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Abstract

This thesis is centered around the study of topological dynamics and analytic
topology, as well as an unexpected intersection between the two, which revolves
around the notion of an n-Hausdorff space.

In the Dynamics part of this thesis, we discuss the author’s two main results
in topological dynamics. The first is about the Ellis semigroup of substitution
systems, which extends previous results in this area. It states that the Ellis
semigroup of a certain type of constant-length substitution dynamical systems
has two minimal ideals, and further calculates the number of idempotents in
these ideals. This requires a novel approach towards considering the factor maps
to the maximal equicontinuous factor of these dynamical systems - a reworking of
an old theorem which takes up a chapter in the thesis. The second result is about
the Furstenberg topology of a point-distal dynamical system. Since the constant-
length substitution systems we had considered in the previous sections are also
point-distal, it can be considered a rather general result. It shows that if a point-
distal system is an almost k-to-1 extension of its maximal equicontinuous factor,
the Furstenberg topology restricted to a (in some sense canonical) subspace is
at most k + 1-Hausdorff.

In the Analytic Topology part of the thesis, we discuss the n-Hausdorff
property in its original context, as a natural part of a series of combinato-
rial generalisations of separation axioms. These combinatorial generalisations
were introduced by several authors throughout the past 20 years. However, n-
Hausdorffness in particular is interesting in light of a couple of still-open ques-
tions of Arhangelskii. The more easily stateable of the two is whether the cardi-
nality of a T1 first countable Lindelöf space exceeds continuum. The main work
of the author in this part involves the many examples of spaces which satisfy a
combinatorial separation axiom and also have (or lack) various other properties,
such as being Lindelöf, first countable, compact, or being T1. The author has
contributed towards the proofs of the theorems given in this part.
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Present-day Pure mathematics has become so specialised that oftentimes

one can find few areas of intersection between subjects. In particular, general

topology has been criticized by some for having developed concepts which are

too abstract to be ‘naturally’ found in other areas of mathematics. For example,

some non-topologists assume that the spaces they deal with are Hausdorff, and

that weakenings of this separation axiom are mostly an intellectual pursuit with

slight relevance outside of general topology. Thus, it is of great surprise and

interest when one can find relations between general topology and other fields,

such as dynamical systems. While studying the Ellis semigroup of a dynam-

ical system, the present author discovered some natural topologies which are

associated with certain dynamical properties (those of proximality), and which

are often not Hausdorff. These topologies were introduced in the 1960’s by H

Furstenberg, and bear his name. The two main trains of thought followed in

this thesis naturally converge upon this class of examples: that of exploring the

Ellis semigroup of a substitution dynamical system, and that of considering the

properties of n-Hausdorffness, which is the natural weakening of the Hausdorff

property found in the Furstenberg topologies.

The Ellis (originally called the ‘enveloping’) semigroup was introduced by

Ellis in 1960 [Ell60], and has since shown to be a useful tool in topological

dynamics. In [Ell69], R Ellis develops the theory of this semigroup, showing how

the asymptotic, or eventual, properties of a topological dynamical system can

be captured by the topological and algebraic properties of the Ellis semigroup.

Its machinery has helped provide much shorter and cleaner proofs of several

key theorems in topological dynamics, such as the the Auslander-Ellis Theorem

[EE14]. More recently, E Glasner has given alternative and shorter proofs of the

theorems of Maliutin and Margulis [Gla17] via the Ellis semigroup.

In spite of its usefulness and academic interest, specific calculations and de-

scription of the Ellis semigroup remain rare. The few examples include those

given by Namioka [Nam84], Milnes [Mil86] and [Mil91], Glasner [Gla76] and

[Gla93], Berg, Gove and Haddad [BGH98], Haddad and Johnson [HJ97], Bu-

dak, Isik, Milnes and Pym [BIsMP01], and Glasner and Megrelishvili [GM06].

One recent example is Marcy Barge’s calculation of the Ellis semigroup of the

Thue-Morse system [Bar], which involves various auxiliary codings and Brattelli
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diagrams.

In [Sta18], the present author calculates the Ellis semigroup of a certain

class of constant length substitutions over arbitrary alphabets. This generalises

both Barge’s result and an earlier result by Haddad and Johnson [HJ97]. It

also fixes an error in the latter’s proof. In their paper [HJ97], Haddad and

Johnson prove that the Ellis semigroup of any generalised Morse sequence has

two minimal ideals with two idempotents each. Their main technique uses the

theory around IP cluster points and IP sets, which are certain ‘combinatorially

rich’ subsets of the integers. They first compute the idempotents in the case

of N-cascades and use the fact that the closure of the set of idempotents is

precisely the set of IP cluster points, so when this set is finite, every IP cluster

point is an idempotent. Then they use a technical proposition, which they

give without proof, to extend this computation of the IP cluster points of the

N-cascade to the Z-cascade case. In Section 3.3, we show that any binary Morse-

like substitution is a counterexample to their proposition. Our generalisation of

their main theorem does not use IP cluster points. Instead, we combine some

ideas from [HJ97] with properties of the Ellis semigroup given in [EE14] and a

new approach to the construction of a certain AI extension using notions from

[Mar71]. Combining this with the result of Coven and Keane [CK71], we give

a complete characterization of the minimal ideals and idempotents in the Ellis

semigroup of a constant-length binary substitution system. These results are

presented in greater depth in Chapter 3.

Our construction of an AI extension to the maximal equicontinuous factor

of a substitution system is interesting in its own right, as it gives an explicit

intermediate substitution system and a sliding block code from the main space to

the intermediate space. In this way, it provides a clear generalisation of an earlier

construction by Coven and Keane [CK71], which was done only for the binary

case. The most general result in this study is that of Dekking [Dek78] about the

maximal equicontinuous factor of a constant length substitution system. When

seen solely as a final result, the existence of an AI extension to the maximal

equicontinuous factor which we consider is an easy corollary. However, the

approach to the construction itself is of interest. This is explored in more depth

in Chapter 2.
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In Chapter 4, we consider an unlikely collection of examples of n-Hausdorff

spaces, which arises naturally in topological dynamics. These are the so-called

Furstenberg topologies, which were initially introduced by Hillel Furstenberg to

study distality in dynamical systems.

0.1 Definitions, Notation, Standard Results

We now give some standard definitions, notation, and theorems which will be

used throughout this thesis. For notation particular to certain parts of the

thesis, the reader is referred to Section IV. These notions are very commonly

used, and can be found, for example, in [Eng89] or [Fog02].

0.1.1 Notation. We will use the following notation:

• N for the non-negative integers (so, 0 ∈ N)

• N+ for the strictly positive integers

• Z for the integers

• R for the real numbers

0.1.2 Definition (topology, topological space, open sets, closed sets, [Eng89]).

Let X be a set. A collection τ ⊂ P(X) is called a topology on the set X if and

only if τ satisfies the following conditions:

1. ∅ ∈ τ , X ∈ τ ;

2. U, V ∈ τ ⇒ U ∩ V ∈ τ ;

3. {Ui}i∈I ⊂ τ ⇒
⋃
i∈I Ui ∈ τ .

In this case, the pair (X, τ) is called a topological space, and is often just denoted

by X when the topology is understood. The elements of τ are called open sets,

and their complements are closed sets.

0.1.3 Definition (basis, [Eng89]). Let B ⊂ P(X) be a nonempty collection of

sets such that
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•
⋃
{B : B ∈ B} = X, and

• for all B1, B2 ∈ B with B1 ∩ B2 6= ∅, there is a B3 ∈ B such that B3 ⊆
B1 ∩B2.

Then B is a basis for a unique topology τ on X, namely

τ = {∪A : A ⊆ B}.

0.1.4 Definition (Hausdorff space, [Eng89]). We call a topological space (X, τ)

Hausdorff or T2 if and only if for any distinct points x, y ∈ X there exist disjoint

open sets Ux, Uy with x ∈ Ux and y ∈ Uy.

A weaker though still useful notion is:

0.1.5 Definition (T1 space, [Eng89]). We call a topological space (X, τ) T1 if

and only if for every two distinct points x, y ∈ X, there exist open neighbour-

hoods Ux, Uy ∈ τ such that x /∈ Uy 3 y and y /∈ Ux 3 x.

0.1.6 Definition (Tychonoff space, [Eng89]). A space X is Tychonoff if and

only if it is Hausdorff and for any closed set C ⊂ X and any point x /∈ C, there

is a continuous function f : X → [0, 1] such that f(x) = 0 and f(C) ⊂ {1}.

0.1.7 Definition (compact space, [Eng89]). A space X is compact if and only

if any open cover of X has a finite subcover.

Compactness is closely related to the following notion:

0.1.8 Definition (finite intersection property (FIP), [Eng89]). Let X be a set

and A ⊂ P(X) be a collection of subsets of X. We say that A has the finite

intersection property if and only if whenever {Ai}i∈I is a finite collection of

elements of A, then
⋂
i∈I Ai 6= ∅ - in other words, any finite subcollection of A

has a non-empty intersection.

A natural generalisation of compactness (which will be of use in Part III), is

that of a Lindelöf space.

0.1.9 Definition (Lindelöf, [Eng89]). A topological space (X, τ) is called Lin-

delöf if and only if every open cover of X has a countable subcover.
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0.1.10 Definition (continuous map, [Eng89]). A map f : X → Y between

topological spaces is called continuous if and only if for every open set U ⊂ Y ,

f−1(U) is open in X.

0.1.11 Definition (dense set, [Eng89]). A subset A of a topological space X

is called dense in X if and only if its closure is the whole space. Using the

alternative characterisation of closed sets, we can also say that A is dense in X

if and only if for any open set U , we have U ∩ A 6= ∅.

0.1.12 Proposition ([Eng89]). Let X be a topological space, Y be Hausdorff,

D a dense subset of X and f : D → Y be continuous. Then there is a unique

continuous function F : X → Y such that F |D = f .

0.1.13 Note. Any map f from a discrete space X to a topological space Y is

continuous. Indeed, since all subsets of X are open, then for any open U ⊂ Y ,

the pre-image f−1(U) is a subset (possibly empty) of X, and thus open.

0.1.14 Theorem (Tychonoff’s Theorem, [Eng89]). The product of arbitrarily

many compact spaces is also compact, assuming the Axiom of Choice.

0.1.15 Theorem (Zorn’s Lemma, [Eng89]). If (S,6) is a partially ordered set

such that any increasing chain s1 6 s2 6 . . . has a supremum in S, then S has

a maximal element, that is, an element m ∈ S such that s 6 m for all s ∈ S.

0.1.16 Definition (regular, [Eng89]). A topological space (X, τ) is called reg-

ular or T3 if and only if it is T1 and for any closed set C and any point x /∈ C,

there exist disjoint open sets Ux, UC with x ∈ Ux and C ⊂ UC .

0.1.17 Lemma (Alternative characterisation of closed sets, [Eng89]). A subset

A of a topological space (X, τ) is closed if and only if for any point x ∈ A and

any open set U 3 x, A ∩ U 6= {x}.

0.1.18 Definition (nowhere dense, [Eng89]). A subset A ⊂ X is called nowhere

dense if and only if the interior of its closure is empty.

0.1.19 Definition (residual set, [Eng89]). A subset A ⊂ X of a complete metric

space X is called residual if and only if X \ A is a countable union of nowhere

dense sets.
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0.1.20 Definition (uniformly continuous, [Eng89]). We call a map f : X → X

on a metric space X uniformly continuous if and only if for each ε > 0 there is

a δ > 0 such that if d(x, y) < δ then d(f(x), f(y)) < ε for all points x, y ∈ X.

0.1.21 Theorem (Heine-Cantor Theorem, [Eng89]). Any continuous function

on a compact set is uniformly continuous.

0.1.22 Definition (group, [Eng89]). A group is a set G with a binary operation

+ : G×G→ G satisfying the following axioms:

• Associativity: for all a, b, c ∈ G, (a+ b) + c = a(b+ c),

• Identity element: there exists a special element e ∈ G such that for every

a ∈ G, e+ a = a+ e = a. We call this element e the identity of G,

• Inverses: for each a ∈ G there is a b ∈ G such that a+ b = b+ a = e.

If moreover the binary operation satisfies commutativity (for all a, b ∈ G, a+b =

b+ a), we call the group Abelian.

0.1.23 Example. The integers Z together with addition give an example of a

group; the identity element is 0. Note that the integers are not a group under

multiplication, as we do not have multiplicative inverses.

0.1.24 Definition (semigroup, [HS98]). A semigroup is a set S together with

an associative binary operation.

0.1.25 Example ([HS98]). An example of a semigroup is the natural numbers

N together with addition. Another example is the integers Z, together with

multiplication.

Thus, a group can be defined as a semigroup with identity and inverses.
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Dynamical Systems
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Chapter 1

Introduction to Topological

Dynamics

In this chapter, we introduce the general theory of dynamical systems, as well

as some results important in our particular setting. Almost all of the definitions

and results are standard; the ones from topological dynamics can be found in

[dV93], [EE14], [Fog02], or [BG13]; the analytic topology parts can be found in

[Eng89] or [HS98].

In general, a dynamical system is a space X with a semigroup action on it.

But what does that mean?

1.0.26 Definition (semigroup action, [EE14]). Let X be a set and T be a

semigroup. Then an action of T on X is a function π : X×T → X, (x, t) 7→ tx,

such that (ts)x = t(sx) for all x ∈ X and s, t ∈ T . In other words, π((x, ts)) =

π((π(x, s), t)) for all x ∈ X and s, t ∈ T . If T also has an identity, we require

that ex = x for all x ∈ X.

Similarly, we can define a group action on a space X.

1.0.27 Definition (dynamical system, [EE14]). A dynamical system is a triple

(X,T, π) where X is a compact Hausdorff topological space, T is a topological

semigroup (in other words, T is a topological space with (semi-) group structure

where the (semi-) group operation · is continuous) and π is an action of T on X

such that the map π is continuous. Sometimes, a dynamical system with acting

(semi-) group N or Z is called an N- (respectively, Z-) cascade for short.
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CHAPTER 1. INTRODUCTION TO TOPOLOGICAL DYNAMICS

Also, sometimes we will shorten the phrase ‘dynamical system’ to just ‘sys-

tem’.

When we talk about a dynamical system (X,T, π), we will implicitly take T

to be discrete, unless otherwise specified. Thus, for π to be continuous (in light

of Note 0.1.13), it suffices that the maps πt : X → X, x 7→ tx be continuous for

all t ∈ T .

1.0.28 Example. Let X be any compact Hausdorff topological space and f be

any continuous map f : X → X. Then we may define an action of the semigroup

N+ on X via the maps π(x, n) = fn(x). Moreover, if f is a homeomorphism of

X, then the maps π(x, n) = fn(x) give an action of the group Z on X.

We would like to have a way to ‘compare’ two dynamical systems over the

same group, or to be able to find a relationship between their properties. For

this, we need a special type of map:

1.0.29 Definition (homomorphism of dynamical systems, factor, extension,

[EE14]). Let (X,T ) and (Y, T ) be dynamical systems and f : X → Y . Then

f is a homomorphism if f is continuous and f(tx) = tf(x) for all x ∈ X and

t ∈ T . If f is surjective, then we call (Y, T ) a factor of the system (X,T ), and

we call the system (X,T ) an extension of (Y, T ). Note that in some more recent

texts, the term ‘conjugacy’ is used for a homomorphism of dynamical systems,

and the systems in question are called ‘conjugate’.

In studying the dynamics of a certain system, it is often useful to find a

factor which has simpler properties. Usually, one considers the relatively ‘tame’

notion of equicontinuity:

1.0.30 Definition (equicontinuous dynamical system, [EE14]). A dynamical

system (X,T ) is called equicontinuous if and only if it is a metric system (with

metric d), and for all ε > 0 there exists δ > 0 such that if d(x, y) < δ then

d(tx, ty) < ε for all t ∈ T .

In fact, to each compact Hausdorff dynamical system, we may associate an

equicontinuous factor which is in some strict sense ‘maximal’:

15



CHAPTER 1. INTRODUCTION TO TOPOLOGICAL DYNAMICS

1.0.31 Definition (maximal equicontinuous factor, [EE14]). A dynamical sys-

tem (Y, T ) is the maximal equicontinuous factor of a system (X,T ) if and only if

(Y, T ) is an equicontinuous factor of (X,T ) and whenever (Z, T ) is an equicon-

tinuous factor of (X,T ), then (Z, T ) is also a factor of (Y, T ).

By an application of Zorn’s Lemma, one can show that the maximal equicon-

tinuous factor always exists [EE14].

We are interested in the way points in the dynamical system behave ‘even-

tually’ under the (semi-)group action. To make this more specific, we introduce

the following notions.

1.0.32 Definition (positively/negatively asymptotic points, [BG13]). Let X be

a dynamical system over Z via the homeomorphism f : X → X, and let x, y ∈
X. We say x and y are positively (resp, negatively) asymptotic if and only if

limn→+∞ f
nx = limn→+∞ f

n(y) (respectively, limn→−∞ f
nx = limn→−∞ f

n(y)).

Asymptoticity is a fairly restrictive notion. It is often useful to consider

points which are not quite asymptotic, but satisfy the milder condition of prox-

imality, defined below.

1.0.33 Definition (proximal/distal points, distal system, [EE14]). Let (X,T )

be a dynamical system. We call two points x, y ∈ X proximal if and only if there

is a point z ∈ X, and a net {tα}α∈A ⊂ XX such that limα∈A tαx = limα∈A tαy =

z. A point x ∈ X is called distal if and only if whenever y ∈ X is proximal to

x, then y = x.

1.0.34 Definition (distal system, [EE14]). A dynamical system (X,T ) is called

distal if and only if every point in X is distal.

It is easy to see that every asymptotic pair of points is proximal. However,

there are examples of proximal pairs which are not asymptotic, as we will see

in the Thue-Morse system introduced in the following section [BG13]. Distal

systems will be considered in more detail in Section ??. A generalisation of

distal systems will be studied in Chapter 4, where we will link properties of the

type of extension to the maximal equicontinuous factor with properties of the

Furstenberg topologies which are not always Hausdorff.
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CHAPTER 1. INTRODUCTION TO TOPOLOGICAL DYNAMICS

1.1 Symbolic Systems

Most of the dynamical systems we consider from now on come from certain

symbolic systems. We will now formally introduce these systems. For these

notions and results, we use [dV93] and [BG13]. A few notions can be found in

[Fog02].

1.1.1 Definition (alphabet, letters, finite, infinite, bi-infinite words, concate-

nation, [dV93]). We call a finite set A an alphabet, and its elements a ∈ A,

letters. The set A<N of finite words, also called blocks, over the alphabet A,

consists of elements formed by concatenation of finitely many letters, in other

words w ∈ A<N has the form w = a0 . . . an where ai ∈ A for i = 0, . . . , n. Given

two finite words w = w0 . . . wn and v = v0 . . . vm we may concatenate the two by

writing vw = v0 . . . vmw0 . . . wn; the operation of concatenation makes the set

A<N into a semigroup. Similarly, we form the set AN of (right-) infinite words

and the set AZ of bi-infinite words, with elements w = a0 . . . an . . . ∈ AN and

w = . . . a−1 ·a0a1 . . . ∈ AZ, respectively. The dot gives us some sense of ‘center’.

1.1.2 Example. Taking the binary alphabet A = {0, 1}, we give the following

examples of finite, infinite, and bi-infinite words:

101010 ∈ A<N 100 ∈ A<N

101010 . . . ∈ AN 100000 . . . ∈ AN

. . . 0101010 · 10101 . . . ∈ AZ . . . 0000 · 1000 . . . ∈ AZ.

1.1.3 Definition (length of a word, [dV93]). We define the length of a finite

word w = w0 . . . wn by |w| = n + 1. For a letter a ∈ A, we will denote by |w|a
the number of occurrences of the letter a in the word w.

1.1.4 Example. Using the finite words from the previous example (1.1.2), we

have |101010| = 6, and |100| = 3, and also |100|1 = 1, and |100|0 = 2.

1.1.5 Definition (metric on AN, resp AZ, [dV93]). We define a metric d on

AN by d(v, w) = 0 if and only if v = w, and else d(v, w) = 1/2k, where k =

min{n ∈ N : vn 6= wn}. Similarly, we define a metric on AZ by d(v, w) = 1/2k,
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CHAPTER 1. INTRODUCTION TO TOPOLOGICAL DYNAMICS

if 0 6= k = min{n ∈ N : vn 6= wn or v−n−1 6= w−n−1}, and again set d(v, w) = 0

if and only if v = w.

It can be shown that with the metric d, AN and AZ are compact spaces

[dV93].

1.1.6 Example. Returning to the words from Example 1.1.2, we have:

d(101010 . . . , 1000 . . .) =
1

4

d(. . . 0101010 · 101010 . . . , . . . 0000 · 1000 . . .) =
1

2
.

1.1.7 Definition (bar operation, dual word, [dV93]). When A is the binary

alphabet {0, 1}, we define the bar operation first by 0 = 1, 1 = 0, and extend

this to a (finite, infinite, bi-infinite) word w by (w)i := wi. In other words, w

swaps all the 0’s and 1’s in w. The word w will be called the dual of w.

1.1.8 Example. Noting that the finite blocks from Example 1.1.2 are binary,

we have that 101010 = 010101 and 100 = 011.

This dual operation will play an important part in expressing the fixed points

of some key words later on, such as the Thue-Morse one, as well as expressing

some important concepts (called Morse-like substitutions).

1.1.9 Definition (shift, [dV93]). We define the shift s : AN → AN by s(w)i =

wi+1, i.e. s(w) = w1w2w3 . . .. Similarly, we may define the shift on AZ by

s : AZ → ZZ, s(w) = . . . w−2w−1w0 · w1w2 . . ..

Note that the shift is not invertible on the space AN, but is invertible on AZ.

It is easy to check that s is continuous, and that s : AZ → AZ is 1-1 and with

continuous inverse.

The shift operation is illustrated below:

w = . . . w−3 w−2 w−1 · w0 w1 w2 w3 . . .

u = s(w) = . . . w−2 w−1 w0 · w1 w2 w3 w4 . . .

s

So, how do we obtain a dynamical system from these symbolic notions?

18



CHAPTER 1. INTRODUCTION TO TOPOLOGICAL DYNAMICS

1.1.10 Definition (shift-orbit, shift-orbit closure, [dV93]). For a word x in AN

or AZ, we define the shift orbit of x by Ox := {sn(x) : n ∈ N} ⊂ AN, respectively

Ox := {sn(x) : n ∈ Z} ⊂ AZ. For a word x in AN or AZ, we define the shift-orbit

closure as Ox ⊂ AN, respectively Ox ⊂ AZ.

Note that the shift orbit closure is a closed, hence compact, subset of AZ

(or AN), which is invariant under the shift operator, i.e. s(Ox) ⊆ Ox. Hence,

(Ox, s) is a dynamical system (with acting (semi-) group Z or N, respectively).

Sometimes, we will call such a system a shift space.

We will mostly be concerned with symbolic systems which are associated

with a certain type of ‘rule’, made more rigorous in the following definition:

1.1.11 Definition (substitution, [dV93]). A substitution is a map σ : A → A<N

from the alphabet to the set of finite words over the alphabet. This map can

be extended to a map σ : AN → AN by concatenation, so for w ∈ AN, σ(w) =

σ(w0)σ(w1) . . .. Similarly, the map can be extended to the space AZ by setting

σ(w) = . . . σ(w−2)σ(w−1) · σ(w0)σ(w1) . . ..

1.1.12 Definition (primitive substitution, [dV93]). A substitution σ is called

primitive if and only if there exists a positive integer k such that, for every

a, b ∈ A, the letter a occurs in σk(b).

1.1.13 Definition ([dV93]). For a primitive substitution θ, there is at least

one periodic point, i.e. a word w ∈ AN such that for some n ∈ N+, θn(w) = w.

Without loss of generality in what follows, we may consider θn instead of θ, so

instead of ‘periodic’, we will call such a w a fixed point of θ.

1.1.14 Definition (constant length substitution, [dV93]). If there is a number

n ∈ N+ such that for all letters a, |θ(a)| = n, we say θ is of constant length and

call the number n its length.

1.1.15 Definition (coincidence free or simple substitution, [dV93]). A constant-

length substitution σ of length r is called coincidence-free or simple if and

only if for each a, b ∈ A, and for all indexes i ∈ {0, . . . , r − 1}, we have that

σ(a)i 6= σ(b)i.
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As we have noted above, one can show that every primitive substitution has

a power n such that σn has a fixed point in AN (resp, AZ). In Proposition 1.4.7,

we will see that the shift-orbit closures of any two such fixed points coincide

(as sets) and give rise to a unique dynamical system (Xσ, s) which is associated

with the substitution.

1.1.16 Definition (admissible substitution, [dV93]). If θ(a) 6= θ(b) for all let-

ters a 6= b, and its fixed point is not a periodic word, we say θ is admissible.

We shall be interested in a special type of constant length substitutions:

1.1.17 Definition (continuous substitution, [CK71]). Following the terminol-

ogy of Coven and Keane [CK71], if A = {0, 1}, θ is admissible and of constant

length, and θ(0) = θ(1), we say θ is a continuous substitution.

A particularly interesting continuous length substitution which will be a run-

ning example throughout Part II is the Prohuet-Siegel-Thue-Morse substitution.

For short, we will follow [dV93] and call this the Thue-Morse substitution.

1.1.18 Example (The Thue-Morse substitution, [dV93]). Let us take the al-

phabet A = {0, 1} and the substitution σ where σ(0) = 01 and σ(1) = 10. Then

σ is a primitive substitution with k = 1. Also, σ2 has four fixed points.

1.1.19 Definition (Thue-Morse word, [dV93]). The Thue-Morse word is de-

fined as the right-infinite fixed point of σ2 starting from the letter 0:

lim
n→∞

σ2n(0) = 0110100110010110 . . .

As noted before, we will usually denote the nth letter of a bi-infinite word

w by wn. This is useful in many cases, for example to give a rule by which the

Thue-Morse word can be described:

wn = s2(n) mod 2,

where s2(n) is the sum of the non-zero coefficients in the binary expansion of

the number n.
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However, there are cases when such notation is cumbersome, for example,

when the indexes are long and involved. For the Thue-Morse word w as above,

we have that:

w2n+2n+1+2n+2 = 1 ∀n ∈ N.

In such cases, it would be more useful to denote the nth letter of a word w by

w[n]. This notation carries another advantage, namely that instead of writing

wn . . . wk, we can write w[n; k] to denote the subword of w of length k−n starting

from the letter w[n] (this notation will make sense only when k > n). Thus, the

above expression can be written more clearly as:

w[2n + 2n+1 + 2n+2] = 1 ∀n ∈ N.

However, at other times we may consider maps of functions of words, so to avoid

piling up many parentheses, the subscript notation would be more legible and

preferable. Therefore, from now on we will use the two notations, wn = w[n],

interchangeably, to improve readability.

It would sometimes be useful to consider not all n-letter words over an al-

phabet A, but only those which can be in some sense ‘obtained’ from a given

substitution.

1.1.20 Definition (legal words, Pθ, [dV93], [Mar71]). A finite word A ∈ A<N

is called θ-legal if and only if there is a word y ∈ Xθ such that A appears in y.

We denote by Pθ the set of all θ-legal two-letter words, and by L(m) the set of

all θ-legal m-letter words.

Given two symbolic dynamical systems (X, s) and (Y, s), one might wonder

what type of homomorphisms might be induced. An important type are the

so-called sliding block codes, given below.

1.1.21 Definition (sliding block code, [LM95]). Let w = . . . w−1 · w0w1 . . . be

a bi-infinite word in a shift space X over A. We can transform w into a new

sequence v = . . . v−1 · v0v1 . . . over another alphabet B as follows. Fix integers

m and n with −m 6 n. To compute the ith coordinate vi of the transformed

sequence, we use a function Φ that depends on the “window” of coordinates of
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w from i−m to i+ n. Here Φ : L(m+ n+ 1)→ B is a fixed block map, called

an (m + n + 1)-block map from allowed (m + n + 1)-blocks in X to symbols in

A, and so

vi = Φ(wi−mwi−m+1 . . . wi+n) = Φ(w[i−m, i+ n]). (1.1)

Now, let X be a shift space over A, and Φ : B(n + m + 1) → B be a block

map. Then the map φ : X → BZ defined by v = φ(w) with vi given by (1.1)

is called the sliding block code with memory m and anticipation n induced by

Φ. We will denote the formation of φ from Φ by φ = Φ
[−m,n]
∞ , or more simply

by φ = Φ∞ if the memory and anticipation of φ are understood. If Y is a shift

space contained in BZ and φ(X) ⊆ Y , we write φ : X → Y .

To check that a given homomorphism between symbolic dynamical systems

is indeed a sliding block code, we have the following theorem:

1.1.22 Theorem ([LM95]). Let X and Y be shift spaces. A map φ : X → Y is

a sliding block code if and only if φ ◦ sX = sY ◦ φ and there exists N > 0 such

that φ(w)0 is a function of w[−N,N ].

1.2 Minimal Dynamical Systems

The majority of the dynamical systems studied in this thesis are in some sense

‘minimal’. For background and standard results about minimal dynamical sys-

tems, we will use [dV93] or [EE14]. Minimal systems can be thought of as the

building blocks of ‘larger’ dynamical systems, hence the interest in understand-

ing their properties. To rigorously introduce the notion of minimality, we first

need the following definition.

1.2.1 Definition (invariant set, [EE14]). Let (X,T, π) be a dynamical system.

We say that A ⊂ X is invariant if TA := {ta : a ∈ A, t ∈ T} ⊂ A. If A is

also closed, the resulting system (A, T, π) is called a subsystem of (X,T, π); note

that the restriction of π to A× T defines an action of T on A.

1.2.2 Example. Take A = {0, 1}, and consider the set of all bi-infinite binary

sequences AZ. The set Y ⊂ AZ given by x ∈ Y if and only if x has finitely many
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0’s, is an invariant subset of (AZ,Z, π) - a left shift does not change the number

of 0’s in a sequence. Note, however, that (Y,Z, π) is not a subsystem, as Y is not

closed (to see this, note that the zero sequence can be approximated arbitrarily

well by sequences with finitely many 0’s, but it itself is not an element of Y ).

However, (Y ,Z, π) is a subsystem of (AZ,Z, π) - in fact, (Y ,Z, π) = (AA,Z, π)!

1.2.3 Definition (minimal set, minimal dynamical system, [EE14]). A subset

M of the dynamical system (X,T, π) is called minimal if M is nonempty, closed,

invariant, and minimal with respect to these properties. In other words, if

N ⊆M and N is nonempty closed and invariant, then N = M . The dynamical

system (X,T, π) is called minimal if and only if the set X is minimal.

Recall Example 1.0.28, where X is any compact Hausdorff topological space

and f is any continuous map f : X → X. We define an action of the semigroup

N+ on X via the maps π(x, n) = fn(x). Moreover, if f is a homeomorphism of

X, then the maps π(x, n) = fn(x) give an action of the group Z on X.

1.2.4 Example. In Example 1.0.28, assume further that f has a fixed point

x ∈ X. Then {x} is an invariant subset of the dynamical system (X,T, π). Since

we assumed X to be Hausdorff, this is also a closed subset of X, so ({x}, T, π) is

in fact minimal. Similarly, the orbit of any periodic point is an invariant subset

of a dynamical system, and is in fact a minimal system.

1.2.5 Proposition ([EE14]). For a dynamical system (X,T, π) and a closed

invariant set M ⊂ X, the following are equivalent:

1. M is minimal,

2. Tx = M for all x ∈M ,

3. if U ⊂ X is open with M ∩ U 6= ∅, then M = T (U ∩M).

We have the following closely related notion:

1.2.6 Definition (point transitive system, [EE14]). We call a system (X,T )

point transitive if and only if there is a point x0 ∈ X with a dense orbit.
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1.2.7 Remark. Note that it is not enough for a subsystem to be point transitive

for it to be minimal. For example, ({0, 1}Z, s) has a point with dense orbit,

namely the point given by concatenating first all the words of one letter, then

all finite two-letter words, etc: ω = 0 1 00 01 10 11 000 001 . . .. However, this

space is not minimal, as it has many closed invariant subsets. Thus, we need

the orbit of every point to be dense for minimality to occur.

But do minimal sets always exist? An application of Zorn’s Lemma (Theorem

0.1.15) can be used to show that:

1.2.8 Proposition ([EE14]). Every dynamical system (X,T, π) has a minimal

subset.

It is natural to ask how minimal sets behave under homomorphisms of dy-

namical systems.

1.2.9 Proposition ([EE14]). Let φ : (X,T ) → (Y, T ) be a homomorphism of

dynamical systems.

1. If M is a minimal subset of X, then φ(M) is a minimal subset of Y .

2. If N is a minimal subset of φ(X), then there exists a minimal subset M

of X with φ(M) = N .

We can translate minimality in terms of sequences in the following way:

1.2.10 Definition (minimal sequence, [Fog02]). Let x ∈ AZ, in other words, let

x be a bi-infinite sequence, and consider its shift-orbit O(x) = {sn(x) : n ∈ Z}.
Then we say that x is a minimal sequence if and only if the dynamical system

(O(x), s) is minimal.

1.2.11 Definition (syndetic set, [EE14]). A subset P of N or Z is called syndetic

if and only if there is a positive integer N such that all of the gaps between two

consecutive elements of P are bounded by N , i.e. smaller than N .

1.2.12 Proposition ([EE14]). A sequence x ∈ AZ is minimal if and only if for

every finite subword u of the word x, the following set is syndetic:

x|u := {n ∈ Z : xnxn+1 . . . xn+|u|−1 = u}.
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In other words, every word occurring in x, occurs in an infinite number of

positions with bounded gaps. This motivates an alternative name for minimal

sequences - uniformly recurrent sequences.

The link between minimality and primitivity (see Definition 1.1.12) can be

seen via the following proposition:

1.2.13 Proposition ([EE14]). If a substitution σ is primitive, then any of its

periodic points is a minimal sequence.

In particular, we have that:

1.2.14 Corollary ([Fog02]). The Thue-Morse substitution is primitive, hence

any of the four fixed points of its square is a minimal sequence.

1.3 Required Background from other fields

1.3.1 Inverse Limits and Adding Machines

1.3.1 Definition (inverse limit of a sequence of groups, [dV93]). The inverse

limit of a sequence of groups comprises of a sequence of groups G0, G1, G2, . . .

and homomorphisms φn : Gn → Gn−1, n > 1. The inverse limit group G∞ of

such a sequence is the collection of all sequences (g0, g1, g2, . . .) with gi in Gi

and such that gi = φi+1(gi+1) for all i. The product of two such elements, say

(f0, f1, . . .) and (g0, g1, . . .) is given by the formula

{fi} · {gi} = {fi · gi},

where the dot on the right indicates the group operation in Gi. One may show

that G∞ is indeed a group. Note that G∞ always contains at least one element,

namely (e0, e1, . . .), where ei denotes the identity element of Gi.

A similar definition can be made for inverse limits of dynamical systems.

The following well-known results can be found in [dV93].

1.3.2 Proposition ([dV93]). Every factor of an inverse limit of equicontinu-

ous (similarly, distal) compact dynamical systems is again an equicontinuous

(respectively, distal) compact system.
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1.3.3 Proposition ([dV93]). Let (Z, T ) be a compact dynamical system. An

inverse limit of compact proximal (respectively - distal) extensions of (Z, T ) is

also a proximal (respectively - distal) extension.

1.3.4 Definition (Z(r), [dV93]). Let Z(r) be the r-adic adding machine, defined

as follows. We consider this as the set of all sequences z0z1z2 . . ., where zi ∈
{0, . . . , r − 1} for i > 0. Such a sequence will be viewed as a formal r-adic

expansion z0+z1r+z2r
2+. . ., and the group addition is defined accordingly with

carry. We define a metric ρ on Z(r) as follows: ρ({ai}, {bi}) = 1/(k + 1), where

k := max{j : ai = bi for i = 0, . . . , j − 1}, if a0 = b0, and as ρ({ai}, {bi}) = 1

otherwise. The map T : Z(r)→ Z(r) is the homeomorphism of Z(r) onto itself

corresponding to addition of the group element 100 . . .. We denote by Z(r) the

dynamical system (Z(r), T ). By an integer in Z(r), we mean an element of the

form T n(000 . . .), for n ∈ Z. Note that a positive integer will have infinitely

many 0s in its tail, while a negative integer will have infinitely many 1s in its

tail. Correspondingly, a non-integer is any element not of this form (note that

it will have infinitely many 0s and infinitely many 1s in its tail).

1.3.5 Definition (Zm, [dV93]). We denote by Zm the cyclic group of order m,

where Zm acts on itself via addition modulo m.

1.3.2 The Stone-Čech Compactification

The running example for this section will be the natural numbers, N. We note

that most of the subsequent theorems and constructions do not rely on the fact

we chose N as the underlying set - the arguments will carry through just as

easily if we were using any other discrete topological space X. The main source

for this section is [HS98], though we complement the exposition with that from

other sources, which we will cite where appropriate.

1.3.6 Definition (filter, principal filter [HS98]). Given a space X, a filter F on

X is a nonempty set of subsets of X, ∅ 6= F ⊂ P(X), such that:

1. ∅ /∈ F ,
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2. If U ∈ F and V ⊃ U , then V ∈ F (so F is closed with respect to

supersets), and

3. If U, V ∈ F , then U ∩ V ∈ F (so F is closed with respect to finite

intersections).

We call a filter F principal if and only if there is a set A ⊂ X such that

F = {U ⊂ X : A ⊂ U}, in other words, F is the collection of all supersets of

the set A.

Note that if F is a filter on X, then it is a collection of sets which satisfy the

finite intersection property. In other words, every finite collection of nonempty

subsets of a filter has a nonempty intersection.

1.3.7 Definition (basis for a filter, [HS98]). Let X be a set, F a filter on X.

Then B ⊂ P(X) is a basis for the filter F if and only if

F = {F ⊂ X : ∃B ∈ B : B ⊂ F}.

Let X be a set, and let ∅ 6= B ⊂ P(X). Then B is a basis for a unique filter

on X if and only if for all B1, B2 ∈ B, there is a B3 ∈ B such that B3 ⊂ B1∩B2.

Also, if B satisfies FIP (recall Definition 0.1.8), then B can be extended to a

basis for a unique filter on X. Moreover, if {Fλ}λ∈Λ is a chain of filters on X,

i.e. for each λ, Fλ is a filter on X and for all λ, µ ∈ Λ, Fλ 6 Fµ or Fµ 6 Fλ,
then

⋃
λ∈ΛFλ is a filter on X.

1.3.8 Note ([HS98]). By Zorn’s Lemma, there exist maximal elements in the

space of all filters on a set X, if we consider it as partially ordered by ⊆. We

call these maximal elements ultrafilters.

Ultrafilters were first defined and shown to exist on N by F. Riesz in [R.09]

and Ulam [Ula29], respectively. One can see that the principal filter at any point

x ∈ X is maximal, i.e. an ultrafilter.

1.3.9 Lemma ([HS98]). Suppose X, Y are sets, F is a filter on X and f : X →
Y is continuous. Then f(F) = {f(F ) : F ∈ F} is not a filter in general, but is

always a filter base. If F is an ultrafilter on X then the filter generated by f(F)

is an ultrafilter on Y .
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A compactification is roughly a compact space which, in some sense, pre-

serves “most” of the properties of the original space. To put this more precisely,

1.3.10 Definition (compactification, [HS98]). Let X be a (Hausdorff, Ty-

chonoff) topological space. A topological space Y is called a compactification

of X if and only if Y is compact, and there is a homeomorphic embedding

h : X → Y such that h(X) is dense in Y . We will sometimes call the pair (Y, h)

a compactification of X, and moreover, will sometimes identify X with its image

under h in Y .

Besides the Ellis semigroup, we will sometimes consider another compacti-

fication of the acting group, which is in some sense a ‘maximal’ element of the

partially ordered space of compactifications of a given space X. This is known

as the Stone-Čech compactification. So, what is a Stone-Čech compactification?

It is a compactification of a space which has the following ‘maximality’ property:

1.3.11 Definition (Stone-Čech compactification, [HS98]). Let X be a Ty-

chonoff (Hausdorff) space. A pair, consisting of a compact space and a con-

tinuous map from X into the space, is called a Stone-Čech compactification of

X, and denoted by (βX, β), if it is a Hausdorff compactification of X satisfying

the following universal property:

(SC) For each compact Hausdorff space Y and each continuous mapping f :

X → Y , there is a uniquely determined continuous mapping βf : βX → Y

such that

βf ◦ β = f.

When a space satisfies the condition in Definition 1.3.11 we say that it has the

Stone-Čech property.

We now introduce the topology on βN:

1.3.12 Definition (the topological space βN, [HS98]). We define the space βN
as the set of all ultrafilters on N:

βN := {p ⊆ P(N) : p is an ultrafilter on N}.
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We define a topology on βN through basic open sets Â as follows. For a set

A ⊆ N, define Â as the collection of all ultrafilters on N which contain the set

A:

Â := {p ∈ βN : A ∈ p}.

This definition immediately yields the following equivalence:

p ∈ Â⇔ A ∈ p. (1.2)

The base for the topology on βN will be the collection of all Â, i.e.

B := {Â : A ⊆ N} = {Â : A ∈ P(N)},

which is known as the Stone topology on βN.

Let us now consider some properties of the basic open sets. The collection

B = {Â : A ⊆ N} is a basis of clopen sets for βN. The topology generated

by this basis makes βN into a compact Hausdorff space. Also, the topological

space βN contains a dense subset which is homeomorphic to N. Furthermore,

the topological space βN satisfies the Stone-Čech property. Thus, we have that:

1.3.13 Theorem ([HS98]). The space βN with the Stone topology is the Stone-

Čech compactification of N as a discrete space.

The space (βN, τ) can also be endowed with an algebraic structure which

in some natural sense ‘extends’ the semigroup structure of (N,+). We give the

rigorous definition of addition in βN here, but what we need for the rest of this

thesis will be the algebraic and topological properties of βN, rather than make

use of the specific way in which the semigroup operation of βN.

1.3.14 Definition (F⊕G, [HS98]). For two filters F ,G on a discrete semigroup

X, we define F ⊕ G as:

F ⊕ G := {A ∈ P(X) :
{
x ∈ X : {y ∈ X : xy ∈ A} ∈ G

}
∈ F}.

In our case, we often take (N,+) to be the discrete semigroup in question.

Then, for a subset A ⊂ N a natural number n ∈ N, and filters F , G on N, we
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have

F ⊕ G = {A ∈ P(N) : {n ∈ N : {m ∈ N : n+m ∈ A} ∈ G} ∈ F}.

We list some facts from [HS98] about this operation. If F ,G are ultrafilters

on N, then so is F ⊕ G. If moreover F and G are principal, then F ⊕ G is also

a principal ultrafilter on N. In addition, Fn ⊕ Fm = Fn+m, where Fn,Fm are

the principal ultrafilters at {n}, resp {m}. We have that the binary operation

of addition, ⊕ : βN × βN → βN, is continuous in the left argument. In other

words, for each G ∈ βN, we have that the function ρG : βN → βN, given by

ρG(F) = F ⊕ G, is continuous.

To finish our exploration of the algebraic structure of βN that we have just

introduced, we will define one of the most important (for our purposes) special

elements in it:

1.3.15 Definition (idempotent, [HS98]). An element p of a semigroup G is

called an idempotent if and only if p+ p = p.

So, are there any such elements of βN? Note that the existence of an idem-

potent ultrafilter in βN would be trivial if we let 0 ∈ N (for then the principal

ultrafilter at {0} would be an idempotent). However, if we take 0 /∈ N, we

need to show the existence of a non-principal idempotent ultrafilter - something

that is prima facie very difficult, as we have no concrete way of representing

non-principal ultrafilters. The result we now turn to answers this question in

the positive. It is originally due to Ellis, and proven in a more general setting

of a compact right-topological semigroup [Ell58].

1.3.16 Theorem ([Ell58]). Idempotent ultrafilters exist in βN.

In Chapter 3, we will consider a special type of subsets of the integers and

natural numbers, called IP sets:

1.3.17 Definition (IP set, generating sequence, [HS98]). An IP set P in N
(respectively, in Z), is a subset of N (resp Z) which coincides with the set of

finite sums pn1 + . . .+ pnk , for distinct indices n1 < n2 < . . . < nk, taken from a

sequence (pn)∞n=1 of distinct elements in N (resp in Z). The sequence (pn)∞n=1 is

called the generating sequence of P .
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We will construct certain generating sequences to some IP sets in order

to provide a counterexample to [HJ97, Proposition 3.4], which is central to

the main theorem of that paper. However, the main theorem - that a binary

continuous substitution has an Ellis semigroup with two minimal ideals - still

holds. Moreover, in Chapter 3 we generalise it for a certain class of substitutions

over arbitrary finite alphabets.

1.4 Substitution Dynamics

We now return to the symbolic spaces introduced in Section 1.1. In this sec-

tion, we will list some facts from substitution dynamical systems. Since our

counterexample to Haddad and Johnson’s proposition, which we give in Section

3.3, will require some specific properties of binary words, we will intersperse

comments which are specific to the binary case whenever needed in the below

discussion. We will also use the Thue-Morse substitution, 0 7→ 01, 1 7→ 10, as a

running example.

1 Hypothesis. From now on, let θ be an admissible substitution of constant

length r over the alphabet A.

Let w ∈ AZ be any fixed point of θ. Let Xθ be the orbit closure of w in AZ;

it is well-known that Xθ does not depend on the choice of fixed point w ∈ AZ.

Then (Xθ, s) is the unique substitution dynamical system associated with θ.

1.4.1 Notation ([dV93]). We note that if a fixed point x ∈ {0, 1}N of a continuous

binary uniformly recurrent sequence is not periodic, its set of legal subwords

must be {01, 10, 00, 11}. Thus, it can be extended to a sequence in {0, 1}Z in

precisely two ways, with the left extensions being dual to each other [HJ97]. In

other words, if x ∈ {0, 1}N is recurrent and y ∈ {0, 1}Z is such that there are

µ, ν ∈ Xy ⊂ {0, 1}Z with µi = νi = xi for i > 0, then either µj = νj for all j < 0

or µj = νj for all j < 0. Moreover, if y′ ∈ {0, 1}Z has the same property, then

Xy = Xy′ , in other words, the orbit-closure does not depend on the choice of

fixed point. (In Proposition 1.4.7 below we will see this observation holds more

generally.) From now on, whenever x is a right-hand fixed point of a continuous

substitution, we will write ω and ν for its two left extensions.
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1.4.2 Definition (basic rk-block, [Mar71]). For k ∈ N+, we call a word B

of length rk a basic rk-block if and only if there is a letter a ∈ A such that

θk(a) = B.

Recall Definition 1.1.20 of a θ-legal word - a finite word which appears as a

sub-block of a word y ∈ Xθ, and note the difference between a legal word and a

basic block. Every basic block is legal, but not every legal word is a basic block.

1.4.3 Definition (coincidence-free, [dV93]). We call a substitution θ coincidence-

free if and only if for all letters a 6= b, for all n ∈ {0, . . . , r − 1}, we have

θ(a)n 6= θ(b)n.

Recall that a continuous substitution is a length binary substitution θ where

θ(0) = θ(1) (definition 1.1.17), and note that any continuous substitution is

coincidence-free.

2 Hypothesis. Note that for each constant length coincidence-free substitution,

there is a power n ∈ N+ such that for any letter a, θn(a)0 = θn(a)r−1 = a. From

now on, without loss of generality, assume any coincidence-free θ is already in

this standard form.

1.4.1 The Period Doubling System and Thue-Morse Sys-

tems

1.4.4 Definition (Period Doubling substitution, [BG13]). The Period Doubling

substitution is the binary constant length substitution defined by the rule:

0 7→ 01

1 7→ 00.

We will denote by (XPD, s) the resulting dynamical system.

Let us revisit the Thue-Morse substitution given in Example 1.1.18.
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1.4.5 Definition (Thue-Morse substitution, [BG13]). The Thue-Morse substi-

tution is defined over the binary alphabet {0, 1} as:

0 7→ 01

1 7→ 10

Obviously, this is a constant length substitution. In light of Hypothesis 2,

we may instead consider the square of this substitution, 0 7→ 0110, 1 7→ 1001,

so that the Thue-Morse has the following four fixed points:

. . . 0110 · 0110 . . .

. . . 0110 · 1001 . . .

. . . 1001 · 0110 . . .

. . . 1001 · 1001 . . .

1.4.6 Notation. In light of notation 1.4.1, we shall use the following notation

in the context of the Thue-Morse sequence: v := . . . 1001 · 1001 . . . and w :=

. . . 0110 · 1001 . . .. Then the four fixed points can be represented as the set

{w,w, v, v}.
Recall Corollary 1.2.14, that any of the four fixed points forms a minimal

sequence. Now, all we have to do to define the set is to show that the four

minimal sets, defined as the orbit closures of the fixed points, coincide.

1.4.7 Proposition ([BG13]). The orbit closures of each of the four fixed points

under the two-sided shift map coincide as sets, i.e.

Orb(v) = Orb(v) = Orb(w) = Orb(w).

Now we are in a position to make the following definition:

1.4.8 Definition (Thue-Morse dynamical system, [BG13]). We define the Thue-

Morse dynamical system as the orbit closure of any of the four fixed points of the

Thue-Morse substitution. This set, denoted XTM , together with the two-sided

shift map, form a Z-cascade.
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1.4.9 Proposition ([BG13]). The system (XTM , s) factors onto the period dou-

bling system (XPD, s) via a 2-to-1 map.

1.4.10 Remark ([BG13]). This map is a sliding block code with memory 1, an-

ticipation 0, induced by the block map from the two-letter words PTM given by

Φ : PTM → {0, 1}, given by {00, 11} 7→ 1 and {10, 01} 7→ 0.

Thus, we have the following diagram for the Thue-Morse system, where

(Z(2),+) is the binary adding machine:

(XTM , s) (XPD, s) (Z(2),+)
π1

π1(w)=y1, π1(v)=y2

π:=π2◦π1

π2

π2(y1)=π2(y2)=1

This diagram will be of great use in Chapter 3.2, where we will calculate the

Ellis semigroup of this and more general systems.

1.5 The Ellis Semigroup

The Ellis semigroup is often useful in studying the ‘eventual’, or asymptotic,

properties of a dynamical system. If we consider XX to be the set of all (not

necessarily continuous) functions from X to itself, then the Ellis semigroup of

a dynamical system (X,T ) is a closed subset of XX . Moreover, if we endow

XX with the semigroup operation of composition of functions, then the Ellis

semigroup is indeed a sub-semigroup with respect to the operation. Thus, let

us start by familiarising ourselves with the space XX .

1.5.1 Definition ([Eng89]). Let X be a topological space. Then XX is the set

of all functions from X to itself, with the topology of pointwise convergence.

The topology of pointwise convergence is also known as the Tychonoff or

product topology [Eng89]. In it, a net of functions {fn}n∈α ⊂ XX converges

to a limit f ∈ XX if and only if for every point x ∈ X, the net {fn(x)}n∈α
converges to f(x) in the topological space X, [Eng89].

To give two very basic examples of the product space:
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1.5.2 Example. Let X = {0, 1}, a space of two points, with any (fixed) topol-

ogy. Then XX consists of four functions, which, by setting f = (f(0), f(1)), can

be visualised as points in the plane:

• the identity map: f1 = (0, 1)

• a contraction map: f2 = (0, 0)

• another contraction map: f3 = (1, 1)

• the swap map: f4 = (1, 0).

If we endow X with the Sierpinski topology, making {0} the only non-trivial

open set, then the swap map is the only non-continuous map, as f−1
4 ({0}) = {1},

which is not open.

More generally, if X is any compact Hausdorff space, Tychonoff’s Theorem

(0.1.14) gives us that XX is also compact (and Hausdorff). Thus, XX has the

desirable property that every infinite sequence has an accumulation point. But

the space XX can also be viewed as a semigroup. To be more precise about its

structure, we have the following:

1.5.3 Proposition ([EE14]). Let X be a compact Hausdorff space. Then:

1. composition of functions provides XX with a semigroup structure;

2. composition is continuous on the right for all continuous f ∈ XX , i.e. the

map ρf : XX → XX given by ρf (g) = f(g) is continuous for all continuous

f ∈ XX ;

3. composition is always continuous on the left, i.e. the map ρf : XX → XX

given by ρf (g) = g(f) is continuous for all f ∈ XX ;

4. composition of functions defines an action of the semigroup XX on the set

XX .

If we have a subset A ⊂ XX , it is sensible to consider its closure in XX .

This brings us to the definition of the Ellis semigroup:
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1.5.4 Definition (Ellis semigroup, [EE14]). For a dynamical system (X,T ), we

define the Ellis semigroup (also know as the enveloping semigroup) as

E(X,T ) := {f ∈ XX : ∃t ∈ T such that π(x, t) = f(x) ∀x ∈ X} ⊂ XX .

In other words, it is the ‘closure of the (semi-)group T ’ when viewed as a

subspace of XX with the Tychonoff topology. When there is no ambiguity, we

will write just E(X). One can easily see that the Ellis semigroup is a compact-

ification of Z (or of whatever (semi-)group is acting on the space).

The set E(X,T ) is a semigroup with respect to composition of functions.

Alternatively, we can define the Ellis semigroup via the Stone-Čech compact-

ification of the acting group T . For the dynamical system (X,T ), we consider

the map from T to XX which associates to each element t ∈ T the respective

homeomorphism in XX of X, which we will also denote by t. By the proper-

ties of the Stone-Čech compactification, this map has a continuous extension

ΦX : βT → XX . Thus, ΦX(βT ) = E(X,T ).

1.5.5 Notation. In what follows, we will mostly consider dynamical systems over

a certain fixed semigroup (or group) T . When the (semi-)group is understood,

we can shorten the notation for the Ellis semigroup of the dynamical system to

E(X). In several sections, we will consider the Ellis semigroup of substitution

dynamical systems. Since the group will always be Z and the space is uniquely

determined by the substitution θ, we will write Eθ for even shorter notation for

the Ellis semigroup of the substitution system.

In general, it is very difficult to calculate the Ellis semigroup of a dynamical

system. However, we begin with a few easy examples.

1.5.6 Example (Identity). Let X be any compact Hausdorff space, and i be

the identity on it. Then E(X, {in}n∈Z) = {i}, since limit points are unique in

this case.

1.5.7 Example (periodic examples). 1. Let ω ∈ AZ be periodic, and con-

sider X = Os(ω). Then X has finitely many points, and is a discrete space

in the subspace topology. Thus, E(X, {sn}n∈Z) = {sn : n ∈ Z}, since any

finite subset of a compact Hausdorff space is closed. If ω is period 2, and we

36



CHAPTER 1. INTRODUCTION TO TOPOLOGICAL DYNAMICS

replace 0 by ω and 1 by s(ω) in Example 1.5.2 (and consider the discrete

topology instead of the Sierpinski one), then E(X, {sn}n∈Z) = {f1, f4},
and in general, |E(X, {sn}n∈Z)| = k, where k is the period of ω.

2. Let X be any compact Hausdorff space, and f : X → X be a homeo-

morphism such that f−n = f = fn. Then E(X, {fn}n∈Z) will consist of

finitely many functions (or points), and thus will be a closed subset of XX .

Thus, E(X, {fn}n∈Z) = {fn : n ∈ Z}, as this set is already closed.

1.5.8 Example (Ellis semigroup of shift of one-point sequence). Let ω =

. . . 000 · 100 . . ., and let X = OZ(ω) - the shift-orbit closure of ω. Then X =

{sn(ω) : n ∈ Z} ∪ {. . . 0 · 0 . . .}. Then E(X, {sn}n∈Z) = {sn : n ∈ Z} ∪ {f0},
where f0(u) = . . . 0 · 0 . . . for any u ∈ X.

Though difficult to calculate, there are many ways in which the Ellis semi-

group is a very natural object to associate to a dynamical system.

For example, how do the Ellis semigroups behave under homomorphisms?

In fact, any surjective dynamical system homomorphism can be extended to a

homomorphism between the respective Ellis semigroups:

1.5.9 Proposition ([EE14]). Let π : (X,T )→ (Y, T ) be a surjective homomor-

phism of dynamical systems. There exists a unique map π∗ : E(X)→ E(Y ) such

that π∗ is surjective and continuous, π∗(pq) = π∗(p)π∗(q) for all p, q ∈ E(X),

and such that the following diagram is commutative:

E(X) E(Y )

X Y

π∗

p7→q

p 7→px0 q 7→qπ(x0)

π

x0 7→π(x0)

The following proposition clarifies how the properties of the Stone-Čech com-

pactification βT relate to the properties of the Ellis semigroup.

1.5.10 Proposition ([EE14]). Let (X,T ) be a dynamical system. Then:

1. The action (p, t) 7→ pπt : E(X) × T → E(X), where πt = Rt : E(X) →
E(X) by Rt(q) = qt, makes E(X,T ) a point transitive dynamical system

(i.e. there is a point with dense orbit).
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2. The canonical map ΦX : βT → E(X) is both a dynamical system and a

semigroup homomorphism.

3. The map p 7→ xp : E(X)→ X is a dynamical system homomorphism for

all x ∈ X.

4. The map ΦβT : βT → E(βT ) is an isomorphism.

5. Let f : (X,T ) 7→ (Y, T ) be a homomorphism of dynamical system s. Then

f(xp) = f(x)p for all x ∈ X and p ∈ βT .

1.5.1 Some Theorems and Propositions Around the Ellis

Semigroup, or, ‘Why is the Ellis Semigroup Use-

ful?’

Unless otherwise stated, all notions and statements here can be found in [EE14].

1.5.11 Proposition ([EE14]). Let (X,T ) be a dynamical system. Then:

1. The set E(X,T ) is a dynamical system (with a point with dense orbit)

under the action E(X) × T → E(X) given by (p, t) 7→ πtp, where πt =

Lt : E(X)→ E(X) by πtq = tq.

2. The canonical map ΦX : βT → E(X) is both a dynamical system and a

semigroup homomorphism.

3. For x ∈ X arbitrary but fixed, the map ex : E(X) → X given by ex(p) =

p(x) is a homomorphism of dynamical systems.

4. The map ΦβT : βT → E(βT, T ) is an isomorphism.

5. For a homomorphism of dynamical systems f : (X,T )→ (Y, T ), f(px) =

pf(x) for all x ∈ X and all p ∈ βT .

For what follows, recall Definition 1.2.3 of a minimal set - this is a nonempty

closed, T -invariant subset of X which is minimal in this respect. Similarly,

(X,T ) is a minimal system whenever the space X is itself minimal. We do not

necessarily have that the Ellis semigroup E(X) of a minimal dynamical system
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is itself minimal - in fact, this is far from the case. To further consider this, let

us introduce a more algebraic notion - that of a minimal ideal.

1.5.12 Definition ([EE14]). Let (X,T ) be a dynamical system with Ellis semi-

group E(X). A nonempty subset I of E(X) is a (left) ideal if and only if EI ⊂ I.

The ideal is called minimal if and only if it contains no ideals as proper subsets.

Note that by the definition of an ideal I ⊂ E(X), TI ⊂ I. So, if I is closed,

then (I, T ) is a dynamical subsystem of E(X,T ) (and so in fact E(X,T ) is not

itself minimal if it has any nontrivial minimal ideals). In fact, we have that

(I, T ) is a minimal dynamical system:

1.5.13 Proposition ([EE14]). Let (X,T ) be a dynamical system with Ellis

semigroup E(X), and let I ⊂ E(X) be an ideal. Then I is a minimal ideal if

and only if I is closed and the dynamical system (I, T ) is minimal.

1.5.14 Corollary ([EE14]). Let (X,T) be a dynamical system with Ellis semi-

group E(X). Then every ideal I ⊂ E(X) contains a minimal ideal.

This Corollary can alternatively be shown through a lemma of Ellis and

Numakura [Ell58] and an application of Zorn’s lemma.

1.5.15 Definition (idempotent, minimal idempotent, [EE14]). We call an ele-

ment u ∈ E(X) an idempotent if and only if u2 = u. If u ∈ I for some minimal

ideal I ∈ E(X), then we call u minimal.

1.5.16 Corollary (Ellis-Numakura Lemma, [Ell58, Num52]). Let X be a com-

pact Hausdorff semigroup such that the maps Rx : X → X (defined similarly

as in Proposition 1.5.10) are continuous for all x ∈ X. Then there exists an

idempotent u ∈ X.

1.5.17 Corollary ([EE14]). Let X be a compact T1 group such that left multi-

plication is continuous, and let S be a closed sub-semigroup of X. Then S is a

subgroup of X.

1.5.18 Theorem ([EE14]). Let (X,T ) be a dynamical system and let I ⊂ E(X)

be a minimal ideal in its Ellis semigroup. Then:
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1. The set J of idempotents of I is non-empty.

2. pv = p for all v ∈ J and p ∈ I.

3. vI is a group with identity v, for all v ∈ J .

4. {vI : v ∈ J} is a partition of I.

5. If we set G := uI for some u ∈ J , then I =
⊔
{vG : v ∈ J}, where

⊔
denotes the disjoint union of the groups vG.

1.5.19 Lemma ([EE14]). Let φ : E(X,T ) → E(Y, T ) be a homomorphism of

dynamical systems, and let u ∈ E(Y, T ) be an idempotent. Then there is an

idempotent v ∈ E(X,T ) such that u = φ(v).

Here we provide a proof to ease the reader into the subject.

Proof. We have that φ−1(u) is a closed subset of E(X,T ), since E(Y, T ) is

Hausdorff and E(X,T ) is compact. Moreover, it is a semigroup: if p, q ∈ φ−1(u),

then φ(pq) = φ(p)φ(q) = uu = u, so pq ∈ φ−1(u). Thus, by the Ellis-Numakura

Lemma 1.5.16, we have that there is an idempotent v2 = v ∈ φ−1(u).

1.5.20 Definition (equivalent idempotents, [EE14]). Let (X,T ) be a dynamical

system. If u, v ∈ E(X,T ) are idempotents such that uv = v and vu = u, then

we will call u and v equivalent idempotents and write this as u ∼ v.

We expand on a note in [EE14] to show the relation between equivalent

idempotents and minimal ideals:

1.5.21 Proposition ([EE14]). The relation ∼ is an equivalence relation on the

set of idempotents in E(X,T ). Moreover, the equivalence class [u] of any mini-

mal idempotent u ∈ E(X,T ) contains only minimal idempotents and intersects

each minimal ideal at most once.

Proof. The relation ∼ is obviously reflexive and symmetric; all we have to show

is transitivity. Let u, v, w ∈ E(X,T ) be idempotents such that u ∼ v and v ∼ w.
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Then

uw = u(vw) since w ∼ v

= (uv)w = vw since u ∼ v

= w since w ∼ v.

Similarly, wu = w(vu) = (wv)u = (v)u = u, so indeed u ∼ w as required.

Now, let I ⊂ E(X,T ) be a minimal ideal, u2 = u ∈ I, and consider its

equivalence class [u] := {v ∈ E(X,T ) : v ∼ u}. Let v ∈ [u]; then the map

ρv : g → gv from E(X,T ) to itself is continuous by Proposition 1.5.3. The

system (ρv[I], T ) is minimal in E(X,T ) by Proposition 1.2.9 and contains v

(since uv = v), hence ρv[I] is a closed set. Hence, by Proposition 1.5.13, ρv[I] is a

minimal ideal in E(X,T ), so v ∈ ρv[I] is a minimal idempotent, as required.

1.5.22 Proposition ([EE14]). Let I,K be minimal ideals in the Ellis semigroup

E(X) of the dynamical system (X,T ), and let u ∈ I be an idempotent. Then

there exists a unique idempotent v ∈ K which is equivalent to u.

What is the relation between idempotents in different minimal ideals? We

have the following proposition:

1.5.23 Proposition ([EE14]). Let (X,T ) be a dynamical system with Ellis

semigroup E(X), let I,K be minimal ideals in E(X) and let u2 = u be an

idempotent in I. Then there exists a unique idempotent v ∈ K such that u ∼ v.

Moreover, if u2 = u ∈ E(X) is minimal, and v ∼ u, then v is a minimal

idempotent, as well.

1.5.24 Proposition ([EE14]). Let I,K be minimal ideals in the Ellis semigroup

E(X) of the dynamical system (X,T ), let u be an idempotent in I and let v be

the unique idempotent in K which is equivalent to u.

1.5.25 Theorem ([EE14]). Let M be a minimal subset of βT and (X,T ) be

a minimal dynamical system. Then there exists a surjective homomorphism of

dynamical systems f : M → X.

We will mostly concern ourselves with minimal dynamical systems. However,

we will still make use of non-minimal systems; in particular, the Ellis semigroup,
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when viewed as a system (E(X,T ), T ), is usually not a minimal system. Thus,

following [EE14], we introduce the following notion:

1.5.26 Definition (almost periodic point, [EE14]). Let (X,T ) be a dynamical

system and x ∈ X. Then x is an almost periodic point if and only if the orbit

closure of x is minimal. We say that the dynamical system (X,T ) is pointwise

almost periodic if every point is almost periodic.

By Proposition 1.2.5, every minimal dynamical system is pointwise almost

periodic.

1.5.27 Definition (set of return times, [EE14]). For any x ∈ X and neighbour-

hood U of x we define the set of return times to U by A(U) := {t ∈ T : tx ∈ U}.

1.5.28 Proposition ([EE14]). Let (X,T ) be a dynamical system, x a point in

X, and let A(U) denote the set of return times to an open set U . Then x is an

almost periodic point if and only if for every open neighbourhood U of x, there

exists a finite set F ⊂ T such that FA(U) = T . In other words, A(U) is a

syndetic subset of T .

As the following proposition shows, the almost periodic points of (X,T )

(and respectively, the notion of minimality) can be characterized in terms of the

minimal idempotents in E(X).

1.5.29 Proposition ([EE14]). Let (X,T ) be a dynamical system with Ellis

semigroup E(X), let I ⊂ E(X) be a minimal left ideal and let x ∈ X. Then

{t(x) : t ∈ T} is minimal if and only if there exists an idempotent u2 = u ∈ I
with ux = x.

There are many ways to characterize the dynamical notion of proximality via

the Ellis semigroup E(X) and the Stone-Čech compactification βT . We now give

several equivalent definitions of proximality, found also in [EE14], where the first

one will be the most useful throughout this thesis:

1.5.30 Proposition ([EE14]). For two points x and y in the dynamical system

(X,T ), the following are equivalent:

• there is p ∈ E(X) such that px = py,
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• there exists a net {ti} ⊂ T with lim ti(x) = lim ti(y),

• {(tx, ty) : t ∈ T} ∩∆ 6= ∅, where ∆ is the diagonal in X ×X,

• there exists p ∈ βT with p(x) = p(y),

• there exists r ∈ E(X) with r(x) = r(y),

• there exists a minimal left ideal I ⊂ E(X) with r(x) = r(y) for all r ∈ I,

• there exists a minimal left ideal K ⊂ βT with q(x) = q(y) for all q ∈ K.

In Chapter 2, Chapter 3 and Chapter 4 we will deal with distal and almost

automorphic dynamical systems. Thus, it is useful to acquaint ourselves with

the terminology and how these notions are reflected in the Ellis semigroup.

1.5.31 Definition (almost periodic point, [EE14]). Let (X,T ) be a dynamical

system. We say that x ∈ X is almost periodic if and only if its orbit closure xT

is minimal as a subset of (X,T ).

1.5.32 Proposition ([EE14]). Let (X,T ) be a dynamical system with Ellis

semigroup E, and let x ∈ X. Then x is almost periodic if and only if for any

minimal ideal I ⊆ E there is an idempotent u ∈ I with ux = x.

Proof. Let x ∈ X be almost periodic and let I ⊆ E be an arbitrary but fixed

minimal ideal. Then φx : E → X given by p 7→ px is a homomorphism of E

onto Tx, and Ix = φx(I) is closed and invariant subset of Tx as a continuous

projection of I into X. Since x is almost periodic, this means that Ix = Tx.

Then the set S = {p ∈ I : px = x} is a closed nonempty subsemigroup of I,

so by the Ellis-Numakura Lemma 1.5.16 there exists an idempotent u ∈ S(⊆ I)

with ux = x, as required.

Now, let x ∈ X be such that for every minimal ideal I there is an idempotent

u ∈ I with ux = x. Then Tx = T (ux) = (Tu)x ⊆ Ix, and Ix is closed (recall

Tu ⊆ I and TI ⊂ I since I is an ideal), so Tx ⊆ Ix and since I is minimal,

Tx = Ix. So Tx is minimal, so x is an almost periodic point, as required.

Recall Proposition 1.5.30 which gave alternative definitions of proximality.

Also, we recall Definition 1.0.34 of a distal dynamical system - a system which

has no proximal pairs.
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1.5.33 Proposition ([EE14]). Let (X,T ) be a minimal dynamical system, and

x ∈ X. Then x is a distal point if and only if for all idempotents u ∈ E, we

have u(x) = x.

This proposition differs slightly from the one given in more generality in

[EE14]. Here, we add the assumption of minimality to simplify the proof, since

all the spaces we are interested in are minimal.

Proof. Let x ∈ X be distal, and let u ∈ E be an idempotent. Consider (ux, x).

We have that u(ux, x) = u(ux, ux) ∈ ∆, so (ux, ux) ∈ (x, ux)T ∩∆ 6= ∅, so by

Proposition 1.5.30, we have that x is proximal to ux. Since x is distal, x = ux.

Conversely, assume that for all idempotents u ∈ E, ux = x, and let y be

proximal to x. Then there exists a minimal right ideal K ⊆ E with px = py

for all p ∈ K. Since y is almost periodic, by Proposition 1.5.32, we have that in

every minimal ideal there exists an idempotent v such that vy = y. In particular,

∃v ∈ K with vy = y. So,

x = vx by assumption

= vy since v ∈ K

= y since y is an almost periodic point.

Thus, x = y so x is distal, as required.

The above Proposition 1.5.33 does not hold without the additional assump-

tion of minimality, as illustrated in the example below.

1.5.34 Example. There is a nonminimal dynamical system (X,T ) with a point

x ∈ X such that ux = x for all idempotents u2 = u ∈ E(X), but x is not distal.

Construction. Consider the orbit closure of the bi-infinite word ω = . . . 0 ·
10 . . ., X := Orb(ω). Then in fact

X = {sn(ω) : n ∈ Z} ∪ {. . . 0 · 0 . . .}.

Also, E(X) = {sn : n ∈ Z} ∪ {0}, where 0(x) = . . . 0 · 0 . . . for any x ∈ X.
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Then the idempotents in E(X) are the identity IdX and 0. Note that the

point . . . 0 · 0 . . . is fixed by both idempotents. However, every point x ∈ X is

proximal with . . . 0 · 0 . . ., so it is very far from distal!

The next two propositions and lemma give examples of how the Ellis semi-

group captures the asymptotic properties of a dynamical system.

1.5.35 Proposition ([EE14]). Let (X,T ) be a dynamical system with Ellis

semigroup E(X). Then (X,T ) is distal if and only if E(X) is a group, if and

only if IdX ∈ T is the only idempotent in E(X).

We show the first equivalence by expanding on the proof given in [EE14], as

this proposition will be important later on.

Proof. Assume X is distal, let u, v be two idempotents in E, and let x ∈ X be

arbitrary but fixed. By Proposition 1.5.33, we have that ux = x = vx. Since x

was arbitrary, we have that for all x ∈ X, ux = vx, so u ≡ v. Thus, there is

just one idempotent (call this idempotent e) in E. Thus, E is a group.

Now, assume that E is a group, and let x, y ∈ X be proximal. Then by

Proposition 1.5.30 there is a minimal ideal K ⊆ E(X) with px = py ∀p ∈ K.

This ideal contains an idempotent, so e ∈ K, since e is the only idempotent in

the group E. Then

x = ex since e is the identity

= ey since e ∈ K

= y since e is the identity,

so indeed x = y as required. Thus, x is distal, and since it was arbitrary, we

have that X is a distal dynamical system.

1.5.36 Proposition ([EE14]). A dynamical system (X,T ) is equicontinuous if

and only if its Ellis semigroup E(X,T ) is a group of homeomorphisms of X.

Using the propositions above, we give a much shorter proof of [HJ97, Lemma

3.3]
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1.5.37 Lemma ([HJ97]). For a minimal system X over N or Z (or even more

generally, any (semi-) group T ), if X is not distal, then every minimal left ideal

of E(X) contains more than one idempotent.

Proof. Assume X is minimal not distal, and suppose I ⊂ E(X) is a minimal

ideal with only one idempotent u2 = u ∈ I. Since X is minimal, Proposition

1.5.29 yields that for each x ∈ X, there is an idempotent v ∈ I such that vx = x.

Since I has only one idempotent, vx = x for all x ∈ X. So ux = x for all x ∈ X,

so u = IdX , so E(X) is a group. Then by Proposition 1.5.35, X is distal - a

contradiction to the assumption that it is not.

We continue with a generalisation of an analogue of a Lemma in [HJ97].

This recasts their Lemma, which concerns IPCPs in dynamical systems over N,

in terms of idempotents in arbitrary dynamical systems over the same group:

1.5.38 Lemma. Given an extension (X,T ) of (Y, T ), the idempotents of E(X)

project to idempotents of E(Y ).

Proof. Given an extension π : (X,T ) → (Y, T ), by Proposition 1.5.9, we have

an induced homomorphism π∗ between Ellis semigroups, such that the diagram

is commutative for all x0 ∈ X:

E(X) E(Y )

X Y

π∗

p7→q

p 7→px0 q 7→qπ(x0)

π

x0 7→π(x0)

Note that π∗(pp′) = π∗(p)π∗(p′). Thus, if u ∈ E(X) is an idempotent and

v = π∗(u), then v ∈ E(Y ) is also an idempotent:

vv = π∗(u)π∗(u) by definition

= π∗(uu) since π∗ is a homomorphism

= π∗(u) since u is an idempotent

= v by definition.

This proves the required result.
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Finally, we recall the following Proposition from [dV93] which will be use-

ful throughout the rest of this thesis. We emphasize its importance by also

expanding on the exposition of the proof given in [dV93].

1.5.39 Proposition. Let (X,T ) be a dynamical system, and u ∈ E(X) be a

minimal idempotent. The subspace u[X] ⊂ X does not contain any proximal

pairs.

Proof. Assume that x, y ∈ u[X] are proximal points; by Proposition 1.5.30 there

exists p ∈ E(X) such that px = py. Since u ∈ I, and I is a minimal ideal, for all

γ ∈ I, Eγ is a minimal left ideal which is a subset of I, thus Eγ = I. Applying

this for γ = u, we get that pu ∈ I. Applying this again for γ = pu, we get that

Epu = I 3 u, and thus there is q ∈ E such that qpu = u. From this, we obtain:

x = ux (x ∈ u[X])

= qpux (qpu = u)

= qpx (x ∈ u[X])

= qpy (px = py)

= qpuy (y ∈ u[X])

= uy (qpu = u)

= y (y ∈ u[X]),

as required. Thus, there are no proximal pairs in u[X].

1.5.40 Proposition ([EE14]). Proximality is a transitive relation on the dy-

namical system (X,T ) if and only if the Ellis semigroup E(X,T ) has only one

minimal ideal.

1.5.41 Remark. Note that since proximality is already reflexive and symmetric,

the requirement that it be transitive is equivalent to making proximality an

equivalence relation.

In Chapter 2, Chapter 3 and Chapter 4, we will be considering systems which

satisfy a more relaxed condition than distality. This condition will be central to

some of the arguments given especially in Chapter 4.
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1.5.42 Definition (point-distal dynamical system, [EE14]). A dynamical sys-

tem (X,T ) is called point-distal if and only if it has a distal point with a dense

orbit.

1.5.43 Proposition ([BG13]). Point-distal dynamical systems are minimal.

Proof. Recall Proposition 1.5.29 that Tx is minimal if and only if in every min-

imal ideal in E(X) there is an idempotent v such that vx = x. Also, recall

Proposition 1.5.33 that x ∈ X is distal if and only if ux = x for all idempotents

u ∈ E. Combining these two statements with the fact that there is a distal

point x ∈ X with a dense orbit, we get that X is minimal.

1.6 Almost Automorphic Extensions and Al-

most Automorphic dynamical systems

We have the following two closely related notions:

1.6.1 Definition (almost one-to-one extension, [dV93]). An extension (X,T )

of a system (Y, T ) via the homomorphism π : X → Y is called almost one-to-

one if and only if the restriction of π to a residual set is one-to-one. We will

sometimes call almost one-to-one extensions almost automorphic extensions.

1.6.2 Definition (almost automorphic, [dV93]). We say that a dynamical sys-

tem (X,T ) is almost automorphic if and only if there is a point x0 ∈ X with

a dense orbit, such that whenever {ti} ⊂ T is a net and x′ ∈ X are such that

lim tix0 = x′, we also have that lim t−1
i x′ = x0. Such points are called almost

automorphic.

1.6.3 Proposition ([dV93]). Let (X,T ) be an almost automorphic system.

Then (X,T ) is minimal.

Proof. Let x0 ∈ X be an almost automorphic point and take an arbitrary but

fixed idempotent u ∈ E(X). Then there is a net {ti} ⊂ T with limi ti = u.

Also, {t−1
i } is a net in E(X), let it converge to v ∈ E(X). Define x∗ := ux0

(= lim tix0).
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Recall Proposition 1.5.29 that Tx is minimal if and only if in every minimal

ideal in E(X), there is an idempotent w such that wx = x. Note that ux∗ =

uux0 = ux0 = x∗, and since u was arbitrary, we have that X∗ := Tx∗(= {px :

p ∈ E(X)}) is minimal. Now, note that vx∗ = vux0 = lim t−1
i (lim tix0) = x0

(since x0 is almost automorphic). Thus, x0 ∈ X∗ (since v ∈ E(X) is such that

vx∗ = x0).

1.6.4 Proposition ([dV93]). Every minimal equicontinuous dynamical system

is almost automorphic.

For completeness we give a paraphrased exposition of the proof.

Proof. Let (X,T ) be equicontinuous with metric d and let x0 ∈ X be arbitrary.

Assume {ti}i∈I ⊆ T and x′ ∈ X are such that limi∈I tix0 = x′. Then for all

ε > 0 there is i ∈ I such that for all j > i we have d(tjx0, x
′) < ε. But then,

d(t−1
j tjx0, t

−1
j x′) < ε since (X,T ) is equicontinuous

d(x0, t
−1
j x′) < ε by rewriting,

so in fact we have limi∈I t
−1
i x′ = x0, as required.

Note that we have in fact proven something stronger, that in equicontinuous

dynamical systems all points are almost automorphic.

1.6.5 Proposition ([dV93]). Let the minimal system (X,T ) be an almost au-

tomorphic extension of its maximal equicontinuous factor (Y, T ). Then any two

points in a fiber of X are proximal.

Proof. Let φ : (X,T ) → (Y, T ). Note that since (X,T ) is minimal and φ is

surjective (since (X,T ) is a factor of (Y, T )), Proposition 1.2.9 gives us that

(Y, T ) is minimal, as well. Since (X,T ) is an almost automorphic extension of

(Y, T ), let y0 ∈ Y be such that φ−1(y0) is a singleton, say φ−1(y0) = {x0}. Let

x1, x2 ∈ X, y ∈ Y be such that φ(x1) = φ(x2) = y. Since (Y, T ) is minimal,

there is a net {tn}n∈α ⊂ T such that tny → y0.

Consider the sequence {tnx1}n∈α. Since X is compact metric, there is a

β ⊆ α so that the subsequence {tnx1}n∈β is convergent, say limn∈β tnx1 = x∗.
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Then x∗ = x0: for assume that x∗ 6= x0; then φ(x∗) 6= y0, so limn∈β φ(tnx1) =

φ(x∗) 6= y0, a contradiction since limn∈α φ(tnx1) = y0.

Now, consider the sequence {tnx2}n∈β. Again, since X is compact metric,

there is a γ ⊆ β such that the subsequence {tnx2}n∈γ is convergent. By the

same argument as above, we have that limn∈γ tnx2 = x0.

Thus, limn∈γ tnx1 = limn∈γ x2 = x0, so x1 and x2 are proximal, as required.

We also have the following Corollary to Proposition 1.6.5:

1.6.6 Corollary ([dV93]). Let (X,T ) be an almost automorphic extension of

its maximal equicontinuous factor. Then the proximal relation is transitive.

Proof. Let x1, x2, x3 ∈ X be three points such that x1, x2 are proximal, and

x2, x3 are proximal, and let π : X → Y be the map of X onto its maximal

equicontinuous factor Y . Then π(x1) = π(x2) and π(x2) = π(x3), thus π(x1) =

π(x3). But this means that x1 and x3 are in the same fiber, so by Proposition

1.6.5, we have that x1 is proximal to x3, as required.

1.6.7 Example. Note that the Period Doubling sequence (Definition 1.4.4) is

an almost automorphic extension of its maximal equicontinuous factor. Thus

the proximal relation is transitive in the Period Doubling dynamical system.

One of the classical theorems in this area is Furstenberg’s Structure Theorem,

which classifies minimal distal systems in terms of towers of isometric extensions

[Fur63]. Furthermore, in [Vee70], W Veech proves that every minimal point-

distal system with a residual set of distal points has an almost automorphic

extension which is an AI dynamical system (see Definition 2.2.4 for a description

of AI systems).
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Chapter 2

Factorizations of Substitution

Dynamical Systems

2.1 Introduction

In [Kea68] and [CK71], Coven and Keane gave an explicit construction of a

two-step factor (Xθ, s) → (Xφ, s) → Z(r) for continuous substitutions θ of

constant length r. There, the map from Xθ to Xφ is isometric, and the map

from Xφ to the r-adic adding machine Z(r) is almost automorphic. This result

was generalized by Martin in [Mar71], where he shows that a similar two-step

factor map exists for a certain class of substitutions over an arbitrary finite

alphabet. In the same paper, he also shows that the maximal equicontinuous

factor of any admissible substitution θ is Zm(θ) × Z(r), where r is the length of

θ and m(θ) is a constant related to the substitution. Soon after, the question

about the maximal equicontinuous factor of any constant length substitution was

completely settled by Dekking [Dek78]. Similar, though more complicated and

abstract, constructions have been used by Veech in [Vee70], where he proves

that every point-distal dynamical system with a residual set of distal points

has an almost automorphic extension which is an AI dynamical system. A

generalisation of a similar flavor is obtained by Eli Glasner in [Gla75], where

he proves that a metric minimal dynamical system whose Ellis semigroup has

finitely many minimal ideals, is a PI system (for the notion of a PI system, see
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Remark 2.2.5). In a subsequent paper [GG18] he expands upon an example

which shows the reverse does not hold: that there exists a PI system whose Ellis

semigroup has uncountably many minimal ideals.

Here, we will use notions introduced by Martin to construct a two-step factor

as above for our substitution space (Xθ, s). However, our construction differs

from Martin’s through a closer investigation of the intermediate space Xφ. Un-

like Martin, we do not consider Xφ as a quotient of Xθ, but instead we show

Xφ is a substitution space over a potentially smaller alphabet B. Moreover, we

prove that the map Ψ : (Xφ, s) → (Zm(θ) × Z(r),+) is one to one everywhere

outside of the orbits of the fixed points of φ. Hence, we give a novel presentation

of these results.

2.2 The AI Factor of a Generalised Morse Sys-

tem

Let us now introduce the notions and results which will be called upon in the

following discussion. All non-standard definitions and results can be found in

[Mar71]. For brevity, we will sometimes write X (respectively - Y ,Z) for the dy-

namical system (X,T ) (respectively, (Y, T ), (Z, T )), when the underlying space

and action on it are understood.

2.2.1 Definition (proximal extension). Let Φ : X → Y be a homomorphism

of dynamical systems (X,T ) and (Y, T ). We say that (X,T ) is a proximal

extension of (Y, T ) if and only if whenever Φ(x1) = Φ(x2), we have that the

points x1, x2 ∈ X are proximal. In other words, the homomorphism Φ has

proximal fibers.

2.2.2 Definition (isometric extension). Let Φ : X → Y be a homomorphism

of dynamical systems (X,T ) and (Y, T ), and let K := {(x, y) ∈ X×X : Φ(x) =

Φ(y)}. We say that (X,T ) is an isometric extension of (Y, T ) if and only if

there is a continuous function F : K → R such that:

1. For each y ∈ Y , F : Φ−1(y)×Φ−1(y)→ R defines a metric on Φ−1(y), and

2. F (tx, ty) = F (x, y) for all t ∈ T .
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Moreover, we assume that for each y ∈ Y , the fiber Φ−1(y) contains at least two

points.

2.2.3 Definition (AI extension). Let (X,T ), (Y, T ), and (Z, T ) be dynamical

systems with homomorphisms Φ : X → Y and Ψ : Y → Z. We say that (X,T )

is an AI extension of (Z, T ) if and only if (Y, T ) is an almost automorphic

extension of (Z, T ) and (X,T ) is an isometric extension of (Y, T ).

2.2.4 Definition (AI dynamical system). We call a dynamical system X =

(X,T ) an AI system if and only if there exists an ordinal α and an inverse

system {Xβ; Φβγ (γ 6 β)}β6α such that

1. Xα = X ,

2. X0 is the one-point dynamical system,

3. If β + 1 < α, then Xβ+1 is an AI extension of Xβ; if β + 1 = α, then Xβ+1

is an AI extension of Xβ, where we do not require the final isomorphic

extension to have fibers of at least two points, and

4. If β 6 α is a limit ordinal, then Xβ = lim−1
γ<β Xγ.

2.2.5 Remark. If in Definition 2.2.4 we replaced ‘almost automorphic’ with ‘prox-

imal’, we would obtain the definition of a PI dynamical system. Since in this

thesis we focus on AI extensions, we do not formally introduce the definition.

Recall Hypotheses 1 and 2 from earlier, namely that we assume θ is an

admissible substitution of constant length r over the alphabet A, and that if θ

is coincidence-free, then it is in the standard form where θ(a)0 = θ(a)r−1 = a

for any letter a ∈ A. Also recall Definition 1.3.4 of an adding machine and

Definition 1.3.5 of a finite group.

2.2.6 Lemma ([Mar71]). Let θ be an admissible substitution of length r. There

is a dynamical system homomorphism f : (Xθ, s)→ (Z(r),+).

Recalling Definition 1.4.2 of basic rk-blocks, we introduce the following no-

tation from [Mar71] and note the following Lemma:
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2.2.7 Notation. For x ∈ Xθ, z = z0z1 . . . ∈ Z(r), and k ∈ N+, we denote by

x[(z); k + 1] the rk+1-block

x
[
−

k∑
i=0

zir
i,−

k∑
i=0

zir
i + rk+1 − 1

]
.

2.2.8 Lemma ([Mar71]). Let x ∈ Xθ, z = z0z1 . . . ∈ Z(r). For the function f

as in Lemma 2.2.6, we have f(x) = z if and only if for all k ∈ N+, x[(z); k+ 1]

is a basic rk+1-block.

2.2.9 Notation (special point of Xθ). From now on, for a constant-length sub-

stitution θ, let the special point xθ of θ be any bi-infinite fixed point of θ such

that xθ[0] = 0, i.e. such that xθ = . . . · 0 . . ..

2.2.10 Definition ([Mar71], [Dek78], height of a substitution). For n ∈ N+

with prime factorization n = p1 . . . pk (potentially with repetition of factors pi),

we denote by n∗ the product of all factors pi which do not divide r, the length of

θ. We define M := {n ∈ N+ : xn = 0}, i.e. M is the set of indexes of all positive

occurrences of 0 in the special point xθ. Denote by dθ the greatest common

divisor of elements of M . Finally, we define m(θ) := d∗θ to be the height of the

substitution θ.

We follow [Mar71] and define an equivalence relation on the alphabet A via

the following sets:

2.2.11 Definition (Sp). For i ∈ A, let z(i) = min{n > 0 : θ(i)n = 0}
mod m(θ). For p ∈ {0, . . . ,m(θ) − 1}, we define Sp := {i ∈ A : z(i) ∼= −p
mod m(θ)}.

2.2.12 Theorem ([Mar71]). Let θ be an admissible substitution of constant

length r. Then its maximal equicontinuous factor is Zm(θ) × Z(r).

Martin shows that the map to the maximal equicontinuous factor is x 7→
(α(x), f(x)), where f(x) is as in Lemma 2.2.6, and α(x) = −p(x) mod m(θ),

where p(x) := min{i > 1 : xi = 0}.
Moreover, Martin links a type of partial coincidence within an equivalence

class Si with the property of being an almost automorphic extension of its max-

imal equicontinuous factor. More precisely:
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2.2.13 Theorem. The dynamical system (Xθ, s) is an almost automorphic

extension of its maximal equicontinuous factor if and only if for some i ∈
{0, . . . ,m(θ) − 1}, there are integers k ∈ N+, m ∈ {0 . . . , rk − 1}, such that

if p, q ∈ Si, then θk(p)m = θk(q)m.

2.2.14 Lemma. If θ is coincidence-free, then all Si are equicardinal.

2.2.15 Definition (P (i, j, k), [ab]). For i ∈ {0, . . . ,m(θ) − 1}, k a positive

integer, and j ∈ {0, . . . , rk − 2}, define P (i, j, k) := {θk(p)[j, j + 1] : p ∈ Si}.
When the set {P (i, j, k) : i ∈ {0, . . . , h(θ − 1)}, k ∈ N+, j ∈ {0, . . . , rk − 2}}
partitions the set of legal 2-letter words Pθ, we will write [ab] for the equivalence

class of ab ∈ Pθ.

2.2.16 Example. For the Thue-Morse substitution

0 7→ 0110

1 7→ 1001

we have that m(θ) = 1, so i = 0 and P (0, 0, 1) = {01, 10}, P (0, 1, 1) = {00, 11};
all other P (0, j, k) coincide with one of these two classes. Thus, the P (i, j, k)

partition the set of legal words Pθ = {00, 01, 10, 11}.

2.2.17 Theorem ([Mar71]). The dynamical system (Xθ, s) is an AI extension

of its maximal equicontinuous factor Zm(θ) × Z(r) if and only if the following

condition holds:

(A) The collection {P (i, j, k) : i ∈ {0, . . . ,m(θ)−1}, k ∈ N+, j ∈ {0, . . . , rk−
2}} is a partition of Pθ.

2.2.18 Remark. From now on let θ be a fixed substitution which satisfies condi-

tion (A) from Theorem 2.2.17, let (Xθ, s) be the associated shift space, and let

Xφ be a compact Hausdorff space such that there is an action of Z on Xφ such

that (Xφ,Z) is the intermediate space postulated in Theorem 2.2.17.

We now proceed to develop the new presentation of the construction of the

AI factor. For this, we will need to prove some additional results.
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2.2.19 Proposition. Let θ be of constant length r, primitive and in canon-

ical (as in Hypothesis 2) form. If ab ∈ Pθ and a ∈ Si for some i, then

b ∈ Si+1 mod m(θ).

Proof. By definition of m(θ), whenever w = w0 . . . wn is a finite θ-legal word

with w0 = wn = 0, then the indexes 0 ≡ n mod m(θ), and so |w| = n + 1 ≡ 1

mod m(θ). In particular, r ≡ 1 mod m(θ) (*).

If ab ∈ Pθ, then θ(ab) is a θ-legal word of length 2r. Let a ∈ Si, b ∈ Sj, so if

θ(a) = α0 . . . αr−1, then the index i′ of the first letter where 0 occurs is congruent

to −i mod m(θ). In other words, i′ ∼= −i mod m(θ) (**). Similarly, if θ(b) =

β0 . . . βr−1, then the first j′ such that βj′ = 0 satisfies j′ ∼= −j mod m(θ)

(***). (By definition of Si, Sj, respectively.) Let w be the subword of θ(ab)

defined as w = αi′αi′+1 . . . αr−1β0 . . . βj′ . Since αi′ = βj′ = 0, by the remark

above we have that |w| ∼= 1 mod m(θ). Also, by direct calculation, |w| =

|αi′ . . . αr−1|+ |β0 . . . βj′| = (r− 1− i′+ 1) + (j′+ 1) = r− i′+ j′+ 1. So we have

1 ∼= r − i′ + j′ + 1 mod m(θ)

0 ∼= r + i− j mod m(θ) by (**) and (***)

j ∼= r + i mod m(θ) by modular arithmetic

j ∼= i+ 1 mod m(θ) by (*).

Since all indexes of Si are elements of {0, . . . ,m(θ)−1}, this means that j = i+1

mod m(θ), as required.

2.2.20 Corollary. If in addition to the conditions of Proposition 2.2.19, θ is

simple, for each P (i, j, k) there exists a unique Si such that

ab ∈ P (i, j, k) implies that a ∈ Si, and b ∈ Si+1 mod m(θ).

Moreover, for all a ∈ Si, there exists a letter b ∈ Si+1 mod m(θ) such that

ab ∈ P (i, j, k).

Proof. By definition, P (i, j, k) := {θk(p)[j, j + 1] : p ∈ Si}, so |P (i, j, k)| 6 |Si|.
Since θ is simple, |P (i, j, k)| = |Si|(*). By Proposition 2.2.19, θk(p)(j) ∈
Si+j mod m(θ) and so indeed there exists a unique Si+j mod m(θ) such that ab ∈
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P (i, j, k)→ a ∈ Si+j mod m(θ), b ∈ Si+j+1 mod m(θ). Also by (*) and since θ is sim-

ple, we conclude that for all a ∈ Si+j mod m(θ) there exists a b ∈ Si+j+1 mod m(θ)

such that ab ∈ P (i, j, k).

Now we move onto one of our main theorems - that the intermediate space

Xφ = (Xφ, s) (from Remark 2.2.18) is in fact a substitution system, with the

homomorphism between the spaces being a sliding block code.

2.2.21 Theorem. Let θ be a simple substitution in canonical form of length r

over A and let P (i, j, k) partition Pθ into n equivalence classes. Then there exists

a substitution φ on B = {0, . . . , n− 1} and a sliding block code Ψ : Xθ → Xφ. In

fact, we also show that this is a |P (i, j, k)|-to-1 extension.

Informally, we construct a map Ψ : Xθ → Xφ which is defined via an ‘en-

coding’ of the set Pθ of admissible two-letter words. This encoding sends all

two-letter words in the same partition Pj of the set Pθ to a given letter in B.

Explicitly defining this Ψ so that it maps fixed points of θ to fixed points of φ

requires careful combinatorial choices, detailed in the proof which we now give.

Proof. Let us label the partitions of Pθ as P0, . . . , Pn−1 with the rule that the

last letters of P0 belong to S0 (so in particular, for some a ∈ A, a0 ∈ P0). For

ab ∈ Pθ, define [ab] := k, where ab ∈ Pk (since the P (i, j, k) partition Pθ, this k is

uniquely defined for any ab ∈ Pθ). For b ∈ {0, . . . n− 1}, let ab be any last letter

of a word in Pb. Define φ(b) = b0 . . . br−1 by b0 = b and bh := [θ(ab)(h − 1, h)].

Note that by Corollary 2.2.20, φ(b) does not depend on the particular choice of

ab - if c, d ∈ Si, then [θ(c)(h− 1, h)] = [θ(d)(h− 1, h)] for all h ∈ {1, . . . , r− 1},
by definition of P (i, j, k). Now let Ψ : Xθ → Xφ be the sliding block code

defined by Ψ(x)i = [xi−1xi] = [x(i − 1, i)]. We use Theorem 1.1.22 to confirm

that Ψ is indeed a sliding block code by checking Ψ ◦ sθ = sφ ◦ Ψ. For x ∈ Xθ,

Ψ(s(x))i = [s(x)(i− 1, i)] = [x(i, i+ 1)] = Ψ(x)i+1 = s(Ψ(x)), as required.

To be able to explore the properties of the Ellis semigroups of the shift

spaces Xθ and Xφ, we will need to further determine the structure of Xφ and

the homomorphism from it to the maximal equicontinuous factor. We begin

with the following lemmas.
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2.2.22 Lemma. Ψ(θ(x)) = φ(Ψ(x)).

Proof. We want to show Ψ(θ(x))i = φ(Ψ(x))i for any i ∈ Z. Let i = mr + n.

We have two possibilities.

Case 1 - n = 0. Recalling Definition 2.2.15 of the equivalence class [ab] of

a word ab ∈ Pθ, we have that

Ψ(θ(x))i = [θ(x)i−1θ(x)i] by definition of Ψ

= [θ(xm−1)r−1θ(xm)0] since i = mr + n

= [xm−1xm] since θ is in canonical form.

Also, φ(Ψ(x))i = φ(ψ(x)m)0 = φ([xm−1xm])0 = [xm−1xm], by definition of φ.

Hence, when i = mr, Ψ(θ(x)) = φ(Ψ(x)), as required.

Case 2 - n ∈ {1, . . . , r − 1}. Arguing as in the previous case, Ψ(θ(x))i =

[θ(x)i−1θ(x)i] = [θ(xm)n−1θ(xm)n] = [θ(xm)(n − 1, n)]. Similarly, φ(Ψ(x))i =

φ(Ψ(x)m)n = φ([xm−1xm])n = [θ(xm)(n − 1, n)], where the final equality holds

by definition of φ and Corollary 2.2.20. Thus again, Ψ(θ(x)) = φ(Ψ(x)).

2.2.23 Lemma. m(θ) = m(φ).

Proof. Let w be the right-hand infinite fixed point of φ starting from the letter

0, and let u be the right-infinite fixed point of θ starting with the letter 0. Note

that limn→∞Ψ(θn(0)) = limn→∞ φ
n(0), since φ(b)0 = b for all letters b ∈ B and

since by definition, a0 ∈ P0 for some a ∈ A. Thus w is the image under Ψ of u.

Since only 2-letter blocks in P0 are mapped to 0 ∈ B by Ψ and since a0 is the

only word in P0 ending in ‘0’ (by Corollary 2.2.20), we have that wi = 0 implies

ui = 0. Thus,

Mφ := {n ∈ N : wn = 0} ⊂ {n ∈ N : un = 0} =: Mθ,

and so gcdMθ divides gcdMφ, and so m(θ) divides m(φ), as required. Hence,

m(θ) 6 m(φ).

It is not too difficult, using a similar line of argument, to show that in fact

m(θ) = m(φ).
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Thus, we now provide a different proof to the following theorem given by

Martin, that the intermediate space is an almost automorphic extension of its

maximal equicontinuous factor. We should note that this proof differs signifi-

cantly from Martin’s, as he did not represent the intermediate space as a sub-

stitution system.

2.2.24 Theorem. Xφ is an almost automorphic extension of its maximal equicon-

tinuous factor.

Proof. We will use Theorem 2.2.13, by showing a stronger condition than the

one needed for the Theorem holds, namely that for any equivalence class S ′i ⊂ B,

for just the first iteration of φ and for any integer m ∈ {1, . . . , r− 1}, the m-th

column of φ(p) coincides for all p ∈ S ′i, i.e. φ(p)(1, r− 1) = φ(q)(1, r− 1) for all

p, q ∈ S ′i.
Let S ′i := {b ∈ B : z(b) ∼= −i mod m(φ)} be an equivalence class of B, and

let c, d ∈ S ′i. By definition of φ, φ(c) = c0 . . . cr−1, φ(d) = d0 . . . dr−1, where

c0 = c, d0 = d, and there exist a, b ∈ A such that for all h ∈ {1, . . . , r − 1},
ch = [θ(a)(h − 1, h)] and dh = [θ(b)(h − 1, h)]. By Lemma 2.2.23, m(θ) divides

m(φ), so z(c) ∼= −i mod m(φ) implies that z(c) ∼= −(i mod m(φ)) mod m(θ).

Writing j := i mod m(φ) for short, we have z(c) ∼= −j mod m(θ); similarly,

z(d) ∼= −j mod m(θ). As we remarked before in the proof of Lemma 2.2.23,

we can choose a, b ∈ A so that ch = 0 implies that ah = 0, and similarly, dh = 0

implies that bh = 0. Combining this with the above congruences and the fact

that all zeroes in Xθ are spaced at least m(θ) apart force us to conclude that

both z(a) ∼= −j mod m(θ) and z(b) ∼= −j mod m(θ). Thus, a, b ∈ Sj, so

ch = [θ(a)(h− 1, h)] = [θ(b)(h− 1, h)] = dh.

Hence by Theorem 2.2.13, Xφ is an almost automorphic extension of its

maximal equicontinuous factor.

2.2.25 Note. Note that we have in fact shown something stronger than what

was needed for Theorem 2.2.13 - that whenever c, d ∈ S ′i ⊂ B, ch = dh for all

h = 1, . . . , r − 1.

We use this fact to prove the following theorem.

59



CHAPTER 2. FACTORIZATIONS OF SUBSTITUTION DYNAMICAL
SYSTEMS

2.2.26 Theorem. The map Ψ : Xφ → Zm(θ)×Z(r) as previously defined is one

to one outside of the orbits of the fixed points of φ.

Proof. By Martin’s proof of Lemma 2.2.6, f−1(00 . . .) contains only and all of

the fixed points of the substitution φ, and Ψ maps orbits to orbits. Moreover,

since Ψ is surjective, we have that for all z ∈ Z, there exist x1, . . . xm(θ) such

that Ψ(xj) = (z, j) ∈ Zm(θ) × Z(r). Thus, |f−1(z)| > m(θ). Therefore, recalling

that (α, f) : Xθ → Z(m(θ), r), to show Ψ is one to one, we need to show that

|f−1(z)| = m(θ) for all non-integer z ∈ Z(r).

So, let z = z0z1 . . . ∈ Z(r) be a non-integer, and let zi be a nonzero term of z.

Since z is not an integer, it does not have a tail of zeroes, so there is j > i such

that zj 6= 0. Then by Lemma 2.2.8, x[(z); j + 1] is a basic rj+1-block. Note that

since i < j, the word x[(z); i+ 1] is a basic sub-block of x[(z); j + 1]. Moreover,

since zj 6= 0, x[(z); i+ 1] is not a prefix of x[(z); j + 1]; informally we can say it

is a basic “tail-end” ri+1-block of x[(z); j + 1].

Note that by the way φ is defined, if a, b ∈ Sl, then for all k ∈ N+, for all

n ∈ {1, . . . , rk − 1}, we have φk(a)n = φk(b)n. In other words, we have only

m(θ)-many options for x[(z); i+1]. By the same type of argument, we also have

only m(θ)-many choices for x[(z); j + 1]. Let us label them as w
(j)
1 , . . . , w

(j)
m(θ).

Moreover, again by definition of φ, if a ∈ Sl, b ∈ Sm, and l 6= m, then φk(a)n 6=
φk(b)n, for all k ∈ N+ and n ∈ {0, . . . , rk − 1}. Hence, out of the m(θ)-many

choices for x[(z); i+1], there is precisely one which is a subword of a given choice

of the m(θ) possibilities for x[(z); i + 1]. Hence, for each w
(j)
n , for each i < j,

there is precisely one w
(i)
m which is a subword of w

(j)
n starting at the appropriate

index. Without loss of generality, let us relabel the words for each j so that

w
(i)
n is a subword at the appropriate place of w

(j)
n for all n ∈ {1, . . . ,m(θ)}.

Therefore, for z ∈ Z(r), we have only m(θ)-many xi ∈ Xφ such that f(x) = z,

namely xn = limi→∞w
(i)
n for n ∈ {1, . . . ,m(θ)}. Therefore, |f−1(z)| = m(θ), as

required.
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Hence we have the following diagram

(Xθ, s) (Xφ, s) (Zm(θ) × Z(r),+)Ψ

Ψ(w)=y1, Ψ(v)=y2

Φ◦Ψ

Φ

Φ(y1)=Φ(y2)=0
(2.1)

We note that since the extension Ψ : Xθ → Xφ is distal (and isometric), all

points outside the orbits of the fixed points of θ are distal, as well.
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Chapter 3

The Ellis Semigroup of Certain

Substitution Systems

3.1 Introduction

As we have mentioned before, concrete calculations of the Ellis semigroup are

very few. The few examples include those given by Namioka [Nam84], Milnes

[Mil86] and [Mil91], Glasner [Gla76] and [Gla93], Berg, Gove and Haddad [BGH98],

Haddad and Johnson [HJ97], Budak, Isik, Milnes and Pym [BIsMP01], and

Glasner and Megrelishvili [GM06], as well as a more recent one by Barge [Bar].

In Section 3.2 we add to this list a wide range of constant length substitution

systems over arbitrary finite alphabets whose Ellis semigroups have one or two

minimal ideals. The two minimal ideals have q idempotents each, where q can

be any natural number greater than 1. Furthermore, in Section 3.3, we provide

a counterexample to a key proposition to [HJ97], a paper which aims to calcu-

late the Ellis semigroup of some binary constant length ‘Morse-like’ substitution

systems. However, their main theorem still holds, and is shown to be a corollary

of our theorem for substitutions over arbitrary alphabets.
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3.2 Calculating the Ellis Semigroup of Certain

Constant Length Substitution Systems

We proceed by recalling Proposition 1.5.9 about the map between respective

Ellis semigroups which is induced by homomorphisms of dynamical systems and

considering Diagram 2.1 from the end of Chapter 2:

(Xθ, s) (Xφ, s) (Zm(θ) × Z(r),+)Ψ

Ψ(w)=y1, Ψ(v)=y2

Φ◦Ψ

Φ

Φ(y1)=Φ(y2)=0

We move “backwards” (i.e. from factors to extensions) through this diagram,

going from the simpler semigroup E(Zm(θ)×Z(r)) to the more complicated ones

for the other two spaces. All spaces are the same as introduced in Chapter 2;

we sometimes write Xθ for the dynamical system (Xθ, s) and similarly Xφ for

(Xφ, s).

Since Z := Z(m(θ), r) = (Zm(θ)×Z(r),+) is equicontinuous, it is distal and

so by Proposition 1.5.35, its Ellis semigroup is a group (in fact, E(Z) ∼= Z).

Thus, the only idempotent in E(Z) is the identity map, IZ .

3.2.1 Definition (q). For the substitution φ on the alphabet B defined as in

the proof of Theorem 2.2.21 , we define sets of letters C1, . . . , Cr−1 ⊂ B by

Ci := {φ(b)i : b ∈ B}. Define q := |{Ci : i = 1, . . . , r − 1}|.

In other words, the set Ci is the set of all letters in the ith ‘column’ of the

substitution φ, where we only consider the ‘tail-ends’ φ(b)[1; r − 1], for a letter

b. Then, q is the number of distinct sets of letters in the same column. Note

that |Ci| = m(θ) for any i = 1, . . . , r − 1, since by definition of φ, we have only

m(θ)-many possibilities for “tail-ends”, i.e. blocks φ(b)[1; r − 1].

3.2.2 Notation. By limn→∞ φ
n(a ·b) we mean that we keep the ‘center dot’ fixed,

so φ(a · b) = φ(a) · φ(b), etc.

We now can state one of our auxiliary theorems of this section.

3.2.3 Theorem. The Ellis semigroup of the space Xφ has one minimal ideal

with q idempotents.
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Proof. If f is an idempotent in Eφ, then f (as in Lemma 2.2.6) should project

to IZ , i.e. Φ ◦ f = IZ ◦ Φ. Recall Theorem 2.2.26, that Φ is 1-1 on the set

X ′φ := Xφ \∪{O(w) : w is a fixed point of φ}. Then proximality is trivially seen

to be a transitive relation, hence by Proposition 1.5.40, we have that E(Xφ)

has one minimal ideal. Moreover, if x ∈ X ′φ, then Φ(f(x)) = I(Φ(x)) = Φ(x),

so we have f(x) = x, i.e. x is a fixed point of f . Noting that all maps in Eφ

commute with powers of the shift, we only need to determine the values of f on

the preimage of 0 ∈ Z, i.e. on the fixed points of φ, namely w1, . . . , wd.

We make a couple of observations about the fixed points of φ. All such fixed

points are images under Ψ of fixed points of θ. Since Ψ identifies the fixed points

. . . a ·b . . . with . . . c ·d . . . if and only if ab ∼θ cd, then the number of fixed points

of φ is equal to the number of distinct equivalence classes P (i, j, k) of θ, which

is also equal to |B|. Moreover, from the way in which φ was defined, we have

only m(θ)-many possibilities for “tail-ends” φ(b)[1, r− 1] for b ∈ B. Hence, if w′

and w′′ are two-sided fixed points of φ such that w′0 = w′′0 , then w′−n = w′′−n for

all n ∈ N+.

We now claim that if w′, w′′ are distinct and negatively asymptotic, then in

fact they only differ in the 0th letter and thus are also positively asymptotic.

Indeed, if w′−n = w′′−n for all n ∈ N+, and if u′ ∈ Ψ−1(w′) and u′′ ∈ Ψ−1(w′′),

then u′[−(n + 1),−n] ∼θ u′′[−(n + 1),−n] for all n ∈ N+. Let Sa ⊂ A be the

equivalence class of last letters of Pw′−1
. Then the set of all first letters of Pw′0

is the same as the set of all first letters of Pw′′0 , i.e. is the set Sa+1 mod m(θ).

So, u′0 ∼θ u′′0, so for all n ∈ N+, u′[n, n + 1] ∼θ u′′[n, n + 1]. Hence for all

n ∈ N+, w′n = w′′n. Hence if w′, w′′ are distinct and negatively asymptotic, then

they are also positively asymptotic and differ only in the 0th letter. By the

same argument, if w,w′ are positively asymptotic, then they are also negatively

asymptotic, and again might differ only in the 0th letter.

We will prove our theorem through the following steps:

1. We define a set of special sequences ski(n) of shifts, such that the limit of

each such sequence is idempotent on the set of fixed points of φ.

2. We next show these limits not only exist on all of Xφ, but are also idem-

potent. Thus, these maps belong to the Ellis semigroup E(Xφ).
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3. Finally, we show that these are both minimal idempotents, and the only

possible minimal idempotents.

Let i ∈ {1, . . . , r − 1} and consider the sequences ski(n), where ki(n) = irn,

for n ∈ N. Then note ski(n)(x)[−1, 0] = x[irn − 1, irn] for all n ∈ N, by the

definition of the shift. Consider the set Cr−1 of final letters of images φ(a) for

a ∈ B. We make the following observation: (A) For each a ∈ Ci, there is a

unique b ∈ Cr−1 such that for all c ∈ B, sir
n
(c)[−1, 0] = ba for all n > 1. In

other words, each a ∈ Ci has a unique predecessor in the limit.

For a ∈ Si, let predi(a) be any letter in B such that φ(predi(a))r−1 = b.

Then for any c ∈ B, limn→∞ s
irn(c) = limn→∞ φ

n(predi(a) · a) = . . . b · a . . .,
where a = φ(c)i.

Let F be the set of fixed points of φ, and define fi|F := limn→∞ s
irn|F . Then

fi|F is indeed an idempotent on F . Let x = . . . c ·d . . . ∈ F be a fixed point of φ,

and let a := φ(d)i. Then fi(x) = limn→∞ s
irn(. . . c ·d . . .) = limn→∞ φ

n(predi(a) ·
a) = . . . b · a . . . = . . . φ(predi(a)) · φ(a) . . ., where b is the unique predecessor of

a ∈ Si. Also,

fi(fi(x)) = fi(. . . b · a . . .)

= fi(. . . φ(predi(a)) · φ(a) . . .)

= . . . φ(predi(a)) · φ(a) . . . by definition of predi(a)

= . . . b · a . . . = fi(x).

Hence fi|F is an idempotent.

Moreover, fi identifies all points which are proximal to the right, as fi is a

limit of positive powers of the shift s. In other words, if fi(. . . a−1 · a . . .) =

. . . b−1 · b0 . . ., and c0 ∈ B has the same tail-end as a0, then fi(. . . c−1 · c0 . . .) =

f(. . . a−1 ·a0 . . .) = . . . b−1 · b0 . . ., since φ∞(a0) and φ∞(c0) coincide on the right.

Now, since |Ci| = q, we have only q-many distinct fi. In other words, Ci = Cj

if and only if fi = fj. This is obvious from the definition of the Ci and fi.

Now, we show the maps fi can be extended to all of x ∈ Xφ. In other words,

we show that fi := limn→∞ s
irn converges for all x ∈ Xφ and is an idempotent,
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for all i = 1, . . . , r − 1. Recall that the following diagram is commutative:

Xφ Xφ

Zr × Z(m(θ)) Zr × Z(m(θ))

sk

Φ Φ

+(0,k)

Moreover, Φ is one to one outside the orbits of the fixed points of φ. We have,

for w not an integer:

ψ( lim
n→∞

sr
n

(w)) = lim
n→∞

Φ(sr
n

(w)) since Φ is continuous

= lim
n→∞

[Φ(w) + (0, rn)] note that rn ∈ Z(m(θ))

= Φ(w) + lim
n→∞

(0, rn)

= Φ(w) + (0, 0) = Φ(w).

Therefore, {srn}n∈N converges to an idempotent, as Φ is one to one outside the

orbits of the fixed points. Therefore, fi ∈ E(Xφ), for all i = 1, . . . , r − 1.

We now show that the fi are minimal idempotents in E(Xφ). First recall

that we have enumerated all possible values an idempotent f ∈ E(Xφ) can take,

since it has to commute with the shift and commute with the map Φ, which

is one to one on X ′φ. Note that all our fi act as identity on the right of the

other fi, and since we know that E(Xφ) has only one minimal (by Proposition

1.5.40) ideal with at least two idempotents in it (by Proposition 1.5.37), we

conclude that in fact all fi are minimal idempotents in the same minimal ideal

I ⊂ E(Xφ).

Also note this - that fi are limits of sequences - is consistent with Eli Glasner’s

result that in cases such as our Xφ, the Ellis semigroup is Fréchet.

To state our main theorem, we recall Definition 2.2.15 of the equivalence

classes of two-letter words P (i, j, k), and Definition 3.2.1 of the special number

q associated to a substitution.

3.2.4 Theorem. If θ is a simple substitution with n fixed points, such that

{P (i, j, k)} partition the set of legal two-letter words Pθ, its Ellis semigroup has
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2 minimal ideals with q idempotents each.

Proof. In Theorem 3.2.3, we have shown that Eφ has one minimal ideal with q

idempotents.

Moving to the extension Xθ of Xφ, any minimal idempotent in Eθ is mapped

to a minimal idempotent in Eφ. We note again that idempotents commute with

powers of the shift, so are fully determined by their value on a point per orbit.

Since points in X ′θ := Xθ \ ∪{O(w) : w is a fixed point of φ} get mapped to

points in X ′φ, fibers of Ψ are distal, points in X ′θ are distal, and idempotents

map distal points to themselves, we have that an idempotent f ∈ Eφ will be the

identity on X ′θ. Thus, we only need to determine the value f takes on the fixed

points of θ. Since it gets mapped to an idempotent in Eφ, we have Ψ◦f = g ◦Ψ,

for one of the q-many idempotents g in Eφ.

Let us consider what an idempotent f ∈ Eθ ‘does’ to the fixed points of θ.

Recall from Proposition 1.5.30 that for any minimal idempotent u, the points

ux and x are proximal. Note that since θ(a)0 = θ(a)r−1, every legal word in Pθ

is a fixed point of θ, so θ has |Pθ| many fixed points. Also note that for two

such fixed points x and y, either xn = yn for all n ∈ N, or xn 6= yn for all n ∈ N;

similarly xn and yn are either all the same or all different for all negative integers

n. Thus, if x and y are proximal, they either coincide in all their non-negative

or all their negative indexes.

Fix a minimal idempotent g in Eφ, and let the minimal idempotent f ∈ Eθ
be such that Ψ ◦ f = g ◦ Ψ. Let a ∈ Xθ be a fixed point of θ. Since ux = uy

implies that x is proximal to y (for a minimal idempotent u), each one of the

m(θ)-many points b in the fiber of Ψ−1(a) can only get mapped to two potential

points in the fiber of Ψ−1(g(a)) - call them b′, which is proximal with b on the

right, and b′′, which is proximal with b on the left. Note that the choice of b′

or b′′ also uniquely determines the choice of f(c) for any other point c in the

same fiber Ψ−1(a), since θ is coincidence-free (and so would the tails of its fixed

points be coincidence-free). Hence, for each idempotent g ∈ Eφ, we have exactly

two choices of f ∈ Eθ of idempotents such that Ψ∗(f) = g. By almost the same

argument as that in the proof of Theorem 3.2.3, we can show that both f are

limits of shift maps, hence are indeed in the Ellis semigroup of Xθ. Recalling that
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equivalent idempotents get mapped to equivalent idempotents (so in this case,

equivalent idempotents in Eθ get mapped to the same idempotent in Eφ), we

have only two equivalent idempotents in Eθ. Hence, we have only two minimal

ideals in Eθ, with q many idempotents each.

Thus, as corollary, we have the following restatement of the Theorem of

Haddad and Johnson:

3.2.5 Theorem ([HJ97]). The Ellis semigroup Eθ of a continuous constant-

length binary substitution has two minimal ideals with two idempotents each.

3.2.6 Remark. Furthermore, let v, v, w, w be the four fixed points of the substi-

tution θ, where v[−1, 0] = 11 and w[−1, 0] = 01. Then in light of the argument

in the proof of Theorem 3.2.4, we may express the four minimal idempotents

g1, g2, g3, and g4 in shorthand as:

v v w w

g1 w w w w

g2 w w w w

g3 v v v v

g4 v v v v

3.3 The Counterexample

We now give a counterexample to Haddad and Johnson’s proposition 3.4 [HJ97],

which is essential to their proof that the Ellis semigroup of a binary continuous

substitution system contain two minimal ideals with two idempotents each. We

emphasize that their theorem still holds, and was generalised in the previous

section.

Recall Definition 1.3.17 of an IP set. Certain idempotents in the Ellis semi-

group can be thought of as cluster points ‘along an IP set’. In [Had96], Kamel

Haddad introduces this notion as:

3.3.1 Definition. For a dynamical system over N (or Z), a cluster point f of

the Ellis semigroup E(X) is called an IP cluster point along an IP subset P of
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N (or Z) if and only if for every neighbourhood U of f in XX , there is a IP

subset QU of P , such that QU ⊆ {n ∈ P : T n ∈ U}.

3.3.2 Remark. Note that if f is an IP cluster point (written IPCP for short)

along the set P , and if Q ⊃ P , then f is also an IPCP along Q.

The main aim of this section is to give a counterexample to Proposition 3.4

from Haddad and Johnson’s paper, which states:

3.3.3 Proposition ([HJ97], Proposition 3.4). Let P be an IP subset of Z, gen-

erated by {pn}∞n=1. If pn is positive for an infinite number of n, we denote by P+

the IP set generated by the positive pn’s. If pn is negative for an infinite number

of n, we denote by P− the IP set generated by the negative pn’s. Then f is an

IPCP for a Z-cascade along an IP set P if and only if f is an IPCP for at least

one of the corresponding Z+ or Z− actions, along P+ or P− respectively.

Recall Definition 1.1.17 of a continuous substitution as a constant length

binary one where θ(0) = θ(1), and the fixed points of θ are not periodic.

From now on, let θ be a continuous binary substitution of length r. We

provide an alternative way of defining continuous substitutions in the following

Proposition. To make the proof of this proposition clearer, we need the notion

of ‘disjoint support’.

3.3.4 Definition (disjoint support). Let m, k be two natural numbers with

binary expansions m =
∑

i∈N 2mi , k =
∑

i∈N 2ki , where mi, ki ∈ {0, 1}. We say

that the binary expansions of m and k have disjoint support for the 1’s (for the

0’s) if and only if for every i ∈ N, mi = 1 implies ki = 0 (respectively, mi = 0

implies ki = 1).

3.3.5 Proposition. Let θ be a continuous binary substitution of length r, so

θ(0) = a, θ(1) = a, where a = a0a1 . . . ar−1, and a0 = 0. Define the function

P : N → {0, . . . , r − 1}<N by P(k)m = bm, where k has base r expansion k =

b0r
l + b1r

l−1 + . . . bl−1r + bl. Then the one-sided fixed point of θ defined as

ω := limn→∞ θ
n(0) can be represented as ωk = (

∑
i∈I |P(k)|i) mod 2, where

I := {m ∈ {0, . . . , r − 1} : am = 1}.
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Proof. We proceed by induction on θk, noting that θk(0) is a prefix of length rk

of ω.

Base Case: It is immediate that for θ1(0) = a = a0 . . . ar−1, am = 1 if and

only if m ∈ I, and since 0 6 m < r, P(m) = m, so indeed am = (
∑

i∈I |P(m)|i)
mod 2.

Inductive Step: Assume that for some k ∈ N+, θk(0) is such that θk(0)m =

(
∑

i∈I |P(m)|i) mod 2 for 0 6 m < rk = |(θk(0))|, and consider θk+1(0).

We observe that θk+1(0) = θk(a0)θk(a1) . . . θk(ar−1) and θk(ai) = θk(1) if and

only if ai ∈ I.

Let α ∈ {0, . . . , rk+1 − 1} be arbitrary but fixed. Then α can be uniquely

written as α = jrk + m where j ∈ {0, . . . , r − 1} and 0 6 m < rk. Note that

P(jrk + m) = jP(m) (*) and that θk+1(0)α = θk(aj)m. We want to show that

θk+1(0)α = (
∑

i∈I |P(α)|i) mod 2.

Now, j ∈ I if and only if aj = 1 if and only if θk(aj) = θk(1). So,

∑
i∈I

|P(jrk +m)|i =
∑
i∈I

|P(m)|i +
∑
i∈I

|P(j)|i =


∑

i∈I |P(m)|i + 1 iff j ∈ I

∑
i∈I |P(m)|i iff j /∈ I.

Thus,

(∑
i∈I

|P(jrk +m)|i

)
mod 2 =


(
1 +

∑
i∈I |P(m)|i

)
mod 2 = θk(0)m if j ∈ I

(∑
i∈I |P(m)|i

)
mod 2 = θk(0)m if j /∈ I

Recall that θk+1(0)α = θk(0)m if and only if j ∈ I. Combining these two facts

gives (∑
i∈I

|P(jrk +m)|i

)
mod 2 = θk+1(0)α,

as required

3.3.6 Remark. Recall that w−n = v−n for any n ∈ N, so s−n(w) and s−n(v) are

always distance 1 apart. Thus, g1 cannot be an IPCP along any P− ⊂ Z−.
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Now the following Lemma is all we need to finish our construction of the

counterexample:

3.3.7 Lemma. Further to the conditions of Proposition 3.3.5, let j := min I

and p := jn+ j, so P(p) = jj. Then the idempotent g1 defined in Remark 3.2.6

is not an IPCP along the IP set generated by Q+ := {pr2m : m ∈ N}.

Proof. Recall that g1(w) = w = g1(v), where v = . . . 1 ·0 . . . and w = . . . 0 ·0 . . ..
So, if g1 is an IPCP along the IP set P+, we will need for sq(w) to get arbitrarily

close to w for q ∈ P+. Note that since vn = wn for n ∈ N, this also means sq(v)

will get arbitrarily close to w.

Note that for all ρ ∈ Q+, (
∑

i∈I |P(ρ)|i) mod 2 = 0, so wρ = 0 for all ρ ∈
Q+. Also, since all ρ ∈ Q+ have disjoint support, we have that for ρ1, . . . , ρm ∈
Q+, (∑

i∈I

|P(
m∑
k=1

ρk)|i

)
mod 2 =

(
m∑
k=1

∑
i∈I

|P(ρk)|i

)
mod 2 = 0.

Also, ρ will have a ‘tail’ of 2m zeroes, so P(ρ−1) will have an odd number of j’s,

an even number of (n− 1)’s (in the tail), and one j− 1 (which, since j = min I,

is not an element of I hence not counted). Thus,
(∑

i∈I |P((
∑m

k=1 ρk)− 1)|i
)

mod 2 = 1. So, if ρ is in P+, sρ(w) = . . . wρ−1 · wρ . . . = . . . 1 · 0 . . ., which is

distance 1 from w. So, g1 cannot be an IPCP along P+, as required.

3.3.8 Note. In fact, it is not hard to amend the proof above to show that the

idempotent g3 (as in Remark 3.2.6) is an IPCP along P+.

3.3.9 Counterexample. Let θ be a continuous binary substitution of length

r. Then by Theorem 3.2.5, we have that the Ellis semigroup of (Xθ, s) has two

minimal ideals with two idempotents each. Following the notation of Remark

3.2.6, we denote the four minimal idempotents as g1, g2, g3, g4, where g1 ∼ g3,

g2 ∼ g4, and g1 and g2 are in the same minimal ideal, as are g3 and g4.

Since g1 is an idempotent in E(Xθ), by [Had96], g1 is an IP cluster point

in E(Xθ). Then by Remark 3.3.2, g1 is also an IPCP along Z (since any IP

sequence is contained in Z).
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We now construct a generating set for Z. Since θ is continuous, we may

write θ(0) = a, θ(1) = a, where a = a0a1 . . . ar−1, and a0 = 0. As in Proposition

3.3.5, define I := {m ∈ {0, . . . , r − 1} : am = 1}. Also, define the function

P : N → {0, . . . , r − 1}<N by P(k)m = bm, where k has base r expansion

k = b0r
l + b1r

l−1 + . . . bl−1r+ bl. Furthermore, let j := min I and p := jr+ j, so

P(p) = jj. We take as generating set for Z the sequence given by P := {m ∈
Z : m < 0} ∪ {pr2m : m ∈ N}.

Then by Remark 3.3.6, g1 cannot be an IPCP along P−. Moreover, by

Lemma 3.3.7, g1 also cannot be an IPCP along P+. Therefore, the idempotent

g1 combined with the IP set Z generated by the sequence P provide the necessary

counterexample to Proposition 3.3.3.
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Chapter 4

The Furstenberg Topology

4.1 Introduction

Let (X,T ) be a dynamical system, let u be a minimal idempotent in its Ellis

semigroup, and let M := uE be the corresponding minimal left ideal in E(X,T ).

In general the set u[X] is not closed in X, and so cannot be compact in the sub-

space topology. However, sets of the form u[X] are of fundamental importance

for phenomena related with distality. For example, recall Proposition 1.5.39,

which has so far been used in several places throughout this thesis:

1.5.39 Proposition. Let (X,T ) be a dynamical system, and u ∈ E(X) be a

minimal idempotent. The subspace u[X] ⊂ X does not contain any proximal

pairs.

This proposition can be used to give an alternative proof of Proposition 1.5.40

that the Ellis semigroup has only one minimal ideal if and only if proximality is

an equivalence relation. Moreover, it is used in many theorems about extensions

of various dynamical systems. Because of this importance, it is useful to weaken

the topology of u[X] so as to get a compact space. This weakening is the so-

called Furstenberg Topology. It was introduced in [Fur63] by Hillel Furstenberg,

where he investigated the structure of distal dynamical systems. It was later

used by William Veech [Vee70] to give a necessary and sufficient condition for

a point-distal dynamical system to be an almost automorphic extension of its
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maximal equicontinuous factor. This topology has subsequently proven useful

for investigation of distality within a dynamical system.

4.2 Definition and Properties of the Fursten-

berg Topology

Let us begin by considering the Furstenberg topology. This topology is defined

on a special subset of the phase space X, using a minimal idempotent. So, let I

be a minimal ideal in E(X), so EI ⊆ I, and let u2 = u ∈ I be an idempotent.

We define

Xu := {x ∈ X : ux = x},

in other words, Xu is the subset of X consisting of all points which are fixed by

u. Note that:

4.2.1 Proposition ([dV93]). Xu = u[X], the image of X under the mapping

u.

Proof. Xu ⊆ u[X]: let x ∈ Xu. Then ux = x, so x ∈ u[X].

Xu ⊇ u[X]: let x ∈ u[X]. Then there exists y ∈ X with uy = x. But then

ux = uuy = uy = x, so in fact x ∈ Xu.

Let x, y ∈ X. We define a function F (x, y) : X ×X → R+
0 by

F (x, y) := inf{d(tx, ty) : t ∈ T}.

We note that this function is upper semicontinuous as the greatest lower bound

of continuous functions, namely d(tx, ty) : X×X → R+
0 . Moreover, F (x, y) = 0

if and only if x, y are proximal. However, F (x, y) does not satisfy the triangle

inequality. Indeed, in the Thue-Morse system (XTM , s), we have that F (v, w) =

0 and F (w, v) = 0, but F (v, v) = 1. Hence, F (x, y) does not induce a metric on

X.

This function will be used to define a topology on X, and later on a special
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subset of X, via sets

Ua(x) := {y ∈ X : F (x, y) < a}.

We begin with a Lemma, which will then help us show the sets {Ua(x) : x ∈
Xu, a ∈ R+} form a basis for a topology (the Furstenberg topology) on Xu.

4.2.2 Lemma ([Vee70]). Let x, y ∈ Xu and suppose y ∈ Ua(x) for some a > 0.

There exists ε > 0 such that Uε(y) ⊆ Ua(x).

Here, we give an expanded and clarified proof of this lemma.

Proof. Let W be the set

W := I(x, y) = {(ix, iy) : i ∈ I},

for some I - a minimal ideal in E(X,T ). This is a minimal subset, and thus

(I, T ) is a minimal dynamical system. Now, the mapping φ : I → X ×X given

by i 7→ (ix, iy) is a homomorphism, so W = φ(I) is a minimal set in (X×X,T ).

Since u(x, y) = (x, y) ∈ I(x, y), the set I(x, y) is the orbit closure of (x, y) in

X ×X.

Let b > 0 be such that F (x, y) < b < a, and consider the set

V = {(x′, y′) ∈ W : d(x′, y′) < b}.

Note that F (x, y) < b, so inft∈T d(tx, ty) < b, so there exists t0 ∈ T with

d(t0x, t0y) < b. Further note that I(x, y) is the orbit closure of (x, y), so

(t0x, t0y) ∈ I(x, y), and d(t0x, t0y) < b. Thus, (t0x, t0y) ∈ V 6= ∅. Moreover,

this set V is open in W .

Note that since V 3 (t0x, t0y) and since t ∈ T is continuous for all t ∈ T , and

since W is the orbit closure of (x, y), we have that {t−1(V ) : t ∈ T} forms an

open cover of W . Since W is minimal, it is compact, so there exist t1, . . . , tn ∈ T
such that

n⋃
j=1

t−1
j (V ) = W.

75



CHAPTER 4. THE FURSTENBERG TOPOLOGY

Let ε > 0 be arbitrary but fixed. Recall that by the Heine-Cantor Theo-

rem 0.1.21, any continuous function on a compact set is uniformly continuous.

Now, tj is uniformly continuous on the compact set W , so for ε > 0 we have

that there exists δj > 0 such that (w1, w2) ∈ W with d(w1, w2) < δj implies

that d(tjw1, tjw2) < ε. We take δ := min{δj : j = 1, . . . , n} and get that

(w1, w2) ∈ W with d(w1, w2) < δ implies that d(tjw1, tjw2) < ε, i.e. these maps

are equicontinuous on W .

Now take ε = a − b, so there is δ > 0 such that if d(x′, y′) < δ then

d(tjx
′, tjy

′) < a− b for j = 1, . . . , n. Now let z ∈ Uδ(y). There exists t ∈ T such

that d(ty, tz) < δ, and therefore also d(tjty, tjtz) < a − b, 1 6 j 6 n. By the

triangle inequality for d, we get

d(tjtx, tjtz) < d(tjtx, tjty) + d(tjty, tjtz) < b+ a− b = a.

Thus F (x, z) < a, so z ∈ Ua(x), as required.

The above proof can be easily modified to show the sets Ua(x) form a basis

for a topology on all of X. The reader is referred to [Fur63] for more details.

4.2.3 Proposition ([Vee70]). The Furstenberg topology is a compact T1 topology

and the sets defined before form a basis.

Proof. Consider Ua(x1) ∩ Ub(x2) 6= ∅ for some x1, x2 ∈ X, and some a, b > 0.

Without loss of generality x′ ∈ Ua(x1) ∩ Ub(x2). In particular, x′ ∈ Ua(x1), so

by Lemma 4.2.2, there exists ε1 > 0 with Uε1(x
′) ⊆ Ua(x1). Similarly, x′ ∈

Ub(x2), so by Lemma 4.2.2, there exists ε2 > 0 with Uε2(x
′) ⊆ Ub(x2). Taking

0 < ε < min{ε1, ε2}, we have that Uε(x
′) ⊆ Ua(x1) ∩ Ub(x2), as required. Thus,

the collection {Ua(x) : a ∈ R+, x ∈ Xu} forms a basis for a topology on Xu.

To show that the Furstenberg topology is T1, we use Proposition 4.3.7. If

x, y ∈ Xu with x 6= y, we have that x, y are not proximal, thus F (x, y) > 0. If

a 6 F (x, y), then x /∈ Ua(y) and y /∈ Ua(x), as required.

To see that this topology is compact, we let U be an F-open cover of Xu by

basic open sets, so U := {Xu ∩Uaλ(xλ)}λ∈Λ. Let w ∈ X. Then there is a λ such

that uw ∈ Xu ∩ Uaλ(xλ). Then F (uw,w) = 0 so w ∈ Uε(uw) for any ε > 0.

Then w ∈ Uaλ(xλ) by Lemma 4.2.2. Thus, U ′ := {Uaλ(xλ)}λ∈Λ is an open cover
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of X, which is assumed compact, thus there is a finite subcover. This would

also be a finite subcover of Xu ⊂ X.

4.3 Veech’s Theorem

Our main motivation for considering the Furstenberg Topology is the following

theorem by Veech [Vee70]:

4.3.1 Theorem (Theorem 6.5 of [Vee70]). A dynamical system (X,T ) is almost

automorphic if and only if X is point-distal and (Xu, Fu) is Hausdorff.

In this section, we will significantly rewrite the proof of this theorem, filling

in gaps, improving the overall structure. We also present a new line of reasoning

for the ‘only if’ part of the proof, which uses properties of the Ellis semigroup

of the respective spaces. We recall the Heine-Cantor Theorem 0.1.21, that any

continuous function on a compact set is uniformly continuous, which will be of

use in this section.

We will first prove the latter direction of Veech’s Theorem (4.3.1) - i.e. we

consider a point-distal dynamical system such that (Xu, τF ) is Hausdorff, and

show that it is an almost 1-1 extension of its maximal equicontinuous factor.

We begin with a point-distal dynamical system (X,T ), where X is compact

with metric d and T is a group, and x0 ∈ X is a point such that Tx0 is dense

in X. For the sake of clarity, we denote by τ the usual topology on X.

Also, we denote by P (X) the set of proximal pairs in X, and by EX the Ellis

semigroup of (X,T ).

We denote the topology generated by the basis {Ua(x) : a ∈ R, x ∈ u[X]} by

τF , and call it the Furstenberg topology. We note that τF ⊆ τ .

Note that:

4.3.2 Proposition. The map u : (X, τ)→ (Xu, τF ) is continuous.

Proof. Let x ∈ X and recall that u is continuous at x if and only if for any

neighbourhood V of ux there is a neighbourhood U of x such that u[U ] ⊂ V .

So, let ε > 0 be arbitrary, and consider Vε(ux) = V ′ε (ux) ∩Xu, where V ′ε (ux) is
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a τF -open in X neighbourhood of ux (in black in the image below) and Vε is its

trace in Xu.

Now, F (ux, x) = 0, so x ∈ V ′ε (ux) := {x′ ∈ X : F (x′, ux) < ε}, and the

latter is open, so there is a ν > 0 such that Uν(x) ⊆ V ′ε (ux) (Uν(x) is portrayed

in green in the diagram below).

We wish to show that u[Uν(x)] ⊂ Vε(ux). So, let y ∈ Uν(x). Then there

is κ > 0 such that Uκ(y) ⊂ Uν(x) (Uκ(y) is denoted in red below). Also,

F (uy, y) = 0, so uy ∈ Uκ(y). But then uy ∈ Uκ(y) ⊂ Uν(x) ⊂ V ′ε (ux), and

uy ∈ Xu. Therefore, uy ∈ Vε(ux) = V ′ε (x) ∩Xu, as required.

.y.uy Uκ(y)
.
x

Uν(x)

.
ux

V ′ε (x)

We will use the following statement from [Vee70]:

4.3.3 Proposition ([Vee70]). If x, y ∈ Xu, then F (x, y) = F (px, py) for any

p ∈ EX .

From now on, assume τF is Hausdorff.

4.3.4 Proposition. (Xu, T, τF ) is a dynamical system.

Proof. We already know that Xu is a compact Hausdorff space.

Let us show Xu is invariant under the action of T . Let t ∈ T , x ∈ Xu. Then

there exists y ∈ X such that uy = x. But then tx = tuy = uty ∈ Xu (since T

is the centralizer (in the semigroup-theoretic sense, i.e. the set which commutes

with all elements of the bigger space) of EX = E(X, τ, T ) - the ‘bigger’ space

[EE14]).
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Next, we need that T : Xu → Xu acts continuously with respect to the

Furstenberg topology. We will show a bit more than that. Let p ∈ EX . By

Proposition 4.3.3, if x, y ∈ Xu, then F (x, y) = F (px, py), so if xn → x in the

Furstenberg topology, then also

lim
n→∞

F (pxn, px) = lim
n→∞

F (xn, x) = 0,

so pxn → px in the Furstenberg topology. Thus, for every p ∈ EX , p : (Xu, τF )→
(Xu, τF ) is continuous. In particular, T acts continuously on Xu.

Denote by Eu the Ellis semigroup of (Xu, T, τF ).

4.3.5 Lemma. The map φ : EX → Eu defined by φ(g) := g(u(x)) is continuous

from EX to Eu.

Proof. This follows directly from Proposition 4.3.2, and the facts that Xu ⊂ X

(as sets), and that precomposition by a function is a continuous map from XX

to itself.

Recall (Proposition 4.3.2) that u : (X, τ) → (Xu, τF ) is continuous. We

wish to show continuity of φ by the fact that the image of a convergent in EX

sequence under φ converges in Eu. So, let gα →τ g, so gα(y) →τ g(y) for all

y ∈ X. In particular, setting y = ux, we have gα(u(x))→τ g(ux) for all x ∈ X.

Thus, for all x ∈ Xu,

(gα ◦ u)(x) = gα(u(x))→τ g(ux) = (g ◦ u)(x).

Since τF ⊂ τ , we have that any τ -convergent sequence is also τF -convergent, so

we conclude that

gα(u(y))→τF g(u(y)),

as required. So, φ(gα)→τF φ(g).

4.3.6 Lemma. The induced map θ : EX → Eu coincides with the map φ(g) =

g ◦ u.
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Proof. From Proposition 2.10 page 23 of [EE14], we have that for any surjective

homomorphism between dynamical systems (in particular, for u : (X, τ, T ) →
(Xu, τF , T )), there exists an induced map θ : EX → Eu such that the following

diagram commutes:

EX Eu

X Xu

p 7→ px

u

θ

p 7→ pux

Since both θ and φ are continuous maps between Hausdorff spaces, we just

need to show they agree on a dense set of their domains, in particular, it is

sufficient to show they agree on T ⊂ EX .

We obtain that

(θ(t))(ux) = utx by the diagram above

= tux since T is the centralizer of EX

= (φ(t))(ux) by defn of φ,

as required.

Thus the continuous functions θ and φ agree on T , hence they are equal.

Recall Proposition 1.5.39, that the system (Xu, T, τ) is distal. However, this

does not imply that the system with the Furstenberg topology is still distal

(since proximality in the finer τ topology does not imply proximality in the

coarser τF topology). Thus, we need to show the latter.

4.3.7 Lemma. The system (Xu, T, τF ) is distal (equivalently, Eu is a group).

Proof. The equivalence between distality of Xu and Eu being a group follows

from Proposition 1.5.35.

Note that since (as sets), Xu ⊂ X, Lemma 4.3.6 gives us that Eu ⊂ EX

(again, only as sets - not as topological spaces). So, Eu = θ[EX ] (as a set). Let

us consider what θ ‘does’ to EX .

First, denote I the minimal left ideal such that u ∈ I (so EXI ⊂ I), and note

that EXu ⊂ EXI ⊂ I and moreover EXu is an ideal (since EX(EXu) ⊂ EXu),
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so EXu = I. So pu ∈ I for all p ∈ EX .

So in fact, θ given by θ(g) = gu maps EX to I. Now, let x ∈ X, then

gux ∈ Xu, so ugux = gux. Since x ∈ X was arbitrary, we have that ugu = gu

for all g ∈ EX . So θ[EX ] ⊂ uI, where the latter is a group with identity u

1.5.35 (note the semigroup structure of the Ellis semigroup is independent of the

topology since it rests solely on composition of functions). Thus, θ[EX ] = uI,

i.e. Eu is a group with identity u = id, so in fact (Xu, T, τF ) is distal, as

required.

4.3.8 Lemma. The system (Xu, T, τF ) is equicontinuous.

Proof. By Proposition 1.5.36, X is equicontinuous if and only if E(X) is a group

of homeomorphisms of X. So, we need to show the latter.

By the argument in the proof of Proposition 4.3.4, we have that all p ∈ EX
(respectively, p ∈ Eu) are continuous on (Xu, τF ). They are also 1-1: if x, y ∈ Xu

with px = py, then (x, y) ∈ P (Xu), and since Xu is distal (Lemma 4.3.7), we

conclude x = y. Since again by Lemma 4.3.7, Eu is a group, we have that for

each p ∈ Eu, there is p−1 ∈ Eu such that pp−1 = p−1p = id, so we conclude that

each p ∈ Eu is both a surjection and has a continuous inverse.

Therefore, each p ∈ Eu is a homomorphism of Xu, as required.

4.3.9 Proposition (Veech pg 227). Let π : X → Y be a homomorphism of

minimal dynamical systems, with induced homomorphism between the Ellis semi-

groups π0 : EX → EY . Let u be a minimal idempotent in EX and u0 := π0(u)

be its image (also an idempotent) in EY . Then π[Xu] = Yu0.

Proof. Everything is based on the commutativity of the following diagram:

EX EY

X Y

π0
u7→u0

u7→ux u0 7→u0π(x)

π

x 7→π(x)

‘⊆’ Let y ∈ π[Xu]. Then there is an x ∈ Xu with y = πx. Note that by

the diagram above, u0y = π0uπx = πux, and since x ∈ Xu, πux = πx = y, so

u0y = y, so y ∈ Yu0 , as required.
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‘⊇’ Let y ∈ Yu0 , so u0y = y, and let y = πx for some x ∈ X. Then also

πux = (π0u)πx by the diagram above

= u0y because u0 = π0u

= y because y ∈ Yu0 ,

so y ∈ πXu (since ux ∈ Xu as u(ux) = (ux)), as required.

4.3.10 Proposition. The map π : Xu → Yu0 is τF -continuous, where Yu0 is as

in Proposition 4.3.9.

Proof. We prove this via convergent sequences. Let {xn} be a sequence in Xu

which is τF,X-convergent to some x ∈ Xu. This means that limn→∞ FX(x, xn) =

0, so

lim
n→∞

inf
t∈T

d(tx, txn) = lim
n→∞

FX(x, xn) = 0.

WLOG, FX(x, xn−1) > FX(x, xn) (as otherwise, we can re-order the sequence

and throw away some members to satisfy this inequality). So for each n ∈ N
there exists tn ∈ T such that FX(x, xn−1) > dX(tnx, tnxn). Since limn→∞ FX(x, xn) =

0, we get that there is a sequence {tn} in T such that limn→∞ dX(tnx, tnxn) = 0.

Since π is uniformly continuous by the Heine-Cantor Theorem 0.1.21, we have

lim
n→∞

dY (πtnxn, πtnx) = lim
n→∞

dY (tnπxn, tnπx) = 0.

Therefore, limn→∞ FY (πxn, πx) = 0, so limn→∞ FY (πxn, πx) = 0, and so {πxn}
is τF,Y -convergent to πx, as required.

Thus, we have practically shown that:

4.3.11 Theorem. For a point-distal dynamical system (X,T ) with minimal

idempotent u ∈ E(X,T ), if (Xu, τF ) is Hausdorff, then (Xu, T, τF ) is the maxi-

mal equicontinuous factor of (X,T, τ).

Proof. Let (Y, T ) be an equicontinuous factor of (X,T ), witnessed by the dy-

namical system homomorphism π : X → Y . Note π(ux) = π(x) for all x ∈ X.
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Thus, π is a map from (Xu, T, τF ) to (Y, T ). Moreover, π is onto by Proposition

4.3.9 and the fact that (Y, T ) is equicontinuous hence distal hence Yπ(u) = Y .

Finally, π is τF -continuous by Proposition 4.3.10 and the fact that since Y is

equicontinuous, τF ≡ τY . Thus, π is a dynamical system homomorphism of

(Xu, T, τF ) onto (Y, T ), as required.

4.3.12 Lemma. If (X,T ) is point-distal, then u : (X,T, τ) → (Xu, T, τF ) is

almost 1-1.

Proof. If (X,T ) is point-distal, then there is a distal point x0 ∈ X with dense

orbit. Then x0 ∈ Xu, since (ux0, x0) ∈ P (X) (for any point), so x0 = ux0 ∈ Xu.

Moreover, u−1(x0) = x0, since if uy = ux0 then y is proximal to x0 - contradiction

to x0 being distal.

In conclusion, we have shown that when τF is Hausdorff, the point-distal

system (X,T, τ) is an almost 1-1 extension of its maximal equicontinuous factor

(Xu, T, τF ) with the respective continuous homomorphism being u : X → Xu.

We now prove the other direction of Veech’s Theorem.

4.3.13 Theorem. If a dynamical system (X,T ) is an almost 1-1 extension of its

maximal equicontinuous factor, then X is point-distal and (Xu, Fu) is Hausdorff.

We loosely follow Veech’s original train of thought, filling in the details and

gaps in the original proof.

Proof. Suppose that (X,T ) is an almost 1-1 extension π : (X,T ) → (Y, T ) of

its maximal equicontinuous factor (Y, T ), and let u ∈ J(I). If y ∈ Y , any two

points of Xy := π−1(y) are proximal by Proposition 1.6.5. Since by Proposition

4.3.7, there are no proximal pairs in Xu, we have that |Xy ∩Xu| 6 1.

Let π0 : EX → EY be the induced homomorphism between the Ellis semi-

groups. Since Y is equicontinuous, EY is a group, so π0(u) is the identity in

EY . Thus, by Proposition 4.3.9, we have that π(Xu) = Y , so |Xy ∩ Xu| > 1.

Therefore, π : Xu → Y is one-to-one and onto.

Since Y is equicontinuous, the Furstenberg topology agrees with the usual

topology on Y (Y has an invariant metric). Thus Proposition 4.3.10 gives us

that π is continuous from the Furstenberg topology on Xu to the (unique metric)
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topology on Y . Since moreover π is a one-to-one map of a compact space onto

a Hausdorff space, it is a homeomorphism, and in particular, (Xu, Fu) is T2.

There are several places in which the Hausdorff property is used. The first

one is in the ‘if’ part of the statement; the main point being the following:

4.3.14 Proposition. Let f : X → Y be a continuous 1-1 map between topolog-

ical spaces X and Y . If Y is Hausdorff, then X is also Hausdorff.

The proof is simple:

Proof. Let x1, x2 ∈ X be two distinct points in X. Since f is one-to-one,

we have f(x1) 6= f(x2), and since Y is Hausdorff, there exist open in Y sets

U1 3 f(x1), U2 3 f(x2) which are disjoint. Then their pre-images f−1(U1) 3 x1,

f−1(U2) 3 x2 are disjoint, open (as f is continuous) neighbourhoods of the

original points in X. Therefore, X is Hausdorff.

As a side note of curiosity, we combine Proposition 1.6.5 with the observation

that any two proximal points x1, x2 ∈ X get mapped to the same point y ∈ Y ,

where Y is the maximal equicontinuous factor, to obtain:

4.3.15 Proposition. In a minimal point-distal dynamical system (X,T ), the

proximal relation is transitive if and only if there is an idempotent u ∈ E(X)

such that (Xu, τF ) is a Hausdorff space.

Proof. If there is a minimal idempotent u ∈ E(X) such that (Xu, τF ) is Haus-

dorff, then by Veech’s Theorem 4.3.1, we have that (X,T ) is an almost automor-

phic extension of its maximal equicontinuous factor. Conversely, if proximality

is a transitive relation ∼, then one can see that the space (X/ ∼, T ) is a dy-

namical system which is in fact the maximal equicontinuous factor of (X,T ).

Moreover, since (X,T ) is point-distal, it is an almost automorphic extension of

(X/ ∼, T ). Hence, again by an application of Theorem 4.3.1, we have that there

is a minimal idempotent u ∈ E(X,T ) such that (Xu, τF ) is Hausdorff.

84



CHAPTER 4. THE FURSTENBERG TOPOLOGY

4.4 A Generalisation Using n-Hausdorffness

In [Bon13], M Bonanzinga introduces the following generalization of the Haus-

dorff separation axiom:

4.4.1 Definition (n-Hausdorff). Let n ∈ N \ {0, 1}. We say that a topological

space X is n-Hausdorff if and only if for any n distinct points x1, . . . , xn, we

have open neighbourhoods U1, . . . , Un with xi ∈ Ui, such that
⋂n
i=1 Un = ∅.

Note that every Hausdorff space is 2-Hausdorff, but also n-Hausdorff, for any

n > 2. Similarly, any k-Hausdorff space is n-Hausdorff for n > k.

To link n-Hausdorffness with a natural generalisation of an almost 1-1 exten-

sion, we use the following notion, which is also studied elsewhere is topological

dynamics:

4.4.2 Definition (almost n-to-1 extension). Let π : X → Y be a homomor-

phism of minimal dynamical systems. We say that Y is an almost n-to-1 exten-

sion of X if and only if

min{|π−1(y)| : y ∈ Y } = n.

Now, let n ∈ N be an integer greater than 2. Similarly to Proposition 4.3.14,

we can prove the following:

4.4.3 Proposition. Let f : X → Y be a continuous (n−1)-to-one map between

topological spaces X and Y . If Y is Hausdorff, then X is k-Hausdorff, where

2 6 k 6 n.

Proof. Let x1, . . . , xn be n distinct points in X. Since f is (n − 1)-to-one, we

have wlog that f(x1) 6= f(x2). So there are disjoint open sets V1 3 f(x1) and

V2 3 f(x2); let U1 := f−1(V1) and U2 := f−1(V2); then U1 3 x1 and U2 3 x2

are disjoint open neighbourhoods in X. Take any neighbourhoods Ui 3 xi

for i = 3, . . . , n; we have found a family of open neighbourhoods Ui 3 xi for

i = 1, . . . , n with empty intersection. Thus, X is at most n-Hausdorff.

We prove an analogue of Proposition 1.6.5, which we will need in the proof

of the n-Hausdorff analogue of Theorem 4.3.1. First, we prove the case when

n = 3:
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4.4.4 Proposition. Let φ : (X,T ) → (Y, T ) be a surjective homomorphism

of dynamical systems, where Y is minimal and there is a y0 ∈ Y such that

φ−1(y0) = {x′, x′′}. Then whenever x1, x2, x3 ∈ φ−1(y) for some y ∈ Y , we have

that there is at least one proximal pair in {x1, x2, x3}.

Proof. Let y ∈ Y , x1, x2, x3 ∈ φ−1(y). Since Y is minimal, there is a net

{tn}n∈α ⊆ T such that limn∈α tny = y0. This is equivalent to limn∈α φ(tnxi) = y0,

for any i = 1, 2, 3.

Consider the net {tnx1}n∈α ⊆ X. Since X is compact and metric, there

exists a subset β ⊆ α such that the associated subnet {tnx1}n∈β converges,

say limn∈β tnx1 = x∗. Then x∗ ∈ {x′, x′′}: for otherwise, limn∈β φ(tnx1) =

φ(x∗) 6= y0 = φ(x′) = φ(x′′), which is a contradiction to the assumption that

limn∈α φ(tnx1) = y0.

Applying the same argument as above to the net {tnx2}n∈β, we obtain a

subset γ ⊆ β such that limn∈γ tnx2 = x∗∗ ∈ {x′, x′′}. In the same way we obtain

a subset δ ⊆ γ with limn∈δ tnx3 = x∗∗∗ ∈ {x′, x′′}.
Thus, we have that {x∗, x∗∗, x∗∗∗} ⊆ {x′, x′′}, so in fact at least two are equal.

Thus, at least two of the points x1, x2, x3 are proximal, as required.

4.4.5 Remark. Ultimately φ−1(y0) gives the set of “possible limits” for x1, x2, x3,

and since there are three limits but only two possible values for them, the pi-

geonhole principle tells us that two of the three limits must co-incide.

4.4.6 Corollary (Corollary to Proposition 4.4.4). If (X,T ) is an almost 2-to-1

extension of its maximal equicontinuous factor (Y, T ), we have that there is a

proximal pair amongst any three points in the same fiber.

4.4.7 Proposition. Let φ : (X,T ) → (Y, T ) be a surjective homomorphism

of dynamical systems, where Y is minimal and there is a y0 ∈ Y such that

|φ−1(y0)| = n. Then whenever x1, . . . , xn+1 ∈ φ−1(y) for some y ∈ Y , we have

that there is at least one proximal pair in {x1, . . . , xn+1}.

Proof. Let y ∈ Y , x1, . . . , xn+1 ∈ φ−1(y). Since Y is minimal, there is a net

{tn}n∈α0 ⊆ T such that limn∈α0 tny = y0. This is equivalent to limn∈α0 φ(tnxi) =

y0, for any i = 1, . . . , n+ 1.
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Consider the net {tnx1}n∈α0 ⊆ X. Since X is compact and metric, there

exists a subset α1 ⊆ α0 such that the associated subnet {tnx1}n∈α1 converges,

say limn∈α1 tnx1 = x∗1. Then x∗1 ∈ φ−1(y0): for otherwise, limn∈α1 φ(tnx1) =

φ(x∗1) 6= y0, which is a contradiction to the assumption that limn∈α0 φ(tnx1) = y0.

We inductively apply the same argument as above to the nets {tnxi}n∈αi−1

to obtain subsets αi ⊆ αi−1 such that limn∈αi tnxi = x∗i ∈ φ−1(y0), for i =

2, . . . , n+ 1.

Thus, we have that {x∗1, . . . , x∗n+1} ⊆ φ−1(y0), and since |φ−1(y0)| = n, we

have that at least two x∗i are equal. Thus, at least two of the points x1, . . . , xn+1

are proximal, as required.

Finally, we prove an analogue of Theorem 4.3.13 for n-Hausdorff spaces:

4.4.8 Theorem. If a dynamical system (X,T ) is an almost n-to-1 extension of

its maximal equicontinuous factor, then (Xu, Fu) is k-Hausdorff, where 2 6 k 6

n+ 1.

Proof. Let u be a minimal idempotent and let π : X → Y be a homomorphism

of X onto its maximal equicontinuous factor Y . As in the proof of Theorem

4.3.1, we have that π : Xu → Y is surjective and continuous in the Furstenberg

topology (and that the Furstenberg topology on Y coincides with the usual one,

since Y is equicontinuous). Thus, |Xy ∩Xu| > 1.

Moreover, we have that no two points of Xu are proximal by Proposition

4.3.7, so by Proposition 4.4.7, we have that |Xu ∩ Xy| 6 n. Thus, the map

π : Xu → Y is a surjection which is at most n-to-1, so by Proposition 4.4.3, we

have that Xu is k-Hausdorff, where 2 6 k 6 n+ 1.

4.5 Calculations of the Furstenberg Topology

and its link with n-Hausdorff spaces

Let (M,σ) be the Thue-Morse dynamical system, and recall the following four

idempotents in E(M) (written in shorthand, using Notation 1.4.6 for the fixed

points of the Thue-Morse substitution):
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v v w w

g1 w w w w

g2 w w w w

g3 v v v v

g4 v v v v

Now, consider X3 := g3[M ] = dist(X) ∪ Orb(v) ∪ Orb(v) = g4[M ] (since

g3 ∼ g4), where dist(X) is the set of distal points in X. We will show that v

and v do not have any disjoint open neighbourhoods. Hence, we will have that

(X3, τF ) is at least 3-Hausdorff (and since it is an almost 2-to-1 extension of its

maximal equicontinuous factor, we will have that it is precisely 3-Hausdorff).

Let U 3 v, V 3 v be τF -open neighbourhoods. Since g3, g4 : (M, τ)→ (X3, τF )

are continuous, W1 := g−1
3 [V ] is a τ -open set containing v and w. Similarly,

W2 := g−1
4 [U ] is a τ -open set containing v and w. Thus, W := W1 ∩W2 is a

τ -open neighbourhood of w. Since M is point-distal, there is x ∈ W such that

x is distal. Then g3(x) = x = g4(x), and so

x =g3(x) ∈ g3[W ] ⊂ g3[g−1
3 [V ]] = V

x =g4(x) ∈ g4[W ] ⊂ g4[g−1
4 [U ]] = U,

so x ∈ U ∩W 6= ∅, as required.

One can use Theorem 4.4.8 together with Theorem 4.3.1 to conclude that

(X3, τF ) is precisely 3-Hausdorff. However, in this case it is easy to see 3-

Hausdorffness directly. We have that π : (M,σ) → (G, p) (where (G, p) is the

maximal equicontinuous factor of the Thue-Morse system), when restricted to

X3, is precisely 2-to-1. Thus, amongst any three points x1, x2, x3 ∈ X3, at

least two are in different fibers, so without loss of generality π(x1) 6= π(x2).

As (G, p, τG) is Hausdorff, there are disjoint open neighbourhoods U1 3 π(x1),

U2 3 π(x2). Since, as in the argument in Theorem 4.4.8, π : (X3, τF ) → (G, p)

is continuous, we have that π−1[U1], π−1[U2] are disjoint open neighbourhoods

of x1 and x2, respectively. Thus, there exist neighbourhoods Vi 3 xi, i = 1, 2, 3

such that
⋂
i=1,2,3 Vi = ∅, as required. Thus, (X3, τF ) is precisely 3-Hausdorff.
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Chapter 5

Introduction

Separation axioms play a fundamental role in topology. There exist numer-

ous generalisations and weakenings of those notions, considered in various fields

even outside of general topology, such as domain theory [GL13], computer sci-

ence [MS11], and quantum physics [HPS11]. Separation axioms also play an

essential role in the theory of cardinal invariants, and some problems related to

weakening the separation axioms in certain central cardinal inequalities have re-

mained open for years and only got solved by considering additional set-theoretic

axioms. Most of the generalisations studied until recently have been based on

various weakenings of the notion of open sets (σ-Hausdorff in symmetrizable

or o-metrizable spaces [As63], [Ned71]) or considering separation through spe-

cial classes of open sets (‘regularly open’, for example). But if we consider

separation axioms from the point of view of cardinal invariant inequalities, it

seems more natural to consider some combinatorial-type generalisations. It is

interesting that even outside the setting of cardinal invariants, combinatorial

generalisations of normality have been investigated by Reed, Dolecky, Nogura

and Peirome as early as 2001 [DNPR03], while the notion of 3-normal spaces

has been introduced and considered in the setting of topological manifolds by

Nykos in [Nyi92]. Dolecky and co-authors were mainly interested in the notion

itself and constructed many examples for such combinatorial non-normal spaces

- with finite and infinite non-normality number.

For the lower separation axioms, Bonanzinga, Cammaroto and Matveev

90



CHAPTER 5. INTRODUCTION

[BCM11] considered first combinatorial generalisations of non-Urysohn spaces,

and later Bonanzinga [Bon13] introduced the notion of a Hausdorff number for

spaces which might not necessarily have the Hausdorff separation axiom. Non-

Urysohn spaces and anti-Urysohn spaces have also recently been studied by

Juhász, Soukup, and Szentmiklóssy in [JSS16]. Those ways of investigations

were aimed mainly at cardinal invariant settings.

It is worth pointing out that Hausdorffness, Urysohn-ness, and normality

could be considered in essence homogeneous axioms of separation - in other

words, they deal with “separation” of two “similar” topological objects. This

is not the case with regularity, where a point and a closed set which does not

contain it are separated. Here, we give a couple of possible combinatorial gen-

eralisations of regular spaces. We investigate some basic and classical results

in the setting of all the above combinatorial separation axioms, and prove sev-

eral theorems restricting cardinality of topological spaces, replacing standard

separation axioms with their combinatorial analogues.

As a rule, so far, combinatorial separation axioms have been considered only

in relation with other problems. The internal structure of a space possessing

some of these axioms, as well as their relation to other basic and important topo-

logical properties, have not been investigated. Here, we give several such results

and interrelations. We also pose some open questions for further investigation.

5.1 Some More Definitions and Notations

Let X be a topological space. All notions not defined here can be found in

[Juh80] and [Eng89]. We deviate from standard notation, using 〈a, b〉 for an

ordered pair (in other words, an element of the Cartesian product A × B, of

two sets A and B), reserving (a, b) for the open interval on the real line. We

use N+ for the set of positive integers. In most cases, without ambiguity, we

will consider the defined cardinal invariants to be infinite. For completeness, we

recall some basic notions.

The following notion captures the ‘size’ of the local basis at a point x in a

topological space X.
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5.1.1 Definition (character [Juh80]). The character of X at the point x ∈ X,

denoted by χ(x,X) is the following cardinal:

χ(x,X) = min{τ : there is a local base at x with cardinality τ }.

Then the character of X, χ(X) will be:

χ(X) = sup{χ(x,X) : x ∈ X}

A similar notion, related to the local pseudobase, is that of pseudocharacter.

5.1.2 Definition (pseudocharacter [Juh80]). The pseudocharacter of X at the

point x ∈ X, denoted by ψ(x,X) is the following cardinal:

ψ(x,X) = min{τ : there is a local open neighbourhood system B(x) at x with

cardinality τ such that x = ∩{U : U ∈ B(x)} }.

Then the pseudocharacter of X, ψ(X) will be:

ψ(X) = sup{ψ(x,X) : x ∈ X}

It is interesting to note that in compact Hausdorff spaces, ψ(x,X) = χ(x,X)

for all x in X. Such an equality rarely happens in non-compact spaces.

Compact spaces played a fundamental role in the initial development of ana-

lytic topology. The first more general compactness-like property was introduced

by Lindelöf, and captures the ability to find a countable, instead of finite, sub-

cover of every open cover of a topological space. If we consider a similar notion

for higher cardinal numbers, we come to the following:

5.1.3 Definition (Lindelöf number, [Juh80]). The Lindelöf number of X, L(X),

is defined in the following way:

L(X) = ω.min{τ :∀ open cover γ of X there exists γ′ ∈ [γ]6τ

such that X ⊆ ∪{U : U ∈ γ′} }.
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So, if L(X) is countable then X is called Lindelöf.

Recall that a subset D of a topological space X is dense in X if D = X.

5.1.4 Definition (density character, [Juh80]). We define the density character

d(X) of X as

d(X) := min{|D| : D ⊂ X,D = X}.

We can also recall that a topological space X is said to have the countable

chain condition (CCC) if the maximal family of mutually disjoint open sets in

it is at most countable. This gives rise to the notion of a cellularity number:

5.1.5 Definition (cellularity number, [Juh80]). We define the cellularity num-

ber c(X) of X as

c(X) := sup{|U| : U is a family of mutually disjoint open subsets of X}.

Sometimes we will use the term ‘Souslin number’ instead of ‘cellularity num-

ber’.

The spread of X reflects the possible size of discrete subspaces of X:

5.1.6 Definition (spread, [Juh80]). The spread s(X) of X is defined as:

s(X) := sup{|A| : A is a discrete subspace of X}.

5.1.7 Notation. In general, if φ(X) is a cardinal invariant of the topological space

X, then by hφ(X) we will denote the property of being hereditarily φ(X).

Some other more specific cardinal invariants will be defined later on. We now

introduce the main combinatorial versions of the standard separation axioms,

which will be the focus of the following sections.

5.1.8 Definition (Hausdorff number, [Bon13]). The Hausdorff number of X,

written H(X), is defined as:

H(X) = min
{
τ : whenever {xα : α ∈ τ} is a subset of different points in X, then

∀α ∈ τ there is an open Uα ⊂ X such that xα ∈ Uα and
⋂
α∈τ

Uα = ∅
}
.
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5.1.9 Definition (Urysohn number, [BCM11]). The Urysohn number of X,

denoted U(X), is defined as:

U(X) = min
{
τ : whenever {xα : α ∈ τ} is a subset of different points in X, then

∀α ∈ τ there is an open Uα ⊂ X such that xα ∈ Uα and
⋂
α∈τ

Uα = ∅
}

5.1.10 Definition (normality number, [DNPR03]). The normality number of

X, denoted N(X), is defined as:

N(X) = min
{
τ : whenever {Fα : α ∈ τ} is a disjoint family of closed nonempty

different subsets of X then ∃ open sets Uα ⊃ Fα, ∀α ∈ τ,

such that
⋂
α∈τ

Uα = ∅
}
.

As we have already mentioned, due to the non-homogeneous nature of regu-

larity, we can have various combinatorial approaches to defining the regularity

number. We start with one of them.

5.1.11 Definition (weak regularity number, [BSS16]). The weak regularity

number of X, denoted R0(X), is defined as:

R0(X) = min
{
τ : whenever ∅ 6= F ⊂ X is closed and {xα : α ∈ τ} is a set of

different points in X such that F ∩ {xα : α ∈ τ} = ∅ then ∃ open

U ⊃ F, Uα ⊂ X, xα ∈ Uα ∀α ∈ τ, such that U ∩
⋂
α∈τ

Uα = ∅
}
.

We note that τ -Hausdorfness implies weak τ -regularity. We also define the

following stronger combinatorial regularity notion, that, in some intuitive sense,

is “closer” to the notion of normality number.

5.1.12 Definition (regularity number, [BSS16]). The regularity number of X,
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denoted R(X), is defined as:

R(X) = min
{
τ : whenever {Fα : α ∈ τ} is a disjoint family of closed nonempty

different subsets of X and a point a /∈
⋃
{Fα : α ∈ τ}, then there

are open sets U 3 a, Uα ⊃ Fα, ∀α ∈ τ, such that U ∩
⋂
α∈τ

Uα = ∅
}
.

Again, in T1 spaces we have H(X) 6 R0(X) 6 R(X) 6 N(X), and if X is

τ -regular, then X is α-regular for all α < τ .

If H(X) 6 τ , we call X τ -Hausdorff. Similarly, if U(X) 6 τ, R0(X) 6

τ, R(X) 6 τ, N(X) 6 τ we call X respectively τ -Urysohn, τ -weakly regu-

lar, τ -regular or τ -normal. Let us point out that when X is τ -Hausdorff (τ -

Urysohn, τ -weakly regular, τ -normal), then it is also β-Hausdorff (β-Urysohn,

β-weakly regular, or β-normal) for every β > τ . We also easily have in T1

spaces that H(X) 6 R0(X) 6 N(X), and always H(X) 6 U(X). It is tempting

to claim that, as in the case of traditional separation axioms, in T1 spaces we

have U(X) 6 R0(X), but as we shall show through examples afterwards, this is

unfortunately not the case.

In [Bon13], examples of T1 n-Hausdorff not Hausdorff spaces are given for

any n > 3, as well as an example of a T1 ω-Hausdorff not n-Hausdorff (for any

n ∈ N) space. In [Sta13], such examples with additional topological properties

are given. In both of the above papers, examples of not T1 n-Hausdorff spaces

were given, thus showing that τ -Hausdorff property is independent of T1. Most

of the examples in [Bon13] are countable and those in [Sta13] are first countable

with cardinality continuum and compact if H(X) is finite, or Lindelöf if H(X) =

ω.

In [DNPR03], for every cardinal κ, examples of completely regular spaces

with N(X) = κ are constructed. For some cardinals κ, we will provide examples

of such spaces with additional properties.

95



Chapter 6

Investigating Combinatorial

Separation Axioms

6.1 Examples

It is a basic result that Hausdorff compact spaces are normal. The following

example shows that even the strongest “non-normality” property, i.e. T1 3-

normality, does not imply even Hausdorffness in compact spaces.

6.1.1 Example. There is a T1, first countable, compact not Hausdorff (hence

not normal and not regular) 3-normal space X (with cardinality 2ω, by con-

struction).

Construction. Let X = ([0, 1]× {0}) ∪
{〈

1
2
, 1

2

〉}
⊂ R2, where [0, 1] is the

standard unit interval in R. Topologize X as follows:

• all points on [0, 1]× {0} have the Euclidean neighborhoods;

• the neighborhoods of {〈1
2
, 1

2
〉} consist of

Up

(〈
1

2
,
1

2

〉)
=

{〈
1

2
,
1

2

〉}
∪
(((

1

2
− 1

p
,
1

2
+

1

p

)
\
{

1

2

})
× {0}

)
, p ∈ N+.

Let us point out that the subspace topology on [0, 1] × {0} coincides with the

Euclidean topology.
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This space is not T2 as the points 〈1/2, 0〉 and 〈1/2, 1/2〉 cannot be separated

via disjoint open neighbourhoods.

Let us prove that X is 3-normal. Let F1, F2, F3 be mutually disjoint closed

subsets of X. The point 〈1/2, 1/2〉 is the only point in X which is not in

[0, 1]×{0}. Thus, at least two of the Fi’s are subsets of [0, 1]×{0}, and so they

have disjoint open neighbourhoods.

By not excluding 〈1/2, 0〉 from the neighbourhoods of 〈1/2, 1/2〉, we similarly

obtain

6.1.2 Example. There is a first countable, compact, not T1, (not regular nor

Hausdorff), 3-Hausdorff, 3-normal (and weakly 3-regular) space X with cardi-

nality 2ω.

Using the same idea as in Example 6.1.1, for any k ∈ N we can construct

first countable compact T1 space that is (k + 1)-normal not k-normal. We can

also have a not T1 example of such a space, thus showing that T1 is independent

of k-normality. In addition, the not T1 example can be constructed in such a

way that it has only one point at which the T1 axiom is violated (as in Example

6.1.2). Hence, we have:

6.1.3 Example. There is a T1, first countable, compact space X not k-normal

but (k+1)-normal for any k ∈ N with k > 2, with cardinality 2ω by construction.

Construction. Let X = ([0, 1]× {0}) ∪
{〈

1
2
, 1
m

〉
: 0 < m < k

}
, and topologize

X as follows:

• all points of [0, 1]× {0} have Euclidean neighbourhoods;

• the neighbourhoods of 〈1/2, 1/m〉 are

Up

(〈
1

2
,

1

m

〉)
=

{〈
1

2
,

1

m

〉}
∪
(((

1

2
− 1

p
,
1

2
+

1

p

)
\
{

1

2

})
× {0}

)
, p ∈ N+

6.1.4 Example. There is a not T1 at only one point, first countable, compact

space X which is not k-normal but is (k + 1)-normal for any k ∈ N+, k > 2. X

is also not k-weakly regular.
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Construction. Let the underlying set of X be as in Example 6.1.3 and let us

topologize X as follows:

• points on [0, 1]× {0} have Euclidean neighbourhoods;

• the neighbourhoods of 〈1/2, 1/m〉, m < k, are

Up

(〈
1

2
,

1

m

〉)
=

{〈
1

2
,

1

m

〉}
∪
((

1

2
− 1

p
,
1

2
+

1

p

)
× {0}

)
, p ∈ N+.

Let us point out again that the subspace topology on [0, 1]×{0} coincides with

the Euclidean topology; and the only point in X which is not closed is, as in

Example 6.1.2, the point 〈1/2, 0〉.

We also have

6.1.5 Example. There is an ω-normal, T1 space X which is first countable,

Lindelöf, not k-normal (k-weakly regular, k-Hausdorff), for all k ∈ N.

Construction. Let X = ([0, 1]× {0}) ∪ {〈1/2, 1/m〉 : m ∈ N+}. Topologize X

as follows:

• All points on [0, 1]× {0} have Euclidean neighbourhoods;

• The neighbourhoods of 〈1/2, 1/m〉, m ∈ N+, are

Up

(〈
1

2
,

1

m

〉)
=

{〈
1

2
,

1

m

〉}
∪
((

1

2
− 1

p
,
1

2
+

1

p

)
\
{

1

2

})
×{0}, p ∈ N+.

Let us show directly that X is ω-Hausdorff. The only essential case we have to

consider is how to separate the points in {〈1/2, 1/m〉 : m ∈ N+} ∪ {〈1/2, 0〉}.
For each m ∈ N+, consider Um(〈1/2, 1/m〉) and any neighbourhood U of 〈1/2, 0〉
on [0, 1]× {0}. Then U ∩

(⋂
m∈ω Um

)
= ∅.

The space is not k-normal, as we can take the closed points {〈1/2, 1/m〉} for

m = 1, . . . , k, and they do not have open neighbourhoods with empty intersec-

tion.

Let us now show that X is also ω-normal. Let {Fn : n ∈ N+} be a family of

mutually disjoint closed subsets of X. We have the following cases:
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Case 1: If two of {Fi : i ∈ N+} are subsets of [0, 1] × {0}, we are done, as

they can be separated in the Euclidean topology.

Case 2: Suppose that at most one of {Fi : i ∈ N+} is a subset of [0, 1]×{0}.
Write Fi = F ′i ∪ Ki, where F ′i = Fi ∩ ([0, 1] × {0}), and Ki = Fi \ F ′i . Then,

{F ′i : i ∈ N+} is a family of disjoint, Euclidean-closed subsets of [0, 1]× {0}, at

most one of which contains the point 〈1/2, 0〉. Without loss of generality, after

re-numbering if necessary, we can write our family as F0 ∪ {F ′i : i ∈ N+}, where

〈1/2, 0〉 ∈ F0. For all n ∈ N+, let

On =

(
1

2
− 1

n+ 1
,
1

2
+

1

n+ 1

)
\
{〈

1

2
, 0

〉}
.

We shall inductively define open Wn ⊃ Fn such that
⋂
n∈NWn = ∅.

First, let us separate F ′1 and F ′2 by disjoint Euclidean-open subsets of [0, 1]×
{0}, U1 ⊃ F ′1 , U ′2 ⊃ F ′2. Let us separate F ′1 from 〈1/2, 0〉 by disjoint Euclidean-

open subsets of [0, 1]× {0}, V1 ⊃ F ′1 and Q1 3 〈1/2, 0〉. Let

W1 = (U1 ∩ V1) ∪ (O1 ∩Q1) ∪K1,

and note that W1 is an open neighbourhood of F1.

Now let us separate F ′2 and F ′3 by disjoint Euclidean-open subsets of [0, 1]×
{0}, U2 ⊃ F ′2 and U ′3 ⊃ F ′3. Let us separate F ′2 from 〈1/2, 0〉 by disjoint

Euclidean-open subsets of [0, 1]× {0}, V2 ⊃ F ′2 and Q2 3 〈1/2, 0〉. Let

W2 = (U2 ∩ V2 ∩ U ′2) ∪ (O2 ∩Q2) ∪K2,

and note that W2 is an open neighbourhood of F2.

Now assume that for k = 1, . . . , n − 1, we have defined disjoint Euclidean-

open subsets of [0, 1] × {0}, Uk ⊃ F ′k, Uk+1 ⊃ F ′k+1, and disjoint Euclidean-

open subsets of [0, 1] × {0}, Vk ⊃ F ′k and Qk 3 〈1/2, 0〉. Consider F ′n and

F ′n+1. Let us separate them via disjoint Euclidean-open subsets of [0, 1] × {0},
Un ⊃ F ′n, U

′
n+1 ⊃ F ′n+1. Let us separate F ′n from 〈1/2, 0〉 by disjoint Euclidean-

open subsets of [0, 1]× {0}, Vn ⊃ F ′n and Qn 3 〈1/2, 0〉. Define

Wn = (Un ∩ U ′n ∩ Vn) ∪ (On ∩Qn) ∪Kn,
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and note that Wn is an open neighbourhood of Fn. Then we have
⋂
n∈N+ Wn = ∅.

Let W0 be an arbitrary neighbourhood of F0, then we still have
⋂
n∈NWn = ∅,

which proves ω-normality.

The fact that X is not k-Hausdorff for any k ∈ ω follows in the same way as

in Example 6.1.1 and by construction. Since X is T1, from here it also follows

that X is not k-normal (weakly k-regular) for any k ∈ N+.

The facts that X is first countable and Lindelöf follow directly by the con-

struction: [0, 1] × {0} is compact in the Euclidean topology, and outside it we

have only countably many points.

We can modify the previous example in order to obtain a compact space

with the same properties.

6.1.6 Example. There is a T1, ω-normal, first countable compact space X

which is not k-Hausdorff (k-normal, weakly k-regular) for any k ∈ N+.

Construction. Let X be the set as in Example 6.1.5, and topologize X as

follows:

• all points on [0, 1]× {0} again have Euclidean neighbourhoods;

• the neighbourhoods of 〈1/2, 1/m〉, m ∈ N+, are the same as in Example

6.1.5;

• the neighbourhoods of 〈1/2, 0〉 are

Up

(〈
1

2
, 0

〉)
=

((
1

2
− 1

p
,
1

2
+

1

p

)
× {0}

)
∪
{〈

1

2
,

1

m

〉
: p 6 m ∈ ω

}
, p ∈ N+.

The arguments given in Example 6.1.5 can be modified to show that X is ω-

normal. X is also T1 and with the usual arguments as in all of the above

examples, it follows that X is not k-Hausdorff for any k ∈ N+. By construction,

X is first countable and also by construction, X is compact, as union of its

compact subset [0, 1]×{0} and the convergent sequence {〈1/2, 0〉}∪{〈1/2, 1/m〉 :

m ∈ N+}.

6.1.7 Note. If on the real line, we take only the points from Q, we obtain count-

able versions of Examples 6.1.1-6.1.6.

100



CHAPTER 6. INVESTIGATING COMBINATORIAL SEPARATION
AXIOMS

We have already seen that first countability and compactness cannot “con-

vert” even the strongest “non-normal” property into normality. One might

speculate that, by adding more “nice” properties, one could achieve this. But

even Example 6.1.1 shows that another classic result does not extend even to

the 3-normal case - namely, the Urysohn metrization theorem. If we point out

that the spaces in all of the above examples are even second countable, we have:

6.1.8 Example. There is a T1, 3-normal compact second countable space which

is not normal (and hence not metrizable).

We might ask, what is the regularity number of some classic Hausdorff not

regular spaces. We concentrate on the following one:

6.1.9 Example. There is a Hausdorff, second countable, not regular, weakly

2-regular space.

Construction. Take the real line R with the following topology τ : the basis of

τ consists of all open intervals (a, b) and all sets of the form (a, b) \ K, where

K = {1/n : n ∈ ω}. In this topology, K is closed and cannot be separated from

{0} by disjoint open sets; hence it is not regular.

It is Hausdorff and second countable by construction. It is easily seen that

X is weakly 2-regular.

We note that, alongside K, every subsequence of K is also closed in this

topology. Indeed, let K1 be a proper subsequence of K. Then suppose 1/p /∈
K1, for some p ∈ ω. Then there are disjoint Euclidean-open U1, V1 such that

U1 3 1/p, V1 3 1/(p+ 1). Similarly, there are disjoint Euclidean-open U2 3 1/p,

V2 3 1/(p − 1). Let Up = U1 ∩ U2, and let W1 = ∪{Up : 1/p /∈ K1}. Then

K1∩W1 = ∅ by construction, and hence R\W1 is a closed superset of K1. Since

K1 = K ∩ (R \W1), it follows that K1 is also closed.

Let us only further point out that trivially, the above example is Lindelöf.

Then on the basis of Example 6.1.9, we obtain the following

6.1.10 Example. There is a Hausdorff second countable space X which is not

ω-regular (hence not k-regular for any finite k ∈ ω) but is ω1-normal (and hence

ω1-regular).
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Construction. Let X = R, and let Q∗ be the rationals in (0, 1). Decompose

Q∗ into countably many disjoint Euclidean dense sets {Q∗n : n ∈ N}. Topologize

X as follows: the pseudobasis of X consists of all open intervals (a, b) and sets of

the form (a, b)\Q∗n for n ∈ N. To show that X is not ω-regular, let us note that

Q∗n , for n ∈ N, are closed and disjoint in X. Also, 0 /∈ Q∗ = ∪{Q∗n : n ∈ N},
and 0 and {Q∗n : n ∈ N} cannot be separated in the sense of w-regularity.

To show that X is ω1-normal, let us point out that if we have a family of

disjoint closed sets {Fα : α ∈ ω1} in X, then at least three are disjoint from Q∗

and hence can be Euclidean-separated by normality of the Euclidean topology.

6.2 Combinatorial Separation Axioms in the Set-

ting of Some Classic Topological Construc-

tions and Properties

We can also pose questions about inheritance of the Hausdorff number:

Open Question. Given an uncountable τ -Hausdorff (τ -normal) space X, do

we have that, for each κ < τ , there is an uncountable κ-Hausdorff (respectively,

κ-normal) subspace of X?

As we have pointed out, in [DNPR03] there is a construction of a T1 com-

pletely regular space which are not τ -normal for every cardinal τ . All of those

spaces are trivially weakly τ -regular, and hence we readily have T1 τ -regular

spaces which are not τ -normal.

Dolecky and al [DNPR03] proved that the non-normality number of every

separable regular topology with a closed discrete subset of cardinality 2ω is at

least 2ω. The following example shows that it can be greater than 2ω, but

in addition it shows that n-normality, is not productive even in the case of

Hausdorff normal spaces.

6.2.1 Example. There is a Hausdorff regular not 2ω-normal space X which is

a product of two Hausdorff normal spaces.

102



CHAPTER 6. INVESTIGATING COMBINATORIAL SEPARATION
AXIOMS

The space in question is the Sorgenfrey plane. The only thing we have to

show is that it is not 2ω-normal. To do this, let L be the line y = −x. Decompose

L into 2ω Euclidean dense disjoint subsets {Lα : α ∈ 2ω}. Note that all Lα’s are

closed discrete in X and cannot be separated in the sense of 2ω-normality.

The above example leads to the first open problem that we pose:

Open Question. Is the product of a 3-normal space with the unit interval [0, 1]

also 3-normal? More generally, is the product of a k-normal space with [0, 1]

also k-normal? Or, in the terminology adopted in [TT11], is [0, 1] productively

3-normal?

Open Question. Is any metric space productively 3-normal?

We know that the Hausdorff property is productive. That is why it is inter-

esting to investigate the finite Hausdorff number in product spaces.

We have the following straightforward result:

6.2.2 Proposition. The product of a 3-Hausdorff space X with a Hausdorff

space Y is 3-Hausdorff.

However, the same conclusion is not true when both spaces are 3-Hausdorff,

as the following example shows.

6.2.3 Example. There exists a compact, first countable, 3-Hausdorff T1 space

such that X2 is not 3-Hausdorff, but 5-Hausdorff.

Construction. Let X = [0, 1] ∪ {2}. All points from [0, 1] have Euclidean

neighbourhoods. The neighbourhoods of 2 are:

Un(2) = {2} ∪
((

1

2
− 1

n
,
1

2
+

1

n

)
\
{

1

2

})
, n ∈ N+, n > 1.

It can be seen that X is compact, 3-Hausdorff, first countable, T1 not Hausdorff.

The product X ×X, though, is not 3-Hausdorff. It is exactly 5-Hausdorff.

One possible hypothesis about the Hausdorff number that the above example

disproves, is that the product of two 3-Hausdorff spaces is exactly 6-Hausdorff.

Here we prove the most general case.
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6.2.4 Theorem. The product of m many n-Hausdorff spaces is ((n− 1)m + 1)-

Hausdorff.

Proof. Let Xk, k = 1, . . . ,m be n-Hausdorff spaces, and consider
∏m

k=1Xk.

First, we will show that the Hausdorff number of
∏m

k=1Xk is at least (n −
1)m+1. For each Xk, there exists a set of points Pk = {x(1)

k , . . . , x
(n−1)
k } such that

for all neighbourhoods U
(1)
k , . . . , U

(n−1)
k of the points, we have that

⋂n−1
i=1 U

(i)
k 6= ∅.

Then the points {(y1, . . . , ym) : yk ∈ Pk} are (n − 1)m-many, and we will show

that all their neighbourhoods have a nonempty intersection. Let Wi ⊂
∏m

k=1Xk,

i = 1, . . . , (n− 1)m be basic open neighbourhoods of the points, so Wi = V
(i)

1 ×
. . .× V (i)

m , where V
(i)
k ⊆ Xk. For x

(j)
k ∈ Pk, let

U j
k :=

⋂{
V

(i)
k : x

(j)
k ∈ V

(i)
k

}
.

Then U
(j)
k are neighbourhoods of x

(j)
k in Xk, so by n-Hausdorffness, there exists

a point y ∈
⋂n−1
j=1 U

(j)
k . Then the point

(y1, . . . , ym) ∈
(n−1)m⋂
i=1

Wi,

showing that the intersection is indeed non-empty, as required.

Next, we will show that
∏m

k=1 Xk is at most ((n − 1)m + 1)-Hausdorff. Let

x(i), i = 1, . . . , (n − 1)m + 1 be distinct points in
∏m

k=1Xk, with coordinates

x(i) = (x
(i)
1 , . . . , x

(i)
m ). Consider the sets

Pk := {x(i)
k : i = 1, . . . , (n− 1)m + 1} ⊂ Xk,

the set of k-th coordinates of the points x(i). Note that if i 6= j, x
(i)
k is not

necessarily distinct from x
(j)
k , but this does not create any difficulties in the

subsequent proof. Since (n − 1)m + 1 > (n − 1)m, it is easy to see that for

some Pk, we have |Pk| > n − 1. Since Xk is n-Hausdorff, the at-least-n-many

points in Pk have open neighbourhoods U
(i)
k 3 x

(i)
k , i = 1, . . . , (n− 1)m + 1, with
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⋂(n−1)m+1
i=1 U

(i)
k = ∅. Consider the open sets

Vj :=
k−1∏
l=1

Xl × U (j)
k ×

m∏
l=k+1

Xl.

By construction, each point x(i) lies in an open set Vj. Moreover, by construction,

we have that
⋂(n−1)m+1
j=1 Vj = ∅, as required.

Therefore,
∏m

k=1 Xk is precisely ((n− 1)m + 1)-Hausdorff, as required.

Now, we can prove an analogue of Proposition 6.2.2 in the most general

setting.

6.2.5 Theorem. If X is n-Hausdorff and Y is m-Hausdorff, then X × Y is

((n− 1)(m− 1) + 1)-Hausdorff. Here, we allow n or m to be equal to 2.

Proof. Let X be an n-Hausdorff space, Y be m-Hausdorff, and let k := (n −
1)(m− 1) + 1.

We first show that X × Y is at least k-Hausdorff. Since X is n-Hausdorff,

there exist x1, . . . , xn−1 such that any neighbourhoods Ui 3 xi will have ∩n−1
i=1 Ui 6=

∅. Similarly, there are y1, . . . , ym−1 ∈ Y such that for any neighbourhoods

Vi 3 yi, we have ∩m−1
i=1 Vi 6= ∅. So, consider the set of (k − 1)-many points

{(xi, yj) : i = 1, . . . , n − 1, j = 1, . . . ,m − 1} ⊂ X × Y . Whatever set of basic

open neigbourhoods Ui × Vj we choose for the points (xi, yj), we will have that

there is x∗ ∈ ∩n−1
i=1 Ui 6= ∅ and y∗ ∈ ∩m−1

i=1 Vi 6= ∅, so that (x∗, y∗) ∈ ∩{Ui × Vj :

1 6 i 6 n− 1, 1 6 j 6 m− 1}, so the latter would be nonempty.

We now show that X × Y is at most k-Hausdorff. Let P := {(xi, yi) : i =

1, . . . , k} be a set of k-many distinct points in X × Y . Consider PX := {x ∈
X : ∃y ∈ Y, (x, y) ∈ P} and PY := {y ∈ Y : ∃x ∈ X, (x, y) ∈ P} - the sets

of x- (or respectively, y-) coordinates of points in P . Then either |PX | > n

or |PY | > m. Without loss of generality, assume |PX | = n′ > n. Express

PX = {x′i : 1 6 i 6 n′}. Since X is n-Hausdorff, one can take neighbourhoods

Ui 3 x′i, 1 6 i 6 n′, such that
⋂n′

i=1 Ui = ∅, and set Wi := Ui × Y . Then,

for 1 6 j 6 k, every (xi, yi) ∈ Wi for some i, 1 6 i 6 n′, and
⋂n′

i=1 Wi = ∅,
as required. This shows that X × Y is k-Hausdorff, and thus completes the

proof.
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It is well known that the situation with the productivity of normality is not

straightforward. The classical example of E. Michael [Mic63] is that the product

of a normal space and a metric space need not be normal. Let us just recall

Michael’s example. The space is Z = I ×M, where I is the irrationals and M
is the real line with the stronger topology obtained by isolating the points of I.
We note that Michael’s example is not 3-normal, which motivates the following

questions:

1 Question. Is Michael’s example n-normal for some n > 4?

2 Question. Is there a normal space X such that X2 is not normal, but 3-

normal?

Similarly as in the case of Hausdorff number, we can ask:

3 Question. What is the normality number of the product of m-many n-normal

spaces?

4 Question. What is the cardinality of a T1, 3-normal, first countable, weakly

Lindelöf space?

In fact, weak 2-regularity in examples 6.2.1 and 6.1.9 trivially follows from

the following straightforward Proposition:

6.2.6 Proposition. Every Hausdorff space X is weakly 2-regular.

More generally, we have the following:

6.2.7 Proposition. Every τ -Hausdorff space is weakly τ -regular for every car-

dinal τ .

The above facts have in fact initially motivated us to define the stronger

form of regularity number.

For compact spaces, we have the following analogue of an already discussed

classical result:

6.2.8 Theorem. If X is compact, 3-Hausdorff, then X is 3-normal.
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Proof. Let A,B,C be three mutually disjoint closed subsets of X. Note that

they are also compact.

Fix a point b ∈ B and a point c ∈ C. Then for any a ∈ A, there are open

neighbourhoods Ua 3 a, Va 3 b and Wa 3 c such that Ua ∩ Va ∩Wa = ∅. From

the cover {Ua : a ∈ A}, choose a finite subcover {Uai : i = 1, . . . , n}, and set

UA =
⋃
{Uai : i = 1, . . . , n} ⊃ A

Vb =
⋂
{Vai : i = 1, . . . , n} 3 b

Wc =
⋂
{Wai : i = 1, . . . , n} 3 c,

and note that UA ∩ Vb ∩Wc = ∅.
Hence for all b ∈ B and for each fixed c ∈ C, we can find open sets U

(b,c)
A ⊃

A, V
(b,c)
b 3 b, W (b,c)

c 3 c with empty intersection. From the cover {V (b,c)
b : b ∈ B}

of B, we choose a finite subcover {V (bi,c)
bi

: i = 1, . . . , k}, and let

V c
B =

⋃
{V (bi,c)

bi
: i = 1, . . . k} ⊃ B

U c
A =

⋂
{U (bi,c)

A : i = 1, . . . k} ⊃ A

Wc =
⋂
{W (bi,c)

c : i = 1, . . . k} 3 c.

Then, U c
A ∩Wc ∩ V c

B = ∅.
From {Wc : c ∈ C}, choose a finite subcover {Wci : i = 1, . . . ,m}, and let

WC =
⋃
{Wci : i = 1, . . . ,m}

UA =
⋂
{U ci

A : i = 1, . . . ,m}

VB =
⋂
{V ci

B : i = 1, . . . ,m}.

Then, we have WC ∩ UA ∩ VB = ∅, as required.

With a similar argument, we have:

6.2.9 Theorem. If X is a compact k-Hausdorff space, then X is k-normal.

As for the construction of the quotient space, one might that collapsing all

107



CHAPTER 6. INVESTIGATING COMBINATORIAL SEPARATION
AXIOMS

points of a local Hausdorff width in one might give us a Hausdorff space. So, it

is of interest to ask:

5 Question. Is it true that every T1 n-Hausdorff space has an equicardinal

Hausdorff quotient?

In general, the study of quotient of n-Hausdorff spaces might help provide a

converse to the author’s Theorem 4.4.8 about the Furstenberg topologies.
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Chapter 7

Cardinality Restrictions

7.1 History, Motivation, and First Results

In the previous section, we defined some of the basic cardinal invariants, such as

Lindelöf number, Souslin number, density and spread. Another basic cardinal

invariant is the weight of the topological space, which is the smallest cardinality

of a basis B of X. Fundamental theorems and problems in topology immedi-

ately show the importance of these basic notions. For example, a regular space of

countable weight is metrizable (Urysohn-Tychonoff metrization theorem, 1925);

a compact Hausdorff space is metrizable if and only if its weight is countable; the

Lindelöf number of every space of countable weight is itself countable. Hence,

the question of comparison of cardinal invariants might lead to significant con-

clusions about the structure of the space. This question is central in the theory

of cardinal invariants.

Much research in the theory of cardinal invariants was stimulated by the

problem of estimating the cardinality of compact Hausdorff spaces satisfying

the first axiom of countability.

As early as 1915 [Arh00], Luzin asked the following question:

6 Question (Luzin, 1915). Is the cardinality of every uncountable Borel subset

of the real line precisely 2ω?

The answer was given by Alexandroff [Arh00], who proved
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7.1.1 Theorem (Alexandroff, 1915). If a Borel subset A of a complete, sepa-

rable, metrizable space is uncountable, then it contains a topological copy of the

Cantor set.

During 1921-23, Alexandroff and Urysohn made an extensive study of com-

pact topological spaces and published their famous ‘Memoir on Compact Topo-

logical Spaces’ [AU29], which provides many beautiful theorems and fascinating

examples. Amongst them is one of the first theorems that gives a restriction of

the cardinality of a topological space which is implied by its properties, namely:

7.1.2 Theorem (Alexandroff, Urysohn, 1921-1923). The cardinality of any per-

fectly normal compact space does not exceed 2ω.

At that time (1922), Alexandroff posed his famous question:

7 Question (Alexandroff, 1922). Does the cardinality of a Hausdorff, first

countable, compact space not exceed 2ω?

This gave rise to the theory of cardinal invariants. It took some time before

the first systematic results in the field were obtained. The computation of

cardinal invariants took place in all parts of general topology, because of its

set-theoretic nature. Cardinal invariants appear both as a principal tool in the

investigation of the structure of spaces, and as a means of classification and

selection of new classes of topological spaces. Some of the most classical results

are the following.

7.1.3 Theorem (de Groot, [dG65]). If X is Hausdorff, then |X| 6 2hL(X).

7.1.4 Theorem (Hajnal and Juhasz, [HJ67]). If X is Hausdorff, then |X| 6
2c(X)χ(X). If X is T1, then |X| 6 2s(X)ψ(X).

Hajnal and Juhasz used mainly combinatorial ways of proving their results,

in particular, the partition theorem of Erdös-Rado.

7.1.5 Theorem (Čech-Pospǐsil, [ČP38]). If X is a Hausdorff space, then |X| 6
d(X)χ(X).

Alexandroff’s problem has been answered only 50 years later by Arhangelskii

[Arh69], who proved:
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7.1.6 Theorem. If X is a Hausdorff, compact first countable space, then |X| 6
2ω.

Since he worked in compact spaces, he developed a special method using the

so-called ‘free sequences’. He was also able to extend this result to the more

general one [Arh69]:

7.1.7 Theorem. If X is Hausdorff, then |X| 6 2L(X)χ(X).

Shortly after that, independently of Arhangelskii’s work, Gryzlov [Gry80],

Pol [Pol74] and Shapirovski [Sha72b], [Sha72a] developed the so-called ‘closure

method’, which they used to give another proof of the theorems of Hajnal and

Juhasz and Arhangelskii. They also used this method to extend Arhangelskii’s

result to the following:

7.1.8 Theorem. If X is Hausdorff, then |X| 6 2L(X)ψ(X)t(X).

At that time, there arose an interest in whether Arhangelskii’s result could

be further extended by omitting one or another of the conditions. We formulate

the countable case, which is still of interest:

Open Question (Arhangelskii). Does the cardinality of a T1 first countable

Lindelöf space exceed 2ω?

Here, the condition of Hausdorffness is relaxed to that of the T1 axiom, which

is much weaker. Some partial answers of this question will be provided here.

Open Question (Arhangelskii). Does the cardinality of Hausdorff Lindelöf

spaces with countable pseudocharacter exceed 2ω?

Here, the condition of first countability (i.e. the requirement that the space

has a countable character) is relaxed to that of having a countable pseudochar-

acter.

A very strong but partial answer to both questions was given by Gryzlov in

1981 [Gry80], who proved that:

7.1.9 Theorem (Gryzlov,[Gry80]). If X is a T1 compact space, then |X| 6
2ψ(X).
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In the early 1990’s Gorelic [Gor93] was able to construct, using the forcing

method, a T1 Lindelöf space with countable pseudocharacter and with cardinal-

ity exceeding 2ω. The first question, though, still remains open, and very few

partial results in that direction have been obtained.

Analyzing the above results leads us to the following observation. All of them

could be expressed in the following general setting: we are given a separation

property, a covering property, and a local cardinal invariant, and this leads to a

restriction of the cardinality of the space.

We can also observe that various authors used four distinct approaches in

proving cardinality restrictions: combinatorial (Hajnal and Juhasz [HJ67, HJ80],

Hodel [Hod91]), the closure method (Arhangelskii [Arh69], Gryzlov [Gry77],

Shapirovski [Sha72b, Sha72a], Pol [Pol74], Hodel [Hod76]), elementary submod-

els (Dow [Dow88], Spadaro [Spa11]), and games (Tall and Scheepers [ST10],

Cammaroto, Santoro, Bella and Spadaro [BS15], Aurichi). It is also worth men-

tioning that for various theorems, some of these methods are more appropriate

than the others, but it also interesting that all those methods are interchange-

able, in the sense that (with various levels of difficulty) any of them can be used

for proving the results proved by using another method. In our humble opinion,

the closure method is the most natural one from the topological point of view,

and uses only purely topological means.

The results of Archangelskii gave rise to considering cardinal invariants sim-

ilar to the Lindelöf number. One such was introduced in 1984 by Dissanayake

and Willard [WD84]

7.1.10 Definition. For a topological space X and Y ⊂ X, let:

aL(Y,X) =ωmin{τ : for each open in X cover γ of Y ∃γ′ ∈ [γ]6τ

such that Y ⊆ ∪{U : U ∈ γ′}},

aLc(X) =ωmin{aL(Y,X) : Y closed ⊂ X},

aL(X) =aL(X,X) (almost Lindelöf number).

We know that every closed subspace of a Lindelöf space is also Lindelöf, but

that is not the case with almost Lindelöf spaces. This necessitates the introduc-
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tion of aLc(X), which assures inheritance of the almost Lindelöf property by

closed subspaces. We obviously have aLc(X) 6 L(X). Dissanayake and Willard

proved that:

7.1.11 Theorem ([WD84]). If X is Hausdorff then |X| 6 2aLc(X)χ(X).

One of the few improvements of de Groot’s result (Theorem 7.1.3) is

7.1.12 Theorem (Stavrova, [Sta92]). If X is Hausdorff then |X| 6 ψc(X)haL(X).

In this result, ψc(X) is the closed pseudocharacter of X, defined as follows:

7.1.13 Definition (closed pseudocharacter). The closed pseudocharacter of a

Hausdorff space X at the point x ∈ X, denoted by ψc(x,X) is the following

cardinal:

ψc(x,X) = min{τ : there is a local open neighbourhood system B(x) at x with

cardinality τ such that x = ∩{U : U ∈ B(x)} }.

Then the closed pseudocharacter of X, ψc(X) will be:

ψc(X) = sup{ψc(x,X) : x ∈ X}

The presence of ψc(X) is essential, as the following example shows:

7.1.14 Example (Hajnal, Szentmiklossy 1981). For every τ > ω, there is a

Hausdorff space with cardinality τ and haL(X) 6 ω.

7.2 Combinatorial Separation Axioms and Re-

strictions of Cardinality

A possible way of approaching Arhangelskii’s problem about the cardinality of

T1 first countable Lindelöf spaces is to investigate cardinality restriction in T1

spaces with separation-type axioms, which are analogous to the classical ones

(in terms of intersections of open sets). It is worth considering somehow ‘step-

by-step approximation’ of Hausdorffness in T1 spaces.
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The “worst” such spaces should be ‘nowhere Hausdorff’, i.e. no two distinct

points can be separated by disjoint neighbourhoods. Such a notion has already

been introduced in the literature:

7.2.1 Definition. A topological space is called hyperconnected if every two

non-empty open subsets in it intersect.

That is why it seems to be easier to first look at the following question:

8 Question. Does the cardinality of a T1 first countable hyperconnected Lin-

delöf space not exceed 2ω?

Later, we shall give some examples in that direction.

The second “level” of “approximating” Hausdorffness is to consider not Haus-

dorff spaces in which any three different points x, y, z have open neighbourhoods

Ux, Uy, Uz such that Ux ∩ Uy ∩ Uz = ∅, in other words, 3-Hausdorff spaces. We

have a positive result:

7.2.2 Theorem ([Bon13]). If X is T1 3-Hausdorff then |X| 6 2L(X)ψ(X)t(X).

Bonanzinga also introduced the notion of the weak Hausdorff number:

7.2.3 Definition (weak Hausdorff number, [Bon13]). The weak Hausdorff num-

ber of X is:

H∗(X) = min{τ : ∀A ⊂ X with |A| > τ∃B ⊂ A, |B| < τ and open

Ub 3 b, ∀b ∈ B such that
⋂
b∈B

Ub = ∅}.

It is easily observed that H∗(X) > H(X).

For all values of H∗(X) up to the countable one, Bonanzinga also proved:

7.2.4 Theorem ([Bon13]). Let X be a T1 space, H∗(X) 6 ω. Then |X| 6
2L(X)χ(X).

But, if we replace H∗(X) = ω with H(X) = ω, we still have an open problem:

9 Question ([Bon13]). Is it true that if X is T1, ω-Hausdorff, Lindelöf, first

countable, then |X| 6 2ω?
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Also, for all values of H∗(X) up to the countable, we have another open

problem:

10 Question ([Bon13]). Is it true that if X is a T1 space with H∗(X) 6 ω then

|X| 6 2L(X)t(X)ψ(X)?

She also obtained the following generalisation of Pospǐsil’s Theorem:

7.2.5 Proposition ([Bon13]). If X is T1 n-Hausdorff, then |X| 6 d(X)χ(X).

One of the stepping stones in the proofs of cardinal inequalities involving the

Hausdorff separation axiom is that in Hausdorff spaces, {x} = ∩{U : U open 3
x}, for all x ∈ X. That is not true in T1 n-Hausdorff spaces.

This motivates us to consider the following notion:

7.2.6 Definition (Hausdorff width, [BSS17]). Let X be a T1 topological space

and for all x in X, let

Hw(x) = ∩{U : U ∈ Ux, |Ux| 6 ψ(X), Ux is an open

neighborhood system for x}.

The Hausdorff width of the space X, denoted HW (X), is:

HW (X) = sup{|Hw(x)| : x ∈ X}.

Let us point out that in T1 n-Hausdorff spaces, HW (X) can be strictly

smaller than |X| [Sta13].

We also note that HW (X) is a hereditary invariant i.e. hHW (X) = HW (X)

because we have:

7.2.7 Lemma. If A ⊆ X then HW (A) 6 HW (X).

This allows us to obtain the following generalisation of the above theorem of

Dissanayake and Willard:

7.2.8 Theorem ([BSS17]). If X is a T1 n-Hausdorff space, then |X| 6 HW (X)2aLc(X)χ(X).
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Proof. Let HW (X) 6 κ, aLc(X)χ(X) 6 τ . For all x in X, let Ux be a local base

and |Ux| 6 τ . Note that for all x ∈ X, Hw(x) = ∩{U : U ∈ Ux}. Construct

{Hα : α ∈ τ+} and {Bα : α ∈ τ+} such that:

1. Hα ⊂ Hα′ ⊂ X, ∀α ∈ α′ ∈ τ+

2. Hα is closed ∀α ∈ τ+

3. |Hα| 6 2τ ∀α ∈ τ+

4. If {Hβ : β ∈ α} are defined for some α ∈ τ+, then Bα = ∪{Ux : x ∈
∪{Hβ : β ∈ α}}

5. If α ∈ τ+ and W ∈ [Bα]6τ is such that X \ (∪{U : U ∈ W}) 6= ∅ then

Hα \ (∪{U : U ∈ W}) 6= ∅.

Let α ∈ τ+ and {Hβ : β ∈ α} be already defined. For allW as in (5), choose

a point x(W) ∈ X \ (∪{U : U ∈ W}) and let Cα be the set of these points.

Let Hα = ∪{Hβ : β ∈ α} ∪ Cα. In order to conclude that |Hα| 6 2τ we use the

Bonanzinga’s generalisation of Pospǐsil’s Theorem 7.2.5.

Let H = ∪{Hβ : β ∈ τ+}. Since t(X) 6 χ(X) 6 τ , τ+ is regular, and

{Hα : α ∈ τ+} is τ+-inductive, we have that H is closed. Also, |H| 6 2τ . Let

H∗ = ∪{Hw(x) : x ∈ H} ⊇ H. Then |H∗| 6 κ2τ .

Suppose q ∈ X \H∗ ⊂ X \H. Then for all x ∈ H there is U(x) ∈ Ux such

that q /∈ U(x). From aLc(H) 6 τ choose H ′ ∈ [H]6τ such that H ⊆ ∪{U(x) :

x ∈ H ′}. Then H ′ ⊆ Hα for some α ∈ τ+ and hence W = {U(x) : x ∈ H ′} ∈
[Bα+1]6τ and q ∈ X \ (∪{U : U ∈ W}) 6= ∅. Hence we have already chosen

x(W) ∈ Hα+1∩ (H \∪{U(x) : x ∈ H ′}) ⊆ H ∩ (X \H) - a contradiction. Hence

X = H∗ and |X| 6 κ2τ .

The Hausdorff width allows us to generalise de Groot’s result as follows:

7.2.9 Theorem ([BSS17]). Let X be a T1 space. Then |X| 6 HW (X)2haL(X)ψ(X).

Proof. Let haL(X)ψ(X) 6 τ and HW (X) 6 κ. Let ∀x ∈ X, Ux be a local

open neighbourhood system such that |Ux| 6 τ and {x} = ∩{U : U ∈ Ux}. By
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transfinite induction, define two families {Hα : α ∈ τ+} and {Bα : α ∈ τ+} such

that:

1. {Hα : α ∈ τ+} is τ+-inductive

2. |Hα| 6 2τ ∀α ∈ τ+

3. If {Hβ : β ∈ α} are already defined for some α ∈ τ+, then Bα = ∪{Ux :

x ∈ ∪{Hβ : β ∈ α}}

4. If α ∈ τ+, W ∈ [Bα]6τ and H \ (∪{U : U ∈ W}) 6= ∅, then Hα \ (∪{U :

U ∈ W}) 6= ∅.

Suppose α ∈ τ+ and {Hβ : β ∈ α} are already defined. If W is as in (3),

choose x(W) ∈ X \ (∪{U : U ∈ W}) and let Cα be the set of these points. Let

Hα = ∪{Hβ : β ∈ α} ∪ Cα. Then |Hα| 6 2τ .

Let H = ∪{Hα : α ∈ τ+} and H∗ = ∪{Hw(x) : x ∈ H}. Then |H∗| 6 κ2τ .

Suppose q ∈ X \H∗. Then q /∈ Hw(x) ∀x ∈ H. Hence for all x ∈ H there

exists U(x) ∈ Ux such that q /∈ U(x). By haL(X) 6 τ we can choose H ′ ∈ [H]6τ

such that H ⊂ ∪{U(x) : x ∈ H ′}. Let W = {U(x) : x ∈ H ′}. We have that

H ′ ⊆ Hα for some α ∈ τ+ and W ∈ [Bα+1]6τ and X \ (∪{U : U ∈ W}) 6= ∅.
Hence we have already chosen x(W) ∈ X \ (∪{U : U ∈ W}) ⊆ X \ H and

x(W) ∈ H - a contradiction.

7.2.10 Corollary ([Sta93]). If X is Hausdorff then |X| 6 ψc(X)haL(X).

So far, we have considered conditions which are weaker than Hausdorff and

other separation axioms. However, we can also make use of one ‘far-fetched’

generalisation of the pseudocharacter, arising from a work of Stavrova [Sta01],

and defined by Bonanzinga in [Bon13]:

7.2.11 Definition (n-Hausdorff pseudocharacter).

n−Hψ(X) = min{τ : ∀x ∈ X there is a collection {V (α, x) : α ∈ τ} of open

neighbourhoods of x such that for any n distinct x1, . . . , xn ∈ X

there are α1, . . . , αn ∈ τ such that ∩ni=1 V (αi, xi) = ∅}.

117



CHAPTER 7. CARDINALITY RESTRICTIONS

Reflecting the famous Gryzlov’s theorem [Gry80] that every T1 compact

space with countable pseudocharacter has cardinality at most 2ω, and our Ex-

ample 6.1.2, we can ask the following

Open Question. LetX be 3-Hausdorff compact space with countable 3-Hausdorff

pseudocharacter. Is it true that |X| 6 2ω?

Recall that for a Hausdorff compact space X, ψ(X) = χ(X). A similar result

need not be true if one replaces “Hausdorff” with “3-Hausdorff” and “3-Hψ(X)”

with “ψ(X)”, as the following example shows.

7.2.12 Example. There is a 3-Hausdorff compact space with countable 3-

Hausdorff pseudocharacter having uncountable character.

Construction. Let Y = ω ∪ {p}, where p is an ultrafilter on ω. Y is a n-

Hausdorff not first countable space such that n-Hψ(X) = ω. Let X = Y ∪ {∗}
the space topologized as follows: Y is open in X and a basic neighbourhood of

∗ takes the form U∗ = {∗} ∪ F , where F ⊂ Y is such that |X \ F | < ℵ0.

Let n ∈ ω with n > 3. X is n-Hausdorff. Indeed Y is n-Hausdorff; for

every x1, ..., xn−2 ∈ ω, where x1 < ... < xn−2, Ui = {xi}, i = 1, ..., n − 2,

Up = Y \{0, ..., xn−2 +1}, U∗ = X \{0, ..., xn−2 +1} are disjoint neighbourhoods

of x1, ..., xn−2, p and ∗ respectively; further, if x1, ..., xn−1 ∈ ω, where x1 <

... < xn−1, Ui = {xi}, i = 1, ..., n − 2, U∗ = X \ {0, ..., xn−2 + 1} are disjoint

neighbourhoods of x1, ..., xn−1 and ∗ respectively.

n-Hψ(X) = ω for n > 3. Indeed, Um = {{m}}, m ∈ ω, Up = {Y \
{0, 1, ..., n} : n ∈ ω}, U∗ = {X \ {n}, X \ {p} : n ∈ ω} are countable families of

open neighbourhoods of m, p and ∗. Then for every distinct points of x, y, z ∈ X
there exist Ux ∈ Ux, Uy ∈ Uy and Uz ∈ Uz such that Ux ∩ Uy ∩ Uz = ∅.

It is a classical result that the weight of a compact Hausdorff space ω(X)

is less than its cardinality. However, this is no longer true if we replace “Haus-

dorff” by the strongest combinatorial Hausdorff generalisation, namely “T1 3-

Hausdorff”:

7.2.13 Example. There is a T1 3-Hausdorff compact space X such that ω(X) >

|X|.
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This is in fact Example 7.2.12, since it is a countable space with uncountable

character.

7.2.14 Example. There is a T1 compact and countable 3-regular space X which

is not 2-regular. Also, X is a 4-normal space which is not 3-normal.

Construction. Let X = 4 ∪ {ω × 4}, where 4 = {0, 1, 2, 3}, be the space

topologized as follows: all points from ω× {i}, where i ∈ 4 are isolated; a basic

neighbourhood of i ∈ 4 takes the form U(i, N) = {i} ∪ {(m, j) : j 6= i,m > N},
where N ∈ ω. Note that X is countable T1. In [Bon13], it is proved that X

is 4-Hausdorff not 3-Hausdorff. By Theorem 6.2.9, X is 4-normal and hence 3-

regular: indeed, for the closed set F = {3, 4} and the points 0 and 1, we cannot

find open sets containing them and with empty intersection. Also, since X it is

not 2-regular, it is not 3-normal; thus, X is also a 4-normal space which is not

3-normal.

A similar idea can be used to construct

7.2.15 Example. There is a T1 compact and countable k-regular space X which

is not weakly (k−1)-regular. In addition X is also (k+1)-normal not k-normal.

The following question is related to the Jones’ Lemma that every closed and

discrete subspace of a normal separable space has cardinality at most 2ω:

Open Question. Let X be a T1 3-normal separable space. Is it true that every

closed and discrete subspace of X has cardinality at most 2ω?

The next example gives a partial negative answer to the above questions:

7.2.16 Example. There is a T1 ω-normal space X with a closed discrete sub-

space of cardinality greater than 2ω.

Construction. Consider the space X = ω ∪ A, where |A| > 2ω topologized

as follows: the points of ω are isolated and basic neighborhoods of a ∈ A take

the form a ∪ (ω \ H), where H is a subset of ω such that |H| < ω . X is T1,

d(X) = ω. It was noted in [Bon13] that H(X) = ψ(X, a) = ω, where a is any

point in A and ψ is the pseudocharacter; then X is ω-Hausdorff. It is easy to

see that X is ω-normal.
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It is known that if X is a T1 regular space then ω(X) 6 2d(X). Hence we can

naturally ask

Open Question. If X is a T1 2-regular space, is it true that ω(X) 6 2d(X)?

Example 7.2.16 above gives a partial negative answer:

7.2.17 Example. There is an ω-normal (hence ω-regular) space X such that

ω(X) > 2d(X).

Construction. It is enough to point out that the space X in Example 7.2.16

is separable and ω(X) = |A| > 2ω.

With respect to the inheritance of those separation properties, we can point

out that:

7.2.18 Proposition. Every closed subspace of an k-normal space is k-normal,

for all k ∈ ω.

But 3-normality is not hereditary with respect to open sets as the following

example shows.

7.2.19 Example. There is a T1 3-normal space X with an open subspace which

is not 3-normal.

Construction. Let L be the Niemitzky plane and let X = L∪{∗} topologized

as follows: N is open in X and a basic neighbourhood of ∗ takes the form:

U∗ = {∗} ∪ F , where F ⊂ L and |X \ F | < ℵ0. X is compact. Also X is

3-Hausdorff. Indeed L is 3-Hausdorff; also, considering x, y ∈ L and the point

∗, there exists open sets Ux 3 x, Uy 3 y and U∗ = {∗}∪ {z}, where z /∈ Ux ∪Uy,
such that Ux ∩ Uy ∩ U∗ = ∅. Then, X is compact and 3-Hausdorff, hence X is

3-normal. However, L is not 2ω-normal hence it is not 3-normal.

Recall Theorem 7.2.5 which generalises the Czech-Pospǐsil inequality. A

natural question related to this result is:

11 Question. Let X be a T1 space such that H(X) = ω. Is it true that

|X| 6 d(X)χ(X)?
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The following example shows that the answer is negative:

7.2.20 Example. There is a T1 ω-Hausdorff first countable, locally compact,

separable, not hyperconnected, not Hausdorff space X with arbitrarily large

cardinality.

Construction. Let B be any set of cardinality κ which is disjoint from N+.

Let X = N+ ∪B. All points of N+ are isolated. If b ∈ B then a neighbourhood

of b takes the form Ub = {b} ∪ (N+ \ F ), where F is a finite subset of N+.

N+ is dense in X; X is first countable, X is not Hausdorff (points from

B cannot be separated), X is not hyperconnected (as it has isolated points);

moreover, X is not n-Hausdorff for any n ∈ N (any neighbourhoods of any n-

many points from B have a nonempty intersection). However, X is ω-Hausdorff,

because if {yn : n ∈ N+} ⊆ B, then for all n ∈ N+ we may take Uyn =

{yn} ∪ (N+ \ {1, . . . , n}). Then
⋂
n∈N+ Uyn = ∅.

We aim at hyperconnected spaces not just out of idle curiosity. As we pointed

out, this notion is closely related to the attempt to find a proof or a ZFC

counterexample of Arhangel’skii’s initial question about the cardinality of T1

first countable Lindelöf spaces. In trying to do so it is natural to look at the

spaces as much non-Hausdorff as possible. We have the following result:

7.2.21 Theorem ([BSS17]). If the cardinality of every T1, first countable, Lin-

delöf, separable, hyperconnected space is at most 2ℵ0, then the cardinality of

every T1, first countable, Lindelöf space is at most 2ℵ0.

Proof. Let Y be T1 first countable, Lindelöf and Y = k where k is any infinite

cardinal. Let X = Y ∪D, where D is countable and Y ∩D = ∅. Let the topology

τ on X have the following local basis: all d ∈ D, have neighborhoods V ⊆ D

such that d ∈ V and D\V is finite; ∅ is open and U ∪ (D\F ) is open where U is

open in the initial topology in Y and F is a finite subset of D. Then |X| = |Y |,
X is T1, first-countable, Lindelöf , hyperconnected and D is dense in X.

Examples of hyperconnected spaces are hard to find, moreover such which

are separable, T1, Lindelöf and first countable. So, this gives us some hope of

a positive solution of Arhangel’skii’s initial question. Let us note that if in the

above example we suppose in addition that Y is ω-Hausdorff then we get:
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7.2.22 Theorem ([BSS17]). If the cardinality of every T1, first countable, Lin-

delöf, separable, ω-Hausdorff, hyperconnected space is at most 2ℵ0, then the car-

dinality of every T1, first countable, ω-Hausdorff, Lindelöf space is at most 2ℵ0.

Examples of T1, first countable, separable, Lindelöf, ω-Hausdorff, hypercon-

nected spaces are even harder to find.

Here we give two such examples - both with cardinality at most 2ℵ0 .

7.2.23 Example. There is a T1 hyperconnected, ω-Hausdorff, first countable,

Lindelöf, separable space with topology that is not the co-finite topology.

Construction. Let X = Z × Z and let B = {Vn,m,Un,m : n,m ∈ Z} be the

subbase for a topology of X where

Vn,m :={(x, y) ∈ Z2 : x < n or y < m}

Un,m :={(x, y) ∈ Z2 : x > n or y > m}.

The following one is an uncountable such example:

7.2.24 Example. There is a T1, Lindelöf, first countable, ω-Hausdorff, separa-

ble, hyperconnected space with cardinality continuum.

Construction. Let X = R∪ (N+×{1}). Points on N+×{1} have the cofinite

topology in N+ × {1}. Points x ∈ R, have neighbourhoods U ∪ (N+ × {1} \ F ),

where U is open in R, x ∈ U and F is a finite subset of N+ × {1}. The empty

set is open by definition.

Then |X| = 2ω, X is hyperconnected, Lindelöf, first countable, ω-Hausdorff

and separable.

In trying to solve the second of the two main problems of Arhangelskii, A.

Charlesworth proved the following:

7.2.25 Theorem ([Cha77]). If X is T1 then |X| 6 psw(X)L(X)ψ(X).

In the above psw(X) is the point separating weight of X which is defined as
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psw(X) := ω + min{τ : X has a separating open cover γ such that

for all x ∈ X, x is in at most τ members of γ}.

Charlesworth’s result inspires the following questions:

12 Question. If X is T1, hyperconnected, separable, Lindelöf and first count-

able, how big is psw(X)?

13 Question. If X is T1, ω-Hausdorff, hyperconnected, separable, Lindelöf and

first countable, how big is psw(X)?

We suspect that examples for which psw(X) > 2ω exist.

As we have pointed out, one of the stepping stones of the proofs of cardi-

nality restrictions involving the Hausdorff axiom is equivalent to, {x} =
⋂
{U :

U open, x ∈ U} for all x ∈ X. One might expect that in n-Hausdorff spaces

|
⋂
{U : U open, x ∈ U}| = n. This is not true as the following example shows:

7.2.26 Example. There is a T1 compact 3-Hausdorff not Hausdorff, not sepa-

rable space X for which there is a point x such that
⋂
{U : U open, x ∈ U} has

big cardinality.

Construction. Let A 6= ∅ be any set such that |A| > ω and X = (N+×A)∪{0},
with the basis

B := {{(n, a)} : a ∈ A, n ∈ N+ \ {1}} ∪ {U : 0 ∈ U,U is a cofinite subset of X}

∪ {V : for some a ∈ A, (1, a) ∈ V, V is a cofinite subset of N+ × {a}}

Let us point out that neighbourhoods of 0 are cofinite subsets of X; neigh-

bourhoods of (1, a) are cofinite subsets of N+×{a}, and (n, a), a ∈ A, n > 2 are

isolated.

Then X is T1, compact, not first countable, 3-Hausdorff, not Hausdorff,
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|X| = |A|, not separable, and⋂
{U : U 3 0, U open} = {0} ∪ ({1} × A)⋂
{U : U 3 (1, a)} = {0} ∪ {(1, a)}⋂
{U : U 3 (n, a) : n > 2} = {(n, a)}.

The above example can be easily generalised for the n-Hausdorff case.

Those two examples give us another justification for our defining the Haus-

dorff width earlier. This notion also gives rise to the following generalisation of

pseudocharacter

7.2.27 Definition ([Juh80]). For every x ∈ X, let us also define

ψw(x) = min{|Ux| :
⋂
{U : U ∈ Ux} = Hw(x),Ux is a family of open neighbourhoods of x}

and

ψw(X) = sup{ψw(x) : x ∈ X}

7.2.28 Note. Let us point out that if Ux is a local base at x then Hw(x) =
⋂
{U :

U ∈ Ux}. Hence ψw(X) 6 χ(X) in T1 spaces and in addition ψw(X) = ψc(X)

in Hausdorff spaces.

We now use both HW (X) and ψw(X) to also generalise de Groot’s result:

7.2.29 Theorem ([BSS17]). Let X be a T1 space. Then |X| 6 HW (X)ψw(X)haL(X).

Proof. Let haL(X) 6 τ , ψw(X) 6 λ and HW (X) 6 κ. Let ∀x ∈ X, Ux be a

family of open neighbourhoods of x such that |Ux| 6 λ and Hw(x) =
⋂
{U :

U ∈ Ux}. By transfinite induction, define two families {Hα : α ∈ τ+} and

{Bα : α ∈ τ+} such that:

1. {Hα : α ∈ τ+} is an increasing sequence of subsets of X

2. |Hα| 6 κλτ ∀α ∈ τ+

3. If {Hβ : β ∈ α} are already defined for some α ∈ τ+, then Bα =
⋃
{Ux :

x ∈
⋃
{Hw(y) : y ∈

⋃
{Hβ : β ∈ α}}}
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4. If α ∈ τ+, W ∈ [Bα]6τ and X \ (
⋃
{U : U ∈ W}) 6= ∅, then Hα \ (

⋃
{U :

U ∈ W}) 6= ∅.

Suppose α ∈ τ+ and {Hβ : β ∈ α} are already defined. If W is as in (4),

choose x(W) ∈ X \ (
⋃
{U : U ∈ W}) and let Cα be the set of these points. Let

Hα =
⋃
{Hβ : β ∈ α} ∪ Cα. Then |Hα| 6 κλτ .

Let H =
⋃
{Hα : α ∈ τ+} and H∗ =

⋃
{Hw(x) : x ∈ H}. Then |H∗| 6 κλτ .

Suppose q ∈ X \H∗. Then q /∈ Hw(x), ∀x ∈ H. Hence for all x ∈ H there

exists U(x) ∈ Ux such that q /∈ U(x). By haL(X) 6 τ we can choose H ′ ∈ [H]6τ

such that H ⊂
⋃
{U(x) : x ∈ H ′}. Let W = {U(x) : x ∈ H ′}. We have that

H ′ ⊆ Hα for some α ∈ τ+ and W ∈ [Bα+1]6τ and X \ (
⋃
{U : U ∈ W}) 6= ∅.

Hence we have already chosen x(W) ∈ X \ (
⋃
{U : U ∈ W}) ⊆ X \ H and

x(W) ∈ H - a contradiction.

7.2.30 Theorem (Arhangelskii, [Arh79]). If X is regular, then |X| 6 2wLc(X)χ(X).

Here:

7.2.31 Definition (quasi-Lindelöf number, [Juh80]).

wLc(X) := ωmin{τ : ∀Y closed ⊂ X and for all open in X

cover γ of Y ∃γ′ ∈ [γ]6τ such that Y ⊆
⋃

γ′}.

14 Question (Arhangelskii). If X is a Hausdorff space, do we have that |X| 6
2wLc(X)χ(X)?

Here, we provide an improvement of a theorem of [Ala93], which also gives

a partial answer to the above question:

7.2.32 Theorem. If X is T1 space such that H∗(X) 6 ω and has a dense set

of isolated points then

|X| 6 2wLc(X)χ(X)

Proof. Let wLc(X)χ(X) 6 τ and let ∀x ∈ X, Ux be a local base at x with

|Ux| 6 τ . Construct {Aα : α ∈ τ+} and {Bα : α ∈ τ+}, where ∀α ∈ τ+, Bα is

a family of open sets such that |Bα| 6 2τ , so that the following conditions are

satisfied:
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1. Aα ⊂ Aα′ if α ∈ α′ ∈ τ+,

2. Aα are closed and |Aα| 6 2τ for all α ∈ τ+,

3. If for some β ∈ τ+, {Aα : α ∈ β} are constructed, then Bβ =
⋃
{Ux : x ∈⋃

{Aα : α ∈ β}},

4. If β ∈ τ+ and γ ∈ [Bβ]6τ is such that X \
⋃
γ 6= ∅, then Aβ \

⋃
γ 6= ∅.

Let {A0} = {x0} and let for α ∈ β ∈ τ+, {Aα : α ∈ β} be defined. Let

Eβ = {γ : γ ∈ [Bβ]6τ , X \
⋃
γ 6= ∅}. Choose φ(γ) ∈ X \

⋃
γ for every γ ∈ Eβ

and let Eβ = {φ(γ) : γ ∈ Eβ}. Then Aβ = Eβ ∪ (
⋃
{Aα : α ∈ β}). Because

[Bon13, Proposition 28] we have constructed {Aα : α ∈ τ+} and {Bα : α ∈ τ+}
as required.

Let A =
⋃
{Aα : α ∈ τ+}. Since t(X) 6 χ(X) 6 τ we have that A is

closed and |A| 6 2τ . Suppose X \ A 6= ∅. Then there exists a∗ ∈ X \ A, a∗

isolated. By T1 for every a ∈ A, there exists Wa 3 a, Wa ∈ Ux, a∗ /∈ Wa. Then

A ⊂
⋃
{Wa : a ∈ A}. Since wLc(X) 6 τ we can find A′ ∈ [A]6τ such that

A ⊆
⋃
{Wa : a ∈ A′} and since a∗ is isolated, a∗ /∈

⋃
{Wa : a ∈ A′}. Since τ+

is regular, there exists α0 ∈ τ+ such that A′ ⊆ Aα0 . We have that γ = {Wa :

a ∈ A′} ∈ [Bα0 ]
6τ and X \

⋃
γ 6= ∅. Then we have already chosen φ(γ) ∈

Aα0+1 \
⋃
γ ⊂ A, i.e. φ(γ) ∈ A ⊂

⋃
γ and φ(γ) /∈

⋃
γ - a contradiction.
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Chapter 8

List of Notation

To observe general practice in the two fields of dynamics and topology, we some-

times use the same notation for different notions, assuming that the meaning

should be clear from the context. Below are some pieces of notation which are

used throughout larger portions of this thesis, but not universally.

• A, B - alphabets in topological dynamics or families (often of open sets)

in analytic topology

• A<N - set of finite words over the alphabet A

• AN, AZ - set of finite (or bi-infinite) words over the alphabet A

• wn = w[n] - the nth letter of the word w

• w[n; k] = wn . . . wk, the subword of w of length k − n starting from the

letter w[n]

• |w| - the length of a finite word

• σ - a substitution

• s - the shift map (on the appropriate symbolic space)

• r - the length of the substitution

• φ, ψ - substitutions (on the appropriate alphabets)
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• Φ,Ψ, π - homomorphisms between dynamical systems

• τ - the topology on a space, which may be indexed to indicate one of

several topologies on the same space; alternatively, it is a cardinal in the

analytic topology section

• U, V - open sets
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[Arh69] A. V. Arhangel’skĭı. The power of bicompacta with first axiom of

countability. Dokl. Akad. Nauk SSSR, 187:967–970, 1969.
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games and selection principles. Fund. Math., 210(1):1–46, 2010.

[Sta92] D. N. Stavrova. On a theorem of de Groot about cardinality of

topological spaces. C. R. Acad. Bulgare Sci., 45(11):5–6 (1993),

1992.

[Sta93] D. N. Stavrova. Cardinal functions and inequalities for topologi-

cal spaces and k-structures. C. R. Acad. Bulgare Sci., 46(7):13–16

(1994), 1993.

[Sta01] D. N. Stavrova. Separation pseudocharacter and the cardinality of

topological spaces. Topology Proceedings, 25(2):333–343, 2001.

[Sta13] P. Staynova. A Note on the Hausdorff Number of Compact Spaces.

Proceedings of the 42 Spring Conference of the Union of Bulgarian

Mathematicians, pages 248–253, 2013.

[Sta18] P. Staynova. The Ellis semigroup of constant length substitution

systems. ArXiv e-prints, Nov 2018. Submitted. http://arxiv.

org/abs/1711.10484.

[TT11] F. Tall and B. Tsaban. On productively Lindelöf spaces. Topology
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