y)− (f(x, y + ct)P (Nt = 0) + f(x+ 1, y + ct)P (Nt = 0))) + o(1)

=
1

t
(f(x, y)− (f(x, y) + ctf ′(x, y))(1− λt) + f(x+ 1, y)λt) + o(1)

→ −λ(f(x+ 1, y)− f(x, y))− xf ′y(x, y).

Then by changing the variable z = eip

pS(x, τ ;x′) =
1

2πi

∫
Γ

eλτ(z−1)−icez

zj−k+1
dz.

Applying the Cauchy formula,

1

2πi

∫
Γ

f(z)

za+1
dz =

f (a)(0)

a!
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with f(z) = eλτ(z−1)−icez and a = j − k we then derive

pS(x, τ ;x′) =
f (j−k)(0)

(j − k)!

=
e−λτ (λτ)j−k

(j − k)!
.

Notice that according to the main Markov argument (See before (3.1)). As we
know Nt is a martingale and F is a natural filtration. Then, we define

OP (f(NT + cT )|t) = E[G(T,NT )|Ft]

= E[G(T,NT )|Nt] by Markov Property

= AT−tf(Nt + cT )

= e−(T−t)Hf(Nt + cT ).

Then, using the pricing kernel derived in above we get

OP (f(NT + cT )|t, x) =
∞∑
j=x

pS(x, T − t, j)f(j + ct)

=
∞∑
j=x

e−λτ (λτ)j−x

(j − x)!
f(j + ct)

by changing j to j − x

OP (f(NT + cT )|t) =
∞∑
j=0

e−λτ (λτ)j

(j)!
f(j + x+ ct)

and now writing it as an expectation of the Poisson variable, we eventually derive
the analogue of the Black-Scholl formula when share price is modelled by the
Geometric Poisson process.

OP (f(NT + cT )|t, x) = E[f(x+ ct+ Po(λ(T − t))].

Example 8: Now, we choose a particular class of claims f(x) = ehx = fh. Notice
that fh is an eigenvector of H with the eigenvalue Kh i.e. Hfh = Khfh where
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Kh = −λ(ehx − 1). Then, for the particular class of option claims f(x),

OP (f(NT + cT )|t) = OP (f(NT + cT )|Nt = x)

= AT−tf(x+ ct)

= e−(T−t)Hf(x+ ct)

=
∞∑
j=0

[−(T − t)]jHjf(x+ ct)

j!

= f(x+ ct)
∞∑
j=0

[−(T − t)]j(Kh)
j

j!

= e−(T−t)Khf(x+ ct), where Kh = −λ(ehx − 1)

via x→ Nt

= e−(T−t)Khf(Nt + ct), where Kh = −λ(ehx − 1).

3.4.10 Hamiltonian and Markov kernel for Levy process via

resolvet method and Ito formula

The objective in this part is to compute the Option Pricing OP(f(XT )|t) =

E[f(XT )|Xt] for the Levy process via the Quantum Mechanics Formalism. As-
sume that the interest rate ρ = 0.

The target is to compute the Hamiltonian on a dense set D = {|p >: eipx}. Con-
sider a characteristic function for Levy process as follows

At|p > = Exe
ipXt

= E0e
ip(x+Xt)

= |p > (EeipXt)

via EeipXt = e−tψ(p)

= |p > e−tψ(p).
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Then, we derive the Hamiltonian for Levy process by

I − At
t
|p > =

I|p > −At|p >
t

= |p > (
1− e−tψ(p)

t
)

→ |p > ψ(p) =: H|p > .

For more specific situation, we derive the Hamiltonian operator for Levy process.
Let G be the space of infinitely differentiable functions on the real line. DG is dense
in C0. Let Xt be a Levy process in R with generator A. There are drift a ∈ R,
volatility σ ≥ 0, and µ is a measure on R satisfying

∫
R\0(1 ∧ |x|2)µ(dx) ≤ ∞.

∀f ∈ G, we obtain Hamiltonian for Levy process as follows:

Af(x) = af ′(x)− 1

2
σ2f ′′(x) +

∫
R\0

(f(x)− f(x+ y) +
y

1 + y2
)µ(dy).

Proof. Recall the Levy-Knintchine formula:

ϕ(ξ) = iaξ − 1

2
σ2ξ2 +

∫
R\0

(1− eiξx +
y

1 + y2
)µ(dy).

We need to calculation

Atf(x) = lim
t→0

1

t
(f(x)− Etf(x)).

We know ∀f , Etf(x) = E(f(Xt+s)|Xs = x) = E(f(Xt)|X0 = x) =
∫
f(y)π(t, x→

dy), where π is a probability density function.

Also, exp(−ϕt(ξ)) = E(exp(iξ(Xt+s−Xs))) = E(exp(iξ(Xt−X0))) =
∫
exp(iξy)π(t, 0→

dy).

Besides, ∀f ∈ A, let g be a function s.t.

f(x) =

∫
ξ

eixξg(ξ)dξ.
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Then, we obtain

Etf(x) =

∫
y

π(t, dy)

∫
ξ

ei(x+y)ξg(ξ)dξ

=

∫
ξ

eixξg(ξ)dξ

∫
y

eiyξπ(t, dy)

=

∫
ξ

eixξg(ξ)dξe−ϕt(ξ).

f(x)− Etf(x) =

∫
ξ

eixξg(ξ)dξ −
∫
ξ

eixξg(ξ)dξe−ϕt(ξ)

=

∫
ξ

eixξg(ξ)(1− e−ϕt(ξ))dξ

=

∫
ξ

eixξg(ξ)(1− e−ϕ1(ξ))dξ

=

∫
ξ

eixξg(ξ)(tϕ1(ξ) + o(t))dξ

Atf(x) = lim
t→0

1

t
(f(x)− Etf(x))

=

∫
ξ

eixξg(ξ)(ϕ1(ξ))dξ

=

∫
ξ

eixξg(ξ)(iaξ − 1

2
σ2ξ2 +

∫
R\0

(1− eiξy +
y

1 + y2
)µ(dy))dξ

= ia

∫
ξ

eixξg(ξ)(ξ)dξ +
1

2
σ2

∫
ξ

eixξg(ξ)ξ2dξ

+

∫
y

(

∫
R\0

(eiξxξg(ξ)dξ −
∫
R\0

(eiξ(x+y)g(ξ)dξ +
iy

1 + y2

∫
R\0

eiξ(x)ξg(ξ)dξ)µ(dy).

Therefore, we obtain

Af(x) = af ′(x)− 1

2
σ2f ′′(x) +

∫
R\0

(f(x)− f(x+ y) +
y

1 + y2
)µ(dy).

Then, we derive the Makrov kernel (pricing kernel) p(x, τ ;x′) via the continuous
time continuous space quantum mechanics formalism

p(x, τ ;x′) = < x|e−τH |x′ >

=

∫ ∞
−∞

dp

2π
< x|e−τH |p >< p|x′ > .
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However, |p > is no more eigenvector and the approach does not apply.

Example 10: Now, we choose a particular class of claims f(x) = eh = fh. Notice
that fh is an eigenvector of H with the eigenvalue Kh i.e. Hfh = Khfh where
Kh = −σ2h2

2
−ah−E(f(x+X1)− f(x))λ. Then, for the particular class of option

claims f(x),

OP (f(XT )|Xt = x) = AT−tf(x)

= e−H(T−t)f(x)

=
∞∑
j=0

[−(T − t)]jHjf(x)

j!

= f(x)
∞∑
j=0

[−(T − t)]j(Kh)
j

j!

= e−(T−t)Khf(x), where

Kh = −σ
2h2

2
− ah− E(f(x+X1)− f(x))λ.

via x→ Xt,

= e−(T−t)Khf(Xt).

3.5 Transformed Hamiltonian

Motivated by the discrete time version Hamiltonian for changing of basis. We
introduce a simple example first.

Example 1 Suppose we have

|1 >=

(
1

0

)
and |2 >=

(
0

1

)
∈ S.

Also, we have

|1 >∗= |1∗ >=

(
A

0

)
and |2 >∗= |2∗ >=

(
0

B

)
∈ S.

Then, we derive

|1 >=
1

A
|1∗ > and |2 >=

1

B
|2∗ > .
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Obviously, we have

< 1|2 >= 0, < 1|1 >=< 2|2 >= 1 and < 1∗|2∗ >∗= 0, < 1∗|1∗ >∗=< 2∗|2∗ >∗= 1.

Also, we have

< a|b >=< a, b >=< wa∗, wb∗ >=< a∗, w∗wb∗ >=< a∗,
∑

b∗ >, where
∑

= w∗w.

Finally, we obtain

< 1|1 > =
1

A2
< 1∗|1∗ >∗

=
1

A2
< 1∗|

∑
1∗ >

=
1

A2

(
1 0

)( A2 0

0 B2

)(
1

0

)
= 1.

Example 2 Assume that

|1 >=
1

A
|1∗ >, |2 >=

1

B
|2∗ > and

∑
= w∗w, p =

(
p11 p12

p21 p22

)
.

Also, we have

< wa∗, wb∗ >=< a∗, w∗wb∗ >=< a∗,
∑

b∗ >, where
∑

= w∗w.
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Then, we derive

< 1|p|2 > = < 1, p2 >

= <
1

A
1∗, p∗

2∗

B
>∗

= <
1

A
1∗w∗|p∗|w 1

B
2∗ >

=
1

A

(
1 0

)( A 0

0 B

)(
p11 p12

p21 p22

)(
A 0

0 B

)
1

B

(
1

0

)

=
1

AB

(
1 0

)( Ap11 Ap12

Bp21 Bp22

)(
1

0

)

=
(

1 0
)( A2p11 ABp12

BAp21 B2p22

)(
1

0

)

=
AB

AB
p12 = p12.

Then, we derive different Hamiltonian opertator and make some applications in
option pricing via Transform method.

3.5.1 Option pricing based on Black-scholes via Hamilto-

nian quantum technique for BM (Transform Hamilto-

nian)

Introduce a function f : X → R on a Banach space BX→R, and a transform
T : X → Y . If we have an operator U : BX→R → BY→R (BY→R is another Banach
space), then

Uf(x) = f(Tx), x ∈ X and Tx ∈ Y, (3.12)

Introduce a Hamiltonian H : BX→R → BX→R, such as H : D1 → D2, where
D1 ∈ BX→R.

Theorem (Fugle-Putnam-Rosenblum) Assume that M , N , T ∈ B(H), M
and N are normal, and

MT = TN. (3.13)

Then M∗T = TN∗ (See pp 315 in Functional analysis by Walter Rudin, 2003).
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If (6.2.2) holds, then MkT = TNk for k=1,2,3...by induction. Hence,

exp(M)T = Texp(N). (3.14)

Thus, if we have
V H := HU, (3.15)

then
V Hf(x) = H(Uf)(x) = Hf(Tx). (3.16)

The most important thing is

HT = UH , defined by HTf(x) = H(f(Tx)). (3.17)

Derive pricing kernel via transformed Hamiltonian method Assume that
we have a transformation T : x → T (x) = σx, where σ is a parameter for the
transformation T , then we derive

Uf(x) = f(Tx) = f(x̃) = f̃

and

f(x) = U−1f(x̃) = U−1f̃ .

Then, we obtain

U−1f(x) = f(T−1x) = f(
x

σ
).
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Implying

< x|e−τH |x′ > =

∫ ∞
−∞

< x|e−τH |p >< p|x′ > dp

2π

=

∫ ∞
< x|A|p >< p|x′ > dµ(p)

=

∫ ∞
< f |A|p >< p|g > dµ(p)

=

∫ ∞
∞

< U−1f̃ |Â|U−1p̃ >< U−1p̃|g̃ > dµ̃(p̃), where p = U−1p̃

=

∫ ∞
∞

<
x

σ
|e−τĤ | p

σ
><

p

σ
|x
′

σ
> dµ̃(p)

= pdfBτ (x
′ − x).

EXAMPLE 1

Given a Hamiltonian HT1 = Hf(x) = −1
2
f ′′(x) for SBM, Bt, a transform Tσ =

Tx = σx, try to find HTσ .

HTσf(x) = HT1(Uf(x))

= HT1(f(Tσx))

= Hg

= −1

2
g′′(x)

By g′ = (f(T (x)))′ = T ′(x)f ′(T (x))

g′′ = T ′′(x)f ′(T (x)) + (T ′(x))2f ′′(T (x))

= −1

2
[T ′′(x)f ′(T (x)) + (T ′(x))2f ′′(T (x))]

(Tσ = σx) −1

2
σ2f ′′(σx)

(σx→ y) −1

2
σ2f ′′(y)

Derive pricing kernel in Brownian motion without drift case via trans-

formed Hamiltonian method Suppose we have Hf(x) = −f ′′(x)
2

, we apply the
transformation T : x→ T (x) = σx to obtain Hσf(x) = −σ2f ′′(x)

2
as follows.

Hf(x̃) := UH̃f(x) := H̃(Uf)(x̃) = H̃(f(T x̃)) = −σ
2f ′′(σx̃)

2
.
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Notice that Uf(B̃t) = f(TB̃t) = f(Bt), where TB̃t = Bt. Then, we derive the
pricing kernel for Brownian motion without drift case like before.

< x|e−τH |x′ > =

∫ ∞
−∞

dp

2π
< x|e−τHσ |p >< p|x′ >

Changing some variables by U−1U = I, we have

Ux =
x

σ
, U−1p = pσ, and Ux′ =

x′

σ
.

Implying

< x|e−τH |x′ > =

∫ ∞
−∞

dµ(p) < Ux|e−τH |U−1p >< U−1p|Ux′ >

=

∫ ∞
−∞

dp

2π
e−

p2σ2

2
τ+ip(x−x′)

=

∫ ∞
−∞

dp

2π
e−

p2σ2

2
τ+ipσ(y−y′), where

x

σ
= y and

x′

σ
= y′

=
1

σ

∫ ∞
−∞

dp

2π
e−

q2τ
2

+iq(y−y′), where pσ = q

=
1

σ
Γ(x̃, x̃′|τ), where y = x̃ and y′ = x̃′

= pdfBτ (x′|σB0=x)

As before, according to the main Markov argument (see main structure (3.1)).
Then, using the pricing kernel we derive

OP (f(BT )|t, x)) =

∫ ∞
−∞

p(x, T − t;x′)f(x′)dx′

=

∫ ∞
−∞

1√
2π(T − t)

e−
1

2(T−t) (x− x′)2f(x′)dx′

=

∫ ∞
−∞

pdfN(0,T−t)(x
′ − x)f(x′)dx′

= E[f(x+N(0, T − t))].

EXAMPLE 2

Given a Hamiltonian HT1 = Hf(x) = −1
2
f ′′(x) for SBM, Bt, a transform Tσ =

Tx = ex, try to find HTσ .
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HTσf(x) = HT1(Uf(x))

= HT1(f(Txx))

= Hg

= −1

2
g′′(x)

By g′ = (f(T (x)))′ = T ′(x)f ′(T (x))

g′′ = T ′′(x)f ′(T (x)) + (T ′(x))2f ′′(T (x))

= −1

2
[T ′′(x)f ′(T (x)) + (T ′(x))2f ′′(T (x))]

(Tx = ex) −1

2
(exf ′(ex) + e2xf ′′(ex))

(ex → y) −1

2
(yf ′(y) + y2f ′′(y)).

Although we obtain the Hamiltonian from the geometrc standard brownian motion
case to the standard brownian motion case, we cannot find the related transfor-
mation of the Hamiltonian for the pricing kernel.

EXAMPLE 3

Given a Hamiltonian HT2 = Hf(t) = −∂f
∂t

for t, a transform Tx = µx, try to find
HTµ .

HTµf(x) = HT2(Uf(x))

= HT2(f(Tµx))

= Hg

= −g′(x)

By g′ = (f(T (x)))′ = T ′(x)f ′(T (x))

= −T ′(x)f ′(T (x))

(Tµ = µx) −µf ′(µx)

(µx→ y) −µf ′(y).

Notice that for the transformation of the volatility, please see the example 1.

Then, we need to consider the pair, if T (x, y) = x+ y, f(x, y) = f(x+ y), then

Hµt+σBtf = HAt⊕Btf(T (x, y)) = −σ
2

2
f ′′ − µf ′ (3.18)
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HAt⊕Btf(x, y) = HBf
′(·, y) +HAf(x, ·)

=
1

2
σ2f ′′yy − µf ′x, since At → µt,Bt → σBt.

Here, we obtain Brownian motion Hamiltonian by the transformation.

Derive pricing kernel in Brownian motion case via transformed Hamil-

tonian method Suppose we have Hf(x) = −f ′′(x)
2

, we apply the transformation
TA : x → TA(x) = σx and TB : x → TB(x) = µ to obtain HAf(x) = −σ2f ′′(x)

2
and

HBf(x) = −µf ′(x) as follows.

HAf(x̃) := UAH̃f(x) := H̃(UAf)(x̃) = H̃(f(TAx̃)) = −σ
2f ′′(σx̃)

2
.

HBf(x̃) := UBH̃f(x) := H̃(UBf)(x̃) = H̃(f(TBx̃)) = −µf ′(µx̃).

Notice that UAf(B̃t) = f(TAB̃t) = f(Bt), where TAB̃t = Bt. Changing some
variables by U−1

A UA = I and U−1
B UB = I, we have

UAx =
x

σ
, U−1

A p = pσ, and UAx
′ =

x′

σ
.

UBx = µ, U−1
B p = pµ, and UBx

′ = 0?.

Implying

< x|e−τH |x′ > =

∫ ∞
−∞

dµ(p) < Ux|e−τH |U−1p >< U−1p|Ux′ >

=

∫ ∞
−∞

dp

2π
e−

p2σ2

2
τ+ip(x−x′)

=

∫ ∞
−∞

dp

2π
e−

p2σ2

2
τ+ipσ(y−y′), where

x

σ
= y and

x′

σ
= y′

=
1

σ

∫ ∞
−∞

dp

2π
e−

q2τ
2

+iq(y−y′), where pσ = q

=
1

σ
Γ(x̃, x̃′|τ), where y = x̃ and y′ = x̃′

= pdfBτ (x′|σB0=x)
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As before, according to the main Markov argument (see main structure (3.1)).
Then, using the pricing kernel we derive

OP (f(BT )|t, x)) =

∫ ∞
−∞

p(x, T − t;x′)f(x′)dx′

=

∫ ∞
−∞

1√
2π(T − t)

e−
1

2(T−t) (x− x′)2f(x′)dx′

=

∫ ∞
−∞

pdfN(0,T−t)(x
′ − x)f(x′)dx′

= E[f(x+N(0, T − t))].

EXAMPLE 4

Given a Hamiltonian HTσ = Hf(x) = −σ2

2
f ′′(x) − af ′′ for SBM, Bt, a transform

Tσ = Tx = ex, try to find HTσ .

HTσf(x) = HT1(Uf(x))

= HT1(f(Txx))

= Hg

= −1

2
σ2g′′(x)− ag′(x)

By g′ = (f(T (x)))′ = T ′(x)f ′(T (x)) = yf ′(y)

g′′ = T ′′(x)f ′(T (x)) + (T ′(x))2f ′′(T (x)) = yf ′(y) + y2f ′′(y)

= −σ
2

2
(yf ′(y) + y2f ′′(y))− ayf ′(y).

Although we obtain the Hamiltonian from the geometrc brownian motion case
to the brownian motion case, we cannot find the related transformation of the
Hamiltonian for the pricing kernel.

EXAMPLE 5

Given a Hamiltonian HT1 = Hf(x) = −1
2
(xf ′(x) + x2f ′′(x)) for GSBM, eBt , a

transform Tσ = Tx = ln(x), try to find HTσ .
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HTσf(x) = HT1(Uf(x))

= HT1(f(Txx))

= Hg

= −1

2
(xg′(x) + x2g′′(x))

By g′ = (f(T (x)))′ = T ′(x)f ′(T (x)) = (ln(x))′f ′(ln(x)) =
1

x
f ′(ln(x))

g′′ = (
1

x
f ′(ln(x)))′ = − 1

x2
f ′(ln(x)) +

1

x2
f ′′(ln(x))

= −1

2
(x

1

x
f ′(ln(x)) + x2(− 1

x2
f ′(ln(x)) +

1

x2
f ′′(ln(x))))

= −1

2
(f ′(ln(x))− f ′(ln(x)) + f ′′(ln(x))))

= −1

2
(f ′′(ln(x))).

Although we obtain the Hamiltonian from the brownian motion case to the ge-
ometrc brownian motion case, we cannot find the related transformation of the
Hamiltonian for the pricing kernel.

3.5.2 Derive a Hamiltonian via Probabolity method

First, we derive a Hamiltonian for standard Brownian motion.

Atf =
f(x)− E[f(x+Bt)]

t

By (f(x+ h) = f(x) + f ′(x)h+
1

2
f ′′(x)h2 + C||f ′′′||h3,

where the space ||f ′′′ <∞||)

=
1

t
(f(x)− E[f(x) + f ′(x)Bt +

1

2
f ′′(x)B2

t + C||f ′′′||(Bt)
3])

By (E(Bt)
3 = t

3
2C and E(Bt) = 0)

= −1

2
f ′′(x)

E(Bt)
2

t
+ o(t

1
2 )

→ −1

2
f ′′(x)
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3.5.3 Derive a Hamiltonian via limit method

GivenXt = Nt−λt√
λ
, Xt = ε,Nt = at, we derive a Hamiltonian for standard Brownian

motion.

E[f(Xt)|X0 = x]

= Atf(x) =
I − At
t

f

=
f(x)− E[f(Xt)|X0 = x]

t
By ([Xt|X0 = x] = x+ εNt + at)

=
f(x)− E[f(x+ εNt + at)]

t

=
f(x)− f(x+ at)P (Nt = 0) + f(x+ εNt + at)P (Nt = 1) + others = 0

t

=
f(x)− f(x+ at)e−λt + f(x+ εNt + at)e−λtλt

t
+ o(t)

=
1

t
(f(x)− (f(x) + f ′(x)at+ f(x)o(t2))(1− λt+ o(t2)) +

(f(x+ ε) + f ′(x+ ε)at)λt) + o(t)

By e−λt = 1− λt+ o(t2)), ey = 1 + y +
y2

2
+ ...

f(x+ at) = (t→ 0) = f(x) + f ′(x)at+ o(t2)

f(x+ δ) = f(x) + f ′(x)δ

f(x+ ε+ at) = (t→ 0) = f(x+ ε) + f ′(x+ ε)at+ o(t2)

=
1

t
(f(x)− (f(x) + f ′(x)at+ f(x)o(t2))(1− λt) + (f(x+ ε)

+o(t)(1 + o(t)))λt) + o(t)

=
1

t
(f(x)λt− f ′(x)at− f(x+ ε)λt) + o(t)

=
1

t
(−λ(f(x+ ε)− f(x))t− f ′(x)at) + o(t)

=
1

t
(−λδεf(x)− f ′(x)at) + o(t) =: H(x)

Here, we need to change some variables: ε = 1√
λ
, a = −

√
λ = −1

ε
, λ = 1

ε2
.

Hεf = − 1

ε2
(f(x+ ε)− f(x)− f ′(x)ε)

= −1

ε
(
f(x+ ε)− f(x)

ε
− f ′(x)ε)

→ −1

2
f ′′(x).

Thus, we obtain Hε
Xt
→ Hωt = −1

2
f ′′ for each f pointwise, where Xt = Nt−λt√

λ
= ωt.
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3.6 Resolvent method for Hamiltonians

In the classical probability language this material is the connection between genera-
tors of markov processes and Resolvents. Resolvents are roughly Laplace transform
of the markov semigroup.

The general idea is as follows:

Rz =

∫ ∞
0

e−ztAtdt, where At is a semigroup,

=
1

z

∫ ∞
0

e−ztAtz/zdtz

and then, we have zRz =
∫∞

0
e−uAudu.

The Definition 3.4 follows [50] on the page 67.

Let A be a closed linear operator on the real Banach space X, with domain D(A).

Definition 3.4. i) Let the real number λ ∈ ρ(A), the resolvent set of A, provided
the operator

λI − A : D(A)→ X

is one-to-one and onto.

ii) If λ ∈ ρ(A), the resolvent operator Rλ : X → X is defined by

Rλu := (λI − A)−1u.

Now, we have

z(I − zRz) =

∫ ∞
0

e−u(
I − Au

z

u
z

)udu

Let u
z

= ε

∫ ∞
0

e−u(
I − Aε
ε

)udu

As u
z

= ε→ 0

∫ ∞
0

e−uHdu = H.

Applying it for any fixed function f and point x, we obtain∫ ∞
0

e−u(
I − Aε
ε

f(x))udu.
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In details, we derive

z(I − zRz) = zI|p > −z2Rz|p >

= z|p > − z2

z +Kp

|p >

= (z − z2

z +Kp

)|p >

= (
z(z +Kp)− z2

z +Kp

)|p >

=
zKp

z +Kp

|p >=
Kp

1 + Kp
z

|p >

= Kp|p > , as →∞,

= H|p > .

3.6.1 Hamiltonian for Poisson process via Resolvent method

RzIn−1(0) =
λn

(λ+ z)n
, Rz|p >=

1

z +Kp

|p >,

where ϕ(p) = Kp = λ(eip − 1) and

RzIn(0) =
λn

(λ+ z)n+1
=

∫ ∞
0

e−ztP
(t)
0,ndt,

where P0(Nt = n) = e−λt(λt)n

n!
.

Recall that Atf(x) = EN0=xf(Nt) = Ef(x+Nt) =
∑∞

j=0 f(x+ j)P
(t)
0,j . And

Rzf(x) =

∫ ∞
0

e−ztAtf(x)dt

=
∞∑
0

f(x+ j)

∫ ∞
0

e−ztP
(t)
0,jdt

=
∞∑
j=0

f(x+ j)
λj

(λ+ z)j+1

Also, we have

(z(I − zRz))f(x) = zf(x)− z2Rzf(x) = zf(x)− z2

∞∑
j=0

f(x+ j)
λj

(λ+ z)j+1
.
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Then, we obtain

z(I − zRz)f → Hf = −λ(f(x+ 1)− f(x)),

for f ∈ B∞ : ||f || = sup|f(u)| ≤ ∞.

3.6.2 Hamiltonian for Compound Poisson process via Re-

solvent method

Atf(x) = EN0=xf(Nt) = Ef(x+Nt) =
∞∑
j=0

f(x+ j)P
(t)
0,j .

Atf(x) =
∞∑
j=0

Ef(x+

j∑
k=1

Yk)P
(t)
0,j

We have

Rzf(x) =

∫ ∞
0

e−ztAtf(x)dt

=
∞∑
j=0

E(f(x+

j∑
k=1

Yk))

∫ ∞
0

e−ztP
(t)
0,jdt

=
∞∑
j=0

E(f(x+Xj))
λj

(λ+ z)j+1
.

Finally, we obtain

z(I − zRz)f(x) = zf(x)− z2Rzf(x)

= zf(x)− z2

∞∑
j=0

E(f(x+Xj))
λj

(λ+ z)j+1

= z2

∞∑
j=0

λj

(λ+ z)j+1
f(x)− z2

∞∑
j=0

E(f(x+Xj))
λj

(λ+ z)j+1

= −
∞∑
j=1

(E(f(x+Xj))− f(x))
λjz2

(λ+ z)j+1

= o(
1

z
)− E(f(x+X1))− f(x))

λjz2

(λ+ z)j+1

→ 0− E(f(x+X1))− f(x))λ, as z →∞,

= Hf(x).
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3.6.3 Hamiltonian for Levy process via Resolvent method

Hamiltonian on a dense set D = {|p >: eipx}.

At|p > = Exe
ipXt

= E0E
ip(x+Xt)

= |p > (EeipXt)

= |p > e−tψ(p).

Notice that: The characteristic function of Levy process is defined by

EeipXt = e−tψ(p).

Then, one can derive Hamiltonian for Levy process via Resolvent method as fol-
lows:

Rz =

∫ ∞
0

e−ztdt,

and

Rz|p > =

∫ ∞
0

e−ztAt|p > dt

=

∫ ∞
0

e−zt|p > e−tψ(p)dt

= |p >
∫ ∞

0

e−t(z+ψ(p))dt

= |p > 1

z + ψ(p)
.

Finally, one can obtain

z(I − zRz)|p > = z|p > − z2

z + ψ(p)
|p >

= (z − z2

z + ψ(p)
)|p >

= (
z(z + ψ(p))− z2

z + ψ(p)
)|p >

=
zψ(p)

z + ψ(p)
|p >

→ ψ(p)|p > .
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3.7 Conclusion

In this chapter, It covers the main structure in terms of quantum formalism.
Moreover, it introduces the calculation for different resolvents for different stochas-
tic processes. Also, it covers several examples for Hamiltonian and pricing ker-
nels. Furthermore, it covers Transformed Hamiltonian. Besides, it covers resolvent
method for Hamiltonian operators.

The objective is to derive option pricing via quantum formalism in this chapter.
Firstly, we apply several method, such as generator approach, probability method
to derive several Hamiltonian operators for different stochastic processes, such
as standard Brownian motion, Brownian motion, geometric Brownian motion,
Poisson process, geometric Poisson process, Poisson process with shift, and even
Levy process. Also, we apply transformed Hamiltonian method and resolvent
method for Hamiltonians to justify our results. Surprisingly, we obtain the same
result by different method. Then, we use these Hamiltonian operators to derive
pricing kernel and the relative option price defined via Feynman-Kac formula.
Here is the starting point that we make a connection between classical model and
non-classical model.



Chapter 4

Quantum markets

4.1 Introduction

In this chapter, we analyse the quantum version of Binomial model, including both
self-adjoint market and non self-adjoint market. And we ananlyse the quantum
bond markets. Moreover, we analyse the quantum conditional option price via the
quantum conditional expectation. Besides, we establish the limit of the spectral
measures proving the convergence to the Geometric Brownian motion model (GBM
model).

4.2 N period quantum Binomial market

In this part, we define the generalised N-period quantum binomial model and
develop a relevant option pricing.

Quantum share price SN . Quantum share price for the quantum binomial
market is defined by

SN = S0H1 ⊗ . . .⊗HN , (4.1)

where Hi is self-adjoint 2 × 2 matrices, which represents the changing of share
price with jumps ui (jump up) or di (jump down), i = 1, . . . , N. For the quantum
model, ui and di are diagonal elements.

102
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Observe that since H∗i = Hi

S∗N = (S0H1 ⊗ . . .⊗HN)∗

= S0H
∗
1 ⊗ . . .⊗H∗N

= SN .

So, SN is a self-adjoint operator with non-negative diagonal elements, z1 . . . zN ,
where zj is uj or dj. Hence, quantum share price SN is self-adjoint non-negative
operator.

Quantum claim C = f(SN). In particular, by the general fact 4.2.1, we can
introduce the quantum claim C = f(SN) for any function f via the following
general formula.

Fact 4.2.1. Let A∗ = A, and assume that A admits a representation A = UDU∗.
Then, f(A) = Uf(D)U∗.

In our case,

SN = S0H1 ⊗ . . .⊗HN (4.2)

= US0D1 ⊗ . . .⊗DNU
∗

=⇒ f(SN) = Uf(S0D1 ⊗ . . .⊗DN)U∗. (4.3)

Quantum state ρ. The generalised N-period binomial model is then introduced
a quantum state ρ in the Euclidean space E = R2N of dimension 2N as the tensor
product

ρ = ρ1 ⊗ . . .⊗ ρN .

Note that from the standard definition of the quantum trace, ρi = ρ∗i are self-
adjoint non-negative 2× 2 matrices such that

tr(ρi) = 1, i = 1, . . . , N.

Then, by the property of self-adjoint operator, we obtain

ρ∗ = (ρ1 ⊗ . . .⊗ ρN)∗

= ρ∗1 ⊗ . . .⊗ ρ∗N
= ρ.
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Moreover, ρ is a non-negative self-adjoint operator because ρ has diagonal elements
y1 . . . yN , where yj is qju or qjd. Also, note that

tr(ρ) = tr(ρ1 ⊗ . . .⊗ ρN)

= tr(ρ1) · · · tr(ρN)

= 1.

Notice that the second equation is derived from the property of trace. Hence, ρ is
a proper quantum state.

Quantum state risk-neutral world. The risk-neutral world of the quantum
model (B,S) consists of self-adjoint non-negative 2 × 2 matrices ρ (referred to as
states) satisfying

tr(ρ1H1) = 1 + r1, tr(ρ2H2) = 1 + r2, ..., and tr(ρNHN) = 1 + rN . (4.4)

Transformed quantum state. Furthermore, we define

Hi = U∗i DiUi and ρi =⇒ ρ̃i = UiρiU
∗
i , where i=1,2,...N. (4.5)

Note that

ρ̃i
∗ = (UiρU

∗
i )∗

= (U∗i )∗ρ∗iU
∗
i = Uiρ

∗
iU
∗
i

= ρ̃i, where i=1,2,..,N.

We obtain the first equation by the property of unitary operator and trace.

And then,

tr(ρ̃i) = tr(UiρiU
∗
i )

= tr(U∗i Uiρi)

= tr(ρi) = 1, where i=1,2,...,N.

Under the general fact 4.2.1, we obtain the first equation. Then, we apply the
trace rule for the second equation. And we obtain the third equation because of
the definition of transformed quantum state. The final equation derived by the
definition of quantum state.
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Finally, we obtain

< ρ̃ix, x > = < UρiU
∗x, x >

= < ρiU
∗x, U∗x >

= < ρiy, y >

≥ 0,

where U∗x = y and since ρi ≥ 0. We obtain the first and second equation because
of the property of unitary operator. And ρ̃i have non-negative diagonal elements
q

(i)
u , q

(i)
d and have a representation

ρ̃i =

(
q

(i)
u x̄

x q
(i)
d

)

Transformed quantum state is then defined by

ρ̃ = U∗(ρ1 ⊗ ...⊗ ρN)U

= (U1 ⊗ U2 ⊗ . . .⊗ UN)(ρ1 ⊗ ...⊗ ρN)(U∗1 ⊗ U∗2 ⊗ . . .⊗ U∗N)

= (U1ρ1U
∗
1 )⊗ (U2ρ2U

∗
2 ) . . . (UNρNU

∗
N) (4.6)

We obtain the first equation by the definition of tensor product. And we apply
the property of tensor product to obtain the second equation. Finally, we derive
the last equation by the property of tensor product.

Notice that tensor product of positive self-adjoint operators is positive self-adjoint.
Hence, ρ̃ is positive self-adjoint operator with tr(ρ) = 1. Moreover, the quantum
no arbitrage condition is satisfied for the transformed density:

tr(ρ̃1D1) = 1 + r1, tr(ρ̃2D2) = 1 + r2, ..., and tr(ρ̃NDN) = 1 + rN . (4.7)

Let

D = D1 ⊗D2...⊗DN .
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In addition, we have

tr(ρ̃H) = tr(ρ̃1 · · · ⊗ ρ̃NH1 ⊗ · · · ⊗ ρ̃N) (4.8)

= tr(ρ̃1H1) · · · tr(ρ̃NHN)

= tr(ρ̃1D1) · · · tr(ρ̃NDN) (4.9)

= (1 + r1) · · · (1 + rN). (4.10)

We obtain the first equation by the definition of tensor product. And we apply
the property of tensor product to obtain the second equation. Also, we derive the
last equation via the property of unitary operator. Finally, we obtain the final
equation via the no-arbitrary condition.

The arbitrage free time 0, the general option price of quantum option claim C =

f(SN) for generalised N period quantum binomial model is defined by

OP (f(SN)) =
tr(ρf(SN))

trρH
(4.11)

=
tr(ρ1 ⊗ ...⊗ ρNf(S0H1 ⊗ ...⊗HN))

(1 + r1)(1 + r2)...(1 + rN)
. (4.12)

Applying (4.3) and (4.12), we obtain

OP (f(SN)) =
tr(ρ1 ⊗ ...⊗ ρNf(S0H1 ⊗ ...⊗HN))

(1 + r1)(1 + r2)...(1 + rN)

=
tr(ρ1 ⊗ ...⊗ ρNUf(S0D1 ⊗ ...⊗DN)U∗)

(1 + r1)(1 + r2)...(1 + rN)

=
tr([U∗(ρ1 ⊗ ...⊗ ρN)U ]f(S0D1 ⊗ ...⊗DN))

(1 + r1)(1 + r2)...(1 + rN)

=
tr(ρ̃f(S0D1 ⊗ ...⊗DN))

(1 + r1)(1 + r2)...(1 + rN)

=
tr(ρ̃1 ⊗ . . .⊗ ρ̃Nf(S0D1 ⊗ ...⊗DN))

(1 + r1)(1 + r2)...(1 + rN)
.

We obtain the second equation via the general fact 4.2.1. And the third equation
has been obtain by the trace property. And then, we obtain the fourth equation
by the definition of transformed quantum state.

Since ρ̃ is a tensor product and f(S0D1⊗ ...⊗DN) is a diagonal matrix, we derive
the following option pricing formulas.
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Theorem 4.1. (Option pricing for generalized N -period quantum binomial mar-
ket). Under notation in above,

OP (f(SN)) =

∑
σ f(S0yσ)qσ

(1 + r1)(1 + r2)...(1 + rN)

Corollary 4.2. In particular, for the N-period quantum binomial model (the quan-
tum analogue of Cox-Ross-Rubinstein Binomial market), qiu = qu, ri = r, ui =

u, di = d, i = 1, 2, ..., N , we derive

OP (f(SN)) =
1

(1 + r)N

N∑
n=0

N !

n!(N − n)!
f(S0u

ndN−n)qnd q
N−n
u .

4.3 N period quantum Binomial model in the non

Self-adjoint market

In this part, we define the generalised N-period quantum binomial model and de-
velop a relevant option pricing.

Quantum share price SN for Non self-adjoint case. Quantum share price
for the quantum binomial market is defined by

SN = S0H1 ⊗ . . .⊗HN , (4.13)

where Hi is (non) self-adjoint 2 × 2 matrices, which represents the changing of
share price with jumps ui (jump up) or di (jump down), i = 1, . . . , N. For the
quantum model, ui and di are diagonal elements. The only difference is that Hi

are Non self-adjoint in general.

Quantum claim C = f(SN). In particular, we can introduce the quantum claim
C = f(SN) via the following general formula.

Fact 4.3.1. (a) Assume an operator H admits a representation

H = uPu + dPd(6)
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where Pu and Pd are generalized orthogonal projections such that

P 2
u = Pu, P

2
d = Pd, PuPd = PdPu = 0, Pu + Pd = I.

Then,

f(H) = f(u)Pu + f(d)Pd.

(b) (Case 2× 2 matrices) Assume that H admits a representation

H = P

(
u 0

0 d

)
P−1.

Then,

f(H) = P

(
f(u) 0

0 f(d)

)
P−1.

In general, the tensor product of Jordan matrices is not a Jordan matrix. However,
the argument of (4.13) works as well for the diagonizable case. In our case,

SN = S0H1 ⊗ . . .⊗HN (4.14)

= PS0D1 ⊗ . . .⊗DNP
−1

=⇒ f(SN) = Pf(S0D1 ⊗ . . .⊗DN)P−1. (4.15)

Quantum state ρ. As in the self-adjoint case, the quantum state ρ in the Eu-
clidean space H = R2N of dimension 2N is defined as the tensor product

ρ = ρ1 ⊗ . . .⊗ ρN .

which is again is a non-negative self-adjoint operator with trace 1.

Note that the density is self-adjoint by default.

Quantum state risk-neutral world. The risk-neutral condition is defined again
as before via (4.4).

Transformed quantum state. Notice now that the similar definition , yields

Hi = PiDiP
−1
i and ρi =⇒ ρ̃i = PiρiP

−1
i , where i=1,2,...N. (4.16)
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And the transformed quantum state is then defined by

ρ̃ = P (ρ1 ⊗ ...⊗ ρN)P−1

= (P1 ⊗ P2 ⊗ . . .⊗ PN)(ρ1 ⊗ ...⊗ ρN)(P−1
1 ⊗ P−1

2 ⊗ . . .⊗ P−1
N )

= (P1ρ1P
−1
1 )⊗ (P2ρ2P

−1
2 ) . . . (PNρNP

−1
N ) (4.17)

The last two equation derived by the property of tensor product.

Notice that again ρ̃i have trace 1

tr(ρ̃i) = tr(PiρiP
−1
i )

= tr(P−1
i Piρi)

= tr(ρi) = 1, where i=1,2,...,N.

Under the definition of transformed state, we obtain the first equation. Then, we
apply the trace rule for the second equation. And we obtain the third equation
because of the property of the projection. The final equation derived by the
definition of quantum state.

Remark 4.3. However, in general, neither ρ̃i nor ρ̃ are self adjoint operators, that
is in general they are not proper quantum states!

The risk neutral condition is transformed to the same form as before 4.7.

The arbitrage free time 0, the general option price of quantum option claim C =

f(SN), for generalised N period quantum binomial model is defined by

OP (f(SN)) =
tr(ρf(SN))

trρH

=
tr(ρ1 ⊗ ...⊗ ρNf(S0H1 ⊗ ...⊗HN))

(1 + r1)(1 + r2)...(1 + rN)
.

Applying (4.3) and (4.12), we obtain

OP (f(SN)) =
tr(ρ1 ⊗ ...⊗ ρNf(S0H1 ⊗ ...⊗HN))

(1 + r1)(1 + r2)...(1 + rN)

=
tr(ρ1 ⊗ ...⊗ ρNPf(S0D1 ⊗ ...⊗DN)P−1)

(1 + r1)(1 + r2)...(1 + rN)

=
tr([P−1(ρ1 ⊗ ...⊗ ρN)P ]f(S0D1 ⊗ ...⊗DN))

(1 + r1)(1 + r2)...(1 + rN)
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We obtain the second equation via the general fact 4.2.1. And the third equation
has been obtain by the trace property. Finally, we yield the same answer as in the
self-adjont case.

Theorem 4.4. (Option pricing for generalized N -period quantum binomial mar-
ket). Under notation in above,

OP (f(SN)) =

∑
σ f(S0yσ)qσ

(1 + r1)(1 + r2)...(1 + rN)
.

4.4 N step bond market

We carry on the N step bond market. Now, our share price is also a bond matrix
that is with all diagonal elements u.

Case of a self adjoint bond. The share(bond) price matrix is defined by

H⊗N = U(D1 ⊗ . . .⊗DN)U∗.

The state ρ satisfies usual conditions tr(ρ1) = 1, . . . , tr(ρN) = 1. Hence, for the
transformed density ρ̃ = UρU∗, the no-arbitrage condition becomes

tr(ρ⊗NH⊗N) = tr(ρ1 ⊗ . . .⊗ ρNU(D1 ⊗ . . .⊗DN)U∗)

= tr(U(ρ1 ⊗ . . .⊗ ρN)U∗D1 ⊗ . . .⊗DN)

= tr(ρ̃1 ⊗ . . .⊗ ρ̃ND1 ⊗ . . .⊗DN)

= (ρ̃11 + . . .+ ˜ρNN)uN

= tr(ρ̃)uN

= uN

= (1 + r)N .

Notice that in one step bond market, we have H = U∗

(
u 0

0 u

)
U = uI2. Then,

we introduce a general lemma for the risk neutral condition.



Quantum markets 111

Lemma 4.4.1. (Option price for self-adjoint bond market) A local no arbitrage
condition is equivalent to the global no arbitrage condition as follows

tr(ρ⊗NH⊗N) = tr(ρH)N = (1 + r)N if and only if tr(ρH) = 1 + r.

Besides, C = f(SN) is the quantum claim for any function f via the general fact
4.3.1 in one step model. Then, we obtain

OP (f(S0H
⊗N)) =

tr(ρ⊗Nf(S0H
⊗N))

1 + r

=
tr(ρ̃⊗N)f(S0u

N)

(1 + r)N

=
ρ̃11f(S0u

N) + . . .+ ρ̃NNf(S0u
N)

(1 + r)N

=
f(S0u

N)

(1 + r)N
.

Case of non self-adjoint bond. Now, we assume that

H = Hn
u = P⊗n

(
u 1

0 u

)⊗n
P−1⊗n

= P⊗nJ⊗n2,uP
−1⊗n

Define the transformed state ρ̃ = P−1ρP . For the no-arbitrage condition, we
derive

tr(ρH i
u) = tr

(
ρ̃H i

u

)
= 1 + ri, where i = 1, . . . , n.

Besides, C = f(Sn) is the quantum claim for any function f via the general fact
4.3.1. Then, we obtain

OP (f(S0Hu)) =
tr(ρ̃f(S0Jn,u))

1 + r

=

tr

ρ̃


f(S0u1u2) S0
f ′(S0u1)

1!
. . . S3

0
f (n−1)(S0)

(n−1)!

0 f(S0u1d2) . . . . . .

. . . . . . . . . . . .

0 0 0 f(S0d1d2)




(1 + r1)(1 + r2) . . . (1 + rn)
.
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Limit of N step bond market

Lemma 4.4.1. As k = n, we have H =

(
u 1

0 u

)
, and ρ =

(
ρ11 y

y ρ22

)
, where

y = 1+r−u and r = λ
n
. Then the option price tends to E(ξN) = Ee(N(iB2σ+σ+λ)) =

e(N(σ+λ)−N2σ) as n→∞.

Proof.

OP ((S0H
⊗n)N) =

(tr(ρHN))n

(1 + r)n

=
(ρ11u

N + ρ22u
N + yuN−1N)N

(1 + r)n

= (
uN + yuN−1N

1 + r
)n,where e

σ
n = u

→ e(Nσ+λN−N2σ−λ) as n→∞

= e−λE(ξN).

Connection with the planar process, it is a representation and play with planar
Brownian Motion by Fourier techniques. For the distribution of this process, we
interpret R2 as the complex plane. Hence a planar Brownian motion becomes
a complex Brownian motion. A complex-valued stochastic process called a mar-
tingale. if its real and imaginary parts are martingales. Let {B(t) : t ≥ 0} be a
complex Brownian motion started in i, the imaginary unit.

Remark the definition of planer Brownian Motion is given in the subsection about
Brownian Motion.

Lemma 4.5. Let B̃t be a planar Brownian motion, ezB̃t is a martingale with
respect to its natural filtration.

Proof.

E[ezB̃T |Ft] = E[ezXT |Ft]E[ezYT |Ft], where z = x+ iy

= ezXt+tz
2/2eizYt+t(iz)

2/2

= ezXt+izYt

= ez(Xt+iYt) = ezB̃t .
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Then, the option price under the risk neutral condition with the interest rate ρ = 0

is defined by

OP (f(B̃T )|t) = E[f(B̃T )|Ft]

= e(N(λ+σ)−N2σ2).

Notice that when σ = 0, the result is the same with the bound; when σ ≤ 0, it
tends to Black-scholes formula; And if σ ≤ 0, then it seems to be a kind of complex
Brownian motion.

4.5 Conditional option pricing for generalized quan-

tum N period Binomial model

In this part, we derive the Quantum Cox-Ross-Rubinstein Binomial Model by
considering the distribution of eigenvalues. Let σ = y1 . . . yN means the sum over
all paths with yi ∈ {ui, di} and the probability of the path being qσ = q

(1)
σ1 . . . q

(N)
σN .

Let
x = St = S0y1 . . . yt

be the initial position. The corresponding projection Px is a projection operator
on St and ρ is a state, which can transform a new state ρ̂ = PxρPx.

Finally, notice that (refer to the general fact 4.3.1)

f(S0H1 ⊗ ...⊗HN) = U∗f(S0D1 ⊗ ...⊗DN)U,

where U = U1 ⊗ . . .⊗ UN and U∗ = U∗1 ⊗ . . .⊗ U∗N . Notice that for generalised N
period quantum binomial model, the arbitrage free time t, option price of quantum
option claim C = f(SN) is defined by

OP (f(SN)|t, x) =
tr(PxρPxf(SN))

tr(PxρPx)

The main results in this section is the following theorem.
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Theorem 4.5.1. (Conditional option pricing for generalized N -period quantum bi-
nomial market). Under notation in above,

OP (f(SN)|t, x) =
∑

yt+1,...,yN

f(S0y1 . . . yN)
N∏

k=t+1

q(k)
yk

/
[(1 + rt+1) . . . (1 + rN)]

To prove th Theorem 4.5.1, we first establish several lemmas. The following fact
appears to be useful.

Fact 4.5.1. Let {pα} be α ∈ ω or set of orthogonal projection. Let Ai ∈ ω be
disjoint subsets. Then,

∑
α∈Ai Pα are orthogonal projections. Moreover,

∑
α∈A

Pα
∑
β∈B

Pβ =
∑

j∈A
⋂
B

Pj.

In the N step quantum binomial model, we consider the observable as a tensor
product. Let

ρ = ⊗Nk=1ρk , SY =
∑
j∈Y

Ũ∗D
(s)
j Ũ ,

U = U1 ⊗ . . .⊗ Un , Ũ = Ũ1 ⊗ . . .⊗ Ũn,

D
(s)
j = D

(s)
j1
⊗ . . .⊗D(s)

jN

where j = j1, . . . , jn, j = 1 (up) and j = 0 (down).

Lemma 4.5.2. Under notation in above,

tr(ρSY ) =
∑
j∈Y

N∏
k=1

(q(k)
yjk
yjk)

Proof of Lemma 4.5.2. Observe that by the linearity of the trace and properties
of the tensor product

tr(ρSY ) =
∑
j∈Y

tr(ρŨ∗D
(s)
j Ũ)

=
∑
j∈Y

tr
(
(⊗Nk=1ρk)(⊗Nk=1Ũ

∗
k )(⊗Nk=1D

(s)
jk

)(⊗Nk=1Ũk)
)

=
∑
j∈Y

tr(⊗Nk=1ρkŨ
∗
kD

(s)
jk
Ũk)

=
∑
j∈Y

N∏
k=1

tr(ρkŨ∗kD
(s)
jk
Ũk)
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Notice that by the cycling property of the trace tr(ABC) = tr(BCA) .

tr(ρkŨ∗kD
(s)
jk
Ũk) = tr((ŨkρkŨ∗k )D

(s)
jk

)

= tr(ρ̂kD
(s)
jk

) where ρ̂k = ŨkρkŨ∗k ,

implying that

tr(ρSY ) =
∑
j∈Y

N∏
k=1

tr(ρ̂kD
(s)
jk

)

=
∑
j∈Y

N∏
k=1

(q(k)
yjk
yjk)

The proof is complete �.

Lemma 4.5.3. Let Px be a projection operator on S0, . . . , St = S0y1 · · · yt = x.
Then

tr(ρPx) = q(1)
y1
. . . q(t)

yt .

Proof of Lemma 4.5.3. We apply the previous Lemma 4.5.2 to the set

Y = {1 : at place of eigenvalue
N∏
t=1

yjt such that y1, . . . , yt are fixed}

The statistics SY = Px that is all eigenvalues yi = 1. Notice that here a tensor
product is treated both as a number and a vector (y1, . . . , yn). Remind that in
this case q(1)

y1 , . . . , q
(t)
yt are fixed and so

tr(ρPx) = tr(ρSY )

=
∑
j∈Y

N∏
t=1

q(t)
yt

= q(1)
y1
· · · q(t)

yt

∑
yt+1,...,yN

N∏
k=t+1

q(k)
yk

= q(1)
y1
. . . q(t)

yt

N∏
k=t+1

(∑
yk

q(k)
yk

)
= q(1)

y1
. . . q(t)

yt .

The proof is complete �.
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Lemma 4.5.4. Let Px be the projection operator defined in Lemma 4.5.3. Then

tr(ρPxSNPx) = q(1)
y1
. . . q(t)

yt x
′P (lnYm+1 + . . .+ lnYN

= ln(x′/x))

Proof. We apply Lemma 4.5.2 to the set

Y (x, x′) = {j : x′ = S0y1 . . . yN , x = St = S0y1 . . . yt, and y1, . . . , yt are fixed.}.

we observe that

PxSNPx = SY (x,x′).

and therefore

tr(ρPxSNPx) = tr(ρSY (x,x′)).

Notice, j ∈ Y means that yt+1 · · · yN = x′/x and the path y1, . . . , yt is fixed.
Overall by the similar argument as in Lemma 4.5.3, we get

tr(ρPxSNPx) = tr(ρSY (x,x′))

=
∑

j∈Y (x.x′)

N∏
k=1

(q(k)
yjk
yjk)

= q(1)
y1
. . . q(t)

yt x
′
∑

j∈Y (x′)

N∏
m=t+1

qym

= q(1)
y1
. . . q(t)

yt x
′P (lnYm+1 + . . .+ lnYN = ln(x′/x)).

The proof is complete �.

If q(1)
y1 , . . . , q

(t)
yt are not fixed, then we obtain the following lemma.

Lemma 4.5.5. Let Px be a projection operator on Y (x) = {1 : x = {y0, . . . , yt}}.
Then

tr(ρPx) =
∑

yt:S0y0...yt=x

q(1)
y1
. . . q(t)

yt

= P (St = x).
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Lemma 4.5.6. Let Px be the projection operator defined in Lemma 4.5.5. Then

tr(ρPxSNPx) = P (St = x)P (lnYm+1 + . . .+ lnYN

= ln(x′/x))

Now, we are ready to finish the proof of the Theorem.

Proof of Theorem 4.5.1. Applying the quantum conditional expectation with
the general fact 4.3.1, we derive by using the cycle trace property and that P 2

x = Px

is a projection.

OP (f(SN)|t, x)) = OP (f(SN)|St = x))

=
tr(ρ̂f(SN))

tr(ρ̂)
where ρ̂ is a new state and SN is an observable,

=
tr(PxρPxf(SN))

tr(PxρPx)(1 + rt+1) . . . (1 + rN)

=
tr(ρPxf(SN)Px)

tr(PxρPx)(1 + rt+1) . . . (1 + rN)

=
tr(ρPxf(SN)Px))

q
(1)
y1 . . . q

(t)
yt (1 + rt+1) . . . (1 + rN)

by applying Lemmas 4.5.3 at the last step.

Proceeding as in Lemma 4.5.4, we derive

tr(ρPxSNPx))

= q(1)
y1
. . . q(t)

yt

∑
x′

S0y1 . . . yNP (lnYm+1 + . . .+ lnYN = ln(x′/x))

= q(1)
y1
. . . q(t)

yt

∑
yt+1,...,yN

S0y1 . . . yNP (lnYm+1 + . . .+ lnYN = ln(yt+1 . . . yN))

= q(1)
y1
. . . q(t)

yt

∑
yt+1,...,yN

S0y1 . . . yN

N∏
k=t+1

q(k)
yk

Plugging the last expression into the representation for OP (f(SN)|t, x) with the
general fact 4.3.1, we derive

OP (f(SN)|t, x) =
∑

yt+1,...,yN

f(S0y1 . . . yN)
N∏

k=t+1

q(k)
yk

/
[(1 + rt+1) . . . (1 + rN)]

The proof of Theorem 4.5.1 is complete �.
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4.6 Convergence to the Black-Scholes model

Let d be a positive integer, let Md(C) be the algebra of d × d complex matrices
with usual matrix multiplication, and let An ∈Md(C).

Lemma 4.6.1. Let µn be the measure of Eigenvalues ofAn with respect to tr(ρ⊗nH⊗n),
where ρ is a state, which is a positive operator with unit trace and H is an
observable with the spectral resolution. Then, there is a particular µ satisfied∫
f(x)dµn(x)→

∫
f(x)dµ(x) for µn as n→∞.

Proof of Lemma 4.6.1. We begin with the Representation via spectral

measure µn. Observe that

Ef(H) = tr(ρ⊗nf(S0H
⊗n)) (4.18)

=

∫
f(S0x)µn(dx), (4.19)

where µn is the measure of Eigenvalues of An with respect to the quantum prob-
ability, tr(ρ⊗nH⊗n), defined by

µn(x) =
∑

σ:λσ≤x

qσ (4.20)

=
∑

σi:y
σ1
1 ...yσnn

qσ1 . . . qσn ≤ x, (4.21)

where the sum is over all paths σ = σ1 . . . σN with σi ∈ {u, d}, the probability
of the path being qσ = qσ1 . . . qσN with qσi ∈ {qu, qd}. And, the corresponding
eigenvalues are

λσ = yσ
i1

1 . . . yσinn , where yσii =

ui , σi = u,

di , σi = d.
. (4.22)

Reduction to the weak convergence. Hence, we need to find the limiting
distribution µ, which satisfied∫

f(x)dµn(x)→
∫
f(x)dµ(x)

that is to establish the weak limit µn → µ.
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Probability modelling Notice that

qσ1 . . . qσn = P (Y1 = yσ11 )P (Y2 = yσ22 ) . . . P (Yn = yσnn ) (4.23)

= P (Y1 = yσ11 , . . . , Y
σn
n ), (4.24)

where Yi are iid with

P (Yi = u) = qu, P (Yi = d) = qd. (4.25)

And, also
P (σ : λnσ ≤ x) = Q(Y1 . . . Yn ≤ x). (4.26)

Overall, from (4.18) - (4.26)

µn(x) = P (Y1 × . . .× Yn ≤ x)

= P (lnY1 + . . .+ lnYn ≤ lnx)

= P (Tn ≤ lnx)

where Tn = lnY1 + . . .+ lnYn.

Observe that

E[Tn] = E[ln(
u

d
)Bin(n, qu) + n ln(d)]→ 2σa,

and,

V ar(Tn) = V ar(n ln(d) + ln(
u

d
)Bin(n, qu))→ σ2.

Hence, by the central limit theorem,

µn(x) = P (Tn ≤ lnx)→ P (eσ(2a+N(0,1)) ≤ x)

= µ(x).

The proof is complete. �.

Comment 4.6.1. In the above equation, if t = 1, ρ = λ, a = ρ − σ2

2
. Then, we

derive that the limiting measure corresponds to the Geometric Brownian Motion
model

P (eσ(2a+N(0,1)) ≤ x) = P (S0e
at+σBt ≤ x).
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where {Bt : t ≥ 0} is a Standard Brownian Motion (Wiener process).

Comment 4.6.2. The traditional way to prove the convergence is to establish the
convergence of the Cauchy transforms. More exactly, the Cauchy transform for
the measure µ is defined by

Sµ(z) =

∫
R

µ(dt)

t− z
, z ∈ C\R.

So the measure is then determined by

µ((a, b)) = lim
ε→0

1

π

∫ b

a

=Sµ(x+ iε),

for all open interval (a, b) with a, b where µ does not have an atom at a and b.

One needs to show that Sµn(z)→ Sµ(z). In addition, it is common to apply

∫
dµ(x)

z − x
=

∞∑
k=0

1

zk+1

∫
xkdµ(x)

However, for the limiting measure µ defined in above the last sum is equal to

∞∑
k=0

1

zk+1
Sk0e

ak+σ2k2/2 = ∞.

showing that, the traditional approach is not appropriate in this case.

4.7 Conclusion

Quantum model based on quantum probability, instead of classical probability,
which is generalisation for classical probability. In this chapter, we have proved
that quantum models do cover the classical non-quantum models.

Firstly, we analyse the quantum version of Binomial model, including both self-
adjoint market and non self-adjoint market. Considering the quantum observable,
we apply the discrete time quantum formulization and construct option pricing of
tensor product of non-commutative market.
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Moreover, we analyse the quantum version of the Cox-Ross-Rubinstein Binomial
Model. And we analyse the quantum bond markets and found that N step bond
market can connect to planar Brownian motion.

Furthermore, we analyse the quantum conditional option price via the quantum
conditional expectation. Besides, we establish the limit of the spectral measures
proving the convergence to the geometric Brownian motion model. Here is the
other point that we make a connection between classical model and non-classical
model.

In the next chapter, we will give several examples to demonstrate our results.



Chapter 5

Examples for Quantum Market

5.1 One period Quantum Market

5.1.1 Option pricing for generalized one period quantum

Binomial market

We start from the one step quantum binomial model. Let ρ be a quantum state
and H be an observable with spectral resolution, which is a self-adjoint operator
in the probability theory, H =

∑
j hjE

H
j . Also,

H = U

(
u 0

0 d

)
U∗., where U is Unitary operator.

It represents the changing of share price with jumps u (jump up) or d (jump
down). The probability of Event EH

j , H takes the value hj in the state ρ, is equal
to trρEH

j . H has expectation Eρ(H) in the state ρ,

Eρ(H) =
∑
j

hjtrρE
H
j

= trρ
∑
j

hjE
H
j

= trρH.

122
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Thus, the risk-neutral world of the quantum model (B,S) consists of states ρ on
the space H = R2 satisfying

trρH = uqu + dqd

= 1 + r,

where trρH is the probability of the event in the state ρ and qu, qd are diagonal
elements of ρ.

Quantum share price for the quantum binomial market is defined by

S1 = S0H.

In this case, a quantum model for the binmial market (B,S) is presented.

We remind that if A∗ = A then A admits a representation A = UDU∗. Then,
f(A) = Uf(D)U∗.

By using the general fact 4.2.1 and the definition of self-adjoint operator H =

U∗DU , we obtain

f(S1) = Uf(S0D1)U∗

= U

(
f(S0u) 0

0 f(S0d)

)
U∗.

And then, we define transformed quantum state

ρ =⇒ ρ̃ = UρU∗ =

(
ρ̃11 ρ̃12

ρ̃21 ρ̃22

)
, (5.1)

where U is a Unitary operator.

In particular, we know ρ̃ = ρ, tr(ρ̃) = tr(ρ) = 1 since U∗U = UU∗ = I, ρ is a
quantum state, and < ρ1x, x >=< ρy, y >≥ 0, where U∗x = y because of ρ ≥ 0.
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Finally, we define f(H) = U∗f(D)U .

tr(ρf(S0H)) = tr(ρU∗f(S0D)U)

= tr((UρU∗)f(S0D))

= tr(ρ̃f(S0D))

= tr

((
ρ̃11 ρ̃12

ρ̃21 ρ̃22

)(
f(S0u) 0

0 f(S0d)

))
.

Under the general fact, we obtain the first equation. Then, we apply the trace
rule for the second equation. And we obtain the final equation because of the
definition of transformed quantum state.

Under the no-arbitrage condition, the option price of quantum option claim C =

f(S1) for one step quantum binomial model is defined by

OP (f(S1)) =
tr(ρf(S1))

1 + r

=

tr

(
ρU

(
f(S0u) 0

0 f(S0d)

)
U∗

)
1 + r

=
q̃uf(S0u) + q̃df(S0d)

1 + r
.

Moreover, the quantum binomial model is arbitrage-free if and only if −1 ≤ a <

r < b. For the European call option in the quantum binomial market with the
exercise price K. Its payoff is of the form

H = (S1 −K)+, (5.2)

which takes two values

ha = max(0, S0d−K), hb = max(0, S0u−K). (5.3)

Thus, the option value C is

C =
1

1 + r
tr(ρH)

=
1

1 + r
(
1 + r − d
u− d

ha +
u− (1 + r)

u− d
hb)
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for all states ρ in the risk-neutral world.

5.1.2 One step quantum market

Let us introduce several cases for One step quantum market.

Case 1. In general, this is 2x2 non self adjoint matrix case.

Example 1 Market: (2x2 case). Discrete time market. Two quantum states on
the Euclidean space E = M2×2 are the bond. And the share price modelled by
the dynamics

S1 = S0H

where 2 × 2 matrix H = PDP−1 = P

(
u 0

0 d

)
P−1 has two diagonal elements

u and d. They represent the change of share price with jumps u (jump up) or d
(jump down).

The risk-neutral world of the quantum model (B, S) consists of states ρ on H

which are self adjoint non-negative matrices with density tr(ρ) = 1, and satisfy
the risk neutral condition

tr(ρH) = utr(ρPu) + dtr(ρPd)

= 1 + r,

where tr(ρPu) and tr(ρPd) are the probability of the event in the state ρ. Notice
that, with the density assumption tr(ρ) = 1, the orthogonal projections Pu, Pd
implies that

tr(ρPu) = qu

=
1 + r − d
u− d

,

tr(ρPd) = 1− qu,

where ρ has positive diagonals qu or qd. However, ρ is not self-adjoint in general.
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The general quantum claim is C = f(S1), i.e. a function of operator H. Notice
the quantum claim

f(S1) = f(S0H)

= Pf(S0D)P−1

= P

(
f(S0u) 0

0 f(S0d)

)
P−1

= f(S0u)Pu + f(S0d)Pd

is then defined via the general fact 4.3.1.

We also can find the transformed quantum density

ρ =⇒ ρ̃ = PρP−1,

The matrix ρ̃ has positive diagonals qu or qd. However, ρ̃ is in general not self-
adjoint (that is not a proper density).

The option price formula in the model is defined as follows:

OP (C) =
tr(ρf(S0H))

1 + r

=
tr(ρPu)f(S0u) + tr(ρPd)f(S0d)

1 + r
(via partition)

=
tr(ρ̃f(S0DH))

1 + r
(via transform)

=
quf(S0u) + qdf(S0d)

1 + r
.

�

Here, we introduce more examples about 2× 2 matrix case.

Generalized 2× 2 bond market We carry on the 2× 2 market. Now, our share
price is also a bond matrix that is with equal diagonal elements u = d.

Case of a self-adjoint bond. The share(bond) price matrix is defined by

H = U

(
u 0

0 u

)
U∗.,
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where U is unitary operator. The state ρ satisfies usual conditions

tr(ρH) = 1 + r, tr(ρ) = 1.

Hence, for the transformed density ρ̃ = UρU∗, the no-arbitrage condition becomes

tr(ρH) = tr

((
ρ̃11 ρ̃12

ρ̃21 ρ̃22

)(
u 0

0 u

))
= u(ρ̃11 + ρ̃22)

= utr(ρ̃)

= u

= 1 + r.

Besides, C = f(S1) is the quantum claim for any function f via the general fact
4.3.1 in one step model. Then, we obtain

OP (f(S0H)) =
0∑
j=0

f (j)(S0u)

j!

tr(ρHj
uGu)

1 + r

=
tr(ρf(S0H))

1 + r

=
ρ11f(S0u) + ρ22f(S0u)

1 + r

=
f(S0u)

1 + r

=
f(S0(1 + r))

1 + r
.

Case of non self-adjoint bond. Now, we assume that

Hu = P

(
u 1

0 u

)
P−1

= PJ2,uP
−1

Define the transformed state ρ̃ = T−1ρT . For the no-arbitrage condition, we derive

tr(ρH) = tr

((
ρ̃11 ρ̃12

ρ̃21 ρ̃22

)(
u 1

0 u

))
= u(ρ̃11 + ρ̃22) + ρ̃21

= u+ ρ̃21

= 1 + r.
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Besides, C = f(S1) is the quantum claim for any function f via the general fact
4.3.1 in one step model. Then, we obtain

OP (f(S0H)) =
tr(ρ̃f(S0J2,u))

1 + r

=

tr

((
ρ̃11 ρ̃12

ρ̃21 ρ̃22

)(
f(S0u) S0f

′(S0u)

0 f(S0u)

))
1 + r

=
ρ̃11f(S0u) + ρ̃22f(S0u) + ρ̃21S0f

′(S0u)

1 + r
.

Case 2. Diagonalizable market with two eigenvalues.

Consider a quantum market, two quantum states on the Euclidean space E =

Mk×k, the share price is modelled by the dynamics

S1 = S0H

where operator H has two quantum observable with eigenvalues u and d. They
represent the change of share price with jumps u (jump up) or d (jump down). We
assume that they have a general arbitrary multiplicities say, ku and kd, respectively,
such that ku + kd = k.

The risk-neutral world of the quantum model (B, S) consists of states ρ on H

satisfying

tr(ρH) = utr(ρPu) + dtr(ρPd) (5.4)

= 1 + r, (5.5)

Notice that (5.4) together with the density assumption tr(ρ) = 1 implies that

tr(ρPu) = qu =
1 + r − d
u− d

, tr(ρPd) = 1− qu. (5.6)

The general quantum claim is C = f(S1), i.e. a function of operator H. Notice
the quantum claim

f(S1) = f(S0H) (5.7)

= f(S0u)Pu + f(S0d)Pd (5.8)
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is then defined via the general fact 4.3.1.

We refer to this model as a one step non-self adjoint binomial market.

The option price formula in the model is defined as follows:

OP (C) =
tr(ρf(S0H))

1 + r

=
tr(ρPu)f(S0u) + tr(ρPd)f(S0d)

1 + r

=
quf(S0u) + qdf(S0d)

1 + r
.

Case 3. Non-Diagonalizable market with two eigenvalues.

The difference is now that the share price admits only a Jordan decomposition in
general.

If there are several Jordan blocks, then H =
∑
Hi, and f(H) =

∑
f(Hi). For

each H, we have H = Hu +Hd, where

Hu = PJ ′k,kP
−1 = PJ ′P−1,

and

Hu = PJ ′′k,kP
−1 = PJ ′′P−1,

with the properties

HuHd = PJ ′P−1PJ ′′P−1 = PJ ′J ′′P−1 and J ′J ′′ = J ′′J ′ = 0.

From the general definition, the option claim is defined by

f(S1) =
su∑
i=1

ki−1∑
j=0

f (j)(S0u)

j!
Hj
u +

sd∑
i=1

mi−1∑
j=0

f (j)(S0d)

j!
Hj
d.

This implies the following option price formula

OP (f(S1)) =
su∑
i=1

ki−1∑
j=0

f (j)(S0u)

j!

tr(ρHj
u)

1 + r
+

sd∑
i=1

mi−1∑
j=0

f (j)(S0d)

j!

tr(ρHj
d)

1 + r
.

And the risk neutral condition is define by OP(S1) = S0.
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5.1.3 5× 5 non diagonalizable quantum Binomial market

Consider one step market, it consists of a risky asset (share) and non-risky asset
(bond). In this example, the return are eigenvalues of 5x5 matrix. ρ is the quantum
state, which is a non-negative self-adjoint operator with trace 1. The share price
consist of two Jordan Blocks

J3×3 =


u 1 0

0 u 1

0 0 u

 ,

and

J2×2 =

(
u 1

0 u

)
.

Then, the share price is defined by

H = P



u 1 0 0 0

0 u 1 0 0

0 0 u 0 0

0 0 0 d 1

0 0 0 0 d


P−1.

If C = S2
1 is the quantum claim in this situation, we obtain

C = PS2
0



u 1 0 0 0

0 u 1 0 0

0 0 u 0 0

0 0 0 d 1

0 0 0 0 d



2

P−1.

The risk-neutral world of the quantum model consists of states ρ on the Euclidean
space E satisfying

tr(ρH) = 1 + r.

We define the transformed quantum state ρ̃ = PρP−1, which has trace 1 but ρ is
not self adjoint in general.
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Then, we obtain

OP (S2
1)

=
tr(ρS2

1)

(1 + r)2

=
tr(ρ(S2

0H
2))

(1 + r)2

=

tr





q1 ρ̃12 ρ̃13 ρ̃14 ρ̃15

ρ̃21 q2 ρ̃23 ρ̃24 ρ̃25

ρ̃31 ρ̃32 q3 ρ̃34 ρ̃35

ρ̃41 ρ̃42 ρ̃43 q4 ρ̃45

ρ̃51 ρ̃52 ρ̃53 ρ̃54 q5





S2
0u

2 S2
02u 1 0 0

0 S2
0u

2 S2
02u 0 0

0 0 S2
0u

2 0 0

0 0 0 S2
0d

2 S2
02d

0 0 0 0 S2
0d

2




(1 + r)

=
1

(1 + r)
(q1S

2
0u

2 + ρ̃21S
2
02u+ q2S

2
0u

2 + ρ̃31 + ρ̃32S
2
02u+ q3S

2
0u

2

+q4S
2
0d

2 + ρ̃54S
2
02d+ q5S

2
0d

2).

5.1.4 Commutative market

Consider a quantum Market, it consists of a risky asset (share) and a non-risky
asset (bond). They have been presented as two self-adjoint operators defined
on the Euclidean space E, where H is quantum share price and ρ is quantum
state. The interest rate r is fixed. 1 + r is a return on the non-risky asset. We
apply physical symmetry to compute the one step option pricing. In our market
definition, all three components ρ (state operator) and H (share price operator)
are interchangeable. And r is fixed.

Notice that ρ∗ = ρ, H∗ = H and ρ,H ≥ 0. Then, we have a global risk neutral
condition tr(ρH) = 1 + r.

The general quantum claim is C = f(S0H), i.e. a function of H.

Consider a quantum Market, assume that ρ and H are commutative. And r is
fixed. Then,

ρ = U∗DρU and H = U∗DHU,

f(S0H1) = U∗f(S0DH)U = f(S1).
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Besides, C = f(S1) is the quantum claim for any function f via the general fact
4.3.1 in one step model.

Under the no arbitrage condition, we have tr(ρH) = 1 + r. Then, we obtain

OP (f(S1)) = tr(ρf(S0H)
1

1 + r
)

= tr(U∗DρUU
∗f(S1)U

1

1 + r
)

= tr(Dρf(S0DH)
1

1 + r
)

=
∑

dρf(S0d
(H))

1

1 + r
.

Example based on data analysis (estimate αr) In this section, we introduce
how to mimics the interest rate from the market, which means that we need to
estimate the coefficient of interest rate. It is αrH = 1+r, where αr is a proportional
share price as an operator. We calculate the average share price of component Av
in terms of a certain index. Then, we have IeρT = αr(Av)I where I is the identity
operator. Finally, we obtain

αr =
1 + r

el̂nST
,

where

l̂nST =
1

M

M∑
k=1

1

N

N∑
j=1

ln(
S

(j)
k

S
(j)
k−1

).

Notice that N is the number of stocks, M is the number of days, and S is stock
price for a certain stock.

We take the stock price of component of FTSE 100 for last month and DAX (30
shares) for last year from the market. Applying the bank interest rate from Bank
of England (0.0025), we obtain the coefficients of interest are 1.0022 and 1.0020,
respectively.

Remark 5.1. For more details of the numerical implementation, it has been repre-
sented in the section 6.3.



Examples for Quantum Market 133

5.2 Two period Quantum Market

In the following content, we use a quantum model of mutil-period binomial markets
to re-deduce the Cox-Ross-Rubinstein binomial option pricing formula. We start
from the two step model as follows.

5.2.1 Two period Quantum Market

There are several quantum states, which are on the Euclidean space E = M

are the bond B = (B0, B1, B2) and the share price modelled by the dynamics
S = (S0, S1, S2):

S2 = S0H1 ⊗H2

= S0

( u1 0

0 d1

)
⊗
( u2 0

0 d2

)

= S0


u1u2 0 0 0

0 u1d2 0 0

0 0 d1u2 0

0 0 0 d1d2

 .

where Hi is self-adjoint 2×2 matrices, which represents the changing of share price
with jumps ui (jump up) or di (jump down), i = 1, 2. For the quantum model, ui
and di are diagonal elements.

Observe that since H∗i = Hi

S∗2 = (S0H1 ⊗H2)∗

= S0H
∗
1 ⊗H∗2

= S2.

So, S2 is a self-adjoint operator with non-negative diagonal elements, zj, where
j = 1, 2. For each zj, it is uj or dj. Hence, quantum share price S2 is self-adjoint
non-negative operator.
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By the general fact 4.2.1, we can introduce the quantum claim C = f(S2) for any
function f via the following general formula. In our case,

S2 = S0H1 ⊗H2 (5.9)

= US0D1 ⊗D2U
∗

=⇒ f(S2) = Uf(S0D1 ⊗D2)U∗. (5.10)

The two-period binomial model is then introduced a quantum state ρ in the Eu-
clidean space E = R22 of dimension 22 as the tensor product

ρ = ρ1 ⊗ ρ2

=
( q1

u 0

0 q1
d

)
⊗
( q2

u 0

0 q2
d

)

=


q1
uq

2
u 0 0 0

0 q1
uq

2
d 0 0

0 0 q1
dq

2
u 0

0 0 0 q1
dq

2
d

 .

Note that from standard definition, ρi = ρ∗i are self-adjoint non-negative 2 × 2

matrices such that

tr(ρ1) = tr(ρ2) = 1.

Note that from standard definition, ρi = ρ∗i are self-adjoint non-negative 2 × 2

matrices such that
tr(ρi) = 1, i = 1, 2.

Then, by the property of self-adjoint operator, we obtain

ρ∗ = (ρ1 ⊗ ρ2)∗

= ρ∗1 ⊗ ρ∗2
= ρ.
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Moreover, ρ is a non-negative self-adjoint operator because ρ has diagonal elements
yj, where j = 1, 2. And it is qju or qjd. Also, note that

tr(ρ) = tr(ρ1 ⊗ ρ2)

= tr(ρ1)tr(ρ2)

= 1.

Hence, ρ is a proper quantum state.

The risk-neutral world of the quantum model (B, S) consists of self-adjoint non-
negative 2× 2 matrices ρ (referred to as states) satisfying

tr(ρ1H1) = 1 + r1, and tr(ρ2H2) = 1 + r2. (5.11)

Furthermore, we define the Transformed quantum state.

Hi = U∗i DiUi and ρi =⇒ UiρiU
∗
i , where i=1,2. (5.12)

Note that

ρ̃i
∗ = (UiρU

∗
i )∗

= (U∗i )∗ρ∗iU
∗
i = Uiρ

∗
iU
∗
i

= ρ̃i, where i=1,2.

We obtain the first equation by the property of unitary operator and trace.

And then,

tr(ρ̃i) = tr(UiρiU
∗
i )

= tr(U∗i Uiρi)

= tr(ρi) = 1, where i=1,2.

Under the property of trace, we obtain the first equation. Then, we apply the
trace rule for the second equation. And we obtain the third equation because of
the definition of transformed quantum state. The final equation derived by the
definition of quantum state.
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Finally, we obtain

< ρ̃ix, x > = < UρiU
∗x, x >

= < ρiU
∗x, U∗x >

= < ρiy, y >

≥ 0,

where U∗x = y and since ρi ≥ 0. We obtain the first and second equation because
of the property of unitary operator. And ρ̃i have non-negative diagonal elements
q

(i)
u , q

(i)
d and have a representation

ρ̃i =

(
q

(i)
u x̄

x q
(i)
d

)
, where i = 1, 2.

Transformed quantum state is then defined by

ρ̃ = U∗(ρ1 ⊗ ρ2)U

= (U1 ⊗ U2)(ρ1 ⊗ ρ2)(U∗1 ⊗ U∗2 )

= (U1ρ1U
∗
1 )⊗ (U2ρ2U

∗
2 ) (5.13)

=


q̃u

1q̃u
2 x̃ x̃ x̃

x̃ q̃u
1q̃d

2 x̃ x̃

x̃ x̃ q̃d
1q̃u

2 x̃

x̃ x̃ 0 q̃d
1q̃d

2

 . (5.14)

We obtain the first equation by the definition of tensor product. And we apply
the property of tensor product to obtain the second equation. Finally, we derive
the last equation the property of tensor product.

Notice that tensor product of positive self-adjoint operators is positive self-adjoint.
Hence, ρ̃ is positive self-adjoint operator with tr(ρ) = 1. Moreover, the quantum
no arbitrage condition (5.21) is satisfied for the transformed density:

tr(ρ̃1D1) = 1 + r1, and tr(ρ̃2D2) = 1 + r2. (5.15)

Let

D = D1 ⊗D2.
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In addition, we have

tr(ρ̃H) = tr(ρ̃1 ⊗ ρ̃2H1 ⊗H2) (5.16)

= tr(ρ̃1H1)tr(ρ̃2H2)

= tr(ρ̃1D1)tr(ρ̃2D2) (5.17)

= (1 + r1)(1 + r2). (5.18)

We obtain the first equation by the definition of tensor product. And we apply the
property of tensor product to obtain the second equation. Also, we derive the last
equation the property of unitary operator. Finally, we obtain the final equation
via the no-arbitrary condition.

The arbitrage free time 0, the general option price of quantum option claim C =

f(S2) for generalised two-period quantum binomial model is defined by

OP (f(S2)) =
tr(ρf(S2))

(1 + r1)(1 + r2)

=
tr(ρ1 ⊗ ρ2f(S0H1 ⊗H2))

(1 + r1)(1 + r2)

=
tr(ρ1 ⊗ ρ2U

∗f(S0D1 ⊗D2)U)

(1 + r1)(1 + r2)

=
tr(U∗(ρ1 ⊗ ρ2)Uf(S0D1 ⊗D2))

(1 + r1)(1 + r2)

=
tr(ρ̃Uf(S0D1 ⊗D2))

(1 + r1)(1 + r2)

=
1

(1 + r1)(1 + r2)
tr(


q̃u

1q̃u
2 x̃ x̃ x̃

x̃ q̃u
1q̃d

2 x̃ x̃

x̃ x̃ q̃d
1q̃u

2 x̃

x̃ x̃ 0 q̃d
1q̃d

2




f(S0u1u2) 0 0 0

0 f(S0u1d2) 0 0

0 0 f(S0d1u2) 0

0 0 0 f(S0d1d2)

)

=
f(S0u1u2)q1

uq
2
u + f(S0u1d2)q1

uq
2
d + f(S0d1u2)q1

uq
2
d + f(S0d1d2)q1

dq
2
d

(1 + r1)(1 + r2)
.

We obtain the second equation via the general 4.2.1. And the third equation has
been obtain by the trace property. And then, we obtain the fourth equation by
the definition of transformed quantum state.
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5.2.2 Two period Quantum Market for non self-adjoint case

There are several quantum states, which are on the Euclidean space E = M

are the bond B = (B0, B1, B2) and the share price modelled by the dynamics
S = (S0, S1, S2):

S2 = S0H1 ⊗H2

= S0

( u1 1

0 d1

)
⊗
( u2 1

0 d2

)

= S0


u1u2 u1 u2 1

0 u1d2 0 d2

0 0 d1u2 d1

0 0 0 d1d2

 .

where Hi is non self-adjoint 2×2 matrices, which represents the changing of share
price with jumps ui (jump up) or di (jump down), i = 1, 2. For the quantum
model, ui and di are eigenvalues.

Observe that since H∗i = Hi

S∗2 = (S0H1 ⊗H2)∗

= S0H
∗
1 ⊗H∗2

= S2.

So, S2 is a self-adjoint operator with non-negative diagonal elements, zj, where
j = 1, 2. For each zj, it is uj or dj. Hence, quantum share price S2 is self-adjoint
non-negative operator.

By the general fact 4.2.1, we can introduce the quantum claim C = f(S2) for any
function f via the following general formula. In our case,

S2 = S0H1 ⊗H2 (5.19)

= US0D1 ⊗D2U
∗

=⇒ f(S2) = Uf(S0D1 ⊗D2)U∗. (5.20)
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The two-period binomial model is then introduced a quantum state ρ in the Eu-
clidean space E = R22 of dimension 22 as the tensor product

ρ = ρ1 ⊗ ρ2

=
( q1

u 0

0 q1
d

)
⊗
( q2

u 0

0 q2
d

)

=


q1
uq

2
u 0 0 0

0 q1
uq

2
d 0 0

0 0 q1
dq

2
u 0

0 0 0 q1
dq

2
d

 .

Note that from standard definition, ρi = ρ∗i are self-adjoint non-negative 2 × 2

matrices such that

tr(ρ1) = tr(ρ2) = 1.

Note that from standard definition, ρi = ρ∗i are self-adjoint non-negative 2 × 2

matrices such that
tr(ρi) = 1, i = 1, 2.

Then, by the property of self-adjoint operator, we obtain

ρ∗ = (ρ1 ⊗ ρ2)∗

= ρ∗1 ⊗ ρ∗2
= ρ.

Moreover, ρ is a non-negative self-adjoint operator because ρ has diagonal elements
yj, where j = 1, 2. And it is qju or qjd. Also, note that

tr(ρ) = tr(ρ1 ⊗ ρ2)

= tr(ρ1)tr(ρ2)

= 1.

Hence, ρ is a proper quantum state.
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The risk-neutral world of the quantum model (B, S) consists of self-adjoint non-
negative 2× 2 matrices ρ (referred to as states) satisfying

tr(ρ1H1) = 1 + r1, and tr(ρ2H2) = 1 + r2. (5.21)

Furthermore, we define the Transformed quantum state.

Hi = U∗i DiUi and ρi =⇒ UiρiU
∗
i , where i=1,2. (5.22)

Note that

ρ̃i
∗ = (UiρU

∗
i )∗

= (U∗i )∗ρ∗iU
∗
i = Uiρ

∗
iU
∗
i

= ρ̃i, where i=1,2.

We obtain the first equation by the property of unitary operator and trace.

And then,

tr(ρ̃i) = tr(UiρiU
∗
i )

= tr(U∗i Uiρi)

= tr(ρi) = 1, where i=1,2.

Under the property of trace, we obtain the first equation. Then, we apply the
trace rule for the second equation. And we obtain the third equation because of
the definition of transformed quantum state. The final equation derived by the
definition of quantum state.

Finally, we obtain

< ρ̃ix, x > = < UρiU
∗x, x >

= < ρiU
∗x, U∗x >

= < ρiy, y >

≥ 0,

where U∗x = y and since ρi ≥ 0. We obtain the first and second equation because
of the property of unitary operator. And ρ̃i have non-negative diagonal elements
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q
(i)
u , q

(i)
d and have a representation

ρ̃i =

(
q

(i)
u x̄

x q
(i)
d

)
, where i = 1, 2.

Transformed quantum state is then defined by

ρ̃ = U∗(ρ1 ⊗ ρ2)U

= (U1 ⊗ U2)(ρ1 ⊗ ρ2)(U∗1 ⊗ U∗2 )

= (U1ρ1U
∗
1 )⊗ (U2ρ2U

∗
2 ) (5.23)

=


q̃u

1q̃u
2 x̃ x̃ x̃

x̃ q̃u
1q̃d

2 x̃ x̃

x̃ x̃ q̃d
1q̃u

2 x̃

x̃ x̃ 0 q̃d
1q̃d

2

 . (5.24)

We obtain the first equation by the definition of tensor product. And we apply
the property of tensor product to obtain the second equation. Finally, we derive
the last equation the property of tensor product.

Notice that tensor product of positive self-adjoint operators is positive self-adjoint.
Hence, ρ̃ is positive self-adjoint operator with tr(ρ) = 1. Moreover, the quantum
no arbitrage condition (5.21) is satisfied for the transformed density:

tr(ρ̃1D1) = 1 + r1, and tr(ρ̃2D2) = 1 + r2. (5.25)

Let

D = D1 ⊗D2.

In addition, we have

tr(ρ̃H) = tr(ρ̃1 ⊗ ρ̃2H1 ⊗H2) (5.26)

= tr(ρ̃1H1)tr(ρ̃2H2)

= tr(ρ̃1D1)tr(ρ̃2D2) (5.27)

= (1 + r1)(1 + r2). (5.28)

We obtain the first equation by the definition of tensor product. And we apply the
property of tensor product to obtain the second equation. Also, we derive the last
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equation the property of unitary operator. Finally, we obtain the final equation
via the no-arbitrary condition.

The arbitrage free time 0, the general option price of quantum option claim C =

f(S2) for generalised two-period quantum binomial model is defined by

OP (f(S2)) =
tr(ρf(S2))

(1 + r1)(1 + r2)

=
tr(ρ1 ⊗ ρ2f(S0H1 ⊗H2))

(1 + r1)(1 + r2)

=
tr(ρ1 ⊗ ρ2U

∗f(S0D1 ⊗D2)U)

(1 + r1)(1 + r2)

=
tr(U∗(ρ1 ⊗ ρ2)Uf(S0D1 ⊗D2))

(1 + r1)(1 + r2)

=
tr(ρ̃Uf(S0D1 ⊗D2))

(1 + r1)(1 + r2)

=

tr(ρ̃


f(S0u1u2) S0

f ′(S0u1)
1!

S2
0
f ′′(S0u2)

2!
S3

0
f ′′′(S0)

3!

0 f(S0u1d2) S0
f ′(S0u1)

1!
S2

0
f ′′(S0u2)

2!

0 0 f(S0d1u2) S0
f ′(S0u1)

1!

0 0 0 f(S0d1d2)

)

(1 + r1)(1 + r2)

=
1

(1 + r1)(1 + r2)
(f(S0u1u2)q̃u

1q̃u
2 + S0

f ′(S0u1)

1!
q̃u

1q̃u
2

+S2
0

f ′′(S0u2)

2!
q̃u

1q̃u
2 + S3

0

f ′′′(S0)

3!
q̃u

1q̃u
2 + f(S0u1d2)q̃u

1q̃d
2

+S0
f ′(S0u1)

1!
q̃u

1q̃d
2 + S2

0

f ′′(S0u2)

2!
q̃u

1q̃d
2 + f(S0d1u2)q̃u

2q̃d
1

+S0
f ′(S0u1)

1!
q̃u

2q̃d
1 + f(S0d1d2)q̃d

1q̃d
2).

We obtain the second equation via the general 4.2.1. And the third equation has
been obtain by the trace property. And then, we obtain the fourth equation by
the definition of transformed quantum state.

5.3 Conculsion

In this chapter, we give several examples for quantum model. We start from one-
step quantum model to two-step quantum model and consider both self-adjoint
and non self-adjoint matrix case. Also, we consider the 5 × 5 non-diagonalizable
matrix case in a certain quantum Binomial market. In this case, we obtain a
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slightly different answer from the self-adjoint matrix case because we got extra
elements from off diagonal elements.



Chapter 6

Numerical implementation

6.1 Introduction

Alternative approach to derive the Option price for the Geometric Brownian mo-
tion model is provided by the Feynman Path integral [22].

The Feymann Path Integral has been proven as a powerful tool for analytical and
computational studies of random system [23] and [22].This chapter is an intro-
duction to the application of path integrals to option pricing. Instead of studying
Hamiltonian operator, we shift it to the study of Lagrangian, which is a fundamen-
tal mathematical structure in the path-integral formulation of quantum mechanics
[51] and [52].

6.2 Path integral for Black-Scholes Lagrangian

To find the pricing kernel

p(x, τ ;x′) =< x|e−τH |x′ > . (6.1)

for τ = T − t, we discretize the time by choosing the N time steps and letting
xi = x(ti), where ti = iε and 0 ≤ i ≤ N .

Then, (6.1) reduces to

p(x; τ |x′) = (
N−1∏
i=1

∫
dxi)

N∏
i=1

< xi|e−εH |xi−1 >

144
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with boundary conditions
xN = x, x0 = x′.

Applying the Feynman formula for the Hamiltonian

< xi|e−εH |xi−1 >= Ni(ε)eεL(xi;xi−1;ε)

where Ni(ε) = 1√
2πσ2ε

is normalization constant and L(xi;xi−1; ε) = − 1
2εσ2 ((x(i)−

x(i− 1)− ε(r − σ2

2
))2) is the corresponding Lagrangian for the system [3].

Overall, the pricing kernal as follows:

p(x; τ ;x′) =

∫
DXeS, where the action is given by S = ε

N∑
i=1

L(xi;xi−1; ε),

(6.2)
and the path-integration measure on RN−1 is given by

∫
A

DX =

∫
A

NN(ε)
N−1∏
i=1

Ni(ε)dxi.

Finally, we provide the comparison of numerical calculations for the European call
option with strike price K = 100, interest rate r = 0.006, volatility σ = 0.2, and
expiry date T = 1 via Black-Scholes formula, Binomial model formula and the
path integral (6.2).

Numerical calculations show that Binomial Model formula and Path integral give
are close to the Black-Scholes formula even for relatively small n ∼ 40.

6.3 Calibration for European option by Fourier tech-

niques and Monte Carlo compared with Black-

Scholes model and Levy model

In this section, it follows the book by Svetlana Boyarchenko and Sergei Leven-
dorskii (2002).

Assume that under a risk-neutral measure Q chosen for pricing of options on the
underlying stock, B̃T is a planar Brownian motion, and consider a contingent claim
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with the deterministic life span [0, T ] and terminal payoff G(B̃T ). Assume further
that for some ω ∈ (λ−, λ+), function Gω(x) := eωxG(x) belongs to L1(R). Then
we can decompose G into the Fourier integral

G(x) =
1

2π

∫
Imξ=ω

eixξĜ(ξ)dξ, where Ĝ(ξ) =

∫
R

= e−ixξG(x)dξ

is the Fourier image of G. Substituting it into the pricing formula

V (t, x) = EQ[e−rτG(B̃T )|B̃t = x]

and changing the order of taking expectation and integration, we obtain

V (zs) = EQ[e−rτG(B̃T )|B̃t = x]

= EQ[
e−r(T−t)

2π

∫
Imξ=ω

eiB̃T ξĜ(ξ)dξ|B̃t = x]

=
1

2π

∫
Imξ=ω

eixξe−r(T−t)EQ[exp(−iξeiB̃α+σ)]Ĝ(ξ)dξ.

For simplicity, let λ = 0, we consider the limit of tr(ρH⊗n) by moments problem.
Given an, we need to find whether there exists µ so that an =

∫
xndµn. We know

a2N = EJ2N ≥ (EJN)2, a2N ≥ a2
N . It is not true if σ > 0. Thus, e2Nσ−(2N)2σ ≥

(eNσ−N
2σ)2 = e2Nσ−2N2σ → e2N2σ ≤ 1→ σ ≤ 0, which means that there is no real

probability measure and no distribution.

We try to use Cauchy transform, but, it fails to get a explicit result, that’s why
we calculate

EQ[exp(−iξeiB̃α+σ)] = [
1

Q

Q∑
j=1

exp(−iξeiξzj
√
ασ)]

by Monte Carlo, where zj ∼ (0, 1), Q = 26, and σ = 0.35.

=
1

2π

∫
Imξ=ω

eixξe−r(T−t)[
1

Q

Q∑
j=1

exp(−iξeiξzj
√
ασ)]Ĝ(ξ)dξ

=
1

M∆

M∑
k=1

eixsξke−r(T−t)[
1

Q

Q∑
j=1

exp(−iξkeiξzj
√
ασ)]Ĝ(ξ)dξ.
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Notice that Ĝ(ξ) is the Fourier image of G, we calculate as follows:

Ĝ(ξ) =

∫
R

e−ixξG(x)dx

=

∫
R

e−ixξ(x−K)+dx

=

∫ +∞

lnK

(e−ixξx− e−ixξK)dx

=
1

iξ
xe−iξ lnK − 1

ξ2
e−iξ lnK + C

→ (
lnK

iξ
− 1

ξ2
)e−iξ lnK .

Then, we obtain

→ 1

M∆

M∑
k=1

eixsξke−r(T−t)[
1

Q

Q∑
j=1

exp(−iξkeiξzj
√
ασ)][(

lnK

iξk
− 1

ξ2
k

) ∗ e−iξklnK ],

where Ĝ(ξ) is the Fourier image of G.

Figure 6.1: Calibration for European option by Fourier techniques and Monte
Carlo compared with Black-Scholes model and Levy model. Strike price K =

100, riskless rate r = 0.04, volatility σ = 0.35, Maturity date T = 1.
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6.4 Calibration for the coefficient of interest rate

In this section, we introduce how to mimics the interest rate from the market.
Under the market (ρ,H, 1 + r), we need to estimate the coefficient of interest rate,
which is αrH = 1 + r, where αr is a proportional share price as an operator. We
calculate the average share price of component Av in terms of a certain index.
Then, we have IeρT = αr(Av)I with the identity operator. Finally, we obtain

αr =
1 + r

el̂nST
,

where

l̂nST =
1

M

M∑
k=1

1

N

N∑
j=1

ln(
S

(j)
k

S
(j)
k−1

).

Notice that N is the number of stocks, M is the number of days, and S is stock
price for a certain stock.

We take the stock price of component of FTSE 100 for last month and DAX (30
shares) for last year from the market. Applying the bank interest rate from Bank
of England (0.0025), we obtain the coefficients of interest are 1.0022 and 1.0020,
respectively.

6.5 Conclusion

In this Chapter, it shows several numerical results for quantum model.

Firstly, we did a simulation among of classcical Binomial model, quantum Binomial
model, and Black-Scholes model. We found that the results of Binomial model
formula and Path integral are close to the Black-Scholes formula even for relatively
small n ∼ 40.

Moreover, we did a calibration for European option by Fourier techniques and
Monte Carlo method. In this part, we apply Monte Carlo method for planar
Brownian motion model and Levy model. And both of them compared with
Black-Scholes model. It shows that under some certain parameters, the result of
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planar Brownian motion model, which is obtained by taking a limit in the N-period
bond market, is better than the result of Levy model for pricing European option.



Chapter 7

Conclusions and Further Research

7.1 Conclusions

Quantum model based on quantum probability, instead of classical probability,
which is generalisation for classical probability. In this thesis, we have proved that
quantum models do cover the classical non-quantum models. Specifically, we start
to extend Chen’s work and analyse the quantum conditional option price. We
establish the limit of the spectral measures proving the convergence to the geo-
metric Brownian motion model. Moreover, we establish several quantum markets
and the related quantum models in the discrete time version. We found that N
step bond market can connect to planar Brownian motion model. Furthermore,
we found Binomial Model formula and Path integral formulization gave are close
to the Black-Scholes formula. And under some certain parameters, the result of
planar Brownian motion model is better than the result of Levy model for pricing
European option. Besides, we consider the 5 × 5 non-diagonalizable matrix case
in a certain quantum Binomial market and we obtain a slightly different answer
from the self-adjoint matrix case because we got extra elements from off diagonal
elements.

There are some futher research in the future. For example, we consider the different
type of markets. Also, we apply Heisenberg group to derive a new Black-Scholes
formula.

150
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7.2 Further Research

7.2.1 General quantum market

Consider a quantum Market as a triple (ρ,H, r), there are three self-adjoint oper-
ators defined on the Euclidean space E , where H is quantum share price with the
diagonal decomposition

H = UDU∗, where U is an unitary operator,

which has two observable eigenvalues u and d for each step. It represents the
changing of share price with jumps u (jump up) or d (jump down). And ρ is
quantum state, and the interest rate is r.

Notice that ρ∗ = ρ, H∗ = H, r∗ = r, and ρ,H, r ≥ 0, r−1 exists.

By applying the general fact 4.3.1, we obtain the quantum claim for any function
f

SN = S0H = US0DU
∗

→ f(SN) = Uf(S0D)U∗.

Now, by the similar definition, yields

H = UDU∗, ρ = UρU∗, and r = UDU∗.

And the transformed quantum state is then defined by

ρ̃ = UρU∗.

Notice that again ρ̃ has trace 1 and we have a risk neutral condition tr(ρHr−1) = 1.

In this case, a quantum model for the binomial market B, S is presented. We
obtain the generalised one period binomial model.

OP (SN) =
∑

ρ̃iif(S0Aii),
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where ρ̃ii is the transformed quantum state and Aii is a diagonal matrix of the
share price.

7.2.2 Symmetric market

Consider a quantum Market as a triple (ρ,H, r), there are three self-adjoint oper-
ators defined on the Euclidean space E, where H is quantum share price and ρ is
quantum state. We apply physical symmetry to compute the one step option pric-
ing. In our market definition, all three components ρ (state operator), H (share
price operator) and r (interest rate operator) are interchangeable.

7.2.3 OP for Heisenberg product dynamic of Discrete Quan-

tum markets

Motivated by Segal [24], we apply Heisenberg group to establish a ’nova’ Black-
Scholes formula and found that the interest rate depends on the share price in
quantum way.
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