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Abstract

Over the past decade, there has been an ever growing interest in genome-wide
association studies (GWAS). The role of GWAS is to discover associations between
genetic variants; commonly Single Nucleotide Polymorphisms (SNPs) and complex
diseases. Due to the ever increasing number of SNPs in GWAS, the commonly used
association analyses tend to be univariate models rather than multivariate models.
These methods are therefore unable to account for the correlation between SNPs;

known as Linkage Disequilibrium (LD).

Penalised regression methods have been suggested as an alternative method in GWAS,
specifically the Least Absolute Shrinkage and Selection Operator (LASSO). This method
has the ability to both shrink regression coefficients and perform variable selection. In
this thesis, the use of the LASSO in both single and multi-cohort GWAS is examined. In
the context of the single cohort, the LASSO is applied to the GRAPHIC study in an
attempt to discover novel associations with Low-density Lipoprotein. This thesis will
also address some of the problems with the LASSO such the tuning parameter
selection method that should be used for SNP selection and the need for pruning to
reduce the dimensionality of the data in order to fit LASSO models. The literature
suggests that a pruning or pre-screening method is required to fit LASSO models in
GWAS due to the high computational burden of fitting such a model, yet there is little
work to address how the dataset should be pruned. A SNP pruning package in R called
prune is developed and is utilised in a simulation study to determine which pruning
method should be used. The role of the LASSO in multi-cohort studies is also
considered specifically in integrative analyses. A new penalised regression method, the
Integrative LASSO, is proposed and developed which uses a combination of LASSO,
ridge regression and fused LASSO penalties and tested against some of the current

methods in the literature in a simulation study.
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1 Introduction

1.1 Background and aim

Since the completion of the human genome project (1,2) there has been an ever increasing
interest in genome-wide association studies (GWAS). The role of genome-wide association
studies is to identify associations between genetic variants, known as Single Nucleotide
Polymorphisms (SNPs), and a complex disease (phenotype) such as Type 2 diabetes (T2D),
cardiovascular disease (CVD) or different forms of cancer using a sample from the
population. This is done by performing an association test between phenotype and all
genotyped SNPs. An association between a SNP and a disease could be due to a number of

reasons which include:

a. The SNP is truly associated with the phenotype and plays an important role in the

cause or prevention of the disease (a true positive).

b. The SNP is associated with the phenotype as it highly correlated (known as Linkage
Disequilibrium (LD)) with a second SNP, and this second SNP is truly associated with

the disease.

c. The correlation between the SNP and phenotype is by chance and there is no real

association (a false positive).

In a perfect world, only the truly causal variables (a) would be identified, although selecting
the SNP in high Linkage Disequilibrium with the associated SNP (b) may also be acceptable.
In reality, it is difficult to distinguish between (a) and (b) and both are deemed to be true

associations. By identifying the truly associated genetic variants or regions (loci), scientists



could be able to develop new therapies, improve diagnosis and better disease prevention

(3).

Since the first published GWAS in 2005 (4), the number of GWA studies has grown almost
exponentially. As of December 2017, the NHGRI-EBI Catalogue of published genome-wide
association studies has recorded 3,211 published studies (5). In this time, the number of
SNPs in a GWAS has increased with millions of SNPs being tested for associations but also an
increase in sample size. This leads to some difficulty in selecting the truly causal SNPs. The
increase in sample size increases the power of a study. The power is defined as the
probability of selecting an associated SNP based on a sample that has a true association in
the population (i.e. a true positive). The increase in the number of SNPs available for
association testing will naturally provide a better coverage of the genome and potentially
allows a greater number of truly associated SNPs to be tested. The typing of millions of SNPs
leads to difficultly in multivariate modelling (6) which has led to simplifying analyses and

estimating each variable in a univariate model rather than a multivariate model.

The occurrence of multiple testing in GWAS may also lead to a number of false positives
being selected (c). Traditional variable selection methods such as Bonferroni correction and
false discovery rate (FDR) (7,8) are commonly utilised in GWAS in order to control the type 1
error rate (i.e. control the number of false positives selected). These methods are however

unable to account for LD between SNPs (b).

Penalised regression methods have been suggested as an alternative, specifically for model
selection in scenarios when the number of variables (P) is greater than the sample size (N)
which tends to be the case in GWAS. These methods apply a penalty to regression estimates
in order to shrink the estimates. In particular, the Least Absolute Shrinkage and Selection
Operator (LASSO) first proposed by Tibshirani for high-dimensional data (9) has received
much attention, particularly in genetics. This is due to the LASSO’s ability to perform variable

selection by penalizing effect estimates to 0 and thus removing the variable from the model.



The LASSO model is on a multivariate level and therefore jointly models all variables and

uses computationally fast algorithms.

There are three main aims for this thesis:

1. The first aim of this thesis is to use the LASSO to find genetic associations with Low-
density Lipoprotein (LDL-c) in the Genetic Regulation of Arterial Pressure of Humans
in the Community (GRAPHIC) Study (10). The results of this analysis can be compared

with analyses performed using Bonferroni correction, FDR and the current literature.

2. Assuggested by the literature (11-16), there is a great computational burden placed
on this analysis. Therefore the second aim of this thesis is to determine the best
methods to reduce the dimensionality of the dataset such that the impact on variable

selection is minimised.

3. Inrecent years, the focus has shifted from GWAS on single datasets to consortia
combining multiple datasets; however there has been little research into this area in
the context of the LASSO, specifically in GWAS. With this in mind, the third aim of this
thesis is to compare the current penalised regression methods for integrative analysis
by a simulation study. | also aim to present and test an alternative approach for

integrative analysis.

1.2 Outline of the thesis

| begin with a statistical overview of the LASSO in Chapter 2; this will include statistical

backgrounds of other generalisations of the LASSO such as ridge regression (17) and the



elastic net (18). In this chapter, | will also review the literature on algorithms used to fit the
LASSO, tuning parameter selection methods and the application of penalised regression
methods in GWAS. In Chapter 3, | show my own implementation of the LASSO using the
coordinate descent algorithm (CDA) which was reviewed in Chapter 2. Additionally, | run a
simulation study to determine which tuning parameter selection methods show the best
performance for variable selection in a GWAS setting. Both the algorithm and a number of

the tuning parameter selection methods are used later in this thesis.

One of the aims of this thesis is to apply the LASSO on a real dataset; the GRAPHIC study
with Low-density Lipoprotein (LDL-c) as the phenotype of interest. This will be performed in
Chapter 4. The chapter will include a literature review of previous studies that have
performed GWAS on LDL to identify previously known associations. Both the Bonferroni

correction method and FDR will also be used as comparisons.

Due to the computational intensity of the LASSO on the GWAS dataset, in Chapter 4, | aim to
explore the use of SNP pruning by Linkage Disequilibrium to reduce the dimensionality of the
dataset in order to fit a LASSO model. In Chapter 5, | describe the biological background to
LD and how LD is estimated from both haplotypes and genotypes. | then compare a number

of packages that estimate LD from genotypes.

In Chapter 6, | introduce my own R package called prune, which prune datasets in a variety
of ways including by LD, by P-value and by LD clumping. The Prune package gives the user a
great number of options which most pruning packages do not. | will also compare my Prune

package and the LD pruning method used in PLINK (19,20).

In Chapter 7, | will use the Prune package and the pruning methods available in a simulation
study investigating the effects of pruning on variable selection using the LASSO. The aim of
the simulation study is to determine which pruning method and tuning parameter selection

method performs best for variable selection.



| then return to the GRAPHIC study in Chapter 8 and apply the best combination of pruning

method and tuning parameter selection method based on the simulation study in Chapter 7.

In Chapter 9, | turn my attention to the use of the LASSO in integrative analysis. | begin by
reviewing the current literature that apply penalised regression methods in an integrative
analysis setting. | will then run a simulation study comparing some of these methods in a

GWAS setting to determine which method performs the best in terms of variable selection.

| will then offer my own alternative method, the Integrative LASSO (IL) in Chapter 10. | will
explain the reasoning behind the method and provide an algorithm to fit IL models. | will
illustrate an example of the IL and finally compare the IL in a simulation study against

competing methods from Chapter 9.

Finally, in Chapter 11, | conclude by reviewing my findings and discussing future work.



2 Background to the LASSO

2.1 Introduction

In this chapter, | begin by introducing the statistical background to the LASSO as well as

other generalisations of the LASSO and then discuss the merits and faults of each method.

Most regression functions use simple algorithms to optimise the function as they are mostly
smooth and convex. The LASSO function however is non-smooth, due to the penalty, which
creates some challenges. | therefore explore a number algorithms used to fit the LASSO and
other penalised regression models (section 2.4). | begin by reviewing the most popular
algorithms used to fit LASSO models. From the current methods, | select the most effective
algorithm to write in R as a foundation for future work and show algebraically how the
solution to a number of penalised regression functions is derived using the selected

algorithm.

Selection of this tuning parameter is important as it is solely responsible for which variables
are selected and which are removed from the model. In section 2.5, | review a number of
current tuning parameter selection methods. | also discuss the methodology used when

there are dual penalties.

2.2 The LASSO

Penalised regression methods attempt to minimise a function consisting of a loss function
(such as ordinary least squares, logit etc.) and at least one penalty term with a tuning

parameter (A). The LASSO, as defined by Tibshirani (9), minimses the following function:



Brasso(D) = min/;(L(y,x; wph)+ 4 Zi:llﬁjl) (2.1)

Where N is the number of subjects, P is the number of predictor variables (SNPs in GWAS
studies), y is a vector of N outcome variables (known as a phenotype), x is a standardised N
x P matrix of predictor variables, [ is a vector of effect estimates and A is the tuning
parameter. As with all datasets, standardisation is required in order to scale the dataset
correctly. The intercept is denoted by u. L(y, x; u, B) represents any loss function. For this

thesis, an Ordinary Least Squares link function is used which would minimise (2.2).

N P 2 P

A 1
Brasso(d) = mﬁin oN Z Yi— U— zxijﬁj + 1 ;lﬁjl (2.2)

=1 j=1

For some t 2 0, equation (2.2) can be alternatively written as:

N P

2
P
A 1
Brasso(1) = mﬁin N Z Yi— U= zxijﬁj S. t-2|ﬁj| <t (2.3)
. . =

=1 j=1

The LASSO performs variable selection by shrinking B estimates towards 0. The amount of
shrinkage is controlled by the tuning parameter A. If the tuning parameter is large enough for

some variables, its Bj will be forced to 0, removing this variable from the model.

An example of this shrinkage is shown graphically in Figure 2.1 where 10 independent
continuous variables are simulated each with a sample size of 100. Each variable was
simulated from a normal distribution with mean 0 and standard deviation (S.D.) 1. The

outcome variable was simulated such that:

y; = 0.1X; 4 0.2X, + 0.3X5 + 0.4X, + 0.5X5 + 0.6X, + 0.7X, + 0.8Xg + 0.9X, + &;



Where the error term g;~N (0,1). Each line on the plot represents the B coefficient for any
penalty (A). The coefficient path plot shows that as the penalty, increases on the x-axis, the
coefficients shrink towards 0 and when they reach exactly 0 the variable is removed from the
model. The LASSO is able to both select variables and estimate B coefficients at the same

time; however the B estimates will be biased for some A > 0.
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Figure 2.1 Coefficient path plot showing the shrinkage of ten variables as the tuning
parameter increases. Each line represents a variable and the path shows the B coefficient on
the y-axis as the penalty (on a log(A) scale) increases on the bottom x-axis. The top x-axis

shows the number of variables remaining in the model at each log(A) penalty value.

There are two main reasons why the inclusion of the penalty is particularly desirable
compared to a least squares model. The first is prediction accuracy and the second is model
interpretation (9). In a high-dimensional dataset, a regression analysis produces estimates
that have high variance and low bias. By penalising estimates, the variance is reduced and
the bias will increase which increases the prediction accuracy (9,21,22). For variable

selection the model interpretability is of greater importance. The aim is to select a smaller



subset of variables that is best able to explain the variance in the outcome variable. By
reducing the number of variables in the model, it becomes more interpretable. Variable
selection methods such as stepwise regression tend to lead to unstable models which the

LASSO does not (9,23).

There are two main criticisms of the LASSO that were outlined by Zou and Hastie (18). The
firstis when P > N, then the LASSO is only able to select at most N variables for a model.
This is less of a concern in GWAS as the number of truly associated SNPs is small compared
to the ever increasing sample size of a GWA study. The second criticism of the LASSO is the
inability to handle correlated data with Zou and Hastie stating that in a group of highly
correlated variables, the LASSO tends to select one variable without regard for which
variable is selected (18). This would be a concern in GWA studies, as SNPs in close proximity
to each other tend to be highly correlated. The correlation between SNPs is known as
Linkage Disequilibrium (LD) and is discussed in greater detail in Chapter 5. This is
contradictory to the literature which suggests that the LASSO is able to handle the LD
between SNPs (24-26).

2.3 Generalisations of the LASSO

2.3.1 Ridge regression and the elastic net

Another popular penalised regression method is ridge regression (RR) first proposed by Hoerl
and Kennard in 1970 (17). Ridge regression was designed to account for correlation between

variables in regression and minimises the following function:

N P 2 P
1
Bre@ =min| oo > | yimu= Y xyfy | +2 ) 7 2.4)
j=1

i=1 j=1



The penalty for RR is slightly different to the LASSO, while the LASSO penalty penalises the
sum of the absolute value of the B estimates, ridge regression penalises the sum of the
squared B estimates. The right-hand plot in Figure 2.2 shows the coefficient path plot for
ridge regression. Like the LASSO, RR penalises towards 0. Unlike the LASSO however RR is
unable to force variables to exactly 0 and therefore all variables remain in the model. This is
shown by the top x-axis in the coefficient path plot, which displays the number of variables
remaining in the model for a certain A, which remains at 10. This means that RR is unable to
perform variable selection. When comparing the coefficient path plots of the LASSO and RR
in Figure 2.2, it can be seen that the LASSO tends to shrink smaller B coefficients more
heavily, whereas RR penalises the larger coefficients more heavily. The RR penalty tends to

shrink correlated variables towards each other creating a “grouping effect”(27).

The difference in penalties is shown in Figure 2.3 for two variables which are plotted on the x
and y-axis. The point at B represents the OLS estimates for the two variables. The ellipses
show the contours of the residual sum of squares (RSS) as the function moves away from the
minimum (,@). The solid regions centred around (0, 0) are the LASSO and RR penalty
constraints respectively. The size of this constraint is determined by the size of the tuning
parameter A. The penalised regression coefficient estimates for each method is at the point
where the contour touches the penalty. For the LASSO, there is a greater chance that the
contour would meet the penalty at a corner due to its diamond shape, and at any of these
points the coefficient estimate for one of the two variables would be 0. Which coefficient is
estimated as 0 would depend in which corner meets the contour. This is less likely to be the

case for RR due to the circular shape of the penalty constraint.
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Figure 2.2 Coefficient path plot showing the shrinkage of ten variables as the tuning parameter increases for the LASSO (left), elastic net
with a = 0.9 (centre) and ridge regression (right). Each line represents a variable and the path shows the B coefficient on the y-axis as the
penalty (on a log(A) scale) increases on the bottom x-axis. The top x-axis shows the number of variables remaining in the model at each

log(A) penalty value.

11



(a) (b)

Fig. 2. Estimation picture for (a) the lasso and (b) ridge regression

Figure 2.3 Two-dimensional contour plots of the LASSO and ridge regression. Taken
from Tibshirani (9).

Zou and Hastie proposed the elastic net (EN) (18) which combines both the LASSO and
RR penalties (2.5). This allows the elastic net to both handle correlations and perform

variable selection.

fen ) = min | = Z Zp:xuﬁ} +(a- leﬁ,

i= j=1

P
tad ) p?
=

(2.5)

An a term is introduced alongside the tuning parameter A which allows the choice of
varying the relative strength of each penalty. a can take any value between 0 and 1.

An a = 0 gives a LASSO model for 4, and @ = 1 produces a RR model and any a
12



between 0 and 1 will result in a model using both penalties. The elastic net allows both
variable selection and the ability to handle correlated data. Zou and Hastie showed
that in both a simulation study and example dataset, the EN outperforms the LASSO in
terms of model prediction. This was mainly due to the RR’s penalty being able to group
correlated variables together and penalise these groups together (Figure 2.4). However
this also meant that EN would select more variables in the final model compared to the

LASSO which was also shown by Waldmann et al. in a simulation on GWAS data (27).

The increase in the number of variables selected may be detrimental in GWAS as there
are a large number of correlated SNPs in a dataset. Selecting one highly associated SNP
could lead to a number of correlated SNPs also being selected. In reality, it is likely that
only one in a group of correlated SNPs may be truly associated. As the EN uses both
LASSO and RR penalties, it’s unsurprising that the shape of the penalty is somewhere

between these two penalties (Figure 2.5) and its shape will be influenced by «.
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Fig. 5. (a) Lasso and (b) elastic net (A, = 0.5) solution paths: the lasso paths are unstable and (a) does
not reveal any correction information by itself; in contrast, the elastic net has much smoother solution paths,
while clearly showing the ‘grouped selection'—x4, X, and x3 are in one ‘significant’ group and x4, X5 and Xg
are in the other ‘trivial’ group; the decorrelation yields the grouping effect and stabilizes the lasso solution

T
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Figure 2.4 The difference in coefficient path plots between the LASSO and elastic net in
correlated data. Taken from Zou and Hastie (18).
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Fig. 1. Two-dimensional contour plots (level 1) (------ , shape of the ridge penalty; ------- , contour of the
lasso penalty; , contour of the elastic net penalty with « =0.5): we see that singularities at the vertices
and the edges are strictly convex; the strength of convexity varies with «

Figure 2.5 Two-dimensional contour plots of the LASSO, elastic net and ridge
regression. Taken from Zou and Hastie (18)

2.3.2 Bridge regression

The LASSO and RR are two special cases of a family of penalised regression functions

known as Bridge regression (28) which minimises the following general function:

P

N 14
1
Boriage® = min| = > yi= u= ) xyfy | +2 leﬁ,-ly (26)
]:

i=1 j=1

Any y > 0 defines the type of penalty used. At y = 1, LASSO function is produced (2.2)
and y = 2 produces a RR function (2.4). Variable selection can be performed for any
bridge penalty 0 < y < 1. Figure 2.6 shows the contour plots for varying bridge
regression penalties. For y < 1, the contours are highly likely to intersect the penalty

at a corner, which would penalise some variables to 0. For y > 2, the circular penalty
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from the ridge regression tends towards square shape, which is also unable to perform

variable selection.

gamma > 2 gamma = 2

A N 0 il B
[N ) N

-1 0 1 -1 0 1

gamma = 1 gamma < 1

-1 0 1 -1 0 1

Figure 1. Constrained Areas of Bridge Regressions witht = 1.

Figure 2.6 Two-dimensional contour plots for varying Bridge regression penalties.
Taken from Fu (28)

2.3.3 The group LASSO

Yuan and Lin (29) first proposed the group LASSO as a method to group desired
variables together within a single dataset, shown in (2.7), where g denotes the pre-
defined groups of variables. The penalty on each group is weighted by the square-root
of the number of variables in that group (p4), therefore for any group consisting of a
single variable would be penalised in the same way as the LASSO. Groups tend to
consist of variables that are correlated with each other, although this may not have

been the intended design (30).
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where,
g = {1, ...G}is a set of predefined groups from the j variables

pg = the number of variables in group g

The group LASSO is unable to perform variable selection within groups; therefore
either all variables in a group are selected or are removed from the model using the
group LASSO. Friedman et al. proposed the sparse group LASSO which contains two
penalties and allows variables to be penalised within and across groups (31) (2.8). The
function is similar to that of the group LASSO (2.7); however there is no weight on
group penalty and a LASSO penalty on each individual variable is included, which
penalises variables independent of its grouping. As the group LASSO and sparse group
LASSO use the same penalties as RR and EN respectively, it’s unsurprising that the

penalty takes a similar shape on a contour plot (Figure 2.7).
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Figure 1: Contour lines for the penalty for the group lasso (dotted), lasso (dashed) and
sparse group lasso penalty (solid), for a single group with two predictors.

Figure 2.7 Two-dimensional contour plots of the LASSO, sparse group LASSO and group
LASSO. Taken from Friedman et al. (31)

2.3.4 The fused LASSO

The fused LASSO first proposed by Tibshirani et al. (32), is mainly designed for data
that can be ordered in some fashion, and the ordering leads to some potential
correlation, for example, SNPs in the genome are ordered along a chromosome with
the correlation being LD between SNPs, especially those that are close to each other.

The fused LASSO minimises the following function:

N P
A 1
ﬁfused(/u mln 2 Z Vi— U — le]ﬁ] +/11 Zlﬁ]

i=1 j=1

(2.9)

P
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There are two penalties incorporated for the fused LASSO, the first is the LASSO
penalty on each individual variable which shrinks estimates towards 0. The second is a
LASSO penalty on the difference in B estimates between adjacent variables in the
ordered dataset. This penalty shrinks adjacent  estimates towards each other. Figure
2.8 which showed a simulated example of the fusion penalty taken from Tibshirani et
al. (32). In each plot the black lines represent the true simulated  and the red scatter
points represent the estimated [ for each predictor in four scenarios; OLS (a), the
LASSO (b), OLS with a fusion penalty but no LASSO penalty (c) and the fused LASSO (d).
By penalising adjacent variables towards each other, the fusion methods were able to
estimate the true B better than the LASSO and OLS. The fused LASSO also selects more
variables than the LASSO in this case, due to the fusion penalty penalising adjacent
variables into the model. This is also shown in the contour plot (Figure 2.9) where the
shape of the penalty is further restricted to a small section of the LASSO penalty where

Biand B, take similar values.
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Fig. 3. Simulated example, with p =100 predictors having coefficients shown by the black lines: (a) uni-
variate regression coefficients (red) and a soft thresholded version of them (green); (b) lasso solution (red),
using 5, =356 and s, = ao; (€] fusion estimate, using 5, = oc and s, = 26 (these values of 5, and s; mini-
mized the estimated test set error); (d) the fused lasso, using sy = £;|;| and sz =%;|3; — 3;_¢|, where
/4 is the true set of coefficients

Figure 2.8 lllustration of the fusion penalty (c) and fused LASSO (d) on a simulated
dataset compared to OLS (a) and the LASSO (b). Taken from Tibshirani et al. (32).
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Fig. 2. Schematic diagram of the fused lasso, for the case N > p =2: we seek the first time that the contours
of the sum-of-squares loss function (<) satisfy £ j |£J,| =sy(¢)and ¥ J-|_;'ij- - _.-'i;-_1 |= 5y (#)

Figure 2.9 Two-dimensional contour plot of the fused LASSO for two adjacent
variables. Taken from Tibshirani et al. (32)

2.3.5 The LASSO in meta-analysis

Meta-analysis is a popular method of pooling data from several studies together (33).
This is performed by pooling summary statistics from different studies to obtain a
single pooled estimate, as the raw data is either not used or unavailable. By pooling a

number of studies together there is an increase in the power of the study.

Meta-analyses often take one of two forms of model, fixed-effects and random-
effects. A fixed effect model is fitted under the assumption that there is one constant
genetic effect across all studies. A fixed-effect model using LASSO regression would
involve combining all studies into one large study and then fit a LASSO model. A
random effects model assumes that each study has its own genetic effect due to
variation between studies, known as heterogeneity (34). These variations between
studies can be due to various factors such as genotypic variation between study

populations, phenotypic variations between populations due to differences in lifestyle
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of differences in study design, recruitment, phenotypic or genotypic measurements.
Although set in a psychology setting, Curran and Hussong detail an extensive list of
possible sources of heterogeneity, many of which can be applicable in a genetics

setting (35).

Meta-analyses pool together estimates, typically either effect estimates or P-values.
The effect estimates typically tend to be effect estimates () or Odds Ratios (OR).
Pooling estimates from LASSO analyses is difficult as the penalty will bias the § or OR
estimates. Each dataset when analysed separately will have a different strength
penalty applied to it. Even if the same penalty is applied to all datasets, this would not
mean the relative strength of the penalty is the same across all datasets, as the
strength of the penalty is relative to the size of the B’s or ORs. In both cases the bias in
the estimates across all datasets would not be consistent. So far there has been no
attempt in meta-analysing studies using penalised regression methods from summary
statistics or P-values although there have been suggested methods to calculate P-

values using the LASSO (36).

He et al. have however proposed the Sparse meta-analysis (37). This method calculates
regression estimates and applies a multivariate inverse-variance estimator as proposed
by Lin and Zeng (38) with a penalty applied on the square-root of the absolute sum of
Bs across studies. The make-up of this penalty allows for heterogeneity between

studies.

Another method of pooling datasets is integrative analysis. This requires the raw
individual level data (ILD) for each study to pool together for analysis. This differs from
meta-analysis which analyses each dataset individually then pools summary statistics
together. The use of the LASSO in integrative analyses is discussed in greater detail in

Chapter 9.
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2.3.6 Other generalisations of the LASSO

There are a number of other generalisations of the LASSO; some of these are listed by
Tibshirani (39). The list includes methods such as the adaptive LASSO (40) which uses a

weighted penalty (w;) on each variable:

1
2N

P
Yi— U= injﬁj

BadpLASSO W = mﬁin

l

P
+4 Z w; )]
j=1

andv >0

N
=1
(2.10)

1

Where, Wi = =
3]

The weight for each variable tends to be based on some initial B estimates (ﬁj) such as
OLS or the LASSO. A study by Zou suggests that variable selection methods could be
inconsistent (40), for example due to overfitting and including a number of false
positives. The adaptive LASSO was designed to overcome this problem. The weights
will adjust each B coefficient differently, penalising the variables with a smaller [;’j

more heavily.

There have also been a number of Bayesian approaches to penalised regression
including the LASSO (41), elastic net (42), group LASSO (43) and fused LASSO (44).

These methods are summarised by Liu et al.(45)
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2.4 Algorithms that fit LASSO models

2.4.1 A review of algorithms that fit LASSO models

The algorithms used to optimize non-smooth convex functions can be subcategorised
into three main types; path following (homotopy) methods, first-order methods and
alternating direction method of multipliers (ADMM) of which the first order methods

seem the most popular (46).

2411 First order methods

Tibshirani initially suggested a finite-step (2°) convergence algorithm (9) using
elements of Lawson and Hansen’s work on linear least squares problems subject to
inequalities (47). It stated that convergence of the model could require up to O(27)
iterations, where Pdenotes the number of predictor variables. While the author
estimates that most models converge between 0.5P and 0.75P. However in a GWAS
setting where P is large, the computational time to fit models would make the LASSO

impractical using this finite step convergence algorithm.

Fu later suggested a “shooting algorithm for the LASSO” that was essentially a
coordinate descent method (CD), in a study focused on comparing bridge regression
with Least Squares regression, the LASSO and ridge regression (28). This was the first
study to both suggest and apply a coordinate descent algorithm (CDA) as a method to

optimise a form of penalised regression.

Fu compares the “shooting method” to the finite-steps algorithm and concluded that
the “shooting method” is simpler to implement and a faster algorithm. It was
estimated that it requires approximately P log P iterations to converge, which is faster
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than the finite-steps algorithm. The author does state that this is an estimated result

and that a theoretical result had not been obtained.

The coordinate descent algorithm is an optimisation algorithm to ‘search’ for a
minimum of a multivariate function. It is an iterative algorithm which optimises along
only one direction (or coordinate) of the multivariate space whilst keeping the
remaining variables fixed, rather than attempting to minimise all variables
simultaneously. This makes the algorithm simple to implement and computationally
faster. CD can be used to fit models for different penalties assuming the loss function is
convex, differentiable and the penalty term is both convex and separable (48).

Therefore CD is flexible enough to fit a range of other penalised regression models.

Work by Shevade and Keerthi (49) and Daubachies et al.(50) suggested and implement
CD algorithms in similar work. Thereafter a large quantity of work was done by
Friedman, Hastie and Tibshirani in optimising LASSO models using CD (51-53).
Coordinate descent was also implemented by the same authors into the popular R
package glmnet (53). The algorithm is flexible enough to fit a range of alternative

penalised regression models such as elastic net and the grouped LASSO (54).

Least Angle Regression (LARS) is another popular first-order algorithm (55). It is based
on the idea of attempting to apply a forward stepwise selection process quickly and
efficiently, similar to the Homotopy algorithm. LARS however produces approximate
solutions and Homotopy gives exact solutions (56,57). The algorithm starts off with a
set of A, an outcome variable y and a set of predictors x4, ... xp. Like any forward
stepwise procedure, the variable x;; that is the most correlated with y is selected first
and enters the model. A step is taken in the direction along x;; towards y until
another x;, variable is as correlated as x;; . This first step moves the estimates along
the “least angle direction” on a plane. At this point x;, enters the model and a second
step is taken, this time along the equiangular bisector between x;; and x;,. This is until
a third parameter X;3 is as correlated as both x;; and x;,, at which point the next step
is taken along the equiangular bisector between x;;,x;, and x;3. This is repeated until

the last step, which is of the least correlated parameter x;,. A graphical representation
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for two predictors is shown in Figure 2.10. The algorithm requires a maximum of

0(P3 + NP?) computations to calculate the entire sequence of steps for any A.
Hesterberg et al. discussed the computational issues of the LARS algorithm suggesting
that issues with numerical accuracies may arise in highly correlated data (58), which
would be the case in GWA studies. Future studies also showed that the LARS algorithm

was computationally slower than CD for a large range of N and P (53).

/Xz %D—/(C
0 X1 B A

The LAR algorithm in the case of 2 predictors. O is the prediction based solely
on an intercept. C =Y = 31 X, + 32X is the ordinary least-squares fit, the projection
of Y onto the subspace spanned by X, and X,. A is the forward stepwise fit after one
step; the second step proceeds to C. Stagewise takes a number of tiny steps from O to
B, then takes steps alternating between the X, and Xo directions, eventually reaching
E:; if allowed to continue it would reach C. LAR jumps from O to B in one step, where
B is the point such that BC bisects the angle ABD. At the second step it jumps to C.
LASSO follows a path from O to B, then from B to C'. Here LAR agrees with LASSO
and stagewise (as the step size — 0 for stagewise). In higher dimensions additional
conditions are needed for exact agreement to hold.

Figure 2.10 The LARS algorithm in the case of 2 predictors taken from Hesterberg et
al.(58)

2.4.1.2 Homotopy

Osbourne et al. suggested a Homotopy algorithm to fit LASSO models as well as CD
(59). The algorithm starts with an empty set of coefficients and a sufficiently large A.
The process slowly decreases A until a ‘break point’ is reached. At this point the
solution has changed and coefficients are included in the model by iteratively adding
and deleting non-zero coefficients until convergence is met (56,57,60). Due to the
algorithm starting with a large A, it is known as a ‘greedy algorithm’ and is similar to a

forward stepwise procedure as, at each ‘break point’, the next most correlated
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parameter is added. Yang et al. compared the average run time and accuracy between
five algorithms: Homotopy, primal-dual interior point method (PDIPA), truncated
Newton interior-point method (TNIPM/L1LS), Iterative Shrinkage-Thresholding
algorithm (ISTA/SpaRSA), Fast Iterative Shrinkage Algorithm (FISTA) and Dual
Augmented Lagrange Multiplier (DALM) (57,60). Simulations showed that Homotopy
had a slower average run time to convergence than most algorithms and increased
linearly as the number of variables increased. Although the results on a real-life
dataset (N = 249, P = 20) showed that Homotopy was the most accurate of the
algorithms for facial recognition, it was also the fastest algorithm on this dataset when
there is little noise (denoted by corruption %) and when P is small. In a GWAS scenario
where P is large, the algorithm will be computationally slower than the other
algorithms and may fail to converge when P > N (61). Taking into account speed and
accuracy the authors concluded that there was no clear winner between these
methods; PDIPA was the most accurate for noise-free data, while SpaRSA, FISTA and

DALM were the most efficient in noisy data.

2.4.1.3  Alternating Direction Method of Multipliers

The same authors conducted a similar study comparing the same algorithms but
included accelerated version of parallel coordinate descent, where the user specifies
the order of each coordinate update, Primal Augmented Lagrange Multiplier (PALM),
approximate message passing (AMP) and Templates for Convex Cones Solvers (TFOCS)
algorithms. They concluded that the ALM algorithms performed the best for facial
recognition (60). Yang et al. discussed the differences between PALM and DALM
algorithms noting that the efficiency can be different in real-world applications and
running time would depend on the size of the dataset. For GWAS, the most
computational intensive step for PALM (0(n?)), would be faster than the most
computational intensive step for DALM (O (p? + np)). The study showed that in this
case the ADMM methods (DALM and PALM) were amongst the fastest in terms of

computational time to reach an accurate estimate.
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The PALM algorithm (also known as ADMM) eliminates the LASSO inequality constraint
(2.3) by minimising the augmented Lagranian function (2.11). The solution to Equation
(2.11) gives an approximate solution to the LASSO for some A. Each iteration minimises
B and e separately (2.12) (60). The disadvantage of this method is that the Langranian
multiplier ¢ is chosen and can be inefficient with a poor choice (62) and while the
algorithm is guaranteed to converge, it produces approximate solutions rather than
exact ones (57). The ability to remove the inequality constraint makes the ADMM

algorithm flexible to fit other penalised regression models like the fused LASSO (46,63).

Le(Be0)= Y IBI+ A Y lel+ 5D (v fx—e)

+ QT(y _ ,BX _ 8) (211)

€41 = mein Lf(ﬁki e, gk)
Br+1 = mxian(ﬁ: ex+1, k) (2.12)
Ops1 = Ok + (V= Br+1X — €x41)

24.1.4 Packages that fit the penalised regression models in R

Table 2.1 lists a number of R packages that implement penalised regression models.
The descent algorithms, specifically coordinate descent, is clearly the most popular
algorithm used for R packages, especially for the LASSO and group LASSO. Only
genlasso (64) applies an ALM algorithm. Both glmpath (65) and lasso2 (66) use
homotopy path algorithms. Other packages such as elasticnet (67), lol (68), pensim
(69), relaxnet (70) and relaxo (71) are not listed as do not specify which algorithms are

used.
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Table 2.1 List of packages that apply penalised regression models in R

Package Algorithm Models options Addltlorfal
Information
LASSO, fused
genlasso (64) DALM LASSO, trend
filtering
Blockwise-
gglasso (72) Majorization- Group LASSO
descent

glasso (73)

glmmLasso (74)

glmnet (53)

glmpath (65)
grplasso (75)

grppenalty (76)

grpreg (77)

HDPenReg (78)

LARS (55)

lasso2 (66)

LassoBacktracking

(79)

lassoshooting (80)

penalized (81)

QICD (82)

Coordinate descent

Gradient descent

Cyclic coordinate
descent

Homotopy
Blockwise
coordinate descent

Coordinate descent

Coordinate descent

Least Angle
Regression

Least Angle
Regression

Homotopy
Coordinate descent

Cyclic coordinate
descent

Gradient ascent

Coordinate descent

Graphical LASSO
LASSO for
Generalised linear
mixed models
LASSO, ridge
regression and
elastic net
LASSO

Group LASSO

Group LASSO and
group ridge
regression

Group LASSO

LASSO, fused
LASSO and fusion
LASSO, LARS,
Forward stagewise,
stepwise
LASSO

LASSO

LASSO

LASSO, ridge and
fused LASSO

LASSO

For GLM and Cox
proportional
hazard models

Includes a number
of different group
penalties

Package attempts
to identify variable
interactions

For GLM and Cox
proportional
hazard models
For Penalised
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Quantile regression
LASSO, SCAD and
Coordinate descent MCP functions and For Penalised

iCLED R group penalties for Quantile regression
each function
SGL (84) Gradient descent Group LASSO

Iterative
reweighted ridge
regressions (IRRR),
stepPIr (85) a first-order
algorithm, similar
to Newton Raphson
methods

Package attempts
to identify variable
interactions

Logistic ridge
regression

2.4.1.5 Conclusion

There are four popular algorithms for non-smooth convex functions: Coordinate
descent, Homotopy, ALM and LARS. Of the four, CD seems the most flexible and
easiest to implement as an algorithm. Yang et al. showed that the ALM algorithms
were computationally faster than CD (60), however this was in a scenario where N > P
and P was small. The ALM algorithms may not be computationally faster when P is
large as the algorithm iteratively optimises both  and the dummy variable e (2.12),
where CD only requires the optimisation of . ALM also requires the selection of the
Lagrange Multiplier &, which can be inefficient with a poor choice (62). Homotopy
suffers in terms of computational speed when p is large as does LARS when compared
to CD (53). CD seems to be the most popular of the algorithms with published R

packages and is also flexible enough to fit a number of penalty functions (Table 2.1)
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2.4.2 Algebra of coordinate descent algorithm

24.2.1 The LASSO

The LASSO minimises the function shown in (2.2) for an Ordinary Least Squares
problem. To estimate some [ for some k = {1, ..., P}, the first step is to calculate the

derivative of 8(1) with respect to 8 (2.13).

N N
6B (A 1
A( )= —.-2 E YVi— U— xijBj | xir + A sign(Bx) (2.13)

5B, 2N

-

i=1 j=1

Manipulation of equation (2.13) leads to equation (2.14) by separating x;; S«
from x;j.x Bj«k, which are fixed estimates for all j # k. Only By is being estimated for

the k' iteration.

A N P
5B () 1
5pe ~ N Yi— U Z XijBj — XikBr | Xik

k i=1 i=1j%k (2.14)

+A sign(By)
1 N P N
= N Yi— U~ Z xiiB; | Xik — inzkﬁk

i=1 j=1j#k i=1 (2.15)

+A sign(By)

To calculate the solution to this equation, we set (2.15) to equal 0 and solve for

B (2.16).
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Yi— U— z XijBj | Xik = inzkﬁk + Asign(B) = 0

j=1,j#k i=1

1
N

N P N
i=1

1 N P N
CTN Vi— H— z xijBj | Xu + Asign(By) = inzkﬁk
i=1 j=1,j#k i=1
1 7V p .
N z (vi = = 2FoyjrxijB; ) xuac + A sign(By)
B = i=1 (2.16)

N
Z i=1 xizk

To further simplify equation (2.16), the denominator Z:l=1 x% = N — 1 for any
standardised x;;. The derivative of the penalty function yields directional derivatives
dependant on the sign of .. For any [5; a right (positive) and left (negative) derivative

are calculated using the following steps:

p
1 N
ety z Yim BT z XijBj | X = S, 1, %, B)
=1 j=1,j%k
N
Let inzk = Sxx
i=1
Sy, wx,B)+ 2
rd = Sxx
i >0
/B ld — =S wx,B)+ A
B Sxx (2.17)
=Sy, u,x,B)— A
rd = Sxx
i <0
fﬁk _S(y,li;x“B) - ).
ld =
Sxx
( S, wx,B) + A
rd = Sxx
[ =0 A
fﬁk —S(y,,u,x,ﬁ)—l
ld =
\ Sxx
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In order to update By for any iteration, if [d.rd > 0 then:

Bi= Br—rd (2.18)

Solutions for other generalised linear models such as logistic and poisson regression

can be derived in the same manner.

2.4.2.2 Bridge penalties

Coordinate descent algorithms have been extended to other penalised regression
methods. Fu (28) provided an outline to calculate solutions for bridge estimators
including ridge regression. The algebra to derive the solution for ridge regression is
similar to that shown in section 2.4.2.1. The entire function is differentiable in this case
and therefore does not require the soft thresholding operator shown in (2.18). The
solution is shown in equation (2.19). The solution to the elastic net solution can be
used to derive both LASSO and ridge regression by tuning a (2.20). The solution for the
elastic net is the basis of the glmnet package in R and similar solutions have been

described in the Friedman et al. paper (53).

1 N
N z l(yi = 1= Lo e XuiBy ) Xuk
— 1=

5 = (2.19)
Zlivzlxizk + 22

1 N ,
N Z 1(3’i — 1= XiosjerxijB ) Xue + Aa sign(Bi)
L=

Br =
> k21— a)

(2.20)
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24.2.3 The group LASSO

Initially when first introducing the group LASSO, Yuan and Lin suggested applying Least
Angle Regression algorithm (55) (LARS) to fit grouped LASSO (29) models. Tseng and
Yun first suggested using a block coordinate descent algorithm to fit LASSO models (54)
where a block is defined as a row of B estimates. Noah et al. provided a solution for
the group LASSO using block coordinate descent (2.21). Most R packages that fit
grouped LASSO models use CD (72,75-77,84) (Table 2.1).

o :

Pe=rm | 1-

[EIE \

|
/ (2.21)

2.4.2.4 The fused LASSO

Friedman et al.(51) attempted to apply the coordinate descent algorithm to fit fused
LASSO models. They found that the algorithm “got stuck” at local minimum rather than
the global minimum for 2 of the 100 parameters. The reason for this is because the
penalty is not separable from the loss function. The authors go onto outline an
alternative algorithm called the fused-LASSO signal approximator (FLSA) however, as
mentioned in the paper; this algorithm is an approximation and does not guarantee a
precise solution. The ALM algorithm has been shown to work for the fused LASSO

(63,86).
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2.5 Selection of the Tuning parameter for variable

selection

In the previous section, | discussed algorithms to fit LASSO models and computed a
path of solutions for varying A estimates using the coordinate descent algorithm. At
this stage a user is still required to select an optimal tuning parameter estimate. This
selection is vital as it will determine which variables are deemed important and which
are not. The aim in this section is to review and test existing methods for selecting

single tuning parameters.

LASSO models are fitted with at least one of two goals: variable selection or model
prediction. The aim of variable selection is to identify a subset of the variables that is
associated with the outcome variable. The aim for model prediction is to identify a
subset of the variables that can be used to accurately predict the outcome variable for
another dataset (87). Selected subsets for variable selection tend to be smaller than
subsets for model prediction as the type | error rate is controlled (88). Therefore
choosing the tuning parameter selection method that is designed with the appropriate
aim is important. For GWAS, there is a large emphasis on variable selection rather than
model prediction (88). There are two main groups of tuning parameter selection
methods for the LASSO; Cross-validation (CV) based methods and Information criteria
(IC). Cross-validation methods are usually designed for model prediction where

Information criteria are more suited for variable selection.
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2.5.1 Tuning parameter selection methods for single penalties

2511 Cross-validation based methods

K-fold Cross-validation (CV) is a commonly used method for selecting tuning
parameters (89,90). It is the default method in a number of popular R packages for
LASSO such as glmnet (53), lars (55) and glmpath (65). First applied by Tibshirani (9),
CV is a subsampling method for model prediction. Table 2.2 describes the basic
algorithm for selection of the tuning parameter using Cross-validation. Figure 2.11 and
Figure 2.12 show Steps 3-6 and the selection of A in Step 9 respectively. The number of
folds (K) is user selected; this determines the number of subdivisions used for Step 1 in
the Cross-validation process (Table 2.2). A small number of folds produce a small and
underpowered training set leading to biased estimates. As the number of folds
increase, estimates increase in covariance due to overlap between training sets. A
large number of folds, such as leave-one-out CV (K = N), will produce a high variance
(91-93). The selection of the number of folds is hence a bias-variance trade off, it is
suggested that 10 folds gives a balance between bias and variance (90,91) and is the

default option in both gimnet (53) and lars (55) package.
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Table 2.2 Selection of tuning parameter by Cross-validation

Let A; = A sequence of tuning parameter estimates

Let K = A user-specified number of folds

Randomly subdivide the dataset of N subjects into K equal folds
Begin at 1;

Remove the k' fold from the dataset

P owN e

Fit the LASSO on the remainder of the dataset (training set) and use the model
to predict the k' fold (test set)

Calculate the Mean Squared Error (MSE)

Repeat Steps 3 - 5 for each K folds

Calculate the average Mean Squared Error (MSE) ) across all K folds

Repeat Steps 3 -7 for all 4;

w 0 N oo Wn

Select the optimal A = argmin ; c33(MSE;,)

)
—

=
—> 3

Deditcio 3

Figure 2.11 Procedure of 3-fold CV taken from Refaeilzadeh et al. (91). See Steps 3-6 in
Table 2.2. The dataset is separated into 3 folds. One of these folds is set as the test set
and removed from the dataset. The remaining two folds is the training set and are
used to fit a LASSO model. Results from this model are then used to predict the test set
and calculate the Mean-Squared Error (MSE). This is repeated where each fold is

removed so that a mean MSE across all K-folds can be calculated in Step 7.
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Figure 2.12 Selection of the tuning parameter from Cross-validation. Mean Squared
Error is plotted against —log(4) (bottom x-axis). The top x-axis counts the number of
variables in the model at the corresponding —log(A). The right dashed vertical line
denotes the selected A for Cross-validation. The left dashed vertical line denoted the
selected A for 1 SE Cross-validation. The simulation of the dataset for this example is

described in section 2.5.4.1 with the seed = 3.

Although K-fold CV is commonly used, it tends to include a number of false positives
for variable selection (87,91,94-96) and does not give consistent estimates (90) (Figure
2.13). One suggested method to reduce the false positives is the 1 Standard Error rule
(92) (1SE CV). This method selects A with the sparsest model that is no more than 1
standard error away from the optimal A selected by CV. The 1 SE rule chooses the
simplest model whose accuracy is comparable with the best model from CV (97) and is
an option available in the glmnet package. Figure 2.12 shows the difference in selected
A estimates between CV and 1SE CV, the left-hand vertical line denotes the - log(A)
estimate selected using 1SE CV compared to the right-hand vertical line which is

produced using CV.
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The inconsistent estimates are due to how subjects are randomised into folds leading
to sample variation and therefore variation in A estimates. Repeated CV has been
suggested to produce a more stable A estimate (97). The process repeats CV and each
time recording the A estimate which produces a distribution of A estimates (Figure
2.13). The mean or median from this distribution can be selected as the optimal A
estimate. Due to the number of repeats of CV this method is more computationally
expensive as the number of repeats increase. Other advantages and disadvantages for

CV and repeated CV are described by Refaeilzadeh et al.(91).

Histogram for 100 Lambda estimates from one dataset

Frequency

10

.. |

I T
0.06 0.08 0.10 0.12 0.14

Lambda Estimates

Figure 2.13 Distribution of A estimates obtained using 10-fold Cross-validation from
glmnet on one dataset repeated 100 times. The simulation of the dataset for this
example is described later in section 3.2.2.1 with the seed = 3. The distribution of the
estimates shows how inconsistent CV estimates can be and hence impact the final

model. In this example the number of variables selected could vary between 0 and 5.

Generalised Cross-validation (GCV) is a method first suggested to tune parameters in
ridge regression and also applied by Tibshirani (9). For any ﬁ estimates obtained by

fitting a LASSO model ofany A > 0, GCV is calculated using Equation (2.22). DF;
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denotes degrees of freedom for the model at A. The optimal A is selected as the

minimum GCV estimate across a range of A estimates.

A \2
GCVy = (y—};ﬁg)z (2.22)
N(1-3)

2.5.1.2 Stability selection

Stability selection is a P-value based approach to model selection suggested by
Meinhausen and Bihlmann (98) that also intends to address the lack of consistent
estimates from CV. Table 2.3 describes the stability selection method. By selecting
variables with the highest probability of selection from subsamples, stability selection
will produce a stable final model. There are three considerable disadvantages to
stability selection, specifically with applications to genetic data. The first is due to the
use of subsampling, LASSO models are fitted on half a dataset and therefore the
results will be underpowered. Rare genetic variants may not be selected if the
subsample does not contain any variation in alleles and hence lowering the SNP’s P-
value for selection. The second is discussed by Alexander and Lange (99). In a region of
SNPs with high LD, the LASSO tends to select one SNP out of the group. Within an
associated genomic region with high LD the selected SNP may be different between
subsamples. This will lower P-values for all SNP’s in the region and lead to no SNPs
meeting the probability threshold. The third disadvantage is addressed by the authors.
This is the computational intensity of the method which suggests thatif P > N
stability selection is approximately 3 times more computationally expensive and if

P < N this could increase to 5.5.
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Table 2.3 Selection of tuning parameter by stability selection

e Let N = number of subject in the dataset

e Let P =the number of variables in the dataset

e Leti denote the i" variable

e Let Pr; = The probability that the i variable is selected
e Select t = The number of repetitions

e Select I = The probability threshold for selection

. N
1. Without replacement, draw a random subsample from the dataset of size 5

2. Fit a LASSO model using K-fold Cross-validation

0 Variable has not been selected

3. Record Sel; = { 1 Variable has been selected
4. Repeat Steps 1-3 ¢ times

Zt Seli

5. Calculate the probability that each variable is selected Pr; = p

6. Select variables for the final model such that: Pr; > 11

2.5.1.3 Information Criterion

Information criterions (IC) have traditionally been used for model selection in
regression analyses by minimising the log likelihood function of the model plus a
penalty. This penalty is based on the number of variables remaining in the model;
therefore a model which contains a greater number of variables will be penalised more
heavily. Recently studies have used Information criterion to select a tuning parameter
(96,100,101). The advantage of IC methods over CV methods is that they take less
computational time to run (102). Bayes Information Criterion (BIC) (103) is the most
popular Information criterion as it is designed for variable selection and has been used
by a number of studies for tuning parameter selection (90,100,102). The method

calculates the residual sum of squares of the model and adds a penalty of the degrees

40




of freedom (DF) of the model multiplied by the log of the total number of observations

(2.23) (104).

Ml - .Bjxij)z
N

BIC, = Nlog( > + DF; logN (2.23)

Akaike’s information criterion (AIC) has also been proposed for tuning parameter
selection (104). Unlike BIC, the AIC is largely used for model prediction rather than
variable selection (102). It is unsurprising therefore that the proposed formula for AIC
has a relaxed penalty on the degrees of freedom compared to the BIC. The difference
is that the log N term is replaced with 2 which for a large N will be a smaller penalty

(2.24).

Y- Bjxij)z
N

Wang et al. showed that the log transformation of the GCV (2.22) approximates the
AIC for any given A (100). Both AIC and BIC methods follow a similar process as
described with CV (Table 2.2). A sequence of tuning parameter estimates 4; is selected
and for each A; the AIC or BIC is calculated. The optimal 1 is one that produces the
minimum AIC or BIC value (Figure 2.14). The IC methods are less computationally

intensive than CV as they do not require any repetitions for each 4;.
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Figure 2.14 Selection of the tuning parameter using BIC. BIC values (y-axis) are plotted
against the tuning parameter A (x-axis). The selected tuning parameter is the one with
the minimum BIC value. The simulation of the dataset for this example is described in

section 3.2.2.1 with the seed = 3.

2514 Permutation method

Sabourin et al. proposed the permutation method for tuning parameter selection (87)
based on suggestions from Ayers and Cordell (88). This method (described in Table 2.4)
is intended for variable selection in high-dimensional data but unlike the previously
discussed Cross-validation based methods; does not use subsampling. The method
uses an assumption that individual samples are exchangeable. This assumption is used
to randomly exchange (permute) the outcome variable (alternatively predictor
variables can also be exchanged), across subjects. This would break up any existing
associations in the dataset therefore it would be expected that no variables would be
selected from this permuted dataset. Therefore the LASSO is applied and the smallest
A to produce a null model is chosen. This process repeated a number of times with

different random permutation each time to produce a distribution of A estimates in
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which the median is selected (Ayers and Cordell suggest using the maximum estimate
(88)). From this distribution, the median A is then the selected tuning parameter for
the original dataset that has not been permutated. The number of permutations
required to control the variability in it estimates varies between authors. An increase
in permutations will increase the computational time taken for the analysis but also
increase the accuracy of the /’it estimate. Ayers and Cordell suggest using over 25
permutations where Sabourin et al. suggest 100 but also admit that in some cases a

lower value such as 20 can be sufficient.

Table 2.4 Selection of tuning parameter by the Permutation method

e Let N = number of subject in the dataset

e Let P =the number of variables in the dataset

e Lett =thet" permutation

e Select T = The number of permutations

e Lety =avector of outcome variable values, where y = {y,, ..., yn}

e Letx =an N x P dataset of predictor variables

1. Create a vector y; of length N. Randomly allocate (permute) any cell
from y to y, without replacement.

2. Fit a LASSO model of X against y;

3. Calculate and record A, which is the smallest A that produces a null
model

4, Repeat steps 1-3 T times

5. Calculate iperm = median (A4, ..., A7)

6. Fit a LASSO model of x against y with tuning parameter iperm

Both Ayers and Cordell (105) and Arbet et al. (106) suggest variations of the

permutation method where after permutation, the estimated /it is the smallest A that
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produces a model contains a pre-specified number of variables > 0. However, the
definition by Sabourin et al. makes more sense. If the outcome variable is permuted
correctly, all associations between the variables and the outcome would be broken
and therefore a null model would be expected and not a model containing some

number of variables.

Yi et al. proposed a permutation based method to control the false discovery rate (15)
(see section 4.6) and found the method to work well for a small number of causal SNP
but the method became more conservative as the number of causal SNPs increased,
they concluded that this was due to the permutation of the phenotype also permuting
the random error in the data. This leads an over estimation in the random error in the
data resulting in a loss of power. It is not known if this is the case for all permutation
based methods or just the method proposed by Yi et al. Studies by Sabourin et al. (87),
Ayers and Cordell (105), and Arbet et al. (106) do not mention such a problem

occurring.

2.5.1.5 Comparisons of methods in the literature

Tibshirani (9) describes selecting the tuning parameter A by 5-fold CV, GCV and a
method based on Stein’s unbiased estimate of risk, details of this method can be found
here (107). Both CV methods produced a smaller median MSE estimate than Stein’s
method across 4 simulated examples than Stein’s method. Results on the mean
number of 0 coefficients is also provided although it is not clear whether these are true
or false negatives in all examples. Hirose et al. (101) simulated the same scenarios
(over 200 datasets instead of 50) as Tibshirani and included Information Criterion such
as a bias corrected AIC, BIC, CV, GCV and Mallows C, statistic for comparison. Results
showed that GCV had the highest true and false positive rates across all four examples,
suggesting that this method included more variables in the final model compared to
the other methods (see Table 3 (101)). The probability of selecting the true model was
the smallest for GVC and the largest for 10-fold CV across all methods. BIC and Cross-

validation generally out-performed the other methods especially in terms of
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minimising the FPR. The BIC also consistently produced a lower MSE estimate than CV
suggesting that the tuning parameter estimate selected by BIC produces a better
model fit. The authors also note that the C statistic and AIC can yield the same result
which is shown in a simulation by Kirkland et al.(102). This simulation showed that the
kappa coefficient method returned the correct model more often than the comparison
methods. The authors however, noted that this method does not give consistent
variable selections for the LASSO even though only 8 variables were simulated. On
average the kappa coefficient tended to select the sparsest model and therefore
underestimated the true model. The 1SE CV methods (5-fold and 10-fold) performed
similarly to the kappa method in this simulation followed by the BIC method. The BIC
method was found to have the highest rate of selecting a model that included the

correct model but may also include some false positives.

The permutation method was compared with 1SE Cross-validation, BIC, the covariance
test by Lockhart et al. (36) and the Scaled Sparse Linear Regression (Scalreg) method
(108). Details of both these methods are described in the Sabourin et al. paper (87). 16
scenarios were simulated and repeated 100 times each with variables such as the
dimensionality of the data (low N = 200, high N = 1,000), Signal to Noise Ratio (low SNR
= 0.5, high SNR = 2) and number of causal variables (1, 5, 10 and 20) varied in each
scenario. This was repeated for both Gaussian regression and logistic regression;
however Scalreg results were omitted for logistic regression as the method was
designed for Gaussian regression only. Performance was measured by the average
power for true positives and the average false discovery rate (FDR) for false positives.
Results showed that 1SE CV, BIC and the Permutation method producing similar results
in most scenarios. The covariance test performed well when the number of causal
variables was small but suffered when this number increased as the method tended to
select the smallest model. For Gaussian models the Scalreg method was comparable in
low-dimensional datasets but tended to have a higher FDR that the competing
methods. The authors also compared the computational time taken for each method.

In most low-dimensional scenarios, the permutation method was computationally the
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fastest followed by the BIC, however in high-dimensional scenarios BIC was the fastest

followed by the permutation method.

Waldmann et al. used CV and 1SE CV methods in a genetic setting to compare variable
selection between the LASSO and EN (27). Their simulations showed that CV selected a
large number of false positives whilst the 1SE method did not select many SNPs but did
not select any false positives. The authors concluded that both methods do not

perform well for variable selection and an alternative criterion to MSE should be used.

2.5.2 Tuning Parameter selection for dual penalties

Some penalised regression methods, such as the elastic net (18) and the grouped
LASSO by Zhou et al. (109), apply two penalty terms rather than one. There is little
literature that looks into methods to optimise dual penalties, however there are two
simple suggested methods for selecting the optimal penalty across two penalties, both

are briefly discussed by Zhou et al. (109).

The first suggested method is to fix some ratio between the two penalty estimates.
This is the option used for the elastic net for gimnet where the “alpha” option controls
the strength of the LASSO and ridge regression penalties respectively (2.5). This
method would give the user the control on how they would like to penalise any given
dataset but it may not give the optimal penalty for variable selection. Given the
popularity of glmnet to fit penalised regression models this method has been the most

commonly used method for selecting tuning parameters for the elastic net.

The second is to perform a “grid” type search for the optimal combinations of tuning
parameters, this is performed by calculating the estimate statistic such as MSE or BIC
for every combination of tuning parameter penalties and selecting the minimum of
these estimates as the optimal penalty. This method will be more computationally
intensive than the first suggested method as it may calculate every combination of the

two tuning parameters.
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The two suggested methods described above are simple and easy to implement on
most tuning parameter selection methods such as CV, BIC, AIC and GCV as the tuning
parameter estimates are derived from some statistic estimate where the optimal
penalty is the minimum. Both stability selection and the permutation method would
work by fixing the ratio between two penalties, however this would not work for a grid
search method. Both methods do not use a statistic that can be used to compare
models with different penalties but instead a threshold is used. The permutation
method uses a A estimate that produces a null model. Some combination of the two
small A estimates will not produce a null model; therefore a ratio of A would be
required rather than a grid for this method. Both methods ultimately pose a problem
in terms of selection of the best model from a number of different “best models”. One
potential way to overcome this using a grid search would be to calculate model fit by
either MSE or BIC for each of the “best models” and select the one with the minimum

value.

2.6 Genetic association

Deoxyribonucleic acid (DNA) forms the human genome, and it is composed from four
different types of molecules called nucleotides: adenine (A), cytosine (C), guanine (G)
and thymine (T). Nucleotides are joined by covalent bonds to form base pairs. There
are approximately 3.3 billion base pairs in the human genome which are contained in
23 pairs of chromosomes. A large portion of the genome is identical for all humans in a
population, for example every person in a population has an AA pair of nucleotides.
There is however a number of locations in the genome where there is variation in the
pair of nucleotides in a population, for example some individuals in a population may
have an AA; others may have AG and some GG. This genetic variation in the population
is known as a Single Nucleotide Polymorphism (SNP) and occurs through genetic
mutation in an individual and spread into the population through mating. The specific
variant forms of the SNP (i.e. A and G) are known as alleles and the pair of alleles

collectively is known as a genotype (i.e. AA, AG or GG).
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For association testing, genotype data is used and each genotype is coded by a 0, 1 or
2 depending on the pair of alleles and the relative frequency of these alleles in the
population. The minor allele frequency (MAF) is the frequency of the least common
allele in a population and therefore the genotype coding tends to be by the number of
minor alleles for every SNP in an individual. For example, a SNP with A and G alleles

where A is the minor allele would be coded by the following: GG=0,AG =1, AA=2.

A genetic association test will test the phenotype of interest against the number of
minor alleles assuming an additive model (110,111). For a quantitative trait such as
LDL, an ordinary least squares (OLS) model is used (2.25) and for a binary trait, such as

cancer, a logistic regression model is used (2.26).

y = BO + le + ﬁzC + & (225)

logit(y) = By + B1x + [,C (2.26)

y is a vector of phenotype values and f3, is the intercept term for the linear model. 3,
and 3, denote a vector of effect estimates for the matrix of genotypes x (coded as
0,1,2) and matrix of covariates C respectively. The matrix of covariates contains non-
genetic risk factors that the model can adjust for such as age and sex. For the
guantitative trait, € is the error term that contains the residual variance of the
phenotype that is not explained by the model, where € ~ N(0,52). In a GWAS the
matrix of genotypes (x) can contain millions of SNPs; the null hypothesis for each SNP
is that there is no effect on the trait as the number of minor alleles present in an

individual in the population increases (5; = 0).
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2.7 The LASSO in genetic epidemiology

There have been a number of studies that have applied penalised regression methods
to genetic SNP data, both in simulated and real datasets. In this section, | review some
of these studies and discuss their results and conclusions. As this thesis focuses on
frequentist approaches to variable selection, Bayesian approaches (112-118) and

studies that focus on model prediction (119-126) will not be discussed.

Studies by Yi et al. (15) and Sung et al. (127) compared penalised regression methods
against single marker regression methods. The comparisons made by the Yi et al. study
(15) include the LASSO, adaptive LASSO, fusion-type penalties, the elastic net,
Bonferroni correction and false discovery date (FDR) methods on simulated single
chromosome and multiple chromosome datasets. Both the Bonferroni correction and
FDR methods are described in greater detail in Chapter 4. Variable selection was
assessed in terms of true and false positive rates (TPR and FPR). The authors found
that there was very little difference between the penalised regression methods tested
although the elastic net with &« = 0.5 performed slightly better of the four methods.
The penalised regression methods were more powerful than the single marker
methods tested. Waldmann et al. compared the LASSO and against the elastic net in
both simulated scenarios and in real data from cattle (128). In each case, the results
showed that the switch from the LASSO penalty (2.2) to an elastic net penalty (2.5)
increased the number of SNPs selected in the model and an increased in the number of
false positives selected. Based on the simulated data which simulated 25 causal SNPs
in a dataset of 50,000 SNPs and varying levels of LD (high, mixed and low), the elastic
net with a large ridge penalty relative to LASSO penalty (a = 0.9) showed the best
performance for variable selection (see Table 1 (128)). The authors also state the
Bonferroni correction method showed similar performance to the elastic net. The
LASSO was able to restrict the number of false positives selected but this also limited

the number of true positives selected. The number of causal SNPs selected greatly
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increased when the simulated LD between SNPs was low. The main conclusion of this
paper however, was that both the tuning parameter selection methods (CV and 1SE

CV) used performed poorly for variable selection and other methods should be utilised.

Sung et al. compared the application of the LASSO against a single marker analyses
(SMA) in a simulated dataset consisting of 6,857 subjects and 4,589 SNPs along a
chromosome (127). Only one SNP was simulated as the causal SNP with another 12
polygenic SNPs with “smaller effects that influenced the simulated LDL phenotype”
(129). The results compared the rankings of selection for both methods. The ranking
for the SMA was based on the univariate P-value rank; with the SNP with the smallest
P-value has a rank of 1 and regarded as the highest rank, whereas the LASSO is the
rank at which the SNP enters the model. The difference in ranks showed the difference
between the two methods in accounting for LD. The SMA selected the causal SNP as
the top rank in most of the 200 replications, but this also produced a high rank in 10
other associated SNPs that were correlated with the causal SNP. The LASSO selected
the causal SNP as the top rank in 114 out of the 200 replications. When the causal SNP
was not selected as the top rank, one of three SNPs correlated with the causal SNP was
selected as the top rank and the remaining correlated SNPs produced low ranks. This is
consistent with observations made by Zou and Hastie (18) which is that in a group of
highly correlated variables, the LASSO tends to select only one variable and does not
select any others. This ability is somewhat of an advantage compared to SMAs in
GWAS, in a group of highly correlated SNPs only one SNP is likely to be the causal SNP
and the remaining SNPs are correlated with the causal SNP. An SMA is likely to select a
number of variants from an associated region when only one SNP is causal where the

LASSO tends to select one SNP from the region.

One of the advantages of penalised regression methods over SMAs is the ability to
jointly model the variables. By jointly analysing SNPs, penalised regression methods
are able to consider the correlation of each marker with the phenotype, conditional on

all other relevant markers. This can increase the power to detect weak associations
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compared to single marker methods due to the smaller residual variance and the fact
that the conditional correlation of a marker with the phenotype is often higher than
the marginal correlation (130). However in the Sung et al. study, both methods were
unable to select any of the 12 SNPs with the smaller effects, suggesting both methods

have a similar power to select SNPs in this analysis (127).

If allowing correlated variables into the model is particularly desirable both group
penalties and fusion penalties could be used. The fused LASSO (2.9) is designed to
penalise adjacent variables only, however LD between SNPs may occur over a greater
number of adjacent SNPs. Bao and Wang propose an interesting fusion penalty (131)
which considers a window of multiple adjacent SNPs that allows fusion across multiple
SNPs rather than a pair of adjacent SNPs. Liu et al. proposed an extension of the
grouped LASSO which penalised grouped but included a fusion penalty to smooth
estimates between groups as correlation still may exist between adjacent groups

(132).

The grouped LASSO (2.7) and sparse group LASSO (2.8) have been proposed for
analysis of rare variants (133-135). Rare SNPs often lack power to be selected,
therefore by grouping correlated rare SNPs or genes together the power to detect
these rare variants increases. As penalised regression methods are designed for high-
dimensional data, it is natural that some interaction models have been proposed for
genetic data for both gene-environment interactions (113,118,124,136,137) and gene-

gene interactions (138-141).

A number of studies have commented on the inability to fit a large number of SNPs in a
LASSO model due to a large computational burden (11-16). Table 2.5 lists the studies
that have applied either the LASSO or a generalisation of the LASSO in a GWAS setting
on human cohorts. In all of the studies with 119,000 SNPs or more, some form of
pruning (or pre-screening) method was utilised to reduce the number of SNPs for
analysis. SNP Pruning is a quality control procedure that removes a number of SNPs

from the dataset. In most previous studies the dataset is pruned by mostly P-value.
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Carlsen et al. used a form of forward step-wise model as a pre-screening method (16).
Ahmed et al. used LD pruning to remove the highly correlated SNPs from the dataset
(142). Other statistics such as FDR (143,144) and test score statistics (137,145) have
also been used; both are similar to pruning by P-value. Pruning SNPs by P-value is
logical as only the most significantly associated SNPs will remain for analysis. However
little is known how pruning by P-value or any other pruning methods affect penalised
regression models and therefore one of the aims for this thesis is to investigate the
effects of SNP pruning on penalised regression models. This is discussed in greater
detail in Chapter 6. Selection of the tuning parameter tends to be either by Cross-
validation or selecting a pre-specified number of variables (Table 2.5). Of all the
penalised regression methods, the LASSO seems to be the most popular used for

variable selection in GWAS.
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Table 2.5 Summary of studies that have applied the LASSO or generalisations of the LASSO in genome-wide association studies

Study . Number Tuning
population/  Sample Penalised Number Pruning of SNPs parameter
Study Phenotype GWAS size rerg‘:zsellon i:fi:?a:set method used after selection Notes
dataset pruning method

Coronar 8,556
Assimes arter ! (5,423 Logistic Not
. v Taiwanese controls, LASSO 9,087 None 9,087 e
(138) disease specified
3,133 model
(CAD)
cases)

Denis Placental Si:s(:sgo Logistic 20-fold
) Peruvian ! LASSO 118,782 None 118,782 Cross-
(139) Abruption 244 e
model validation

controls)




Frost (137)

Alzheimer’s
disease

us

572 (412
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160

controls)

Select top
20,000 SNPs
based on score
statistic of
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Logistic

elastic net 398,230
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20,000 validation

Elastic net was
used to
perform
variable

selection, later
logistic
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determine
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environment
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2.8 Summary

In this chapter, | have presented a background to the LASSO and some other
generalisations such as ridge regression (RR), elastic net (EN), grouping penalties such
as the group LASSO and sparse group LASSO and the fused LASSO. | also reviewed
algorithms that fit LASSO models and these generalisations as well as tuning parameter
selection methods. In Chapter 3, | implement the coordinate descent algorithm (CDA)
for the LASSO and run a simulation study comparing a number of tuning parameter
selection methods in terms of variable selection for the LASSO. Both implementations
will be used in future work in this thesis. | also reviewed a number of studies that have
applied these penalised regression approaches in a GWAS setting. The literature
suggests that the LASSO is not able to select variables that univariate analyses also do
not (13), however the advantage of the LASSO is that it is able to select an associated

variable and remove variables that are correlated with the selected variable (127).
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3 Implementation of the LASSO

3.1 Introduction

In Chapter 2, | provided a background to the LASSO and its generalisations which
included a review on algorithms and tuning parameter selection methods that can be
used to implement the LASSO on a dataset and perform variable selection. In this
chapter, | follow up these reviews by illustrating implementations of the coordinate
descent algorithm and a number of tuning parameter selection methods in a
simulation study. The aim of these implementations is so that they can be used in

future work in this thesis.

In section 2.4.1, | select the most effective algorithm to write in R as a foundation for
future work. After selecting this algorithm, | then derived the basic solution for the
LASSO and a number of other generaliseations of the LASSO in section 2.4.2. In this
chapter, | follow on this work by deriving a pseudo code for an R program to fit LASSO
models. | run this program on a test dataset and compare the results with an existing R

package. This program will also be used in some proceeding chapters.

| also follow up the review conducted on tuning parameter selection methods (section
2.5.1) by testing a number of these methods via a simulation study. The aim of the
simulation is to determine the relative performance of these methods in terms of
variable selection. The methods that show good performance will be used for tuning

parameter selection in further analyses.
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3.2 Fitting the LASSO by coordinate descent

3.2.1 My coordinate descent algorithm for the LASSO

Table 3.1 presents my coordinate descent algorithm to fit the LASSO. This algorithm is
designed for a standard coordinate descent in which parameters are estimated one at
a time starting at the first variable in the dataset and ending with the last. Three loops
are incorporated in this algorithm, the outer one loops over a vector of A’s (see step 9),
however only one value of A can be used. The middle loop is for a specified number of
iterations and the third loop is for across SNPs. This final loop minimises the function
each variable whilst keeping the remaining variables constant. Therefore in one

iteration loop all variable estimates will be updated.

Convergence of a model for a specified A is determined at the end of an iteration loop
(Step 15). The criteria used to determine if convergence is reached, is by calculating
the sum of the absolute difference between the new beta estimates from the current
iteration loop (ﬁ) and the beta estimates from the previous iteration loop (Oldbeta). If
this sum is less than a specified threshold then convergence is reached. This threshold
value should be small in order to produce accurate B estimates but not too small as
this would increase the computational time. A threshold between 0.0001 and
0.000001 would seem reasonable. If a vector of As is given, the vector should be
increasing order, to make the algorithm more efficient. Once a model has converged at
A, then the initial estimates used for A, are the final § estimates for A,. Applying
these “warm starts” makes the algorithm simpler and faster than restarting the initial

estimates at 0 (53). The code for my LASSO function in R is in Appendix A.
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Table 3.1 My Coordinate descent algorithm to fit the LASSO

Let N = The number of subjects in the dataset

Let i = the ith subject, where i={1, ..., N}

Let P = the number of SNPS in the dataset

Letj = the jt» SNP, where j={1, .., P}

x = The N x P standardised SNP matrix

y = A continuous Phenotype with mean p and standard deviation o2

Let k = the kth value of Lambda

1. Generate a vector of increasing penalty thresholds with length K (K> 1).
Call it Lambda.

2. Specify the maximum number of iterations that are to be used. Call it

iterations

Specify convergence threshold >0. Call it THRESH

Calculate the intercept which is the mean of Y. Call it mu

Calculate sxx, where sxx = 5?:0 sz =N-1

Generate a vector of initial estimates of length P. Call it Betahat ()

Generate the same vector of initial estiamtes of length P. Call it Oldbeta

Startatk=1

© © N o 1o W

Startatiter=1

10. For each cell in Oldbeta, replace the Oldbeta values with those in Betahat
11.Startatj=1

12. Calculate r = YL, (y; — muw)x;

13. Calculate the left (1d) and right derivatives (rd)
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—_(ld= -+ N
& Ifﬁl_o{rd= —r — N2

rd = —T+N1k

b.H@>O{M:_J+NM

~ rd = —r —NJ;
C. Ifﬁ]<0{ld: —r — N2,

14. Let New.beta denote the updated Beta estimate. In order to calculate this:
a. Ifrdxld < 0then,6”} =0

b. Ifrd x ld > 0 then

i rd
i.  Calculate New. betaj = ,8]- - —

ii. Updatemu = mu+ (New. beta; — E])xj
ili.  Replace [3’\1 = New. beta,

15. Decide if the convergence criterion has been met.

a. IfY°NP|B, — Oldbeta;| < Thresh then convergence criterion has been

met. Go to Step 16

b. If 2¥5)'"|B, — Oldbeta;| = Thresh then convergence criterion has been

met.

i.  Ifiter = iterations. Stop. Model has not converged

ii. Ifj=P,setj=1and setiter = iter+1. Go to step 10.

iii. Ifj <P &iter < iterations, set j=j+1. Go to step 12.
16. Output Lambda,, and the vector .
17. Either move to the next value of Lambda or stop.

a. If Lambda;, < K, set k=k+1 and go to step 9.
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b. If Lambda; = K. Stop. Estimates for all specified values of Lambda have

been obtained.

3.2.2 Comparison of my coordinate descent algorithm against glmnet

3.2.2.1 Simulation of data

A dataset of 500 subjects and 100 independent SNPs was simulated. Minor allele

frequencies (MAF) for SNPs were randomly generated from a uniform distribution and
varied between 0.01 and 0.5. The minor allele frequencies for SNP 25 and SNP 75 were
set to 0.02 and 0.2 respectively as these were simulated as the causal SNPs. Simulated

B’s were calculated using the percentage variance explained and the MAF of the causal
SNP (3.1).

(3.1)

_ |Percentage of Variance explained
p= 2 x MAF (1 — MAF)

A continuous phenotype was simulated with both causal SNPs explained 1% of the

total variance each (5,5 = 0.5051 and 75 = 0.1768) (3.2).

Vi = BasXizs + BrsXizs + € (3.2)
where,

e; ~ N(0,0.98)

The smallest value of A required for a null model was A = 0.1346. Therefore A was
selected over a range starting at 0 and increasing in intervals of 0.005 until 0.135. The
maximum number of iterations was set to 10,000. The convergence threshold was set

at 0.000001 (see step 15). For this simulation a seed was set as seed = 1.
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For both glmnet and my algorithm, data on the number of SNPs in the model, the
number of causal SNPs in the model, estimated 3 values, BIC and the residual sum of
squares (RSS) was collected. The computational time taken was also calculated over
1,000 repetitions of the algorithm. This was performed using the system. time ()

command in R.

3.2.2.2 Results

The results for both my algorithm and glmnet are shown in Table 3.2. My LASSO
algorithm was able to converge for all values of lambda (with a threshold of 0.000001).
The results show similar results across the information collected. The number of SNPs
in the final model was the same with both programs with the exception of A =

0.03 where there was a difference of one SNP. The difference in the SNP estimates
was negligible, as glmnet estimated 8 = 0.0000218, my algorithm estimated 8 = 0.
Although there was this one difference in the number of SNPs it was not a causal SNP.
There was no difference between the number of causal SNPs remaining in the final
model, in both cases the same SNP (SNP 25, MAF = 0.02) was removed from the model
at A =0.045 and SNP 75 (MAF = 0.2) was removed at A = 0.115. The results did show
however that predicted estimates between the two programs were different in all
non-zero estimates across all SNPs and tuning parameter values, the difference was
small in all cases ranging between 5 and 7 decimal places. The largest difference in
estimates between the two programs is 0.00013 (A = 0.13), at this point only one SNP
is remaining in the model. The size of the difference in B estimates between the
algorithms (my algorithm subtracted from the gilmnet) is small when calculating the
residual sum of squares (RSS) of each model. The largest difference in RSS was 0.00007
(A =0.045). At every A, the results showed that although there was a small difference
in RSS estimates, the B estimates from my algorithm provided a smaller RSS estimate
which would suggest that my algorithm produced more optimal estimates than

glmnet.
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The system.time () command in R was used to compare the time taken to
compare the computational time taken for both programs, was repeated 1,000 times
to give a fairer time estimation. The glmnet took 179.25 seconds (2 minutes and 59.25
seconds) to run 1,000 times. My algorithm took considerably longer at 859.52 seconds
(14 minutes and 59.52 seconds) for the same process (Table 3.3). Tests across a
number of convergence thresholds were run also. Naturally as the convergence
threshold became smaller, the time taken to run increased. To compare the accuracy
of estimates, the estimates for each threshold were compared to the estimates from
glmnet by calculating the sum of the absolute difference of all SNPs across all A values.
Table 3.3 showed that the smaller the threshold the closer estimates became to those
produced by glmnet. Given the little difference between estimates from a threshold of
0.0001 and 0.0000001 compared to the large difference in running time, it would be

beneficial to use a threshold of 0.0001 in future analyses for similar size datasets.
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Table 3.2 Results showing the comparison of my code against gimnet

No. of
No. of SNPs SNPs Causal SNPs Causal SNPs RSS - my RSS - Difference Largest B
A selected - my selected - my selected - . . .
algorithm selected - algorithm glmnet algorithm glmnet in RSS difference
glmnet

0.00 100 100 2 2 490.8791 490.879 3.07E-12 0.000083
0.005 91 91 2 2 490.8973 490.897 2.85E-06 0.000045
0.01 77 77 2 2 490.9091 490.909 1.14E-05 0.000028
0.015 68 68 2 2 490.9162 490.916 2.04E-05 0.000033
0.02 65 65 2 2 490.9194 490.920 3.49E-05 0.000077
0.025 54 54 2 2 490.9195 490.920 4.32E-05 0.000069
0.03 45 46 2 2 490.9183 490.919 4.59E-05 0.000059
0.035 43 43 2 2 490.9159 490.916 5.78E-05 0.000067
0.04 40 40 2 2 490.9121 490.912 6.83E-05 0.000074
0.045 32 32 1 1 490.9076 490.908 7.40E-05 0.000080
0.05 24 24 1 1 490.903 490.903 6.61E-05 0.000083
0.055 18 18 1 1 490.8993 490.899 5.52E-05 0.000078
0.06 12 12 1 1 490.8963 490.896 4.74E-05 0.000083
0.065 11 11 1 1 490.8937 490.894 5.25E-05 0.000092
0.07 10 10 1 1 490.8909 490.891 5.33E-05 0.000092
0.075 7 7 1 1 490.8882 490.888 4.23E-05 0.000094
0.08 5 5 1 1 490.8865 490.887 3.18E-05 0.000085
0.085 2 2 1 1 490.8857 490.886 1.47E-05 0.000086
0.09 2 2 1 1 490.8852 490.885 1.65E-05 0.000091
0.095 2 2 1 1 490.8846 490.885 1.83E-05 0.000097
0.1 2 2 1 1 490.8838 490.884 2.03E-05 0.000102
0.105 2 2 1 1 490.883 490.883 2.24E-05 0.000107
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0.000125

0.000130
0
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Table 3.3 Comparison of timings between glmnet and varying thresholds of my

algorithm over 1,000 loops

Sum of the absolute

Time difference of all SNPs
Program  Threshold .
taken (s) at every A against
glmnet
glmnet NA 179.25 NA

0.01 325.65 0.03934339

0.001 464.65 0.02353101

M 0.0001 586.14 0.02342260

Y 0.00001  720.63 0.02340717
algorithm

0.000001 859.52 0.02340617

0.0000001 969.17 0.02340579

0.00000001 1078.09 0.02340576

3.2.3 Conclusion

There are a number of different algorithms that can be implemented to fit non-smooth
convex functions such as the LASSO. In chapter 2, | reviewed the three main categories
of algorithms: first order algorithms, path finding algorithms and ADMM algorithms.
Taking into consideration computational speed, accuracy, and flexibility | concluded
that coordinate descent was the best algorithm to implement into my own R code as a
basis for future work. A simulation showed that my algorithm written in R gave a
slightly more optimal solution but computational time was considerably longer than

glmnet.
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3.3 Simulation Study on LASSO tuning parameter

selection methods for variable selection

In this section, | conduct a simulation study to compare a number of tuning parameter
selection methods in order to determine which methods perform well for variable
selection and which can be used in further analyses. The methods selected for
comparison were repeated 10-fold CV, repeated 10-fold 1SE CV, BIC methods and the
permutation method. Most of these methods are designed for variable selection with
the exception of Cross-validation which is designed for model prediction. Cross-
validation was included as it remains the most popular method for tuning parameter
selection (Table 2.5). Stability selection was not considered due to the reasons stated
in section 2.5.1.2. Other methods such as AIC & GCV were also not considered as

results in previous simulation studies showed poor performance (101).

3.3.1 Methods

Datasets were simulated as described in the previous section (see 3.2.2.1) however a
number of different scenarios were simulated. Each scenario was simulated 1,000
times. The baseline scenario is described in section 3.2.2.1. Eight other scenarios were
simulated, each one varied either the number of subjects (N = 1,000 and 2,000),
number of independent SNPs (NSNP = 250 and 500), number of causal variants (N
Causal =5 and 10) or the percentage variance explained by each causal variant (%Var =

2% and 5%).

For the scenario where the numbers of causal variants = 5 they were set at positions
1, 25, 50, 75 and 100 with MAFs set to 0.25, 0.02, 0.1, 0.2 and 0.4 respectively.
Similarly for the scenario where the numbers of causal variants = 10 they were set at

positions 1, 15, 25, 35, 50, 65, 75, 80, 95 and 100 with MAF set to 0.25, 0.05, 0.02,
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0.15, 0.1, 0.3, 0.2, 0.35, 0.5 and 0.4. The simulation was run using R and seed = 1 was

used.

Tuning parameter selection methods were applied to each simulated dataset for each
scenario. Model fitting and Cross-validation was applied to simulated datasets using
glmnet (53). GImnet was also used to calculate the minimum A for a null model for the
permutation method. For both CV methods and the permutation method, each
method was repeated 25 times and both the mean and median A estimate was used.
The BIC was calculated at intervals of 0.001 along A. Performance was determined by
true and false positive rates (TPR and FPR) as well as the proportion of times the true
model was selected by the method, specifically where the number of dimensions are

higher.

3.3.2 Results

3.3.2.1 Cross-validation

Table 3.4 shows the results for repeated Cross-validation. Cross-validation is the only
method designed for model prediction rather than variable selection; therefore it is
unsurprising that on average, this method includes the highest number of SNPs in the
selected model compared to the other methods leading to a high proportion of
selected SNPs that are false positive. As the number of dimensions increased the
number of FP SNPs selected increased, suggesting that CV will select a high number of
variables that are false positives in GWAS. The mean FPR decreased as the number of
SNPs increased in this simulation. Interestingly the FPR also increases as both the
number of causal SNPs and the percentage variance explained by the causal SNP
increases, even if the numbers of dimensions have not changed. The TPR increases in
both scenarios. Selecting the mean tuning parameter over the 25 repetitions
outperforms selecting the median, as the mean produces a higher TPR along with a

lower FPR.
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Table 3.4 Mean and standard deviation of simulation results for the repeated 10-fold

Cross-validation method averaged over 1,000 datasets

Cross-validation - Median

N

500

1,000

2,000

500

500

500

500

500

500

500

1,000

2,000

500

500

500

500

500

500

NSNP

100

100

100

250

500

100

100

100

100

100

100

100

250

500

100

100

100

100

No. of
causal
SNPs

[»)

[EEN

[EEN

5

1

=

N

True False
positive  positive
rate rate
0.47 + 0.05+
0.41 0.06
0.82+ 0.06 £
0.32 0.07
0.99+ 0.08 +
0.07 0.07
0.38 + 0.02 +
0.39 0.03
0.28 + 0.01+
0.35 0.02
0.63 0.08 +
0.31 0.08
0.82+ 0.16 +
0.17 0.09
0.85 + 0.07 £
0.29 0.07
1.00 = 0.08 +
0.02 0.07

Cross-validation - Mean
0.51+ 0.04 +
0.38 0.05
0.83 0.06 +
0.29 0.06
0.99 + 0.08 +
0.07 0.06
0.40 + 0.02 +
0.38 0.03
0.31+ 0.01+
0.35 0.02
0.64 + 0.08 +
0.29 0.07
0.81+ 0.15+
0.17 0.08
0.86 + 0.06 +
0.26 0.06
1.00 + 0.08 +
0.02 0.06

Mean
No.
SNPs

5.44 +
6.57
7.94 £
6.79
9.52
6.67
6.49
8.88
6.81+
10.75
11.30
8.78
2337 %
9.59
8.21+
6.80
9.74 +
6.48

525+
5.61
7.66
6.13
9.45 +
6.26
6.16 +
7.64
6.37 £
8.95
10.89
8.05
22.98 +
9.16
791+
6.17
9.60 *
6.06

Mean
No. of
true
SNPs

0.95+
0.81
163+
0.63
198 +
0.14
0.76 +
0.79
0.57 +
0.71
3.16 £
1.53
8.17
1.73
1.69+
0.57
2.00 +
0.03

1.02 £
0.77
1.67 £
0.58
1.98 +
0.13
0.80
0.77
0.61+
0.70
3.18 ¢
1.43
8.14 +
1.71
1.72
0.51
2.00+
0.03

Mean
No. of
false
SNPS

4.49
6.09
6.30 £
6.51
7.54 +
6.65
572 %
8.42
6.24 =
10.37
8.14
7.76
15.20
8.47
6.52 +
6.57
7.74 +
6.48

423
5.21
599 +
5.89
7.47
6.24
536+
7.25
575+
8.61
771+
7.11
14.84 +
8.05
6.19 +
5.96
7.60
6.05
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3.3.2.2 1 Standard Error Cross-validation

Table 3.5 shows the results for repeated 1SE Cross-validation. This method shows
highly conservative results by selecting on average the least number of SNPs in most
simulated scenarios but also produced the lowest FPR in all but one scenario. With the
exception of 2 scenarios, the mean number of SNPs selected was less than one,
meaning that there were a large proportion of null models selected. The implication of
the results suggests that the 1SE CV method is likely to underestimate any true model.
The mean estimate out-performed the median especially when the number of
dimensions increased. In these scenarios the TPR was higher with the mean estimate,
while there was little difference in the FPR. Both CV methods showed similar trends
across scenarios with the exception of the mean number of FP SNPS as N increases.
Then overall mean for repeated CV increased the mean (4.49 to 7.54) the mean for
repeated 1SE CV decreased (0.14 to 0.00). Both the results for CV and 1SE CV were
similar to the simulation conducted by Waldmann et al. where CV selected too many

false positives and 1SE CV selected too few variables (27).
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Table 3.5 Mean and standard deviation of simulation results for the repeated 10-fold

1Standard-Error Cross-validation method averaged over 1,000 datasets

1 Standard Error Cross-validation - Median

N

500

1,000

2,000

500

500

500

500

500

500

500

1,000

2,000

500

500

500

500

500

500

No. of
NSNP causal
SNPs
100 2
100 2
100 2
250 2
500 2
100 5
100 10
100 2
100 2
100 2
100 2
100 2
250 2
500 2
100 5
100 10
100 2
100 2

[»)

5

1

True False Mean
positive positive No.
rate rate SNPs
0.09 + 0.00 + 0.32+
0.19 0.00 0.47
0.13 0.00 = 031+
0.22 0.00 0.47
0.15+ 0.00 + 031+
0.24 0.00 0.48
0.07 £ 0.00 + 0.29 +
0.17 0.00 0.46
0.06 % 0.00 £ 0.31+
0.16 0.00 0.50
0.07 £ 0.00 + 0.44 +
0.13 0.00 0.80
0.20 0.01+ 2.44 +
0.25 0.01 3.44
0.19 + 0.00 0.42 +
0.26 0.00 0.54
0.80 0.00 + 1.63+
0.32 0.00 0.72
1 Standard Error Cross-validation - Mean
0.11+ 0.00 + 0.36 +
0.21 0.00 0.49
0.17 + 0.00 + 0.38 +
0.24 0.00 0.50
0.29+ 0.00 + 0.59 +
0.28 0.00 0.57
0.08 + 0.00 + 0.33 +
0.18 0.00 0.50
0.07 + 0.00 + 0.36 +
0.17 0.00 0.56
0.10 + 0.00 + 0.60 +
0.14 0.00 0.80
0.22 0.00 + 2.62 +
0.22 0.01 2.97
0.26 + 0.00 + 0.58 +
0.28 0.00 0.57
0.83 + 0.00 £ 1.70 =
0.25 0.00 0.57

Mean
No. of
true
SNPs

0.18 +
0.38
0.27 £
0.45
031+
0.48
0.13 +
0.34
011+
0.32
0.36 +
0.64
203+
2.49
0.38
0.53
1.59+
0.64

0.22 +
0.42
0.34
0.48
0.59
0.57
0.16 +
0.37
0.13 +
0.35
0.50 =
0.68
2.23 ¢
2.20
0.53
0.55
1.66
0.50

Mean No.
of false
SNPS

0.14 £
0.35
0.04 +
0.21
0.00
0.04
0.16 +
0.37
0.20 +
0.41
0.08 +
0.34
0.46
1.30
0.04
0.19
0.04 £
0.27

0.14
0.35
0.05+
0.21
0.00
0.04
0.17
0.40
0.22
0.47
0.10 +
0.35
0.40 £
1.10
0.05+
0.24
0.03+
0.23
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3.3.2.3 Bayes Information Criterion

The result for the BIC is shown in Table 3.6. Results show that the BIC is another
conservative method as the mean number of variables selected on average was less
than one in most scenarios. The BIC outperforms both CV methods as the number of
FPs selected was much lower compared to repeated CV. However with the exception
of one scenario (N Causal = 10), the BIC was not as conservative as the 1SE CV method.
The BIC maintained a very low FPR but a higher TPR. This method performs especially

well when the number of dimensions increase compared to the CV methods.

Table 3.6 Mean and standard deviation of simulation results for the BIC averaged over

1,000 datasets

BIC
True False Mean ALl Ll
N % ees .. No.of No. of
N NSNP positive  positive No. of

Causal Var . s SNPs true false

SNPs SNPS
0.14 + 0.00 + 0.48 + 0.28 + 0.20 +

>00 100 2 1 0.25 0.00 0.69 0.51 0.45
0.40 £ 0.00 £ 0.94 + 0.80 £ 0.14 £

000 St e s 0.39 0.00 0.96 0.77 0.43
0.83 % 0.00 + 1.95 + 1.67 + 0.28 +

2,000 100 2 1 0.32 0.01 0.97 0.64 0.60
0.11 0.00 £ 046+ 022+ 024+

= 2=l 2 1 0.22 0.00 0.66 0.45 0.48
0.10 ¢ 0.00 + 0.44 + 0.19 + 0.25 +

>00 >00 2 1 0.21 0.00 0.65 0.43 0.49
0.14 + 0.00 £ 0.82 + 0.70 £ 0.12 £

S St 2 s 0.19 0.00 1.17 0.95 0.42
0.14 + 0.00 + 1.54 + 1.40 + 0.14 +

>00 100 10 1 0.18 0.01 2.18 1.84 0.53
0.45 + 0.00 £ 1.12+ 090+ 0.21%

2 — 2 2 0.40 0.01 1.11 0.80 0.57
0.97 0.01+ 249 + 195+ 0.54 +

>00 100 2 > 0.13 0.01 0.95 0.26 0.88
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3.3.24 Permutation method

The results for the permutation method are shown in Table 3.7. There is little

difference between selecting the mean or median from the distribution of A estimates.

Selecting the mean tends to select a larger A estimate and hence selects a smaller

number of SNPs. Sabourin et al.(87) do not explain why the median is used over the

mean although the results show that there is little difference to choose between the

two. While the mean will reduce the FPR, most scenarios only select between 1 and
SNPs for the final model and therefore selecting the median will at least on average

maximise the number of TP SNPS.

This method performed well, as it selected more SNPs on average than both the 1SE
CV and BIC methods including a higher number of true SNPs while maintaining a low
FPR. The FPR is well controlled in this method as shown by the consistency in mean
number of false SNP estimates. Across all scenarios the mean estimate only varies

between 0.7 and 0.47 for the median and between 0.41 and 0.59.

2
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Table 3.7 Mean and standard deviation of simulation results for the permutation

method averaged over 1,000 datasets

Permutation method - Median

Mean Mean
True False Mean

o,
b A Caysal V{:R pors;itt(iave pors;itt(iave S':'\lc;;s li:;:f l\:’:l.szf
SNPs  SNPS
32+ 01+ 29+ 064+ 0654
00 100 2 1 00%323 0oc.)o1 1 11?(?7 ooége 0oi?,sa
68+ 01+ 97+ 136+ 061+
1,000 100 2 1 Ooia84 Ooc.);l 11?(?9 10?:8 00(.5813
96 + 01+ 58+ 192+ 066+
2,000 100 2 ! 00?164 00?&1 2oi._)887 1o?zzs 0o§861
+ + + t t
0 20 2 1 FE SR o e os
16+ .00 # 98+ 031+ 067+
500 500 2 1 00.1266 0oc.)c())o 00?988 00%512 00?874
+ g t t t
s0 w00 s 1 O ORE ARE NS o
35+ 01+ 08+ 355+ 054%
500 100 10 1 Ooéf A 00%1 41955 31?28 Oo%;ls
70 + 01+ 01+ 139+ 061t
500 100 2 2 00?3?2 Oo(.)oll 21(.)015 10?:4 0oi313
99 + .00 + 45+ 199+ 0.47%
500 100 2 > 00?36 00(.)(?1 2oz.l754 lo?fz Ooz.l773

Permutation method - Mean
0.31+ 0.01+ 1.86+ 062+ 0.56%

500 100 2 L EE 001 102 065 077
66 + 01+ 186+ 132+ 054+
1,000 100 2 ! 006.5364 00(?01 15.3:4 0?68 00?37
96 + 01+ 48+ 191+ 05642
2,000 100 2 ! 00?164 00(.)011 20?:1 105.3219 00?764
21+ .00 + 02+ 043+ 059+
s 2 2 ! 00?219 Oo(.)(())o 10(.)926 004.15?9 00?38
15 + .00 + 86+ 029+ 0574%
500 500 2 ! 00%255 00(.)(?0 002.3962 00?5?0 00?779
32+ 01+ 13+ 161+ 0.53%
sy e > ! 00%22 1 00(.)31 21%239 11%6 005734
34+ .00 + 88+ 342+ 046+
500 100 10 1 Oo%f5 0o(.)c())1 31%;:0 311.26 004.1760
68+ 01+ 1.89+ 136+ 053+
500 100 2 2 O06.5382 0o(.)01 05.3:9 0?:4 005737
99 + .00 + 40+ 199+ 041+#
00 100 2 > 00?36 0o(.)c())1 2oé.lgg 10?32 004.29
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3.3.2.5

Comparison of simulation results

Results showed that repeated CV did not perform well for variable selection. A number

of previous studies have also shown that CV includes a high number of false positives

(87,91,94-96). Similar results are shown in this simulation (Table 3.8 and Table 3.9).

Repeated CV tended to select a greater number of variables in its final model than the

other methods with 7 or more SNPs selected over 30% of the time even though only 2

causal variables were simulated. Whilst repeated CV produced the highest TPRs and

FPRs in all simulated scenarios, the 1SE CV method produced the lowest rates in most

scenarios as well as the most null models of any method (Table 3.8 and Table 3.9).

Table 3.8 Table listing the number of times each tuning parameter selection method

selected a number of SNPs in its final model in the first scenario with N = 500, NSNP =

100, 2 causal variants each explaining 1% of the variation.

Number

of SNPs CvV - CvV - 1SECV 15E Permutation Permutation

. o . - CV- BIC .

in final Median Mean ) - Median - Mean

Median Mean
model

0 216 73 683 646 604 249 276
1 185 250 317 350 332 383 396
2 74 114 0 4 47 232 221
3 74 96 0 0 14 107 90
4 41 59 0 0 1 24 12
5 52 61 0 0 2 3 3
6 43 37 0 0 0 2 2
>7 315 310 0 0 0 0 0
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Table 3.9 Table listing the number of times each tuning parameter selection method
selected a number of SNPs in its final model in the fifth scenario with N = 500, NSNP =

500, 2 causal variants each explaining 1% of the variation

Number

of SNPs CvV - CvV - 1SECV 15E Permutation Permutation

. o . - CV- BIC .

in final Median Mean ] - Median - Mean

Median Mean
model

0 305 125 699 664 620 373 419
1 181 267 299 327 332 368 366
2 50 95 0 3 36 185 162
3 46 86 0 3 10 58 42
4 44 47 1 1 1 12 9
5 38 46 1 1 0 4 2
6 34 41 0 1 1 0 0
=7 302 293 0 0 0 0 0

The BIC method was also conservative in terms of variable selection producing a high
number of null models, although this was not as high as the 1SE CV method. The
greatest difference in results between these two methods is seen when the number of
variables increase. When NSNP = 2,000, TPR = 0.835 for the BIC compared to 0.295 for
the 1SE CV mean method. Although the FPR increases slightly for the BIC compared to
a decrease for the 1SE CV mean method the gain in TPs outweighs the small change in
FPs. As NSNP increases the TPR for BIC is higher than 1SE CV mean method (0.096 vs
0.0665) and both methods have similar FPRs (0.0005 vs 0.0004) suggesting that the BIC
would perform better than 1SE CV in a high-dimensional setting. BIC and 1SE CV
produced the lowest standard error for the mean estimates which suggest these
methods are more consistent however this is due to the methods underestimating the
true model where there is a small number of causal SNPs and hence a high proportion
of null models. When the number of causal SNPs increased (NCAUSAL = 10), the

permutation method produces the smallest standard error for the mean estimate.
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Out of the variable selection based methods, the permutation method produced the
highest TPR whilst maintaining a low FPR. Although the permutation method has a
higher FPR than the other variable selection methods, the mean number of false SNPs
selected is consistently around 0.5 across all scenarios simulated and hence the false
positive rate is still small. Table 3.10 shows the percentage of the 1,000 simulations
that correctly selected the true simulated model. No true model was selected when N
Causal = 10. In the majority of the other scenarios, the permutation method
outperforms the other methods and selects a higher proportion of true models than
the competing methods. The BIC performs well, where the 1SE CV method very rarely
selects the true model. Repeated CV performs on a similar level to BIC in some
scenarios however the difference is due to repeated CV including a number of false
positives which the BIC does not. BIC does not select as many true positives. For each
final model, the Mean Squared Error was calculated and results are shown in Table
3.11. Results show that there was little difference in MSE estimates across the
methods although the results tend to suggest that the sparsest model produces on

average a lower MSE estimate.
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Table 3.10 The percentage of times each tuning parameter selection method selected the exact true model over 1,000 simulations.

1SE CV 1SE Permutation Permutation
N  NSNP Calal \Z’r Mi\d'i;n I\;Za-n - CV- BIC method - method -

Median Mean Median Mean
500 100 2 1 1.70 1.90 0.00 0.30 1.60 5.00 5.40
1,000 100 2 1 5.00 4.20 0.30 0.50 15.60 24.80 25.70
2,000 100 2 1 6.00 4.70 0.70 4,00 55.80 46.50 51.40
500 250 2 1 1.00 1.30 0.00 0.00 1.00 3.20 3.10
500 500 2 1 0.20 0.20 0.00 0.00 0.90 1.50 1.50
500 100 5 1 0.10 0.00 0.00 0.00 0.10 0.20 0.20
500 100 10 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
500 100 2 2 5.20 5.20 2.10 2.70 17.50 27.50 27.60
500 100 2 5 5.40 5.30 64.80 64.90 60.50 63.90 66.70




Table 3.11 The average Mean Squared Error from the final model for each tuning parameter selection method over 1,000 simulations

Permutation

Permutation

N oNswe N % CV CV-  ISECV- ISECV- gy method - method -
Causal Var Median Mean Median Mean )

Median Mean

500 100 ) 1 49457+ 49457+ 493,59+ 493,59+ 49475+ 494,57 + 494,57 +
31.41 31.41 31.07 31.07 31.92 31.41 31.41

1000 100 ) 1 989.57+ 989.57+ 987.44+ 987.44+ 988.72+ 989.57 + 989.57 +
’ 44.13 4413 43.37 43.37 41.76 4413 44.13

2000 100 ) 1 1977.78 1977.78 1975.32 1975.32 1978.79 1977.77 £ 1977.77
! +61.77 +61.77 +63.85 + 63.85 +63.38 61.77 61.77

500 250 5 1 49330+ 493.30+ 49418+ 49418+ 493.39+ 493.29 + 493.29 +
31.05 31.05 30.88 30.88 31.01 31.04 31.04

500 500 5 1 49458+ 49458+ 49438+ 49438+ 49425+ 494,57 + 494,57 +
30.58 30.58 31.38 31.38 31.88 30.58 30.58

500 100 5 1 533.25+ 533.25+ 531.67+ 531.67%+ 533.17% 533.23 + 533.23 +
34.14 34.14 33.67 33.67 35.10 34.14 34.14

500 100 10 1 749.20+ 749.20+x 747.66+ 747.66+ 749.31% 749.17 + 749.17 +
44.96 44 .96 44 .48 44.48 46.21 44 .96 44 .96

500 100 5 5 489.37+ 489.37+ 488.40+ 48840+ 48942+ 489.36 + 489.36 +
31.17 31.17 30.80 30.80 31.65 31.17 31.17

500 100 ) 5 476.03+ 476.03+ 475.27+ 47527+ 47583+ 476.02 + 476.02 +
30.88 30.88 30.67 30.67 31.35 30.88 30.88
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3.3.3 Conclusion

The permutation method showed superior performance in this simulation study
compared to the repeated CV, repeated 1SE CV and the BIC. The BIC also performed
well although the method did not select many variables and tended to select a high
proportion number of null models (Table 3.8 and Table 3.9). Cross-validation and 1SE
Cross-validation produced extreme results, CV over selected the number of variables in
the final model where the 1SE method under selected. A number of methods were not

run in this simulation due to poor performance in previous studies.

3.3.4 Discussion

In this section, | ran a simulation study comparing various tuning parameter selection
methods. From the methods used in the simulation, the permutation method
outperformed the other methods in terms of variable selection for this small-scale
simulation. Although this method also worked well when the dimensions of the
dataset increased, this selection method is relatively untested and it’s not known how
well this method will work in a high-dimensional setting such as GWAS. While other
tuning parameter selection methods can be easily implemented when there is more
than one penalty such as the elastic net by using a grid method, the permutation
method cannot be implemented in such a way. Therefore determining the optimal
combination penalties using the permutation method may be difficult. The BIC also
performed well but tended to select fewer variables than the permutation method.
Cross-validation is a method used for model prediction rather than model selection; it
is unsurprising that it tends to over select variables. The 1SE Cross-validation method

on the other hand, was highly conservative and rarely selected any variables.
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3.4 Summary

In this chapter, | have provided illustrations of the LASSO that can be used in future
work. | write a program in R that can fit the LASSO and produce accurate estimates
compared to the popular glimnet package (53). In section 3.3, | conduct a simulation
study comparing a number of tuning parameter selection methods. Results showed
that although Cross-validation is a popular choice for tuning parameter selection
(Table 2.5), it does not perform well for variable selection. Either the BIC or

permutation method should be used instead.
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4 Application of the LASSO on the GRAPHIC

study

4.1 Introduction

In this chapter, | apply the LASSO in a GWAS setting using the Genetic Regulation of
Arterial Pressure of Humans in the Community (GRAPHIC) study dataset (10). GRAPHIC
is a family based study, however for this analysis only unrelated subjects were used.
The aim is to apply the LASSO to identify SNPs associated with Low-density Lipoprotein
cholesterol (LDL-c). Commonly used techniques such as Bonferroni correction and false
discovery rate (150) were used as a baseline comparison in identifying associations in

the GRAPHIC study.

| begin by conducting a literature search of studies that have conducted a GWAS on
LDL in order to identify previously known genetic associations with LDL-c. | then
introduce the GRAPHIC study and describe the quality control criteria used on the
dataset. The LASSO, Bonferroni correction and false discovery rate methods are then
applied to the GRAPHIC study in order to compare selected associations between the

methods and the known associations found in the literature search.
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4.2 Genetics of LDL-c

4.2.1 Low-density Lipoprotein

Coronary Artery Disease (CAD) is the one of the leading causes of mortality worldwide
(151). One of the main risk factors associated with CAD is the cholesterol level,
particularly levels of Low-density Lipoprotein (LDL) and High-density Lipoprotein (152-
154). Other risk factors include cigarette smoking, hypertension, a family history of
Coronary Heart Disease (CHD) and age (155). The function of LDL is to carry cholesterol
molecules from the liver to cells such as the muscles (156). Too much LDL however,
can lead to a build-up of cholesterol in the arterial wall which ultimately leads to
Atherosclerosis if left untreated (157) hence why LDL is known as “bad
cholesterol”(158). High-density Lipoprotein is in a sense a role reversal of LDL as it
carries cholesterol away from muscles and back to the liver in an attempt to prevent
any build-up of cholesterol and therefore is known as the “good cholesterol” (158).

Therefore reduced levels of HDL also contribute to an increased risk of CAD.

LDL measurements are usually obtained using blood tests. The National Heart, Lung
and Blood Institute in the United States of America published guidelines on classifying
levels of LDL to a risk level which are widely used and accepted (Table 4.1). Naturally
some variation in an individual’s LDL level will be explained lifestyle choices such as
diet and exercise, however it is estimated that between 40-50% of the variation is

genetically inherited (159,160).

Table 4.1 ATP lll Classification of LDL levels (155)

LDL Cholesterol (mg/dL)

<100 Optimal
100-129 Near optimal/Above optimal
130-159 Borderline high
160-189 High

2190 Very high
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4.2.2 Literature search

A literature search was conducted to identify previously known SNPs and genetic
regions associated with LDL. If the results produced from the GRAPHIC study analysis
replicated results seen in previous GWAS studies they would be generally more
accepted, particularly if the association has been replicated in a number of previous
studies. The keywords of “GWAS AND LDL” were used in PubMed for this search.
Unabbreviated versions of these terms such as “Genome-Wide Association Studies”
and “Low-Density Lipoprotein” were also searched in the case that any studies were

missed by using abbreviated terms.

Table 4.2 describes the inclusion and exclusion criteria used for the literature search.
LDL-c was the only included phenotype of interest and hence any analyses that
included oxidised LDL, high-density lipoprotein (HDL) or triglycerides (TG) as the
phenotype were excluded. Included studies were restricted to genome-wide
association studies only rather than studies that analyse certain regions or selected
SNPs only. All of these excluded studies selected SNPs or regions for analysis based on
previously reported associations and therefore by excluding these studies, any new
loci that have not been reported elsewhere have not been excluded. Studies that used
either traditional GWAS methods such as ordinary least squares or meta-analysis
methods to determine association were included. Included studies were restricted to
human adults above 18 years of age only as this is similar to the GRAPHIC cohort.
Another reason for including an age restriction is that levels of LDL is correlated with
age (Figure 4.1) therefore the effect of confounding due to age is reduced. Further to
this for any studies that met the inclusion criteria, associated SNPs on chromosome 23
were excluded from the search. It would be expected that the power to detect
association on this chromosome would be lower. Studies were not excluded by
ancestry as potential associations may be found in either SNPs or regions across

different ancestries.
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Figure 4.1 Scatter plot showing the relationship between LDL cholesterol and age,

obtained from the GRAPHIC study cohort.

For studies that met the inclusion criteria the following data was collected; the name
of the first author, publication date, the statistical techniques used, sample size of the
study, ancestry of the cohort, the number of SNPs used in the GWAS study, the SNPs
found to be associated with LDL as well as the gene, chromosome, base position and
the P-value of the associated SNP (Table 4.3). The dbSNP database (161) was used in
PubMed to cross-reference base positions of associated SNPs and the GRCh37.p10
assembly as a reference was used for these positions; this is the assembly reference
that is used on the GRAPHIC dataset. Identifying associated SNPs in the literature
search, would also indicate particular regions of interest in the genome which include
a number of associations. An associated region was defined to have two or more

associated SNPs that are either in the same gene or at most within 50kb of each other.
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Table 4.2 Literature search inclusion/exclusion criteria

Literature search inclusion/exclusion criteria

Included any GWAS studies with LDL-C as one of its outcomes.
Included any GWAS or meta-Analysis methods with LDL-C as one of its
outcomes.

Excluded any analyses with oxidised LDL as its outcome.

Included human studies only.

Included any studies that reported results by SNPs
Excluded any studies that reported results as either genes or loci only
Excluded any studies that only analysed previously known SNPs or regions
Excluded any associated SNPs on Chromosome X
Included studies conducted on adults only ( 218 years old)

Table 4.3 Data collected for included literature search studies

Data collected for included Literature search studies

Author
Publication date
Statistical methods used
Sample size
Ancestry / Population studied
Number of SNPs in dataset
Whether imputation was used or not
SNPs associated with LDL
Gene of the associated SNP
Chromosome of the associated SNP
Base position of the associated SNP
P-value of the associated SNP

4.2.2.1Results

A total 206 search results in PubMed were obtained. Table 4.4 shows the reasoning for
exclusion of studies and the number of studies excluded in each case. 115 studies were
excluded by title and abstract and a further 9 excluded after reading the full text as
these studies had no relevance. 33 studies were excluded as they based the
association testing on using previously identified SNPs or loci and a further 10 studies

for reporting results by region or gene only. 11 studies were excluded as they were not
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GWAS studies (4 clinical trials based on statin therapy, 3 heritability analyses, 2
simulation studies and one literature review). A final 5 studies were excluded as they
either did not include LDL-c as an outcome or had a study sample consisting of
children. After applying the exclusion criteria a total of 23 studies remained (162-184)

and the data collected is shown in Table B.0.1 (Appendix).

Table 4.4 Literature search results and reasoning for exclusion

Reason for Exclusion Number of studies
Search results 206
No relevance 124
Study uses previously known SNPs, regions or genes 33
Not a GWAS study 10
Reports results by region or gene rather than 10
individual SNPs
Study sample were based on children 2
Did not have LDL a phenotype 3
No associations found 1
Studies Included 23

A total of 126 SNPs were found to have an association with LDL from the 23 studies.
Each study used different methods and association levels (Table B.0.1). Associations
from 28 of these SNPs were replicated in more than one study and are listed in Table
4.5. 17 of the 28 replicated SNPs were located on either chromosome 1 or 19 of genes
such as SORT1/CELSR2, APOB, TOMM40 /APOE. rs6511720 on the LDLR gene (19p11.2)
was replicated the most frequently (8 studies) followed by rs4420638 (19g13.2) which

was replicated in 6 separate studies.

Studies were generally consistent in identifying associated SNPs across similar regions.
Of the 126 SNPs identified in the literature search, 96 SNPs (76.19%) were found to be
within a region of another identified SNP, 30 were not. Table 4.6 lists the SNPs

identified by the literature search by gene. The commonly identified regions were the
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PCSK9 (1p32.3), SORT1 (1p13.3), APOB (2p24-p23), ABCG (2p21), HMGCR5/HMGCRS
(2p21), LDLR (19p11.2) and APOE (19913.2).

To date the largest GWAS study conducted with LDL as the phenotype was conducted
by Teslovich et al. (180). The study combined a total of 95,454 subjects (63,274 women
and 38,514 men) across 46 participating studies and approximately 2.6 million SNPs
were meta-analysed across the four cholesterol based phenotypes (LDL-c, HDL-c, total
cholesterol (TC) and triglycerides). Whether a SNP was significantly associated was
determined by using a P -value (P<0.0005) obtained from a fixed-effect meta-analysis.
The study identified 37 SNPs associated (Appendix B) and while 9 of these SNPs were
replicated in other studies, there were a large number of SNPs identified in this study
were not previously identified by either SNP or region. From the 30 SNPs that were not
found to be within a region with any of the identified SNPs, 17 (56.66%) were
identified by the Teslovich study (180). The other 22 studies seemed fairly consistent in

terms of identifying similar regions.
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Table 4.5 Identified associated SNPs that have been replicated in multiple studies.

SNPs Gene Chromosome  Base position Nur.nbe.r of Studies
replications
rs11206510 PCSK9 1 55,496,039 3 Kathiresan , Waterworth, Willer (167,182,185)
Chasman, Kathiresan, Musunuru, Talmund, Wu
rs11591147 PCSK9 1 55,505,647 5 (166,171,179,184,186)
rs10889353 DOCK7 1 63,118,196 2 Aulchenko, Lettre (163,169)
Kathiresan, Lettre, Musunuru, Talmund, Wu
rs12740374 CELSR2/ SORT1 1 109,817,590 5 (167,169,179,184)
rs660240 CELSR2/ SORT1 1 109,817,838 2 Middelberg, Waterworth (170,182)
rs629301 CELSR2/ SORT1 1 109,818,306 2 Talmund, Teslovich (179,180)
Aulchenko, Chasman, Kathiresan, Sabatti,
rs646776 CELSR2/ SORT1 1 109,818,530 5 Saleheen (163,164,166,174,175)
rs599839 CELSR2/ SORT1 1 109,822,166 3 Kim, Roslin, Sandhu, Willer (168,173,176,183)
Asselbergs, Aulchenko, Kathiresan, Sabatti,
rs693 APOB 2 21,232,195 > Talmund (162,163,166,174,179)
rs934197 APOB 2 21,267,461 2 Musunuru, Talmund (171,179)
rs515135 APOB 2 21,286,057 2 Kathiresan, Waterworth (166,182)
Lettre, Musunuru, Sandhu, Talmund, Willer
rs562338 APOB 2 21,288,321 5 (169.171.176,179,183)
rs4299376 ABCG5/ABCGS8 2 44,072,576 2 Talmund, Teslovich (179,180)
rs4953023 ABCG5/ABCGS8 2 44,074,000 2 Asselbergs, Musunuru (162,171)
rs12654264 HMGCR 5 74,648,603 2 Kathiresan, Kim (166,168)
Musunuru, Talmund, Teslovich, Waterworth
rs12916 HMGCR 5 74,656,539 4 (171,179,180,182)
rs12670798 DNAH11 7 21,607,352 2 Aulchenko, Teslovich (163,180)
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rs174546
rs2000999

rs6511720

rs2228671
rs10401969
rs16996148
rs157580
rs2075650

rs7412
rs12721046
rs4420638

FADS1
HPR

LDLR

LDLR

CILP2

CILP2
TOMMA40
TOMM40

APOE
APOE

APOE

11
16

19

19
19
19
19
19

19
19
19

61,569,830
72,108,093

11,202,306

11,210,912
19,407,718
19,658,472
45,395,266
45,395,619

45,412,079
45,421,254
45,422,946

A N R NNDNWDN

Sabatti, Teslovich (174,180)
Musunuru, Teslovich (171,180)
Chasman, Kathiresan (x2), Lettre, Musunuru,
Teslovich, Trompet, Willer
(164,166,169,171,180,181,183,187)
Aulchenko, Talmund (163,179)
Kathiresan, Teslovich, Waterworth (166,180,182)
Kathiresan, Willer (183,187)
Aulchenko, Sabatti (163,174)
Middelberg, Talmund (170,179)
Chasman, Rasmussen-Torvik, Smith, Wu
(172,178,184,186)

Musunuru, Talmund (171,179)
Kathiresan (x2), Sandhu, Teslovich, Waterworth,
Willer (166,176,180,182,183,187)
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Table 4.6 Genes associated with LDL from the literature search. Numbers in brackets
denote the number replicated associations

Number of
Gene Chr. identified SNPs Identified SNPs within genes
within gene
PCSKS . c rs11206510 (3), rs2479409, rs11591147 (4),
rs11806638, rs499883
DOCK7 1 3 rs10889335, rs2131925, rs10889353 (2)
rs4970834, rs7528419, rs12740374 (5), rs660240
SORT1/
CELSR2 1 8 (2), rs629301 (2), rs646776(5), rs602633,
rs599839 (4)
rs4971516, rs693 (5), rs10199768, rs1367117,
APOB 2 11 rs934197 (2), rs934197, rs7575840, rs515135 (2),
rs562338 (5), rs506585, rs503662
ABCGS5, 5 5 rs6756629, rs4299376 (2), rs6544713, rs4953023
ABCGS (2), rs76866386
rs12654264 (2), rs3846662, rs3846663, rs12916
HMGCR > 6 (4), rs3804231, rs258494
HAVCR1 5 3 rs6882076, rs9715911, rs1501908
LPA 6 3 rs1564348, rs3798220, rs10455872
DNAH11 7 1 rs12670798 (2)
NPC1L1 7 2 rs2072183, rs17725246
PPP1R3B 8 2 rs9987289, rs2126259
rs6982636, rs2954021, rs2954029, rs4870941,
TRIB1 8 > rs6987702
ABO 9 3 rs2519093, rs651007, rs635634
FADS 11 3 rs174541, rs174546 (2), rs174570
APOA 11 4 rs12272004, rs1558861, rs964184, rs2072560
HNF1A 12 2 rs2650000, rs1169288
CETP 16 2 rs3764261, rs17231506
HPR 16 2 rs72626182, rs2000999 (2)
rs1529729, rs73015011, rs11668477, rs17248720,
LDLR 19 10 rs6511720 (8), rs8110695, rs2228671 (2), rs5930,
rs2738446, rs2738459
CILP2 19 2 rs10401969 (3), rs16996148 (2)
rs1531517, rs4803750, rs10402271, rs519113,
rs6859, rs283813, rs157580(2), rs2075650 (2),
APOE 19 15
rs1160985, rs769450, rs7412 (4), rs445925,
rs389261, rs12721046 (2), rs4420638 (6)
TOP1 20 2 rs1883511, rs6029526
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4.3 The GRAPHIC study

Genetic Regulation of Arterial Pressure of Humans in the Community (GRAPHIC) Study:
The GRAPHIC Study comprises 2,037 individuals from 520 nuclear families recruited
from the general population in Leicestershire, UK between 2003-2005 for the purpose
of investigating the genetic determinants of blood pressure and related cardiovascular
traits in the general population. Recruitment of families was performed by invitation of
women aged between 40 and 69 registered with a general practitioner in
Leicestershire, UK. Families were included if both parents were aged 40-60 years and
two offspring >18 years wished to participate. A detailed medical history was obtained
from study subjects by standardized questionnaires and a clinical examination was
performed by research nurses following standard procedures. Measurements obtained
included height, weight, waist-hip ratio, a 12-lead ECG, lipid levels including total

cholesterol, HDL and LDL and also both clinic and ambulatory blood pressure.

The subjects from the GRAPHIC study cohort were genotyped on 3 arrays, 50k
Cardiochip on all samples, Exomechip that contains a large number of rare variants on
both generations and HumanOmniExpress-12v1 array for the GWAS dataset which was
genotyped on parental subjects only. For this analysis the GWAS dataset consisting of
1,017 parental subjects was used. Further information about recruitment and

genotyping can be found here (10).
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4.4 Quality Control and Exclusion Criteria

The GRAPHIC GWAS dataset consists of 1,017 parental subjects (508 males and 509
females) and 730,525 SNPs. These are mostly common SNPs however there are also
some rare variants in the dataset. Any subjects with a missing phenotype (N = 35) were
removed. A quality control and exclusion criterion was applied to the remaining 982
subjects. The criterion used is described in Table 4.10 below. Any individuals with a low
call rate, any SNPs with a low call rate, SNPs with a small minor allele frequency (MAF),
SNPs with a highly significant Hardy-Weinberg Equilibrium P-value or individuals with
sex inconsistencies in the data were excluded. PLINK (version 1.07) (19,20) was used to

apply the quality control procedure.

4.4.1 Low SNP call rate in individuals

A low call rate of SNPs in an individual indicates a poor DNA sample which may lead to
inconsistent readings for that individual (188). Therefore it makes sense to exclude
subjects with low call rates. Given that the initial sample size after removing subjects
with a missing phenotype is 982 an excessive number people should not be excluded
from the analysis as a reduced sample size would reduce the power to detect
associations in the analysis. This is especially the case in rare SNPs as a rare variant
with a low initial call rate will produce a low number of minor alleles within the
population. This has a knock-on effect on association testing for that SNP as not only is
the DNA sample unreliable, but also easier to produce false positive or false negative
results by chance. Turner et.al (188) discusses the application and implications of
quality control procedures in GWAS. A 98-99% call rate was suggested; similarly a

study by Weale (189) suggests a 97-98% call rate.

Table 4.7 below shows the numbers of people that would be excluded for varying call

rate cut-off points. A high cut-off point would lead to the exclusion of a high

94



proportion of subjects in the dataset but also reduce the power of the study. One
particular subject was found to have a call rate = 86.93%, in comparison all the other
subjects had call rates > 94%. Any subjects with a call rate < 95% were excluded to
compromise with power. Most previous GWA studies on LDL used a sample size of
thousands of subjects and therefore have a greater power to detect associations with
small effect sizes and can afford to exclude more subjects. The studies from the
literature search with a similar sample size to this study generally found a low number
of associations (172,173,177). A call rate of < 95% excludes 3 individuals and leaves
979 subjects for analysis. The mean genotyping rate across the remaining subjects was

99.32%

Table 4.7 Numbers of subjects that would be excluded for varying call rates

Individual call rate cut-off Numbers of % of people
subjects excluded
excluded

100% 982 100
99.50% 347 35.34
99% 180 18.33
98.50% 123 12.53
98% 81 8.25
97.50% 52 5.30
97% 40 4.07
96% 15 1.53
95% 3 0.31
94% 1 0.10
93% 1 0.10
92% 1 0.10
91% 1 0.10
90% 1 0.10

4.4.2 Low genotype call rate

SNPs with a low genotype call rate were excluded as these SNPs would indicate poor
marker quality. An alternative approach would be to impute missing values however

this can lead to error in the estimation of genotypes and could produce either false
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associations or truly causal associations not being selected. It is therefore beneficial to
initially exclude SNPs with a high missing call rate. Table 4.8 shows the numbers of
SNPs that would be excluded for varying genotype call rates. There is a high SNP call
rate across a large proportion of the GRAPHIC study. A large proportion the SNPs with
lower call rates were on chromosome 23 (19% of all SNPs with a call rate < 90%). A cut-
off of 97% was selected as this removed a large proportion of poor quality SNPs whilst
not removing too many needlessly as the remaining missing genotypes would be
imputed for analysis. In total 39,302 SNPs (5.38%) were excluded due to a low

genotyping call rate.

Table 4.8 Numbers of SNPs that would be excluded for varying call rates

Number of % of SNPs
SNP call rate cut-off SNPs excluded excluded
100% 324,372 44.40
99.50% 121,238 16.60
99% 82,357 11.27
98.50% 64,435 8.82
98% 53,162 7.28
97.50% 45,333 6.21
97% 39,302 5.38
96.50% 34,667 4.75
96% 30,965 4.24
95.50% 27,795 3.80
95% 25,615 3.51
94% 21,205 2.90
93% 17,796 2.44
92% 15,144 2.07
91% 10,037 1.37
90% 11,525 1.58
85% 6,249 0.86
80% 3,909 0.54
75% 2,837 0.39
70% 2,302 0.32
60% 1,918 0.26
50% 1,799 0.25

96



4.4.3 Minor allele frequency

SNPs with a low minor allele frequency (MAF) were also excluded. Rare variants will
lack power to detect causality (188); this will especially be the case in this analysis as
the sample size only consisted of 979 subjects compared to most previous GWA
studies with LDL that use many thousands of subjects. Consider a scenario of a rare
SNP with MAF of 1%, in a dataset of 1,000 people with 100% genotype call rate for this
SNP. It would be expected that on average 10 subjects will have at least one minor
allele and only one person to have both two minor alleles for that SNP. It is difficult to
detect any true association unless there is a large effect size from the SNP on the
phenotype. Conversely another issue is that with a large number of rare variants in the
dataset there may be a large number of false positive associations by chance. For
example, it would be easy to imagine a coincidental scenario where these ten subjects
that have the minor allele of a rare SNP have a higher than average LDL than the rest
of the population by chance and therefore potentially leading to a false association.
This would particularly be the case for rarer SNPs as there is not enough data to

otherwise reject any association.

Figure 4.2 and Figure 4.3 shows histograms of the MAFs of SNPs from the GRAPHIC
study. There was a large number of monomorphic SNPs (N = 44,335), 40,042 of which
have been set to a MAF of 0 due to missing allele readings. The remaining 4,293 SNPs
were found to be homozygous across all subjects in the cohort. Any SNPs with a MAF <
2% were removed (N =91,224). This cut-off was selected as it would exclude the rarest
variants and therefore removing some of the issues with rare variants previously
discussed whilst simultaneously attempting not to exclude too many SNPs needlessly.
Due to the way commands are run in PLINK, the 91,224 SNPs excluded by MAF may
have some SNPs that have also been excluded due to a low genotype call rate and

therefore these exclusions are not on top of those excluded for call rate.
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Figure 4.2 Histogram of minor allele frequencies of all SNPs
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4.4.4 Hardy-Weinberg Equilibrium

Finally SNPs were excluded due to deviances from Hardy-Weinberg Equilibrium (HWE),
which is based on comparing observed and expected frequency rates using chi-squared
tests (190). A departure from HWE (i.e. a small P-value) suggests error in genotype
calling. Figure 4.4 shows a histogram of the HWE P-values of all SNPs. There is a high
number of SNPs (N = 154,087) with a P-value equal to 1. However the 40,042 SNPs that
have previously identified as having missing allele (and hence will be excluded) all have
a HWE P-value of 1 because observed and expected frequencies cannot be calculated
and are included in Figure 4.4. The aim is to exclude SNPs with a small P-value;
however as the HWE test is based on P-values the number of false positives for any
given P-value cut-off point should be considered. Table 4.9 shows the number of SNPs
excluded for the specified P-value cut-offs compared to the expected number of false
positives assuming P-values follow a uniform distribution. A HWE threshold of P <
0.0001 was selected which excludes 3,089 SNPs. This threshold was chosen as it
removed the most significant SNPs in disequilibrium (Figure 4.5) while minimising the
number of false positives. Increasing the threshold to P < 0.001 would exclude a
further 1,438 SNP however the number of false positives would increase by around
657 SNPs. If the threshold was to decrease to P < 0.00001 only include 662 SNPs for

the analysis for only 66 less false positive SNPs.

99



Table 4.9 Numbers of SNPs for exclusion for varying HWE P-values

HWE P-value Number of Expected number

SNP's of false positives
excluded
0.1 65,955 73052.50
0.09 60,396 65747.25
0.08 54,509 58442.00
0.07 48,469 51136.75
0.06 42,501 43831.50
0.05 36,176 36526.25
0.04 30,321 29221.00
0.03 24,086 21915.75
0.025 20,932 18263.13
0.02 17,865 14610.50
0.015 14,638 10957.88
0.01 11,366 7305.25
0.001 4,527 730.53
0.0001 3,089 73.05
0.00001 2,427 7.31
0.000001 2,057 0.73
0.0000001 1,793 0.07
0.00000001 1,598 0.007
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Figure 4.4 Histogram of Hardy-Weinberg Equilibrium P-values

100



Freguency
1000 2000 3000 4000

TH o o

[ I I I I I
0000 0.002 0004 0006 0008 0.010

0
|

Hardy-Weinberg Equilibroum P-values

Figure 4.5 Histogram of Hardy-Weinberg Equilibrium P-values (P < 0.01)

4.4.5 Other exclusion criteria

In total 38 subjects and 117,584 SNPs were excluded from quality control. Following
this some exclusion criteria were applied to the remaining 612,941 SNPs. Any SNPs
with a missing base position or chromosome were removed as the region the SNP was
located could not be identified (N = 1,230) and excluded all remaining SNPs on the X
chromosome (N = 19,937). There were two reasons for excluding the X chromosome,
the first was the significantly reduced power on this chromosome. The second was due

to the low genotype call rate found in SNPs on this chromosome.

This left 979 individuals and 591,774 SNPs remaining for analysis (Table 4.10) and the
characteristics of these individuals is described in Table 4.11. Of all the subjects
included in the analysis, 489 were males and 490 were females with an overall mean
age of 52.87 years (S.D. = 4.411) and the mean LDL cholesterol across all subjects was

125.85 mg/dL (S.D. = 25.06).
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Table 4.10 Quality Control and Exclusion Criteria

Criteria Criterion used Numbers
excluded
Across humans

Low call rate in individuals < 95% 3 People

Missing LDL values - 35 People

Sex inconsistencies - 0 People

Across SNPs
Low call rate in SNPs <97% 38,129 SNPs
Minor allele frequency (MAF) <2% 91,224 SNPs
Hardy-Welrzz‘eAr,i)EqU|I|br|um P < 0.0001 3,089 SNPs
Missing Chror‘n'osome/Base ) 1,230 SNPs
position

SNPs on X Chromosome - 19,937 SNPs

A total of 979 subjects and 591,774 SNPs remain after quality control
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Table 4.11 Summary statistics of GRAPHIC study GWAS dataset after quality control

Age (years)
BMI (kg/m?)
Waist Girth (cm)
Hip Girth (cm)

Total Cholesterol (mg/dL)
Triglycerides (mg/dL)
LDL Cholesterol (mg/dL)
HDL Cholesterol (mg/dL)

Male Female

Mean S.D 95% C.I. Mean S.D 95% C.I.

53.86 4.24 53.48 54.23 51.89 4.36 51.50 52.28
27.81 0.17 27.47 28.15 27.09 0.21 26.68 27.49
97.85 10.96 96.87 98.82 85.49 11.23 84.49 86.49
105.04 7.35 104.39 105.70 105.05 10.19 104.14 105.95
219.88 39.72 216.35 223.41 227.21 39.31 223.72 230.70
185.45 96.78 176.85 194.05 141.48 75.46 134.78 148.18
125.71 27.21 123.30 128.13 125.98 28.91 123.42 128.55
50.11 11.83 49.05 51.16 62.64 14.58 61.35 63.93

P-value

<0.001
0.008

<0.001
0.994
0.004

<0.001
0.881

<0.001
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Figure 4.6 shows a Quantile-Quantile plot of the calculated P-values against the
expected P-values under a uniform distribution, using linear regression assuming an
additive genetic model. Each scatter point represents a SNP. The red diagonal line
shows the expected line the scatter plot would follow under the assumption that there
are no associated SNPs. Any points far above this line suggest that the SNP may be
associated with LDL. The plot show that there are a number of SNPs that may be
associated with LDL, however both the Q-Q plot and Bonferroni correction method do
not take into account of the LD between SNPs and therefore a number of these
possible associated SNPs may be associated due to correlation with another highly

associated SNP.
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Figure 4.6 Quantile-Quantile plot for P-values from the GRAPHIC study. Each SNP’s
univariate —log,, P-value on the y-axis is plotted against the expected —log,, P-value
under a uniform distribution on the x-axis. The diagonal line in red denotes the
expected values the plotted SNPs would take assuming that there are no significant

associations with the phenotype.
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4.5 Bonferroni Correction

Bonferroni correction is a simple and commonly used statistical technique to account
for multiple testing in GWAS. It controls the Type | Error rate when conducting a large
number of tests. It assumes that all tests are independent of one another; an
assumption that is not valid in this analysis due to Linkage Disequilibrium (LD) between
SNPs. Significance testing is based on the use of P-values. Assuming that all statistical
tests were null using a significance level of @y = 0.05, approximately 5% of all tests to
be found to be statistically ‘significant’ by chance and therefore produce a false
positive result. This would not be an issue with a low number of tests as it would lead a
small number of false positives. However using a significance level of 0.05 on a dataset
consisting of with 591,774 SNPs, would lead to approximately 29,589 statistically
significant associations, assuming no SNPs were truly associated. In reality it would be
expected that only a handful of SNPs to have a true association with LDL as shown in
Table 4.5. The Bonferroni correction is a naive method for correcting the significance
level by dividing the original significance level (a,) by the number of tests to obtain an

adjusted significance level (a,).

4.5.1 Methods

Using a significance level of @y, = 0.05, an adjusted genome-wide significance level of
8.449x10°® was obtained. This significance level is similar but slightly less strict to the

suggested genome-wide significance level of 5x10°® (191).

a, = Lo _ 005 = 8.449 x1078 (4.1)
*  Number of tests 591,774
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By scaling the significance level, the number significant SNPs that are false positives is
reduced however it is likely to exclude a number of true positives at the same time
which is one of the main criticisms of the Bonferroni correction method (192-194).
After quality control an association test between the remaining SNPs and LDL was
conducted by calculating univariate P-values. From the list of P-values obtained, any
SNPs with a univariate P-value of less than 8.449x10® (4.1) were considered to be

statistically significant and therefore associated with LDL.

4.5.2 Results

Figure 4.7 shows the Manhattan plot for the included SNPs after quality control. The x-
axis plots each SNP in order of the chromosome and base position against the
univariate —log;q P-value on the y-axis. The horizontal red line indicates the Bonferroni
corrected significance level of 8.499x10°®. As seen in the literature search (Table B.0.1),
a number of the most statistically significant SNPs were found on chromosome 1

(Figure 4.8) and 19 (Figure 4.9).
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Figure 4.7 Manhattan plot of SNPs in the GRAPHIC study. Each SNP is plotted in order
of chromosome and base position along the x-axis against the univariate —log,, P-
value on the y-axis. The horizontal line in red denotes the Bonferroni corrected P-value

threshold of 8.499x10°®
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Figure 4.8 Manhattan pot of Chromosome 1. Each SNP on this chromosome is plotted

in order of base position along the x-axis against the univariate —log,, P-value on the

107



y-axis. The horizontal line in red denotes the Bonferroni corrected P-value threshold of

8.499x10°®
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Figure 4.9 Manhattan plot of Chromosome 19. Each SNP on this chromosome is
plotted in order of base position along the x-axis against the univariate —log;, P-value
on the y-axis. The horizontal line in red denotes the Bonferroni corrected P-value

threshold of 8.499x10°®

Only rs7412 on the APOE gene on chromosome 19 (BP = 45,412,079), was found to
have a statistically significant association with LDL-c (p = 1.70x10™") after applying the
Bonferroni adjusted significance level. The effect estimate showed that LDL levels for
individuals with the minor T allele for rs7412 decreased on average by 16.28 mg/dL
(S.E. = 2.28) per allele compared to those who did not (Figure 4.10). This association
between rs7412 and LDL was previously identified in the literature and has been
replicated in four other studies (172,178,184,186). These previous studies showed the
minor T allele of rs7412 also decreased the level of LDL in individuals. The effect size

varied between -0.505 and -69.74 mg/dL.
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Figure 4.10 Scatter plot showing the effect of rs7412 on LDL cholesterol.

4.6 False discovery rate

One of the long standing criticisms of the Bonferroni correction method in GWAS is
that it is a conservative method and may exclude a number of true positives (192-194).
This could very well be the case in the previous analysis as only one SNP was selected
whilst both the Manhattan plot (Figure 4.7) and Q-Q plot (Figure 4.6) showed that
there may be other associations that could be selected. The false discovery rate (FDR)
is another technique in GWAS that is based on Q-values which is a measure of the false

discovery rate (7,8).

Table 4.12 shows a generalised scenario of testing m null hypotheses, where R tests
are were found to be statistically significant. The false discovery rate estimates the

expected proportion of false positives (4.2) (150).
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Table 4.12 Number of errors committed when testing m null hypotheses. Taken from
Benjamini et al.(150)

Declared non- Declared Total
significant significant
True null hypothesis u \Y m,
Non-true null hypothesis T S m - mg
Total m-R R m
False Di Rat E[ d ] E[V] (4.2)
aitse viscover ate = —| = oy .
Y V+S R

A P-value is a measure of the minimum false positive rate whereas a Q-value is a
measure of the minimum false discovery rate. This leads to differing interpretations in
the statistics. Suppose a false positive rate of 5% was used, this is the same as setting a
P-value significance level of 0.05 for each test. 5% of all null tests would therefore be
statistically significant by chance. If a false discovery rate significance level of 5% was
used, then 5% of all tests that are already statistically significant are false positive. A
study by Storey describes a quick and efficient way of calculating Q-values based on
obtained P-values (7). Given a list of P-values that can be obtained from a regression
method analysis on single SNPs, the proportion of tests that are truly null (ry) can be

estimated for any tuning parameter k (4.3).

my #{p, > Ki=1,..,m}

(4.3)
m(1—k)

mo (k) =
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Using this myestimate for a chosen tuning parameter k, the FDR can be estimated for

any threshold t (4.4).

FDR(t) = To.m. ¢ (4.4)
#{p <t} '
And thus a Q-value can be obtained (4.5).
q(p) = min FDR(t) (4.5)

Studies have shown that the FDR is a more powerful testing method compared to the
Bonferroni correction method (150). The only decision that is required for this analysis
is to select a FDR significance level much like selecting a significance level threshold.
Like the Bonferroni method the FDR method assumes independence in all tests which

cannot be assumed due to LD between SNPs.

4.6.1 Methods

For this analysis the same univariate P-values that were used in the Bonferroni
correction were used to obtain a set of Q-values. The gvalue package in R was used for
the FDR analysis (195). To estimate the proportion of tests that are truly null (1zy), the
“specify lambda” option in the package was selected and the range of m, was allowed
to vary between 0 and 0.99 increasing by 0.01 and the “smoother” option was also
used. A Q-value threshold of 0.05 was selected. Any SNPs with g < 0.05 was deemed to
be associated with LDL.
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4.6.2 Results

FDR analysis included all SNPs after quality control using a g < 0.05 as an FDR
significance threshold. The proportion of null hypotheses (1) was estimated to be
0.9972. Table 4.13 shows the number of SNPs selected for varying Q-value thresholds
and their respective P-value thresholds. While the distribution of P-values is fairly
uniform across the range of values (Figure 4.11), it is clear that this is not the case with
the Q-values as the distribution is heavily skewed towards p = 1. Of the 591,774 SNPs
in the dataset, only 136 were found to have Q-value less than 0.9. The difference in
distribution of P-values and Q-values is because Q-values estimate the false discovery

rate rather than false positive rate.

Table 4.13 Comparison of numbers of SNPs selected for varying P-value and Q-value
thresholds

Number
Q-value P-value of SNPs
0.01 1.70E-12 1
0.05 1.58E-07 2
0.2 9.66E-07 3
0.3 8.37E-06 19
0.35 1.41E-05 26
04 1.95E-05 30
0.5 2.82E-05 34
0.6 4.74E-05 48
0.7 7.03E-05 60
0.8 9.74E-05 72

0.9 0.0002035 136
0.95 0.0002961 186
1 1.00E+00 591,774
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Figure 4.11 Histogram showing the distribution of univariate P-values for each SNP in

the GRAPHIC study against LDL

Table 4.14 shows the top 25 SNPs by Q-value. The majority of these SNPs were on
chromosome 1 (N =6) or 19 (N =9). These 25 SNPs are also the top 25 SNPs by P-
value. Of the strongest associated regions identified from these SNPs (Table 4.15) in
this study only the CELSR2 and APOE genes were previously identified in the literature
search (Table 4.6). The strongest associated region was around the APOE gene on
chromosome 19; including the top 3 SNPs by P-value. The FDR method found 2 of
these SNPs rs7412 and rs4420638 to be associated with LDL (q < 0.05). Figure 4.12 and
Figure 4.13 show regional plots around the APOE gene where these two SNPs are
located. The figures show that while these two SNPs are in the same region to each
other, there is little LD between the SNPs (r? = 0.025). The effect estimates (Table 4.14)

shows that these two leads SNPs have opposite effects estimates of LDL levels on
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subjects as the minor allele of rs7412 decreases the mean LDL levels where minor

allele of rs4420638 increases the mean LDL level by 8.09 mg/dL (S.E. = 1.52).

Table 4.14 Top 20 selected SNPs by Q-value

CHR SNP Base Beta S.E. MAF (%) P-value Q-value
position
19 rs7412 45,412,079 -16.28 2.28 8.60 1.70E-12  1.00E-06
19 rs4420638 45,422,946 8.09 1.52 21.0 1.58E-07 0.0466
19 rs2075650 45,395,619 8.45 1.71 15.7 9.66E-07 0.1901
1 rs2745291 11,607,932 -7.17 1.51 21.8 2.35E-06 0.2208
1 rs12026701 16,123,199 5.86 1.25 44.5 3.29E-06 0.2208
1 rs12569079 16,124,438 5.93 1.25 44.5 2.46E-06 0.2208
2 rs1728149 10,617,598  6.56 1.40 28.0 3.20E-06 0.2208
18 rsl17223656 23,100,817 -6.24 1.31 38.9 2.15E-06 0.2208
19 rs445925 45,415,640 -9.37 2.00 11.4 3.37E-06 0.2208
19 rs10402182 37,160,529 6.29 1.36 30.1 4.53E-06 0.2229
19 rs17272386 37,180,297 6.29 1.36 30.1 4.53E-06 0.2229
19  rs1525133 37,199,250  6.29 1.36 30.1 4.53E-06 0.2229
1 rs3120625 109,768,889 -6.13 1.34 33.7 5.41E-06 0.2383
1 rs7528419 109,817,192 -6.70 1.48 21.8 6.68E-06 0.2383
18  rs4800637 23,093,219 -5.95 1.32 38.9 6.87E-06 0.2383
19 rs2967442 37,064,240 6.26 1.37 30.0 5.87E-06 0.2383
19 rs1035777 37,094,435 6.19 1.37 30.1 6.64E-06 0.2383
1 rs660240 109,817,838 -6.77 1.50 21.3 7.54E-06 0.2470
3 rs646929 54,695,763 5.81 1.30 36.4 8.37E-06 0.2601
3 rs1717608 99,401,638 -5.72 1.30 35.2 1.15E-05 0.3207
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Table 4.15 Associated SNPs from FDR analysis that are within regions of other associated SNPs

Gene Chr. SNP Base position Beta S.E. MAF (%) P-value Q-value
FBLIM1 1 rs12026701 16,123,199 5.855 1.251 44.5 3.29E-06 0.2208
rs12569079 16,124,438 5.931 1.251 44.5 2.46E-06 0.2208

CELSR2 1 rs3120625 109,768,889 -6.128 1.34 33.7 5.41E-06 0.2383
rs7528419 109,817,192 -6.695 1.478 21.8 6.68E-06 0.2383

rs660240 109,817,838 -6.768 1.503 21.3 7.54E-06 0.2470

rs646776 109,818,530 -6.444 1.479 22.0 1.46E-05 0.3309

ZNF521 - SS18 18 rs4800637 23,093,219 -5.964 1.319 38.9 6.87E-06 0.2383
rs17223656 23,100,817 -6.242 1.309 38.9 2.15E-06 0.2208

ZNF520 -ZNF567 19 rs2967442 37,064,240 6.225 1.366 30.0 5.87E-06 0.2383
rs1035777 37,094,435 6.192 1.367 30.1 6.64E-06 0.2383

rs10402182 37,160,529 6.285 1.363 30.1 4.53E-06 0.2229

rs17272386 37,180,297 6.285 1.363 30.1 4.53E-06 0.2229

rs1525133 37,199,250 6.285 1.363 30.1 4.53E-06 0.2229

APOE / TOMM40 19 rs2075650 45,395,619 8.452 1.714 15.7 9.66E-07 0.1901
rs7412 45,412,079 -16.28 2.277 8.6 1.70E-12 1.00E-06

rs445925 45,415,640 -9.366 2.004 11.4 3.37E-06 0.2208

rs4420638 45,422,946 8.009 1.516 21.0 1.58E-07 0.0466
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Figure 4.12 Regional plot around the APOE gene and SNPs in Linkage Disequilibrium
with rs7412. SNPs are plotted in order of base position along the x-axis against the
univariate —log,, P-value on the left-hand y-axis. The blue line shows the
recombination rate across this region. Colours for each SNP represent the correlation

(r’) between this SNP and the lead SNP in purple.
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Figure 4.13 Regional plot around the APOE gene and SNPs in Linkage Disequilibrium
with rs4420638. SNPs are plotted in order of base position along the x-axis against the
univariate —log,o P-value on the left-hand y-axis. The blue line shows the
recombination rate across this region. Colours for each SNP represent the correlation

(r’) between this SNP and the lead SNP in purple.

4.7 The LASSO on the GRAPHIC study

An attempt to apply the LASSO on a full GRAPHIC dataset was made in R (196) using
the glmnet package (53). The idea was to apply three tuning parameter selection
methods on the dataset; repeated 10-fold Cross-validation, BIC and the permutation

method. However two issues arose with this investigation.

The first was the lack of memory to load the dataset into R. To counter this issue the
ALICE High Performance Computing Facility at the University of Leicester was used.
This resource allowed a much greater memory limit to be used so that the data could

be loaded and analysed. The caveat of using the High Performance Computing Facility
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is that each analysis must include a time limit and if the analysis goes over this time
limit the analysis is aborted. Even at the maximum time limit available (200 hours) this
analysis failed to finish and therefore the results were unobtainable. Instead an
analysis was performed on a single chromosome from the GRAPHIC study. The analysis
should not be performed on each chromosome separately and then combined, as the
estimated A would be different on each chromosome rather than a fixed A across all
datasets which would allow a larger number of variables selected. Fixing the same A
across all dataset is another option; however selecting the A in this scenario would be
difficult. Yi et al. also concluded that analyses on each chromosome separately would

be “prudent” (15).

4.8 Application of the LASSO on chromosome 19 of

the GRAPHIC study

Chromosome 19 was selected for this analysis as there is a number of associations in
both the literature (Table 4.5) and the most significant SNPs from the GRAPHIC study
were also on this chromosome (Table 4.14 and Figure 4.1). This chromosome consists
of 12,376 SNPs and did not cause any problems in terms of computational time taken
to analyse the data as it is a smaller subset of the overall dataset. The Bonferroni
correction, FDR and LASSO was applied to this chromosome for comparison. The Q-Q
plot again showed that there are some associations with LDL on this chromosome

(Figure 4.14).
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Figure 4.14 Quantile-Quantile plot for P-values from chromosome 19 of the GRAPHIC
study. Each SNP’s univariate —log;, P-value on the y-axis is plotted against the
expected —log,o P-value under a uniform distribution. The diagonal line in red
denotes the expected values the plotted SNPs would take assuming that there are no

significant associations with the phenotype.

4.8.1 Methods

The same procedures for Bonferroni correction method and FDR analyses were used as
described in sections 4.5.1 and 4.6.1. As the number of SNPs is reduced, the number of
tests conducted also decreases leading to different results and most likely more SNPs
being selected. The adjusted Bonferroni threshold changes as does the Q-value for
each SNP. The Bonferroni adjusted P-value threshold was calculated as p = 4.04x10°. A

Q-value threshold of 0.05 was again used.
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The glmnet package does not allow any missing values in the dataset therefore
imputation was required for the missing genotype data to fit the LASSO. For each SNP
with a missing genotype for an individual, median number of minor alleles across the
population was imputed. This means that each missing genotype was imputed with the
most common genotype in the population. The FDR and Bonferroni correction
analyses were performed on the dataset without imputation. In order to check if the
results in both datasets were comparable, the P-values were plotted before and after
imputation look for any major changes in P-values after imputation. Figure 4.15 shows
the scatter plot comparing P-values before and after imputation for all SNPs on
chromosome 19. The plot shows that is little difference for the majority of SNPs,
especially for the most statistically significant SNPs (Figure 4.16) and therefore it seems
reasonable to compare SNPs selected between the LASSO and both the Bonferroni
correction and FDR methods. There was little difference when comparing Q-values

before and after imputation (Figure 4.17).

Three tuning parameter selection methods were used; repeated 10-fold Cross-
validation, BIC and the permutation method. Both repeated CV and the permutation
was repeated 100 times for greater accuracy and the median of these A estimates
would be selected as the optimum A. Repeated CV used a range of 200 A estimates.
While the BIC a range of 625 A estimates with an interval of 0.01 between each

estimate.
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Figure 4.15 Scatter plot comparing P-values for each SNP on chromosome 19 before
and after imputation. Imputation was conducted by replacing missing genotype with
the median genotype from the population. The red diagonal line represents the line if

there is no change in P-values.
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Figure 4.16 Scatter plot comparing P-values for each SNP on chromosome 19 before
and after imputation for P-values < 0.05 before imputation. Imputation was conducted
by replacing missing genotype with the median genotype from the population. The red

diagonal linerepresents the line if there is no change in P-values.
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Figure 4.17 Scatter plot comparing Q-values for each SNP on chromosome 19 before
and after imputation. Imputation was conducted by replacing missing genotype with
the median genotype from the population. The red diagonal linerepresents the line if

there is no change in Q-values.
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4.8.2 Results

48.2.1 Bonferroni correction

Table 4.16 shows the SNPs selected by the Bonferroni correction method using the
adjusted P-value threshold of 4.04x10°. The four SNPs that selected; rs7412,
rs4420638, rs2075650 and rs445925 are all located in the same region on APOE gene.
As shown in Figure 4.12 and Figure 4.13, r27412 and rs4420638 are independent
signals. However the figures show there is correlation between these two SNPs and
the two other SNPs selected. There is a high correlation between rs7412 and rs445925
(r2 =0.712, Figure 4.12) and also some correlation between rs4420638 and rs2075650
(r* = 0.416, Figure 4.13). These correlations with the top two SNPs in Table 4.16 aid the

latter two SNPs to become more statistically significant associated with LDL.

Table 4.16 SNPs selected by the Bonferroni correction method on chromosome 19 of

the GRAPHIC study.

SNP Base Beta S.E. MAF  P-value  Q-value
position
rs7412 45412079 -16.28 2.28 0.0861 1.70E-12 2.09E-08
rs4420638 45422946 8.01 1.52 0.2106 1.58E-07 0.000968
rs2075650 45395619 8.45 1.71 0.1573 9.66E-07 0.003951
rs445925 45415640 -9.37 2.00 0.1144 3.37E-06 0.007255
4.8.2.2 False discovery rate

The FDR analysis performed on chromosome 19 selected 13 SNPs (Table 4.17). Two
new regions were identified in this analysis. The first is a region between ZNF520 and
ZNF567 on chromosome 19, selected six SNPs (rs2967442, rs1035777, rs1525133,
rs10402182, rs1727386 and rs2967440) across a region of around 135kb (Figure 4.18).

This region has not been identified by previous studies. There is little difference
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between the effect size (beta), MAF, P-values and Q-values in all six SNPs (Table 4.17)
which shows that there is high LD between them. The correlation between rs1525133,
rs10402182 and rs1727386 was estimated as r> = 1 and therefore were in perfect
correlation with each other. Given that there are multiple SNPs identified within these
regions, it can be seen that neither the Bonferroni correction nor the FDR methods are
unable to handle correlated SNP data. Generally the top SNP by P-value in a region
tends to be selected as the associated SNP in any GWAS dataset although it may not
be the causal SNP; however it becomes more difficult in the region between ZNF529
and ZNF567 on chromosome 19 as there are 3 SNPS with the same P-value (Table

4.17).

Two further SNPs were identified between the DNM2 and CARM1 genes (Figure 4.19).
This region has also not been identified in previous studies however this region is
approximately 200kb from the LDLR gene which has shown a number of associations in
the literature (Table B.0.1). There was little statistical significance on the LDLR gene in

this study however (Figure 4.19).

Table 4.17 SNPs selected by false discovery rate on chromosome 19 of the GRAPHIC

study.

SNP Base Beta S.E. MAF  Pvalue  Q-value
position

rs7412 45412079  -16.28 2.28 00861 1.70E-12  2.09E-08
rs4420638 45422946  8.01 1.52 02106 1.58E-07 0.000968
rs2075650 45395619  8.45 1.71 0.1573 9.66E-07 0.003951
rs445925 45415640  -9.37 2.00 0.1144  3.37E-06 0.007255
rs10402182 37160529  6.29 1.36 03013 4.53E-06 0.007943
rs1525133 37199250  6.29 1.36 03013 4.53F-06 0.007943
rs17272386 37180297  6.29 1.36 03013 4.53E-06 0.007943
rs2967442 37064240  6.23 1.37 0.3008 5.87E-06 0.008707
rs1035777 37094435  6.19 1.37 03011 6.64E-06  0.00905
rs17001002 10948031  -6.97 1.59 0.1839  1.25-05 0.014524
rs769449  4541,0002  7.76 1.80 0.1386  1.79E-05 0.018291
rs11881156 10950125  -6.92 1.60 0.1855  1.79E-05 0.018328
rs2967440 37059215  5.84 1.37 03046  2.33E-05 0.021957

124



Piotted SNPs LTI L0000 DHEEIE T 0WIEE TE T et rere e i W e
10 Z | 100
0.8
8 | 06 |80 o
0.4 ]
3
g rs1035777 0.2 T
3 97 2987442 | rs17272386 60 3
T e o @ ®—rs1525133 5
(=8 3
= 152967440 ° 3
2 44 ] 1510402182 - 40 @
1 o)
=
® =
° L] o
27 ° . . o °° = e m20=
ceg o % ‘0 0% " & «o® oge
e
00 o ° e, ) L)
0| 2% se ®r00ee ® g0 e . e e &l lle @05 *0 0
LOC100134317— <2ZNF566 < ZNF529 <LOC101927621 ZNF790-AS1—> ZNF568—>  ZNF420—>
L] -— —_—— L] H— H———t »—
< LINC00665 LOC728752—> ZNF382—  ZNF567—> < ZNF790
e L} "w—a — —
~ZFP14 ~ZNF260 <ZNF461  <ZNF850 ZNF345—~
-—— - i -— ——a
<~ ZFPg2 LOC101927599—> <~ ZNFg29
i — —
LOCE44189—>
s
T T T T
36.8 37 37.2 374
Position on chr19 (Mb)

Figure 4.18 Regional plot of identified region between the ZNF529 - ZNF567 genes.
SNPs are plotted in order of base position along the x-axis against the univariate
—log,, P-value on the left-hand y-axis. The blue line shows the recombination rate
across this region. Colours for each SNP represent the correlation (rz) between this SNP

and the lead SNP in purple.
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Figure 4.19 Regional plot of identified region between the DNM2 — CARM1 genes.
SNPs are plotted in order of base position along the x-axis against the univariate
—log,, P-value on the left-hand y-axis. The blue line shows the recombination rate
across this region. Colours for each SNP represent the correlation (r?) between this SNP

and the lead SNP in purple.

4.8.2.3 LASSO

The SNPs selected by repeated 10-fold CV on chromosome 19 are shown in (Appendix
C). The tuning parameter estimates varied between 2.058 (selecting 22 SNPs) and
2.655 (selecting 85 SNPs) with mean = 2.389 (S.D = 0.12) and median = 2.365 (Figure
4.20). A total of 44 SNPs were selected on chromosome. This is unsurprising as shown
in section 3.3.2.1 CV tends to select a large model with a number of false positives

(87,91,94-96).

Previous studies have shown the correlations between SNPs may able to
accommodate for LD between SNPs (24-26) where the Bonferroni correction and FDR
methods are unable to. There is evidence of this on the GRAPHIC study. For example,

six SNPs (rs2967442, rs1035777, rs1525133, rs10402182, rs1727386 and rs2967440)
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were selected using the FDR method (Table 4.17) the region around ZNF529 — ZNF567

genes (Figure 4.18). Of these six SNPs, three were in perfect LD with each other with

another three SNPs in high LD (r* 2 0.8). The LASSO selected the three SNPs in perfect

LD (rs1525133, rs10402182 and rs1727386) but not the remaining three SNPs (r*<1).

Further inspection of the three SNPs in perfect LD showed that there was a big
difference in B estimates produced by the LASSO at the selected A. The estimate for
rs10402182 was B = 2.314, while the estimates for both rs1525133 and rs1727386

were B < 1x10™. This shows that the LASSO selects rs10402182 over the other SNPs as

that the beta estimates for these two SNPs are so small and are close to being

removed from the model.
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Figure 4.20 Histogram of lambdas estimates using Cross-validation for each of the 100

repetitions. The red vertical line represents the median estimate.
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Both the BIC and permutation methods selected the same model of 4 SNPs. The 100

tuning parameter estimates for the permutation method varied between 3.119

(selecting 7 SNPs) and 4.315 (selecting 2 SNPs) with mean = 3.536 (S.D. = 0.26) and

median = 3.494 (Figure 4.21). The tuning parameter estimate for the BIC was A = 3.50.

The SNPs selected were from the four regions selected using the FDR method (Table

4.17). Only one SNP was selected from each region, again showing that the LASSO is

able to handle LD by selecting the top association and removing the remaining

correlated SNPs.

Table 4.18 SNPs selected by the LASSO using both BIC and 100 repeats of the

permutation method for tuning parameter selection

SNP Base Beta S.E. MAF  Pvalue  Q-value
position

rs7412 45412079  -16.28 2.28 00861 1.70E-12 2.09E-08

rs4420638 45422946  8.01 1.52 02106 1.58E-07 0.000968

rs10402182 37160529  6.29 1.36 03013 4.53E-06 0.007943

rs17001002 10948031  -6.97 1.59 0.1839  1.25E-05 0.014524
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Figure 4.21 Histogram of lambdas estimates using permutation method for each of the

100 repetitions. The red vertical line represents the median estimate.

4.9 Discussion

The aim of this chapter was to apply the LASSO to the GWAS dataset from the
GRAPHIC study in order to select associations with Low-density Lipoprotein (LDL-c).
However the time taken to fit the model reached time limits using the ALICE High
Performance Computing Facility at the University of Leicester, and therefore, was
unable to analyse the full dataset due to the computational intensiveness of the
process including selection of the tuning parameter. The analysis was not performed
genome-wide, but instead on a single chromosome leading to a number of potential

associations not being discovered from the dataset.
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A way around this issue would be to fit the LASSO on each chromosome individually
and combine the results; however this method would be crude as each chromosome
varies in the number of SNPs and significant associations, therefore fitting the LASSO
individually on each chromosome separately produces 22 analyses that are on
different scales to one another and hence it is unlikely to produce the same results as a
genome-wide analysis. This was shown when comparing the Bonferroni correction and
FDR methods between the genome-wide and chromosome 19 analyses. The
Bonferroni correction method selected one SNP on the whole dataset and selected
four for the single chromosome analysis. Likewise the FDR method selected two SNPs
on the whole dataset and selected thirteen from the single chromosome analysis. It is
not known if this increase in the number of selected will occur when comparing with
the genome-wide dataset, however if it is the case, this would lead to a large number
of variables selected. A high number of associations is unlikely from this dataset as
shown literature search where studies with a similar sample size to GRAPHIC generally

found a low number of associations (172,173,177).

An alternative approach which has been used in previous studies for high-dimensional
data (Table 2.5) would be to reduce the number of SNPs across the whole genome to
fit the LASSO in one analysis. This process is known as Pruning and is a logical step
given the number of SNPs that are not associated with LDL in the dataset that could be
removed without much potential impact on the results. It is also unknown however

how pruning would affect LASSO models.

The analysis was performed on the GWAS dataset which consisted of only parental
subjects. A number of previous studies that have performed GWAS on single datasets
using regression have adjusted for other factors such as age, Body Mass Index (BMI)
and sex (162,164,173,174,177-179,181). There was no association with sex in the
GRAPHIC study (p = 0.8845), there were significant associations with BMI (p = 2.13x10
7) and age (p <2x10™®) and could have been adjusted for. For the LASSO, this would

require the adjusted variables to be in the regression equation but not included in the
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penalty (4.6). Another simpler approach would be to fit a linear model between the
phenotype and the variables that will be adjusted for. The residuals can then be
predicted from its model and can be used as the phenotype for the LASSO. These

residuals would make up the remaining unexplained variance of the phenotype.

n 4
N 1
B(A) = N Z Yi—u-— injﬁj —age;v — BMI;¢
i=1 j=1
p (4.6)
+2) 18]
j=1

where,
v = the effect estimate of age on the phenotype y
¢ = the effect estimate of BMI on the phenotype y

Imputation of the dataset was required and was performed by replacing any missing
genotypes with the median genotype for that SNP from the dataset. Although this is a
crude method, Figure 4.15 and Figure 4.16 both show that there was little difference in
P-values before and after imputation, especially for the most statistically significant
SNPs. This small difference is mostly due to the quality control procedure where SNPs
with a genotype call rate < 97% were removed and therefore the effect of imputation

on missing data would be minimal on the results.

Both the Bonferroni and FDR methods selected previously associated SNPs identified in
the literature search (Table 4.5), however for the single chromosome analysis both
methods selected a greater number of SNPs including some in LD with other selected
SNPs. In contrast the LASSO was able to handle the correlation between SNPs and
selected mostly independent associations. This was even the case with SNPs in perfect
correlation however on close inspection the LASSO selected the first SNP by base
position and penalised any other SNP in perfect LD with this SNP. The reasoning for
this may be due to the algorithm used to fit the LASSO. The glmnet package uses the
coordinate descent algorithm (see section 2.4.2) which updates B estimate a SNP at a

time, starting from the first SNP in the dataset, therefore for any pair of SNPs with r?=
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1, the first SNP by base position will estimate a true B for a given A but the second will
not as the model will have been adjusted for the first SNP. One of the criticisms of the
LASSO is that it selects one in a group of highly correlated SNPs and removes the
remaining SNPs from the model (18); however this is less of a disadvantage in GWAS.
As long as at least one SNP in the associated region is selected it is not a concern if
other SNPs in this region are not selected. If other SNPs in the region are of more

interest, follow-up analyses can be conducted.

The FDR and LASSO analyses identified two novel regions between ZNF529 and ZNF567
(Figure 4.18) and between DNM2 and CARM1 genes (Figure 4.19). Both these regions
have not been previously identified in the literature as associated regions with LDL and

require further study.

4.10 Conclusion

In this chapter, analyses were conducted on both a single chromosome and the whole
genome from the GRAPHIC study. The results on a single chromosome showed that
the Bonferroni correction method to be a conservative method, selecting two regions.
Both the FDR and LASSO selected four regions on chromosome 19; however the LASSO
was able to handle the LD between SNPs but, the FDR and Bonferroni correction

methods were not.

Both the FDR and Bonferroni correction methods on the whole genome selected SNPs,
rs7412 and rs4420638, with previously known associations with the phenotype LDL
(164,166,172,176,178,180,182,183,187). However the application of the LASSO on the
whole genome failed due to computational limits and SNP pruning should be
considered to overcome these problems. Although there were problems with the
computational time taken, the single chromosome analysis showed that the LASSO

may work well in a GWAS setting for variable selection if these problems could be
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overcome. With a greater number of variables the LASSO would be recommended
over the Bonferroni correction and FDR methods as it is able to remove correlated

variables and keep the most statistically important variable.
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5 Linkage Disequlibrium estimation

5.1 Introduction

Estimation of LD statistics is the first step when pruning SNPs by LD and therefore is
important for future work examining LD SNP pruning. In this chapter, | begin by
describing the biological background of LD and how it occurs. | then discuss how LD is
estimated in haplotype and genotype data and compare a number of packages that
estimate LD. The comparison of different packages is required as they use different
algorithms to estimate LD from genotype data which could produce very different

results.

5.2 Biology of Linkage Disequilibrium

Linkage Disequilibrium is defined as the non-random statistical association of alleles at
different loci (197,198). It occurs due to the co-inheritance of alleles and erodes over
generations due to recombination (199). This is illustrated in Figure 5.1. At point (a)
there are two locus, the first is a polymorphic SNP with respective alleles A and a the
second is a monomorphic SNP. At this point there are only two allele combinations in
the population (A, B) and (a, B). At some point a mutation may occur on a
chromosome at the second locus as shown in green at point (b) resulting in a third
combination (A, b) being present in the population. Offspring inherit a pair of
chromosomes from the parents with one chromatid inherited from each parent,
therefore the alleles on each chromosome become co-inherited. The third
combination of alleles also leads to a correlation between the b allele and the A allele
as the presence of the former will always be co-inherited with the latter and therefore

producing a statistical association between these alleles.
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Over generations the LD may be broken down by recombination. This is where sections
of the parental chromatids swap. This is shown at point (c) in Figure 5.1, where
recombination occurs between the two loci, (A, b) in green and (a, B) in blue resulting
in the fourth and final combination to be produced (point (d)). There are a number of
factors that can affect LD in a population which are discussed in greater detail by
Slatking which includes natural selection, genetic drift, population subdivisions and

inbreeding (198).

A B b, B

a B —> A b

| | | |
. 8 | |
_’_'_

| T R

a b D A b

| | | |

| | | |

Figure 3 | The erosion of linkage disequilibrium by recombination. a | At the outset, there is
a polymorphic locus with alleles A and a. b | When a mutation occurs at a nearby locus, changing
an allele B to b, this occurs on a single chromasome bearing either allele A or a at the first locus
(A in this example). So, early in the lifetime of the mutation, only three out of the four possible
haplotypes will be observed in the population. The b allele will always be found on a chromosome
with the A allele at the adjacent locus. ¢ | The association between alleles at the two loci will
gradually be disrupted by recombination between the loci. d | This will result in the creation of the
fourth possible haplotype and an eventual decline in LD among the markers in the population as
the recombinant chromosome (a, b) increases in frequency.

Figure 5.1 The erosion of linkage disequilibrium by recombination taken from Ardle et

al.(199).
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5.3 Linkage Disequilibrium measures and estimation

There are two measures commonly used to calculate linkage disequilibrium, r-squared
(r9) and D-prime (D’). Both measures are standardised measures for the difference
between expected and observed haplotype frequencies. D and r can be interpreted as
the covariance and the correlation between loci and across gametes (200). The r-
squared statistic is particularly popular as it is related to the statistical power to detect
disease associations (201). Both measures are calculated by comparing observed and
expected haplotype frequencies. A haplotype is defined as a group of alleles inherited
together from a single parent, as LD calculations are based on a pair of SNPs a
haplotype is considered for a pair of SNPs rather than a group. The calculation is made
based on the deviation statistic (D) between the expected and actual haplotype

frequencies is then standardised to produce these measures.

Let SNP A and SNP B be a pair of SNPS with respective alleles A;, A,, B; and B,.
Haplotype (211, Z12, Z21 and z,5) and allele frequencies (p4, P2, 1 and g,) can be

calculated from the data (Table 5.1 and Table 5.2)

Table 5.1 Definition of haplotype frequencies for two SNPs with two alleles

Haplotype Frequency

A1B4 Z11
A1B, Z12
A;B4 Z21
A;B, Z22
Where,
2
j=1i=1
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Table 5.2 Definition of allele frequencies based on haplotype frequencies.

Allele Frequency
A P1= Zint+ Zpp
A, P2 = Zy1 t Zp
B, Q1= Z1n t+ Zn
B, 2 = Z1p + Zp;

With these allele and haplotype frequencies the deviation statistic (D) can be
obtained, by calculating the difference between the expected and actual frequencies.
The expected haplotype frequencies can be calculated by multiplying the two

respective allele frequencies together (5.1).

Expected haplotype frequency E(Al-B]-) =D, (5.1)

The expected haplotype frequency assumes the SNPs are in Linkage equilibrium, hence
there is no statistical correlation between the combinations of alleles to form
haplotypes. The deviation statistic can then be calculated by finding the difference
between the haplotype frequency and expected haplotype frequency (Table 5.3) or

alternatively the statistic can directly be calculated from haplotype frequencies (5.3).

Table 5.3 Relationship between haplotype frequencies, allele frequencies and the

deviation statistic

Allele Az A> Total

B: Zyy = p1q1+ D Zy1 = pqu — D a1
B Z12 = P1q2 — D Z3; = pq, + D q:
Total P1 12 1
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D=2z, — p1qx

Z11 — (211 + 212) (211 + 221)
= 211(1 — 211 — Z12 — Z21) — (212221)

D = 211233 — 21279 (5.2)
If the SNPs are in linkage equilibrium, it is expected that there is no difference between
the expected and actual frequencies (D = 0). If a pair of SNPs are in LD then D # 0.

The r-squared statistic can then be calculated by dividing D with the multiplication of

the square root of the four allele frequencies p;, pz g:and gzand squaring (5.3).

D 2
v <—> 53)
7/ P1P2919>

The D-prime statistic also uses the deviance statistic (5.2) and its calculation is

dependent on the sign of the deviation statistic (5.4).

— (5.4)
Dmin '
where
{Dmin = min(p14q2,P24q1) ifD<O
Dmin = min(p1q1,0292) if D>0

While both r-squared and D-prime are standardised measures for the difference
between expected and observed haplotype frequencies (D), they have different
interpretations. rZis a measure of the correlation between haplotypes whereas D-

prime measures the largest covariance between a pair of haplotypes.

Variance Inflation factor (VIF) is another method to calculate the correlation between
SNPs. In a linear regression analysis, SNPs with a high LD will produce an inflated

variance due to the correlation. The variance of each correlated predictor variable is
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inflated by a factor shown in (5.5). The R? statistic is based on the coefficient of
determination calculated by linear regression of a SNP onto another SNP and not the
72 statistic shown in (5.3). VIF values range between 1 and o. A VIF = 1 is obtained

when R? = 0 and hence SNPs are in Linkage Equilibrium.

1
= — 5.5
VIF = ———3 (5.5)

5.4 Linkage Disequilibrium estimation from genotype data

While estimation by haplotypes will produce the true LD measure, in reality estimation
by genotypes is more commonly used, as it is technically very difficult and expensive to
measure alleles on a single chromosome and therefore genotype measure are used
instead. Datasets in genotype form are such that each SNP for an individual is assigned
a number; 0, 1 or 2 depending on its allelic count of the minor allele. LD estimation
between SNPs cannot be estimated directly using genotype data as the haplotypes are
unknown. If the allele count is 0 or 2 the alleles on each chromatid are known. A 0
count on an individual at a particular SNP would mean the individual has a major allele
on each chromatid, where a count of 2 means an individual has a minor allele on each
chromatid. However, with a genotype count of 1 it is unclear which chromatid contains
the major and minor alleles. Therefore if a pair of SNPs both have a genotype count of
1, it will be unclear whether the same parental chromatid contains both contain the
major or minor allele or if each chromatid contains one major and minor allele
respectively. The estimation of haplotypes from genotypes is known as phasing.
Phasing is also required for imputation of missing genotype data in GWAS studies

(202,203).

There have been a number of methods proposed to estimate haplotypes from

genotype data which include Clark’s algorithm (204), the Expectation-Maximisation
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(EM) algorithm (205,206) and hidden Markov Models (207) which require iterative
approaches. Browning and Browning discuss these methods, and the software that
implement these algorithms in detail (208). Clayton and Leung also proposed a
numerical approach for LD estimation from genotypes, which is implemented in the R

package snpStats (209).

5.5 Comparison of R packages that estimate LD between

SNPs

5.5.1 R functions that calculate Linkage Disequilibrium

Three commonly used packages for genetic analyses in R that can calculate LD
statistics between multiple SNPs were used; GenABEL (210), genetics (211) and
snpStats (212). These packages are not specifically designed for LD calculations but all
include functions that calculate LD for genetic markers. All three packages estimate LD
by genotypes rather than haplotypes. GenABEL uses an Expectation-Maximisation
(EM) algorithm as described by Hao and Crawley (206). The genetics package uses
“maximum likelihood estimation” to estimate LD and snpStats uses a numerical

approach (209).

All three R packages are able to calculate pairwise LD statistics based on both r-
squared and D-prime statistics for large numbers of SNPs. The GenABEL package has
two separate functions to calculate these statistics; r2fast for r-squared statistics
and drpfast for D-prime statistics. These functions return a P x P matrix; where P is
the number of SNPs defined in the dataset. The matrix contains two separate readings;
the r-squared or D-prime statistics are stored above the diagonal in the matrix and the
numbers of SNP genotypes measured for both SNPs that have been used to calculate

the LD statistic are stored below the diagonal.
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The genetics package uses an LD function to calculate LD between SNPs. The P x P
matrix returned stores the LD statistics above the diagonal and the cells below the
diagonal are set to missing. The function does not include any options and only
requires the input of a dataset. The dataset can be in the form of allele pairs (i.e. A\T)
or genotype form (i.e. 0, 1 and 2). For any user-specified dataset the genetics package
automatically calculates and stores both r-squared and D-prime estimates for any user
supplied set of genotypes. The user must then extract the desired LD statistic. Users
can return a number of other statistics from this function that include a correlation
coefficient, the number of observations or a chi-squared test for linkage disequilibrium
which tests the hypothesis of a pair of SNPs in linkage equilibrium (D-prime = 0) against
the pair of SNPs in linkage disequilibrium (D-prime # 0) and a P-value from the chi-
squared test. The chi-squared tests are applied to D-prime statistics and not r-squared
statistics. All these statistics are automatically calculated by the package regardless of

if they are required or not.

The snpStats package includes an 1d function to calculate LD statistics. There is a
greater choice in LD measures using snpStats that include log likelihood ratio, odds
ratio, Yule's Q statistic, covariance, and r as well as the more commonly used measures
of D-prime and r-squared. The function also includes a “depth” option which is a
numeric argument that forces the function to only calculate LD statistics across a
certain number of adjacent SNPs from any SNP. This option essentially creates an LD
window of adjacent SNPs in the LD matrix, similar to a pruning window implemented in
PLINK. Both the GenABEL and genetics packages do not include this option, nor do they

include a wider variety of LD measures to choose from.

5.5.2 Methods to compare the R functions
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To compare the estimated LD statistics between the three packages and PLINK, the
first 2,000 SNPs on chromosome 1 from 1,014 parents in the GRAPHIC GWAS dataset
were taken (see section 4.3). These 2,000 SNPs span over 7.8Mb and give 1,999,000
pairwise LD estimations for comparison. The quality control procedures applied were
the same as those in section 4.4 (low call rate in individuals < 95%, low call rate in SNPs

<97%, MAF < 2%, HWE < 0.0001).

PLINK version 1.07 (19,20) was used as a baseline comparison for the LD statistics
calculated in the R packages. PLINK can calculate LD statistics by both haplotypes and
genotypes; however calculation by haplotypes can only be applied when calculating LD
between a single pair of SNPs and not multiple pairs of SNPs, therefore an LD matrix
cannot be produced from the estimation of haplotypes. Calculation from genotype
data is implemented using an EM algorithm. PLINK does not have an option to
calculate an LD matrix for D-prime statistics, though this option can be used when
calculating by haplotypes. Only R and r-squared LD matrices can be calculated from
genotypes. The PLINK command also includes options to restrict the number of LD
calculations to a specific window size. The window can be implemented by either a
number of adjacent SNPs or genetic distance (kb). There is also an option that returns
an LD matrix that only report LD statistics above a user-supplied threshold, the

remaining statistics are set to 0.

For each R package an LD matrix was calculated for both r-squared and D-prime
measures. An LD matrix from PLINK was obtained using the --r2 --matrix command. No
LD window was implemented for this analysis; LD statistics for all pairwise
combinations were calculated. The r-squared statistics from each package were
plotted against the statistics calculated in PLINK to show the variation in estimates
between packages. PLINK does not calculate LD statistics by D-prime and therefore the

statistics calculated in each package were plotted against each other as a comparison.
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To compare the computational time taken to calculate the LD matrix between the
three packages and PLINK, the same dataset of SNPs on chromosome 1 from 1,014
parents in the GRAPHIC study was used. The size of the dataset varied between the
first 2,000 SNPs to the first 20,000 SNPs on chromosome 1. Five datasets were used
with totals of 2,000, 5,000, 10,000, 15,000 and 20,000 SNPs respectively. This was to
gauge the effect on computational time as the number of SNPs increases. The quality
control procedures applied were again the same as the previous chapter (see section
4.3). LD matrices were calculated using the same commands as the analysis comparing
LD statistics. The computational time taken was recorded in hours, minutes and

seconds.

5.5.3 Comparison of Linkage Disequilibrium statistics

Figure 5.2, Figure 5.3 and Figure 5.4 show scatter plots of the estimated LD
statistics between PLINK and the three packages: GenABEL, genetics and snpStats.
While the LD values between PLINK and both genetics and snpStats seem fairly
similar and consistent (Figure 5.3 and Figure 5.4), with the snpStats estimate being
slightly more accurate than genetics. The algorithm implemented in GenABEL tends
to overestimate r” statistics compared to PLINK (Figure 5.2); however the
overestimation was relatively consistent in all pairwise LD statistics. The r-squared
statistics between the genetics and snpStats packages were almost identical

(Figure 5.5).
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Figure 5.2 Comparison of r? statistics between PLINK and GenABEL
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Figure 5.3 Comparison of r” statistics between PLINK and genetics
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Figure 5.4 Comparison of r® statistics between PLINK and snpStats
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Figure 5.5 Comparison of r® statistics between genetics and snpStats

When comparing the D-prime matrices between the three R packages, there were
again discrepancies between GenABEL and both the genetics (Figure 5.6) and

snpStats (Figure 5.7) packages. Unlike the r-squared statistics where there was a
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slight but consistent overestimation of LD statistics, there was no consistency in D-
prime statistics. There was both under and over estimation of D-prime statistics in
the GenABEL package compared to genetics and snpStats. There is a high amount
of variability in the overestimated SNPs with some pairs of SNPs that are estimated
with D-prime = 0 in GenABEL estimated with D-prime = 1 in genetics and snpStats.
There is a smaller variability in the underestimated SNPs; the extreme difference in
D-prime estimates is 0.35 (estimated as D-prime = 0 in both genetics and snpStats
and D-prime = 0.38 in GenABEL). The GenABEL help file does acknowledge that
there is a difference between itself and the genetics package in both LD statistics
but does not explain why there is this difference. D-prime statistics between

genetics and snpStats were similar as they were for r-squared (Figure 5.8).
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Figure 5.6 Comparison of D-prime statistics between genetics and GenABEL
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Figure 5.7 Comparison of D-prime statistics between snpStats and GenABEL
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Figure 5.8 Comparison of D-prime statistics between genetics and snpStats
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5.5.4 Comparison of time taken to compute Linkage Disequilibrium

estimates

Table 5.4 shows the time taken to compute different size LD matrices with both r-
squared and D-prime measures. The snpStats package was shown to be consistently
faster to calculate these matrices for both measures, which is unsurprising considering
the snpStats package is the only package that does not use the EM algorithm which
requires a number of iterations to converge to the true LD estimate. The GenABEL
package was faster than PLINK in calculating r-squared statistics. The genetics package
took the longest to compute LD statistics with datasets of 10,000 SNPs or more
reaching the computer time limit before the matrix was calculated. It is unsurprising
that the genetics package takes so much computational time as the function calculates
a number of statistics including both r-squared and D-prime statistics. The timings

between r-squared and D-prime measures for each package were similar.
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Table 5.4 Time taken (hh:mm:ss) to compute different size LD matrices in PLINK, GenABEL, genetics and snpStats packages

Time taken to calculate an LD matrix in hours, minutes and seconds

No. of SNPs
LD Measure
PLINK
GenABEL
genetics
snpStats

rZ

00:04:15
00:00:33
10:08:50
00:00:14

2,000
DI
00:00:32
10:24:58
00:00:14

r2

00:23:36
00:01:55
64:48:34
00:00:51

5,000
DI
00:01:55
64:31:04
00:00:52

10,000
r? D’
01:30:10 -
00:07:31 00:07:32
> 200 hrs > 200 hrs
00:02:39 00:02:46

15,000
r? D’
03:24:00 -
00:16:47 00:16:50
> 200 hrs > 200 hrs
00:05:24 00:05:25

20,000
r? D’
05:47:46 -
00:29:48 00:29:54
> 200 hrs > 200 hrs
00:08:59 00:09:06
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5.5.5 Conclusion

In comparing R packages to calculate an LD matrix, both accuracy of estimates
compared to PLINK and computational time were considered. Both the snpStats and
genetics packages showed good accuracy in LD statistics for the r-squared measure
when compared to PLINK (Figure 5.3 and Figure 5.4) and when compared to each
other for both statistics (Figure 5.5 and Figure 5.8). However the GenABEL package
tended to overestimate r-squared statistics (Figure 5.2) and showed large
inconsistencies in D-prime statistics compared to the other R packages (Figure 5.6 and
Figure 5.7). snpStats was computationally the quickest of all the packages to calculate
both types of LD measures while genetics was computationally the longest. The
function took over 200 hours for a dataset of 10,000 SNPs compared to 7 minutes 30
second in snpStats. Other advantages of using snpStats include the ability to prune by
alternative LD measures such as log likelihood ratio, odds ratio, Yule's Q, covariance,
and R as well as the ability to use the “depth” option that can be used to implement a

pruning window in adjacent SNPs.

5.6 Summary

This chapter has introduced the biological background and calculation of LD statistics.
These LD statistics can then be used for pruning SNPs from a dataset which is discussed
in greater detail in Chapter 5. | tested a number of packages that estimate the LD
measures D’ and r* and found that the snpStats package showed superior performance

in terms of both estimation accuracy and computational time taken.
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6 SNP pruning

6.1 Introduction

SNP Pruning is a quality control procedure that removes a number of SNPs from the
dataset. There are a number of reasons that pruning is used such as removing SNPs in
LD so that a dataset of independent SNPs remains or saving computational time. In
section 4.7, | described how due to the lack of computational time and memory | was
unable to perform a GWAS using the LASSO on the GRAPHIC GWAS dataset. The
computational intensity of the method requires the number of SNPs to be controlled.
This is likely to be the case for larger GWAS datasets as well as studies that perform

meta-analyses or integrative analyses which will combine a number of datasets.

In this chapter, | review a number of current pruning methods and discuss the
advantages and disadvantages of each method. | then apply a number of these
methods in my own R program. The algorithm uses manipulation of the LD matrix to
prune rather than other algorithms that prune combinations of SNPs in a pairwise

fashion. | then compare my pruning algorithm to the PLINK pruning program (19,20).

6.2 Linkage Disequilibrium pruning

Datasets are commonly pruned by LD to both reduce the number of dimensions and to
remove correlations between SNPs. Principle Component Analysis (PCA) is used to
investigate population structure across different ancestries (213-216). Differences in
ancestry can lead to confounding by population stratification (217), however clustering
in regions of high LD can be difficult as the LD can obscure patterns of population
structure (213,218). LD pruning is therefore used as a quality control step by removing

regions of high LD in order to perform PCA analyses.
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LD pruning is also commonly used in genetic risk scores, also known as polygenic risk
scores (219,220). The reason pruning is utilised here is to avoid any duplicated
information due to LD in the score however this could lead to causal variants being
pruned (219). To avoid such a scenario, some studies now prune SNPs based on P-
value, known as LD clumping (221-223). The LD clumping method prunes SNPs based

on P-value, allowing the top signals in a dataset to remain after pruning.

There are a three main LD statistics that can be used for pruning, D-prime, r> and R%.
Calculations of these statistics are described in section 5.3. If the LD statistic is above a
given threshold, one of the pair of SNPs is pruned. Most commonly used pruning
programmes implement a pruning window and step size options for pruning
(19,20,201,224-226). Both options are designed to reduce time for pruning. A window
of length M and a step size H, will take the next F adjacent SNPs and prune only within
this window and then move along H SNPs and repeat the process. The pruning
algorithm will only prune SNPs within this window. The step option then moves the

window by a number of SNPs and repeats until the end of the dataset is reached.

The implementation of a window allows the user to reduce the computational time. A
smaller window reduces the number of pairwise LD calculations required to prune the
entire dataset; however there may also be a risk that the dataset is not pruned
thoroughly as a small window would not cover a dense region of SNPs in high LD of
each other. Likewise a large step size would lead to a computationally faster but less

thorough pruning of a dataset.

The disadvantage of pruning by LD is that SNPs tend to be pruned without any user
control of which SNPs are kept and which are pruned (219). A particularly desirable
option that packages do not contain could be to fix certain SNPs, for example, SNPs
with previously known associations, to prevent them from being pruned. This would
involve a similar approach to LD-clumping without the use of P-values but instead prior
knowledge.
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6.2.1 Tag SNPs

Genotyping millions of SNPs for an association analysis can be time consuming and
costly. To reduce time and money, individual SNPs known as TagSNPs are used to
represent dense regions of SNPs in LD and thus every SNP in the region does not
require genotyping. Methods in selecting these TagSNPs tend to be based on
accounting the LD structure using a reference population (201,227-229), prediction

based methods (229) or PCA have also been suggested (230).

6.2.2 Pruning by P-value

As shown in Table 2.5, quite a few studies have used P-value pruning to reduce the
dimensionality of the dataset before fitting the LASSO. Unlike LD pruning, pruning a
dataset by P-value would ensure that the associated SNPs would be kept and the SNPs
with no association would be pruned. This would leave regions of high associations left
in the dataset rather than a genome-wide dataset. This is similar to studies that select

regions or genes for association tests.

The method guarantees that the most statistically significant variants remain after
pruning while reducing the number of SNPs for analysis. Pruning by P-value however
will leave a dataset that will consist of highly associated regions and not one that
covers the whole genome. Figure 6.1 shows plotted univariate B estimates against
their respective P-values for the 591,774 SNPs in the GRAPHIC study (see section 4.4).
The plot shows that as the B estimate increases, the P-value of the SNP decreases
therefore by pruning by P-value, only the large effects remain and smaller effects will

be pruned.
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Figure 6.1 Volcano plot showing beta coefficients against P-value of each of the
591,774 SNPs calculated on 979 subjects from the GRAPHIC study with LDL as the

phenotype.

6.2.3 Pruning by LD clumping

LD clumping combines both P-value pruning and LD pruning and keeps the advantages
of both methods. SNPS are pruned by LD; however the position of the starting SNP is
dictated by P-value. The SNP with the smallest P-value is the starting point and SNPs in
LD with this top SNP are pruned. Unlike the LD pruning algorithm, next SNP included is
not the next adjacent SNP but the next SNP with the smallest P-value that has not
been pruned. This continues until the last SNP with the highest P-value is reached. The
method ensures an independent set of SNPs while fixing the most statistically
significant SNPs in each region. A handful of studies have used this approach to

pruning for certain analyses (231,232).
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6.3 Current SNP pruning software

6.3.1.1 PLINK

PLINK (20) is the most commonly used SNP pruning program. The program requires 4

options: a sliding window size, a window step size, a desired LD statistic and its pruning

threshold. PLINK allows calculation of LD by r®(5.3) using the —indep option and VIF

(5.5) using the ——indep-pairwise option. Both window and step size are given in

terms of numbers of adjacent SNPs. The algorithm used by PLINK is described in Table

6.1. VIF pruning uses the same algorithm but with threshold values > 1. A VIF threshold

between 1.5 (R? = 0.33) and 2 (R? = 0.5) is suggested in PLINK.

Table 6.1 PLINK algorithm for LD pruning

Let Window size =M
Let step size=H
Let LD statistic = 12

Let LD pruning threshold =T

e

Begin at the first SNP in the first chromosome

Take a window of the next M adjacent SNPs

Calculate LD between each pair of SNPs in the window

For a pair of SNPs in the window with 72 > T, prune the SNP with the lowest
MAF. When pairs of SNPs in LD have the same MAF the first SNP is kept and the
second is pruned.

Move window along by H SNPs (steps)

Repeat steps 2-6 until the end of the chromosome

Repeat 1-6 for each chromosome
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The PLINK pruning algorithm is simple but is computationally slow (Table 5.4) and lacks
a number of useful options. D-prime is not an allowed LD measure option for pruning
although PLINK can be used to calculate D-prime estimates. For a pair of SNPs in LD,
one of a pair is pruned; the SNP with a lower MAF from the pair is pruned and
therefore leading to a pruned datasets of mostly common variants. When pairs of SNPs
in LD have the same MAF the first SNP is kept and the second is pruned. The choice of
which SNP is pruned is systematic rather than at random, repeating the pruning
algorithm with the same commands on the same dataset will prune the same SNPs.

The program does not allow user selected SNPs to be kept in the dataset.

6.3.1.2 SNPRelate

SNPRelate (225) is an R package primarily designed for principle component analysis
on SNP data. The package includes a command called snpgdsLDpruning that
prunes SNPs by LD. The command also performs some quality control such as
removing monomorphic SNPs, removing SNPs with low MAF and remove SNPs by
missing rates. The command prunes by D-prime, r and R. The more commonly used
measures of 72 and R? are not options. The package uses a sliding window like PLINK
but not a step option which is fixed to 1. There is a default option to implement a
sliding window by base position rather than adjacent SNPs. The pruning window by
genetic distance is particularly advantageous as the window can cover dense regions of

SNPs in high LD which a window in of adjacent SNPs may not.

The pruning of SNPs is at random rather than systematic. The pruning algorithm
randomly selects starting position on each chromosome for pruning. From this starting
position SNPs are pruned to the right until the last SNP in the chromosome is reached
and then to the left until the first SNP in the chromosome is reached. For a pair of SNPs
in LD, the SNP that is closest to the starting SNP is pruned. Therefore the choice of

which SNP is pruned is dependent of the starting SNP which is selected at random.
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6.4 My Prune package

In this section, | describe my algorithm for LD pruning, which | have implemented in as
an R package called ‘prune’. | also describe my other pruning algorithms such as P-
value pruning, LD pruning while fixing the top SNPs by P-value and LD clumping. My
algorithm is slightly different to that applied by PLINK. The traditional LD pruning
method implemented in PLINK selects the first SNP in the genome and removes any
adjacent SNPs in LD above the threshold. This process then moves onto the next
available SNP and repeats until the last SNP in the genome is reached. My algorithm
for LD pruning is novel and requires the manipulation of a P x P LD matrix and attempts
to prune all SNPs in a single step rather than continuously repeating for each SNP. The
algorithm also implements a range of options including a random starting position for
pruning. The algorithm uses the snpStats package to calculate desired LD statistics

(212).

6.4.1 The Prune package LD pruning algorithm

The choice of which SNPs are pruned from the data in this algorithm is entirely
dependent on the starting position. If the starting position is the first SNP in the
dataset then the algorithm prunes along the genome towards the last SNP, similar to
PLINK. If the starting position is the last SNP in the dataset then the algorithm prunes
in the opposite direction, towards the first SNP. If the starting position is in neither of
these then, the algorithm prunes in both directions from the starting position. This
leads to different manipulations of the LD matrix for the algorithm. If the starting
position is the first SNP in the dataset, the LD matrix required is a half-matrix with the
upper diagonal cells containing the LD statistics and both the cells along the diagonal
and below set to O (see step 8a, Table 6.2). To prune from the last SNP in the dataset,
an LD matrix where the cells below the diagonal contain the LD statistics and the upper
diagonal and diagonal cells are set to 0 is required (see step 8b, Table 6.2). For a

central starting position some manipulation of the LD matrix is required in order for
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the algorithm to prune the correct SNPs (see step 8c, Table 6.2). The basic LD pruning
algorithm for my Prune package is described below with an illustration of the LD matrix

manipulation for a random starting position is described in Table 6.2.

Table 6.2 Instructions for the Prune LD pruning algorithm implementing a random
starting position for pruning

e Let P =the number of SNPs in the dataset
o Let THRESHOLD = LD pruning threshold, where 0 < THRESHOLD £ 1 - 0.5 in this

example

1. Choose either a specified or random starting position. Call it START.SNP.

2. Create an LD matrix, with a desired window size and LD measure using snpStats.

3. Reflect this half-matrix to obtain a full P by P LD matrix (snpStats only calculates a
half-matrix).

4. Set the diagonal of the matrix to 0. This will prevent SNPs being pruned out due to
the LD between a SNP and itself = 1.

5. If the starting position is random, then select a random number between 1 and P
and set to START.SNP.

6. If the user has specified the start position, set this to START.SNP.

7. Set the LD statistics for the START.SNP column to O (Figure 6.2 where the random
starting position is highlighted in green). This will prevent the SNP from being
pruned from the dataset.

8. To manipulate the LD matrix for pruning:

a. If the START.SNP =1 then SNPs are be to be pruned to the right only.
Therefore the lower triangle of the matrix is set to 0.

b. If the START.SNP = P then SNPs are be to be pruned to the left only.
Therefore the upper triangle of the matrix is set to 0.

c. If 1 <START.SNP < P then the data will be pruned to the right of START.SNP
then to the left. The LD matrix is manipulated by:

i. Take the upper-right quadrant of the matrix with rows between
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10.

11.

1 and START.SNP - 1 and columns between START.SNP + 1 and P
and set the LD statistics to O (Figure 6.3).

ii. Take the upper-right quadrant of the matrix with rows between
1 and START.SNP - 1 and columns between START.SNP + 1 and P
and set the LD statistics to O (Figure 6.3).

iii. Take the upper triangle of the upper-left quadrant with rows
between 1 and START.SNP - 1 and columns between 1 and
START.SNP - 1 and set the LD statistics to O (Figure 6.4). Only the
LD statistics of the lower triangle are required to prune from
START.SNP towards the first SNP (to the left of START.SNP).

iv. Take the lower triangle of the lower-right quadrant with rows
between START.SNP + 1 and P and columns between START.SNP
+ 1 and P set the LD statistics to 0 (Figure 6.5). The LD values of
the upper triangle only are required to prune from START.SNP
towards P (to the right of START.SNP).

9. Set all cells in the matrix with an LD > THRESHOLD to “NA” (Figure 6.6). This

marks the SNPs that will be pruned.

Create a vector of 1's called MARK of length P. Each cell represent a SNP and its

value will determine if it is pruned or not.

To mark SNPs for pruning:

a.

b.

Start at START.SNP.

If the cell in MARK that denotes this SNP is “NA” move to step e. If the
cell in MARK =1 move to step c.

Take the row from the LD matrix that corresponds to this SNP.

If any SNPs in this row are marked as “NA”, replace the cell in the
corresponding column of MARK with an “NA”.

Move onto the next SNP to the right.

Repeat steps b-e until the last SNP in the dataset is reached.

Move to the SNP directly to the left of START.SNP.

If the cell in the corresponding column in MARK that denotes this SNP is

“NA” move to step k. If the cell in MARK = 1 move to step i.
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Take the row from the LD matrix that corresponds to this SNP.

If any SNPs are marked as “NA”, replace the cell in the corresponding
column of MARK with an “NA”.

Move to the next SNP to the left.

Repeat steps h-k until the first SNP in the dataset is reached. This will
produce a vector of SNPs in MARK with 1’s and NA’s. The SNPs marked
with an “NA” are marked for pruning. By skipping SNPs in MARK already
marked with and “NA”, SNPs cannot be pruned due to LD with a SNP

that has already been marked for pruning (step10b & 10h).

12. Rowbind MARK with the genotype matrix.

13. Remove any columns of SNPs from this matrix with an “NA”. This will prune all

marked SNPs.

14. Unbind MARK from the genotype matrix.

15. An LD pruned genotype matrix will remain.
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Figure 6.2 LD matrix of 20 SNPs with the diagonal highlighted in yellow and random

starting SNP highlighted in green set to 0.
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Figure 6.3 Set all cells upper-right quadrant of the matrix between the row and column

representing the random starting location, highlighted in green, to 0.
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Figure 6.4 Set the cells in the upper triangle of the upper-left quadrant with rows and

columns between the first SNP in the dataset and the random starting location,

highlighted in green, to O.
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Figure 6.5 Set the cells in the lower triangle of the lower-right quadrant with rows and
columns between the random starting location and the last SNP in the dataset,

highlighted in green, to 0.
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Figure 6.6 Set all cells with an LD estimate above the treshold to “NA”

The matrix in Figure 6.5 is the general matrix form required for pruning from a central
starting position. From a start position, the column for that SNP (rs10) is set to 0 to

protect the SNP from being pruned. Certain LD statistics have been set to 0. For any
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starting position, these will be for the cells that are both above the diagonal and above
the row of START.SNP and the cells that are in the lower diagonal of the matrix
between START.SNP and P. These are set to 0 to ensure SNPs are not pruned in the
wrong direction. The matrix still contains the LD statistics for each combination of
SNPs, meaning all pairs of SNPs can still be pruned including a pair of SNPs that are

either side of the starting position.

SNPs are marked for pruning if the LD along any particular row of a matrix is above the
specified threshold, which have all been set to NA (Figure 6.6). For the example above,
an r-squared threshold of 0.5 was used. The algorithm will then start at rs10 and look
along the row for any cells set to NA. In this case the cell for rs11 = NA, therefore the
corresponding cell in MARK is set to NA. The process then moves to the next SNP to
the right, rs11. This SNP has already been marked for pruning due to LD with rs10 and
therefore the algorithm skips this SNP and moves onto the next SNP, rs12. This SNP
has not been marked for pruning therefore the algorithm will look along the row of
rs12 and mark any SNPs with a missing cell which is rs13. This is repeated until the last
SNP is reached. The algorithm then moves back to the SNP to the left of the starting
position, rs9 and repeats but instead of moving one SNP to the right, it now moves one
SNP to the left until the first SNP is reached. The vector MARK will then contain a list of
1’s and missing cells denoted by “NA”. The missing cells mark the SNPs that will be
pruned from the dataset by simply deleting the corresponding row from the genotype

matrix, leaving a pruned matrix of SNPs.

6.4.2 Available options on LD the pruning algorithm

There are a number of different variations that can be implemented into the LD
pruning algorithm that give the user a greater number of options for pruning a dataset.
The options | discuss include a choice of LD measures, types of pruning window, size of

the pruning window and an option that can fix certain SNPs into the dataset.
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6.4.2.1 Pruning window

The snpStats package in R is selected to calculate LD matrices for pruning as the
package showed good accuracy in estimates as well as a fast computational time, see
section 5.5. One of the major advantages of this package is that it includes a “depth”
option in the 1d command that will calculate LD between a SNP and all other SNPs
within a user-specified window. Therefore pruning within a window of adjacent SNPs is

simple to implement into the algorithm.

Another method of implementing a pruning window would be by genetic distance as
this would take into account the distribution of SNPs along the genome. A dataset
could easily include a dense region of thousands of SNPs with the majority of SNPs in
the region in strong LD. By implementing a window of adjacent SNPs there is a risk that
the window may not cover the whole LD region and there could be strong LD between
SNPs outside the window. Conversely there will be a number of sparse regions where
there is a low frequency of SNPs and a high recombination rate leading to a region of
independent SNPs. No SNPs will be pruned in this region, regardless of the window
size. By implementing a window by distance the user can take into account the
distribution of SNPs in the genome and still implement a pruning window, reducing the

number of pairwise LD calculations.

To prune by genetic distance a user-supplied vector of base positions for each SNP is
required. The algorithm to create an LD matrix with a window by distance is described

below (Table 6.3).
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Table 6.3 Instructions for the Prune algorithm implementing a sliding window by

genetic distance

Let P be the number of SNPs in the dataset.

e Let Window.size be the window size in base-pairs.

1. Supply a vector POS of base-pair positions for each SNP.

2. Create a P by P matrix called DIST with all cells = 1.

3. Replace each cell (i,j) in DIST with the absolute difference in base-pairs between i
SNP and j™ SNP in POS.

4. For all cells in DIST with an absolute difference in distance > Window.size, replace
the cell with “0”.

5. Create a P by P LD matrix using snpStats with depth = P.

6. For any cell in DIST =0, replace the corresponding cell in the LD matrix with O.

7. An LD matrix with a pruning window based on genetic distance will remain ready

for pruning.

This option can be computationally time consuming for larger datasets as the
algorithm requires the calculation of the full P x P LD matrix before LD statistics outside

the distance threshold are set to O.

6.4.2.2 LD Measures

As discussed in section 5.5.3, snpStats includes a number of LD measure options
therefore by using this package, the algorithm can also prune from any of these
measures. The measures that can be implements are: r, r-squared, D-prime, log
likelihood ratio, odds ratio, Yule's Q and covariance. The Prune package can also prune
VIF which is calculated using the summary (1m () ) Sr.squared command in R to

calculate R? statistics between pairwise combinations of SNPs.
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6.4.2.3 Fixing SNPs into the dataset

In any dataset of SNPs that requires pruning, each SNP is at risk of being pruned. There
can be circumstances where the user requires a certain SNP or set of SNPs not to be
pruned and remain for any analyses that are conducted. For any supplied vector of
SNPs the algorithm can set the LD matrix column vectors for these SNPs to 0, similar to
step 7 in the LD pruning algorithm, see section 6.4.1. This can be performed once the
LD matrix is calculated, between steps 4 and 5 in the algorithm. Each cell in the vector
supplied should be the relative position of the SNP in the LD matrix. For example, to fix
the first SNP, the vector would contain a cell with a ‘1’ denoting this SNP; to fix the

fifth SNP a ‘5’ would be required.

The problem with fixing SNPs in this way is that there still may be LD between SNPs
that have been fixed into the dataset and other SNPs that have not been pruned. It can
be argued however, that depending on the make-up the SNPs that require fixing, there

may be strong LD between SNPs in this vector too.

6.5 Other pruning methods

There are a number of alternative pruning methods that can be implemented by the
algorithm. In this section, | describe these methods of pruning such as P-value pruning,
LD pruning while fixing the top SNPs by P-value and LD clumping. All of these
approaches implement a P-value based approach. The algorithm does not calculate P-
values and must be supplied by the user. This gives the user greater flexibility, for
example some analyses may that require the P-values to be adjusted for other non-
genetics covariates such as age and sex. It also allows users to use P-values from other

studies if desired.
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6.5.1 P-value pruning

The P-value pruning algorithm applies the following instructions:

Table 6.4 Instructions for the Prune LD P-value pruning algorithm

e Let P =the number of SNPS in the dataset

e Let THRESHOLD = P-value pruning threshold, where 0 < THRESHOLD < 1

Replace any P-values > THRESHOLD = “NA”. This will mark SNPs for pruning.
Rowbind the vector of P-values to the genotype matrix.
Remove any columns of SNPs with an “NA”. This will prune all marked SNPs.

Unbind the vector of P-values from the genotype matrix.

v A o nNpoe

A P-value pruned genotype dataset will remain.

6.5.2 Top SNP Pruning

Top SNP pruning is a similar approach to the Fix option in the LD pruning algorithm
(see section 6.4.2.3). The difference in this method is that the SNPs that are fixed are
the top hits by P-value. The remaining data is pruned by LD, see section 6.4.1. The user
can supply the number of top hits that are required to be fixed however it is likely that
LD between the fixed SNPs and some remaining SNPs after pruning, as discussed in
section 6.4.2.3. As this method prunes by LD, the options included in the LD pruning
algorithm (section 6.4.2) as well as the choice of the pruning starting position, is

implemented with this method.
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6.5.3 LD clumping

The LD clumping algorithm applies the following instructions:

Table 6.5 Instructions for the Prune LD clumping pruning algorithm

e Let P =the number of SNPs in the dataset

o Let THRESHOLD = LD pruning threshold where 0 < THRESHOLD < 1

1. Create an LD matrix, with a desired window size and LD measure using snpStats.
2. Reflect the LD matrix to obtain a full P by P LD matrix. snpStats only calculates a
half-matrix.
3. Set the diagonal of the matrix to 0. This will prevent SNPs being pruned out due
to the LD between a SNP and itself = 1.
4. Set all cells in the matrix with an LD > THRESHOLD to “NA”. This marks the SNPs
are above the threshold.
5. Order the P-values from smallest to largest.
6. Create a vector of 1’s called MARK of length P. Each cell denotes a SNP.
7. To mark SNPs for pruning:
a. Start at the top SNP by P-value.
b. If the cell in MARK that denotes this SNP is “NA” move to step e. If the cell
in MARK that denotes this SNP is “1” move to step c.
c. Take the row from the LD matrix that corresponds to this SNP.
d. If any SNPs in this row are marked as “NA”, replace the corresponding cell
of MARK with an “NA”.
e. Move to the next SNP in the list of ordered SNPs.
f. Repeat steps b — e until the last SNP in the list of ordered SNPs is reached.
8. Rowbind MARK with the genotype matrix.
9. Remove any columns (SNPS) from this matrix with an “NA”. This will prune all
marked SNPs.
10. Unbind MARK from the genotype matrix.

11. An LD pruned genotype matrix by ordered P-value will remain.
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Like the Top SNP pruning method, the algorithm prunes by LD therefore the options
discussed in section 6.4.2 are included in this algorithm. The choice of starting position
cannot be used for this method as the pruning positions and respective order are based

on the P-values for each SNP.

6.6 The R code

To implement the pruning algorithms described in sections 6.4 and 6.5, | have written
into an R function called prune. My function calculates an LD matrix using the Id
function in snpStats(212) with the desired LD measure between SNPs and window size.
The Prune function then applies one of the described pruning methods as described in
sections 6.4 and 6.5 and includes the user options previously discussed. The function
requires the user to specify a genotype matrix (in allele dosage form) with a subject as

each row and each column as a SNP. The function will produce three outputs:

o A matrix of pruned SNPs in the same format as the input genotype matrix

o Alist of SNPs that remain in the dataset after pruning and their relative position
in the input matrix

o Alist of SNPs that are pruned out of the dataset and their relative position in

the input matrix

In this section, | describe the Prune function in more detail using the R help file. The

help file includes a list of all the commands and default options for this function.
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6.6.1 Prune help file

Description.

Prunes a SNP dataset, given a genotype object in matrix class. Can prune by Linkage

Disequilibrium (LD), P-value, LD pruning while fixing certain SNPs SNPs or LD clumping.

Usage

prune (geno, Pruning.Method = c("LD", "Pvalue", "Topsnp",
"Clumping"), Ld.Measure = c("R.squared","D.prime"),
Threshold = 0.5, Window.type = c("Position","Distance"),
Window.size = 100, Start.SNP = 0, Distance = NULL, Top.SNPs

= NULL, Pvalue, Fix)

Arguments

geno Input genotype matrix to be pruned, of dimension nobs x
nSNPs. Each row is a subject and each columnis a SNP in
genotype form (0, 1, 2). Genotype matrix must be in an object

of class “matrix” or “double matrix”.

Pruning.Method | The method required for SNP pruning. Default is

Pruning.Method = c(”LD"”).

Threshold The pruning threshold; a number between 0 and 1 that
denotes the minimum LD at which a SNP may be pruned for
LD-based pruning methods i.e. Pruning.Method =
c("LD","Topsnp", "Clumping").For
Pruning.Method = c("Pvalue")Threshold
denotes the minimum P-value at which a SNP may be pruned.
If Threshold is below 0, above 1 or missing, then Threshold

will be set to 0.5 as a default.

Ld.Measure LD measures for LD-based pruning. If LD.Measure =
c ("R.squared"), r-squared statistics will be calculated for
pruning. If LD.Measure = c("D.prime"), D-prime

statistics will be calculated for pruning. Other options available
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are HLLRH’ HORH’HQH’ "Covar", "VIF" and "R" .

Defaultis LD.Measure = c("R.squared").

Window. type

Type of LD window required for pruning. Window. type =
c ("Position") willimplement a window of adjacent SNPs.
Window.type = c("Distance") willimplementa

window by genetic distance.

Window.size

The size of the LD window required.

ForWindow.type = c("Position"),

Window. size willimplement a window of adjacent SNPs.
Pruning occurs in both directions, so the specified window size
is the number of adjacent SNPs included in the window in one
direction. The total window size will be double the specified
window size. Default is 100.

For Window.type = c("Distance"), Window.size
will implement a window by genetic distance in base-pairs.
Default is 200,000.

Pruning occurs in both directions, so the specified window size
includes a number of SNPs in the window in one direction. The

total window size will be double the specified window size.

Start.SNP

A number to denote initial position to start pruning. Argument
is required if Pruning.Method = c ("LD", "Topsnp").
If Start.SNP = 0 then a starting position will randomly be
selected.

If 1< Start.SNP <P then this position will the starting
position for pruning. Where P is the total number of SNPs in
geno.

If Start.SNP <0 or >number of SNPs in the dataset or

missing then then Start . SNP will be set to a default of 1.
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Distance A user supplied vector of base-pair positions for each SNP.

Required if Window.type = c("Distance").

Pvalue A user supplied vector of P-values for each SNP. Required if
Pruning.Method =

c("Pvalue", "Topsnp", "Clumping").

Top.SNPs A number to denote the number of top SNPs by P-value that
will be fixed into the dataset and will not be pruned. If
Top.SNPs is below 0 or above the number of SNPs in the
dataset or missing then Top . SNPs will be set to a default of

10.

Fix A vector of numerical values to denote the SNPs that require
fixing into the dataset and will not be pruned. Each value in the
vector will denote the column SNP that requires fixing. If a
value in Fix <1, > number of SNPs in the dataset or the
argument Fix is missing then then Fix will be set to NULL as

default.

Details

This command prunes a genotype dataset based on desired pruning method. Four
methods can be used to prune the dataset using the Pruning.Method argument: “LD”
for LD pruning, “Pvalue” for P-value pruning, “Topsnp” for LD pruning while ensuring
the top SNPs by P-value are not pruned and “Clumping” for LD clumping. The LD based
pruning algorithms gives a choice of LD measures for pruning which are calculated
using the snpStats package. The “LD” and “Topsnp” pruning algorithms also include an

option that gives the user a choice of starting position for pruning.
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Value

Prune returns a list of the following results:

Pruned.data Output genotype matrix that has been pruned, of dimension
nobs x nSNPs. Each row is a subject and each column is a SNP in
genotype form (0,1,2). Genotype matrix is returned in an object

of class “matrix” or “double matrix”.

SNP.IN A list of SNPs that have not been pruned and the SNP location

from the input matrix.

SNP.OUT A list of SNPs that have been pruned and the SNP location from

the input matrix.

6.7 Comparison of the Prune program against PLINK

In this section | compare the Prune package against PLINK. PLINK is only able to prune
by r* and VIF measure therefore these LD statistics will be the basis for comparison.
After quality control procedure applied on the GRAPHIC study described in section 4.4,
the first 500 SNPs on chromosome 1 (rs3094315 to rs2493278) was used as a dataset.
Both programs used a sliding window of 100 SNPs and a step size = 1. PLINK prunes
from the first SNP in the dataset and its selection if SNPs is systematic and therefore
repeating the pruning process on the same dataset using PLINK produces the same
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pruned dataset. Prune allows the user to vary the starting location which can influence
the number of SNPs in the pruned dataset therefore prune was repeated 500 times
with each SNP chosen as a starting location without replacement. The LD threshold for

both r? and R? varied between 0.1 and 0.9.

Results are shown in Figure 6.7. The PLINK program prune SNPs more heavily
compared to my Prune package for both r” and VIF. As the threshold for r? increases,
the number of SNPS remaining after pruning becomes similar between the two
datasets. This is unsurprising given that most of the variation between the r?
calculations in PLINK and snpStats occurs when r’<0.5 (Figure 5.4). The r-squared
threshold of 0.1 also showed the largest variation in the number of SNPs pruned across
the 500 starting points (S.E. = 0.1225, Figure 6.8). For VIF however, the difference in
number of SNPs pruned between the two programs increases as the R? threshold
increases. PLINK does not allow LD matrices to be calculated for R or VIF therefore it is

not possible to conclude how PLINK calculates VIF for pruning.

R-squared and VIF pruning in PLINK and Prune
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Figure 6.7 Line graph showing the number of SNPs remaining after pruning. Each line
represents combinations of either PLINK or my Prune package with r-squared or VIF as

the LD measure. The dataset is based on the first 500 SNPs on chromosome 1 and
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1,014 subjects from the GRAPHIC study. Prune package was repeated 500 times such
that each SNP was the Start SNP for pruning. The number of SNPs plotted for the

Prune package is the mean number of SNPS remaining after pruning.

Histogram showing the number of SNPs remaining after pruning
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Figure 6.8 Histogram showing the number of SNPs remaining after pruning with the
Prune package using an r-squared pruning threshold = 0.1 was repeated 500 times
such that each SNP was the Start SNP for pruning. The dataset is based on the first 500

SNPs on chromosome 1 and 1,014 subjects from the GRAPHIC study.

Table 5.4 shows the difference between PLINK and snpStats in calculating r? statistics
with snpStats being able to calculate an LD matrix of any size much faster than PLINK.
This is naturally reflected in the computational time taken to prune each dataset
between the two methods. The pruning by VIF is considerably computationally quicker
in PLINK than Prune (Figure 6.9). However as the threshold increases for PLINK the
computational time increases, the Prune algorithm remains stable regardless of the

pruning threshold.
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Figure 6.9 Line graph showing the time taken to prune a dataset, in seconds, which is
based on the first 500 SNPs on chromosome 1 and 1,014 subjects from the GRAPHIC
study. Each line represents combinations of either PLINK or Prune package with r-
squared or VIF as the LD measure. The time taken plotted for the Prune package is the

mean time spent pruning.

6.8 Conclusion

In this chapter, | have briefly reviewed the methods used for SNP pruning in genetic
studies, including pruning by a number of LD measure, pruning by P-value and
methods of pruning that combine LD and P-value pruning. These pruning methods are
all combined into an R package called Prune. To current knowledge, no pruning
package apart from Prune allows pruning for more than one method. Prune allows LD
based pruning using a wider variety the LD pruning measures than any other package
as well as an option to fix any desirable SNPs that users wish not to prune from the
dataset. The program also allows an option to prune using a random starting location
to eliminate any bias in pruning between a pair of SNPs but also produces some

variation in the number of SNPs pruned (Figure 6.8).
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Comparisons between Prune and PLINK in section 6.7 showed that PLINK prunes SNPs
more heavily than Prune although the number of SNPs were similar for r’ there was a
greater difference for VIF. It is unknown why this difference occurs as the Prune
algorithm calculated VIF statistics as described in PLINK (19,20). Prune uses the
snpStats package to calculate most LD statistics apart from VIF, the use of this package
allows significantly less computational time spent pruning compared to PLINK, the VIF

method in Prune is computationally slower than PLINK.
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7 Simulation study on the effects of SNP

pruning on variable selection using penalised

regression

7.1 Introduction

In Chapter 6, | discussed the need for SNP pruning for either removing correlations
between SNPs or reducing the dimensions of a dataset as was required in application
of the LASSO on the GRAPHIC study (see section 4.7). Both previous studies (24-26)
and my analysis on chromosome 19 of the GRAPHIC study (see section 4.8.2) have
shown the correlations between SNPs may not be a problem using penalised
regression methods as they are able to accommodate for LD and select a single SNP
from a highly correlated region. Given the motivation is towards reducing the number
of dimensions due to the lack of computational memory or time, the question arises
how varying SNP pruning methods, pruning thresholds and tuning parameter selection

methods effects variable selection when fitting LASSO models.

In this chapter, | conduct a simulation study to determine the effects of various SNP
pruning methods (discussed in section 6.4) on variable selection using the LASSO. The
pruning thresholds vary for each dataset so that the effects of pruning on the final
LASSO model can be seen between pruning method, threshold and tuning parameter

selection method.
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7.2 Previous literature on the effects of pruning on

penalised regression

To current knowledge there has been little research done to address how pruning
effects penalised regression models, specifically for variable selection. Abraham et al.
assessed the effect of SNP independence on model prediction performance with the
use of pruning on the Celiac-UK1 dataset (25). Predictive ability was assessed using the
Area Under the Curve (AUC) measure which takes into account the sensitivity and
specificity rates with a number of methods compared including the LASSO, elastic net,
variable selection using logistic regression followed by pruning selected SNPs by LD (r’
= 0.8), a polygenic risk score as performed in PLINK(19,20) and Genome-Wide Complex
Trait Analysis (GCTA) as described by Yang et al.(233). The tuning parameter estimate
was selected by 30 repetitions of 10-fold CV. AUC was compared between a full
dataset and a dataset pruned using VIF pruning in PLINK (see section 6.3.1.1) with a
sliding window size = 100, step size = 5 and VIF pruning threshold = 1.5 which pruned
approximately 74% of the dataset. The results (Figure 7.1) showed that the maximum
AUC for both LASSO and elastic net dropped from 0.88 to 0.85 however a larger model

was required to reach the maximum AUC after pruning.

cross—validation

Full | Pruned [
PR m—
0.85- _# 7 . - —_—
7 \ ) o 27X \ Method
0.80- . -‘ * « GCTA
So.75- ‘ g polygenic
< \ \ = = |lasso
0.70- T . * = logistic
. \ . - — -
0.654 . elasticnet
\ -
0.60 - ‘ : — ‘ = —
10 1,000 100,000 10 1,000 100,000

# SNPs with non-zero weights

Figure 7.1 LOESS-smoothed AUC estimated in 30 x 10-fold Cross-validation within the
Celiac-UK1 dataset, either the full dataset or pruned version. For GCTA, the average

over the Cross-validation replications is shown. Taken from Abraham et al.(25)
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Hong et al. compared two methods of pruning across four different penalised
regression methods; the LASSO, ridge regression, elastic net and the adaptive LASSO in
two separate datasets (146). Both studies used adult height as the phenotype. The two
pruning methods used were P-value pruning and pruning by the absolute B estimate.
In both cases the top 1,000 SNPs were used as the pruned dataset. Pruning by |,Bj| was
not considered in this simulation nor the Prune package. As Hong et al. discuss, this
method tends to prune common SNPs, and only keeps rare SNPs in the dataset (See
Figure 1 (146)). 10-fold CV was used as the tuning parameter selection method. Over
500 of the 1,000 SNPs were selected for each combination of pruning method and
penalised regression method. It is not known if this is due to the pruning method, the

tuning parameter selection method or a combination of both.

7.3 Simulation of data

This simulation study looks at how various methods of pruning a dataset, discussed in
section 6.4, effects variable selection using the LASSO models compared to not pruning
the dataset. Sensitivity and specificity were used as measures to determine the
performance for variable selection in each case. Sensitivity is defined and calculated as
the true positive rate (TPR) while specificity is calculated as 1 — FPR. Both the sample
size (N = 250, 500 and 1,000) and the percentage of variance explained (%VAR) by the
causal SNPs (1%, 2.75% and 5.5% (3.1)) were varied in each scenario (Table 7.4).

SNPs were simulated from a single chromosome of 20,000 SNPs. In order to simulate a
realistic LD pattern, SNPs were generated using the genotype data from the GRAPHIC
study (see section 4.3). Only one chromosome was used for this simulation, as each
chromosome is independent and LD does not occur across chromosomes. Therefore a
genome-wide analysis would show similar results in each chromosome. 20,000 SNPs
were selected rather than a large number in order to save time computationally in the

simulation when calculating an LD matrix for the pruning algorithm (Table 5.4). The
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number of SNPs on each chromosome in the GRAPHIC study varies between 48,494
SNPs on chromosome 1 to 8,741 SNPs on chromosome 21 (Table 7.1). The first 20,000
SNPs on Chromosome 13 (P = 23,049) was selected for this simulation as this was the

closet to a full chromosome to 20,000 SNPs.

Table 7.1 Number of SNPs in each chromosome from the GRAPHIC study after quality

control

Chromosome No. of SNPs Chromosome No. of SNPs

1 48,494 12 29,614
2 47,899 13 23,049
3 39,615 14 19,492
4 34,217 15 18,258
5 35,870 16 19,114
6 40,655 17 16,761
7 32,235 18 17,962
8 31,753 19 12,376
9 28,139 20 15,560
10 32,500 21 8,741
11 30,629 22 8,841

Total = 591,774

As with previous analyses, only parental subjects were used in this simulation and the
same quality control procedures described in section 4.4 were applied. The 35 subjects
that were removed for missing phenotypes in the GRAPHIC study analysis were

included in this simulation as the phenotype was simulated.

7.3.1. Phasing haplotypes

In order to simulate new genotype datasets, haplotype data was required from each of
the 1,014 subjects from the GRAPHIC study. This was done by estimating from the
genotype data using fastPHASE version 1.1 (234). Haplotype estimation in fastPHASE is
based on the Expectation-Maximization algorithm (205,206). fastPHASE is also able to

impute missing genotype data. The package uses cluster-based modelling to estimate
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the missing data. Each cluster is defined as a group of closely related haplotypes. It
assumes that all haplotypes from a dataset originate from a number of clustered
populations. As subjects recruited for the GRAPHIC study were all of European descent
and live within a local population, this assumption would be valid. By estimating the
true underlying number of clusters in the GRAPIC study, the algorithm is able to
predict the missing haplotypes with a greater certainty. Scheet and Stephens tested
the error rate in predicting missing genotypes using fastPHASE (234). This was
performed by masking between 10% - 90% (P = 93,476 — 837,853) for CEPH HapMap
data across chromosome 22 and applying the fastPHASE package to the dataset to
predict the missing genotype. The calculated error rate (Table 7.2) was the proportion
of masked genotypes that were not correctly estimated. While the error rate is small
(3.3%) when 10% of genotypes are missing, a threshold of 3% missing call rate in SNPs
is already applied on GRAPHIC study, will further reduce the error in estimating the

remaining missing genotypes.

Table 7.2 Error rate for estimation of missing genotypes using fastPHASE for CEPH
HapMap data, Chromosome 22, taken from Scheet & Stephens(234)

Missing Data (%) fastPHASE Error

10 0.033
20 0.037
30 0.042
40 0.051
50 0.064
60 0.089
70 0.137
80 0.227
920 0.358

To estimate the number of clusters the 20,000 SNPs were divided into 20 blocks of
1,000 adjacent SNPs. The upper and lower limits of considered number of clusters (KI)
varied between 30 and 70 in intervals of 2. In each block of 1,000 SNPs, fastPHASE
would randomly select at most 100 consecutive SNPs; mask approximately 5% of the
observed genotypes among all individuals at 1,000 SNPs; impute missing genotypes at

each value of Kl and tabulate errors. This was repeated 50 times for each block of
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1,000 SNPs with the best estimated number of clusters as the one to produce the
lowest error rate. The mean number of clusters with the smallest error rate from the
20 blocks was 60.8 (median = 62, range = 38 - 70), therefore K = 61 was selected for

the number of clusters for estimation of missing data and haplotypes.

Scheet and Stephens (234) noted that the EM algorithm tends to find local maximums
rather than global maximums for phasing, therefore different starting estimates for
the algorithm will lead to different estimates. To deal with this issue the algorithm was
repeated 50 times, each with a different starting point. Of these 50 repetitions, the
repetition that produced the highest likelihood estimate was selected as the estimated

haplotypes.

7.3.2.  Simulation of data

Subjects were simulated by randomly combining a pair of haplotypes with replacement
from phased subjects to form genotypes. Any simulated SNPs that were monomorphic
were pruned from the dataset before the phenotype was simulated to avoid these
SNPs being simulated as causal SNPs. 10 causal SNPs were selected at random in each
dataset. The causal B’s were simulated using the percentage of variance explained
(%VAR) (3.1) with the MAF of the causal SNP calculated from the simulated dataset
rather than from the GRAPHIC study dataset.

A simulation was run to calculate the approximate %VAR required for the simulated B’s
to have sufficient power. A power level of 90% was used to allow selection of SNPs in
LD with the causal SNPs to have power for selection also. 50 independent SNPs from
500 unrelated subjects were simulated. From these 50 SNPs, one causal SNP was
simulated. The MAF of the causal SNP was varied between 2% and 50% and the effect
size of the causal SNP was also varied between 0.01 and 1 and increased by 0.01 for

each MAF. Each combination MAF and effect size was repeated over 1,000 repetitions,
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in each case, the LASSO was applied and the tuning parameter was selected using 10-
fold Cross-validation. The power calculated by the percentage of times the causal SNP
was selected over the 1,000 repetitions and is plotted against the B values for varying
MAFs in Figure 7.2. Table 7.3 shows the B values and calculated %VAR for each MAF
for 90% power. The %VAR varies between 2.619% and 2.967% with a mean of 2.75%.
Therefore N = 500 and %VAR = 2.75% was used as a baseline scenario, other scenarios
considered were at a lower power (i.e. a lower sample size or %VAR) or higher power

(i.e. a higher sample size or %VAR) as shown in Table 7.4.
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Figure 7.2 Power curves for varying MAFs and a sample size of 500
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Table 7.3 The effect size and percentage variance explained by the causal SNP required

for 90% power for varying MAFs

MAF N =500
(%) B Variance
explained
(%)
2 0.87 2.967
5 0.54 2.770
10 0.4 2.880
15 0.33 2.777
20 0.29 2.691
25 0.28 2.940
30 0.25 2.625
35 0.24 2.621
40 0.24 2.765
45 0.23 2.619
50 0.23 2.645
Table 7.4 Simulated scenarios
Scenario Sample size varies

Percentage variance explained

Low powered

Mid powered N = 500 & Percentage variance explained = 2.75%

High powered

N = 250, Percentage variance
explained = 2.75%

N = 1,000, Percentage variance
explained = 2.75%

N =500, Percentage variance
explained = 1%

N = 500, Percentage variance
explained = 5.5%

Figure 7.3 shows the simulated beta estimates for each MAF and level of the %VAR by

the causal SNP used in the simulation. Each causal SNP was given either a positive or

negative effect at random. The residual variance of the phenotype followed a normal

distribution with mean = 0 and S.E. =1 - (Number of causal SNPS x %VAR).
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Figure 7.3 Simulated beta estimates against minor allele frequency for differing levels

of percentage of variance explained

7.3.3.  SNP Pruning methods

My Prune package (see section 6.4) was used to prune simulated datasets. Three
pruning methods were used LD pruning, P-value pruning and LD clumping. For the LD
pruning and LD clumping methods, r* was used as the LD measure with thresholds set
between 0.9 and 0.2 and at intervals of 0.1 between these limits. For P-value pruning
the threshold was set at p < 0.2 to p < 0.02 and at every 0.02 interval between these
limits. No sliding window was used for this simulation. A random starting location was
used to prune each dataset for LD pruning and causal SNPs were allowed to be pruned
as they could be in any real study. An increase in pruning threshold was defined as a

decrease in the value of pruning threshold.
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7.3.4.  Fitting the LASSO model

BIC, repeated 10-fold Cross-validation and the permutation method were used as
tuning parameter selection methods. The glmnet package (53) was again used for
variable selection for both the permutation method and repeated CV, with 25
repetitions used for both methods. To provide good accuracy in A, a range of 200 A
values was used for repeated CV. BIC values were taken at every step of 0.001 until the
smallest A for a null model is reached, which gave a range approximately 300 A values.
Each simulation recorded the sensitivity and specificity rates and was repeated 1,000
times. A true positive result was defined as any selected SNP that is either the causal
SNP or a selected SNP with r? > 0.5 with a causal SNP. A false positive result was

defined as any selected SNP with r> < 0.5 with all 10 causal SNPs.

7.4 Results

7.4.1. LD Pruning

Table 7.5 and Table 7.6 show the results for LD pruning using CV as the method for
tuning parameter selection. As the pruning threshold increased the mean number of
SNPs selected in each model decreased, as did both the number of selected true
positives and false positives. The sensitivity rate across all scenarios between not
pruning the dataset and pruning with r? = 0.2 was approximately halved. This was
expected as the number of SNPs after pruning decreased as the threshold increased.
The increase in pruning threshold leads to more causal SNPs being pruned from the
dataset leading to a loss of power in selecting the causal SNPs. The number of false
positives selected also decreased as the pruning threshold increased with the
exception of the N = 1,000 scenario where the number of false positives selected
increased. Naturally as both the sample size and %Var increased, the sensitivity rate

increased due to the increase in power. However as seen in section 3.3.2.1, CV tends
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to select a number of false positives which also increased as the power to detect
causal SNPs increased. This may partly be due to the SNPs in low LD (0 < r’ < 0.5) with
the causal SNP also having an increase in power. However it would not explain such a

large increase in the number of false positive SNPs selected in this scenario.
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Table 7.5 Mean and standard deviation results for LD pruning using repeated Cross-validation for tuning parameter selection for differing

sample sizes with the percentage of variance explained = 2.75%

Pruning No. of SNPs after No. of SNPs No. of true No. of false positive Sensitivity Specificity
threshold pruning selected positive SNPs SNPS
N =250
None 20000.00 £ 0.00 34.15+33.93 2.9512.06 30.31+32.01 0.29+0.21 1.00+£0.00
0.9 14992.78 + 23.33 31.22 £31.29 2.91+2.05 27.95+29.70 0.29+0.21 1.00 £ 0.00
0.8 13271.68 £ 24.81 30.19 £ 30.37 2.86 £2.05 27.05 + 28.85 0.29+0.20 1.00+£0.00
0.7 11619.73 £ 25.63 29.33 +£30.00 2.68+2.02 26.45 £ 28.54 0.27 £0.20 1.00 £ 0.00
0.6 10055.15 £ 25.55 27.71+£29.73 2.53+£1.99 25.05 + 28.25 0.2510.20 1.00+£0.00
0.5 8589.57 £ 22.20 28.70 £ 30.22 2.45+1.91 26.19 £+ 28.92 0.24+0.19 1.00 £ 0.00
0.4 7214.89 £ 23.30 26.67 £ 30.86 2.15+1.85 24.50 £ 29.59 0.21+0.18 1.00+£0.00
0.3 5894.42 + 19.67 25.54 + 31.09 1.86 +1.68 23.64 + 30.07 0.19+0.17 1.00 £ 0.01
0.2 4586.50 + 19.64 22.43+27.43 1.52+1.51 20.91 + 26.49 0.15%+0.15 1.00+£0.01
N =500

None 20000.00 £ 0.00 78.18 £ 32.15 8.32+1.36 66.78 £ 31.25 0.83+0.14 1.00+£0.00
0.9 15041.80 + 18.78 73.02 £ 30.46 8.28+1.38 63.09 £ 29.72 0.83+0.14 1.00 £ 0.00
0.8 13329.33+£20.41 72.81+30.43 8.19+1.42 63.24+29.71 0.82+0.14 1.00+£0.00
0.7 11666.30 + 20.94 71.45 +30.52 8.01+1.48 62.37 £ 29.77 0.80 +0.15 0.99 +0.00
0.6 10092.29 £ 22.06 70.87 £32.48 7.73+£1.57 62.44+31.74 0.77 £0.16 0.99 +£0.00
0.5 8619.05 +19.98 68.06 + 31.39 7.33+1.76 60.39 + 30.48 0.73+0.18 0.99 +0.00
0.4 7243.81 £21.98 65.65 £ 33.06 6.491+1.84 59.00+32.24 0.65+0.18 0.99 +£0.00
0.3 5920.86 + 16.83 61.51 + 34.23 5.50+1.80 55.97 + 33.51 0.55+0.18 0.99+0.01
0.2 4616.83 £ 18.60 57.23 £ 34.98 4.41+1.84 52.82 +34.28 0.44 +£0.18 0.99+0.01
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None
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

20000.00 + 0.00
15063.67 £ 15.55
13358.90 + 16.64
11688.27 £ 16.63
10110.87 £ 20.92
8631.07 +15.87
7254.88 + 20.37
5934.77 + 15.06
4631.62 £17.96

91.83 +28.20
86.79 £ 26.81
87.21+27.85
87.78 £27.20
90.33 £29.10
92.89 £ 30.86
94.39 +30.74
95.03 £32.99
9497 +35.11

N =1,000
9.92 +0.33
9.91+0.34
9.90+0.35
9.88 £0.39
9.80+0.47
9.67 £0.62
8.73+1.09
7.45+1.33
591+1.51

76.94 + 27.83
73.95 + 26.59
74.84 + 27.67
75.82 +27.01
78.97 + 28.88
82.21+30.70
85.18 + 30.76
87.49 £ 33.05
89.06 + 35.23

0.99+0.03
0.99 £0.03
0.99 +0.04
0.99 £0.04
0.98 +0.05
0.97 £0.06
0.87+0.11
0.74 £0.13
0.59+0.15

1.00 £ 0.00
1.00 £ 0.00
0.99 + 0.00
0.99 £ 0.00
0.99 + 0.00
0.99 £ 0.00
0.99 + 0.00
0.99+0.01
0.98+0.01
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Table 7.6 Mean and standard deviation results for LD pruning using repeated Cross-

validation for tuning parameter selection for differing percentage of variance

explained with N = 500

Pruning No. of SNPs No. O,f .true No. of false o I
threshold selected positive positive SNPs Sensitivity  Specificity
SNPs
Variance Explained = 1%

None 19.57+25.72 145+152 17.83+24.42 0.15+0.15 1.00+0.00
0.9 18.92+24.47 1.44+152 17.36+2335 0.14+0.15 1.00%0.00
0.8 18.81+24.81 1.39+152 17.32+23.69 0.14+0.15 1.00+0.00
0.7 18.60+24.60 1.38+1.49 17.14+23.52 0.14+0.15 1.00%0.00
0.6 18.64+24.74 1.28+1.42 17.32+23.74 0.13+0.14 1.00+0.00
0.5 16.43+22.72 1.13+1.29 15.29+21.84 0.11+0.13 1.00%0.00
0.4 16.83+24.23 1.07+1.29 15.76+23.36 0.11+0.13 1.00+0.00
0.3 1595+23.73 094+1.19 15.00%£22.96 0.09+0.12 1.00%0.00
0.2 14.67+2258 0.78+1.04 13.89+2196 0.08+0.10 1.00+0.00

Variance Explained = 2.75%

None 78.18+32.15 832+136 66.78+31.25 0.831+0.14 1.00+0.00
0.9 73.02+30.46 8.28+1.38 63.09+29.72 0.83+0.14 1.00+0.00
0.8 72.81+3043 8.19+1.42 63.24+29.71 0.82+0.14 1.00+0.00
0.7 71.45+30.52 8.01+148 62.37+29.77 0.80+0.15 0.99+0.00
0.6 70.87+3248 7.73+1.57 62.44+31.74 0.77+0.16 0.99+0.00
0.5 68.06+31.39 7.33+1.76 60.39+30.48 0.73+0.18 0.99+0.00
0.4 65.65+33.06 6.49+1.84 59.00+32.24 0.65+0.18 0.99+0.00
0.3 61.51+34.23 550+1.80 55.97+33.51 0.55%+0.18 0.99%0.01
0.2 57.23+3498 441+184 52.82+3428 0.44+0.18 0.99+0.01

Variance Explained = 5.5%

None 96.51+29.61 9.81+0.48 81.70+29.47 0.98+0.05 1.00+0.00
0.9 90.34+£2799 9.81+047 77.84%+27.89 098+0.05 0.99+0.00
0.8 89.90+27.95 9.77+0.51 77.87+27.83 0.98+0.05 0.99+0.00
0.7 90.01£28.24 9.68+0.63 78.48+28.04 0.97+0.06 0.99+0.00
0.6 90.88+29.75 9.56+0.68 79.99+29.54 0.96+0.07 0.99+0.00
0.5 89.46£2854 9.35+0.82 79.36%+2838 0.94+0.08 0.99+0.00
0.4 89.86+31.17 840+1.18 81.11+31.11 0.84+0.12 0.99+0.00
0.3 88.85+34.62 7.10+£142 81.68+3455 0.71+0.14 0.99%0.01
0.2 84.33+36.74 565+159 78.68+36.65 0.57+0.16 0.98+0.01

The results for BIC are shown in Table 7.7 and Table 7.8. The BIC tended to select a

sparser model than CV when pruning by LD. This tuning parameter selection method

also selected less truly causal SNPs however it also selected a significantly lower
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number of false positive SNPs in all scenarios. The number of SNPs selected as well as
the number of true positives selected decreases as the dataset becomes more heavily
pruned however there was a small increase in these statistics compared to not pruning
at all. This is illustrated in Figure 7.4 and Figure 7.5. Where no pruning has occurred, is
the LD pruning threshold = 1 in these Figures. The mean number of SNPs (Figure 7.5)
and causal SNPs (Figure 7.4) selected increased compared to not pruning between the
LD thresholds of 0.9 and 0.6 in most scenarios. This suggests that a low LD pruning
threshold using the BIC as tuning parameter selection method increases the numbers
of SNPs and true positives selected. The two high powered scenarios (N = 1,000 and
%Var = 5.5%) showed an increase in the numbers of false positives selected compared
to a lower powered scenario, however unlike the results shown using repeated CV the
increase in number of false positives selected was small and some could be explained

by SNPs in low LD with the causal SNP being selected.
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Figure 7.4 Line graph showing the mean number of causal SNPs selected against the
varying Linkage Disequilibrium pruning thresholds. LD pruning threshold = 1 denotes

no pruning has occurred.
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Figure 7.5 Line graph showing the mean number of SNPs selected against varying

Linkage Disequilibrium pruning thresholds. LD pruning threshold = 1 denotes no

pruning has occurred.
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Table 7.7 Mean and standard deviation results for LD pruning using BIC for tuning parameter selection for differing sample sizes with the

percentage of variance explained = 2.75%

t:::::;? p No. of SNPs after pruning N:el?e fcfsdps p::i;ci(\)lfatsr:is pI:soi:cic\)l Zf::jss Sensitivity Specificity
N = 250
None 20000.00 £ 0.00 8.81+6.73 1.82+1.20 6.63+£6.19 0.18 £0.12 1.00 £ 0.00
0.9 14992.78 £ 23.33 9.62 £+ 7.05 1.95+1.23 7.52 £ 6.55 0.20+£0.12 1.00 £ 0.00
0.8 13271.68 £ 24.81 9.89+7.25 1.96 £ 1.28 7.81+6.74 0.20+0.13 1.00 £ 0.00
0.7 11619.73 £ 25.63 9.68 + 6.63 1.88+1.24 7.71+£6.17 0.19+0.12 1.00 £ 0.00
0.6 10055.15 £ 25.55 10.06 £ 7.27 1.82 +1.27 8.20+6.75 0.18 £0.13 1.00 £ 0.00
0.5 8589.57 £ 22.20 9.59+7.21 1.70+£1.20 7.87 £ 6.84 0.17 £0.12 1.00 £ 0.00
0.4 7214.89 + 23.30 9.60+7.18 1.56+1.16 8.04 +6.84 0.16 £0.12 1.00 £ 0.00
0.3 5894.42 + 19.67 9.03+6.92 1.34 £1.07 7.69 £ 6.55 0.13+£0.11 1.00 £ 0.00
0.2 4586.50 + 19.64 9.06 +6.62 1.17+£1.02 7.88 £6.39 0.12+0.10 1.00 £ 0.00
N =500
None 20000.00 + 0.00 6.77 £6.09 3.48+£2.18 2.59+4.04 0.35+0.22 1.00 £ 0.00
0.9 15041.80 £ 18.78 7.89£6.41 3.99+2.19 3.50+4.51 0.40 £0.22 1.00 £ 0.00
0.8 13329.33 £ 20.41 7.64 £6.28 3.91+2.16 3.41+4.51 0.39+0.22 1.00 £ 0.00
0.7 11666.30 £ 20.94 7.63 £5.95 3.88 +2.09 3.52+4.34 0.39+£0.21 1.00 £ 0.00
0.6 10092.29 £+ 22.06 7.39£5.90 3.71+£2.07 3.56 £4.30 0.37+0.21 1.00 £ 0.00
0.5 8619.05 + 19.98 6.74 £5.35 3.39+1.93 3.29 £+ 3.99 0.34£0.19 1.00 £ 0.00
0.4 7243.81 +21.98 6.53+£5.05 3.08 £1.86 3.43+3.79 0.31+£0.19 1.00 £ 0.00
0.3 5920.86 = 16.83 6.03+4.71 2.66 £1.62 3.37+3.73 0.27 £0.16 1.00 £ 0.00
0.2 4616.83 + 18.60 5.75+4.75 2.24+£1.49 3.51+£3.98 0.22 £0.15 1.00 £ 0.00
N =1,000
None 20000.00 £ 0.00 15.94 £ 4.59 9.29+1.26 4.19+3.21 0.93+0.13 1.00 £ 0.00
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0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

15063.67 £ 15.55
13358.90 + 16.64
11688.27 £ 16.63
10110.87 £ 20.92
8631.07 +15.87
7254.88 + 20.37
5934.77 + 15.06
4631.62 £17.96

15.56 £ 4.45
15.11+4.37
14.72 £ 4.58
14.16 + 4.62
13.14 +4.81
11.80+5.13
9.86 £5.04
8.23+4.53

9.33+1.11
9.25+1.25
9.05+1.50
8.74 +1.69
8.19+1.96
7.03 £2.22
5.68 £2.22
4.52 £2.06

4.67 £3.44
4.62 +3.35
4.64 +3.42
4.71+3.38
4.51+3.40
4.61+3.64
416 £3.61
3.71+3.24

0.93+0.11
0.92+£0.12
0.90 £0.15
0.87+0.17
0.82+0.20
0.70 £0.22
0.57 +£0.22
0.45+0.21

1.00 £ 0.00
1.00 £ 0.00
1.00 £ 0.00
1.00 £ 0.00
1.00 £ 0.00
1.00 £ 0.00
1.00 £ 0.00
1.00 £ 0.00
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Table 7.8 Mean and standard deviation results for LD pruning using BIC for tuning

parameter selection for differing percentage of variance explained with N = 500

Pruning  No. of SNPs No. o.f'true No. of false . o
threshold selected positive positive SNPs Sensitivity Specificity
SNPs
Variance Explained = 1%

None 4,12 +3.79 0.73+£0.80 3.28 +3.50 0.07 £0.08 1.00£0.00
0.9 5.24 +4.09 0.87 £0.83 433 +3.91 0.09+0.08 1.00+0.00
0.8 5.28+4.11 0.83+0.83 441+391 0.08 £0.08 1.00£0.00
0.7 5.32+4.19 0.83 £ 0.85 4.47 £ 4.00 0.08 £+0.08 1.00 +0.00
0.6 5.25+4.13 0.77 £0.83 447 £391 0.08 £0.08 1.00£0.00
0.5 5.23+3.96 0.69+0.76 4.53 £ 3.81 0.07£0.08 1.00 £0.00
0.4 5.22+4.10 0.66 £0.75 4.55+3.93 0.07 £0.07 1.00£0.00
0.3 5.14 +3.95 0.59+0.73 4.54 + 3.82 0.06 £+ 0.07 1.00 £0.00
0.2 4.75+3.42 0.50+0.66 4.25+3.33 0.05+0.07 1.00£0.00

Variance Explained = 2.75%

None 6.77 £ 6.09 3.48+2.18 2.59+4.04 0.35+0.22 1.00£0.00
0.9 7.89+6.41 3.99+2.19 3.50+4.51 0.40+0.22 1.00+0.00
0.8 7.64 £6.28 3.91+2.16 341+4.51 0.39+0.22 1.00£0.00
0.7 7.63 +£5.95 3.88+2.09 3.52+4.34 0.39+0.21 1.00+0.00
0.6 7.39+£5.90 3.71+£2.07 3.56+4.30 0.37+0.21 1.00£0.00
0.5 6.74 £ 5.35 3.39+1.93 3.29+3.99 0.34+0.19 1.00+0.00
0.4 6.53 +5.05 3.08+1.86 3.43+3.79 0.31+0.19 1.00+0.00
0.3 6.03+4.71 2.66+1.62 3.37+3.73 0.27+0.16  1.00 £0.00
0.2 5.75+4.75 2.24+1.49 3.51+3.98 0.22 £0.15 1.00£0.00

Variance Explained = 5.5%

None 18.37+9.45 7.97+2.37 7.88+6.91 0.80+0.24 1.00+0.00
0.9 20.58 £ 9.81 8.44 +1.97 10.63 + 8.06 0.84 £ 0.20 1.00 £ 0.00
0.8 20.15+9.79 831+2.02 10.64+8.10 0.83+0.20 1.00+0.00
0.7 19.48 +9.74 8.12+2.12 10.45 + 8.03 0.81+0.21 1.00 £ 0.00
0.6 17.89+9.33 7.71+2.24 9.58 +7.53 0.77+0.22 1.00+0.00
0.5 16.35+9.12 7.13+2.41 8.92 +7.30 0.71+£0.24 1.00 £ 0.00
0.4 14.19+8.55 6.13+2.41 7.94 +6.84 0.61+0.24 1.00+0.00
0.3 12.28 + 8.03 5.00+2.19 7.26 £ 6.53 0.50+0.22 1.00 £ 0.00
0.2 10.26+7.16  3.94+2.06 6.32 +5.80 0.39+0.21 1.00+0.00

196



Both repeated CV and BIC methods showed variations in the mean number of true and
false positive SNPs selected as well as the number of SNPs in the final model as the
pruning threshold changes. The permutation method however showed a stable mean
and S.D. estimate in each scenario regardless of the LD pruning threshold that was
used (Table 7.9 and Table 7.10). This suggests that there is little or no effect of pruning
if the permutation method is used for tuning parameter selection. The permutation
method however selected sparser models that both repeated CV and BIC methods and

therefore a lower number of true and false positives were selected.
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Table 7.9 Mean and standard deviation results for LD pruning using the permutation method for tuning parameter selection for differing

sample sizes with the percentage of variance explained = 2.75%

t::::;:)? p No. of SNPs after pruning N(s)(;_-I: fcfé\ldPs p::i;i(\)lfetsr:‘:’s pg;'ﬁ(‘)’fef::: ss Sensitivity Specificity
N = 250
None 20000.00 + 0.00 2.13+1.50 0.87 £0.86 1.13+1.16 0.09 £0.09 1.00 £0.00
0.9 14992.78 £ 23.33 2.16 £1.51 0.90 £ 0.88 1.14+1.17 0.09 £ 0.09 1.00 £ 0.00
0.8 13271.68 £ 24.81 2.17 +£1.58 0.91+£0.88 1.13+1.23 0.09 £0.09 1.00 £0.00
0.7 11619.73 £ 25.63 2.14 £1.56 0.89 £ 0.89 1.12+1.17 0.09 £ 0.09 1.00 £ 0.00
0.6 10055.15 £ 25.55 2.17+1.52 0.89+0.88 1.13+1.18 0.09 £0.09 1.00 £0.00
0.5 8589.57 £ 22.20 2.17 £1.55 0.88 £ 0.87 1.14 £1.19 0.09 £ 0.09 1.00 £ 0.00
0.4 7214.89 £ 23.30 2.17+1.55 0.90+0.88 1.14+1.19 0.09 £0.09 1.00 £0.00
0.3 5894.42 + 19.67 2.20+1.55 0.90 + 0.89 1.16 £ 1.20 0.09 £ 0.09 1.00 £ 0.00
0.2 4586.50 + 19.64 2.18+1.52 0.89 £0.87 1.13+1.17 0.09 £0.09 1.00 £0.00
N =500

None 20000.00 + 0.00 594 +2.31 3.80+1.43 1.37+1.32 0.38+0.14 1.00 £0.00
0.9 15041.80 £ 18.78 5.93+2.37 3.79+£1.46 1.35+1.32 0.38 £ 0.15 1.00 £ 0.00
0.8 13329.33+20.41 5.89+2.29 3.79+1.43 1.32+1.27 0.38+0.14 1.00 £0.00
0.7 11666.30 £ 20.94 5.94 +£2.34 3.79+£1.46 1.36 £+ 1.32 0.38 £ 0.15 1.00 £ 0.00
0.6 10092.29 £ 22.06 5971234 3.82+1.43 1.36+1.30 0.38+0.14 1.00 £0.00
0.5 8619.05 + 19.98 5.92 +2.37 3.81+1.47 1.35+1.33 0.38 £0.15 1.00 £0.00
04 7243.81 £21.98 5.99 +£2.37 3.81+1.44 1.37+1.31 0.38+0.14 1.00 £0.00
0.3 5920.86 + 16.83 5.94+2.34 3.80+1.47 1.34+1.31 0.38 £ 0.15 1.00 £ 0.00
0.2 4616.83 + 18.60 5.97+2.35 3.81+1.44 1.37+1.29 0.38+0.14 1.00 £ 0.00
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None
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

20000.00 + 0.00
15063.67 £ 15.55
13358.90 + 16.64
11688.27 £ 16.63
10110.87 £ 20.92
8631.07 + 15.87
7254.88 + 20.37
5934.77 + 15.06
4631.62 +£17.96

12.25+2.25
12.30+2.34
12.28 +2.25
12.21 +£2.28
12.25+2.32
12.21+2.29
12.24 £2.28
12.27 +2.31
12.26 £ 2.33

N =1,000

8.81+1.06
8.81+1.06
8.82+1.05
8.81+1.06
8.81+1.06
8.79+£1.06
8.80+1.07
8.82+1.04
8.79+1.07

1.29+1.24
1.30+1.26
1.30+1.25
1.28+1.24
1.29+1.23
1.28+1.26
1.28 £1.25
1.29+1.24
1.28 £1.25

0.88+£0.11
0.88+0.11
0.88+£0.11
0.88+0.11
0.88+£0.11
0.88+0.11
0.88+0.11
0.88+0.10
0.88+0.11

1.00 £ 0.00
1.00 £ 0.00
1.00 £ 0.00
1.00 £ 0.00
1.00 £ 0.00
1.00 £ 0.00
1.00 £ 0.00
1.00 £ 0.00
1.00 £ 0.00
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Table 7.10 Mean and standard deviation results for LD pruning using the permutation

method for tuning parameter selection for differing percentage of variance explained

with N = 500
Pruning  No. of SNPs No. o'f .true No. of false o o
threshold selected positive positive Sensitivity Specificity
SNPs SNPs
Variance Explained = 1%

None 1.53+1.38 0.43+0.63 1.05+1.15 0.04 £ 0.06 1.00 £ 0.00
0.9 1.56£1.39 0.44 £ 0.64 1.06£1.16 0.04 £ 0.06 1.00 £ 0.00
0.8 1.52+1.36 0.42 £0.62 1.04+1.14 0.04 £ 0.06 1.00 £ 0.00
0.7 1.55%+1.39 0.43+0.64 1.06 £1.15 0.04 £ 0.06 1.00 £ 0.00
0.6 1.56 +1.39 0.44 £ 0.64 1.06+1.17 0.04 £ 0.06 1.00 £ 0.00
0.5 1.54 +£1.38 0.42 +0.63 1.06 £1.13 0.04 +0.06 1.00 £ 0.00
04 1.52+1.33 0.43+£0.62 1.03+1.12 0.04 £0.06 1.00 £ 0.00
0.3 1.54 +£1.36 0.44 +0.63 1.04+£1.13 0.04 +0.06 1.00 £ 0.00
0.2 1.60+1.43 0.45 +£0.66 1.09+1.16 0.04 £0.07 1.00 £ 0.00

Variance Explained = 2.75%

None 5941231 3.80+1.43 1.37+£1.32 0.38+0.14 1.00 £ 0.00
0.9 5.93+2.37 3.79+1.46 1.35+1.32 0.38 £0.15 1.00 £ 0.00
0.8 5.89+2.29 3.79+1.43 1.32+1.27 0.38+0.14 1.00 £ 0.00
0.7 5.94+2.34 3.79+1.46 1.36 £1.32 0.38 £0.15 1.00 £ 0.00
0.6 5971234 3.82+1.43 1.36+1.30 0.38+0.14 1.00 £ 0.00
0.5 5.92 +2.37 3.81+1.47 1.35+1.33 0.38 £0.15 1.00 £ 0.00
04 5.99 +£2.37 3.81+1.44 1.37+1.31 0.38+0.14 1.00 £ 0.00
0.3 5.94+2.34 3.80+1.47 1.34+1.31 0.38 £0.15 1.00 £ 0.00
0.2 5.97+2.35 3.81+1.44 1.37+£1.29 0.38+0.14 1.00 £ 0.00

Variance Explained = 5.5%

None 9.28+£2.44 6.66 £1.43 1.13+1.23 0.67+0.14 1.00 £ 0.00
0.9 9.33+2.41 6.69 +1.43 1.14+1.21 0.67+0.14 1.00 £ 0.00
0.8 9.31+2.43 6.68+£1.42 1.11+1.20 0.67+0.14 1.00 £ 0.00
0.7 9.34+2.43 6.69 + 1.45 1.16 £1.21 0.67+0.14 1.00 £ 0.00
0.6 9.35+2.44 6.70+1.42 1.12+1.20 0.67+0.14 1.00 £ 0.00
0.5 9.32+2.46 6.68 +1.43 1.13+1.23 0.67+0.14 1.00 £ 0.00
04 9.34+£2.38 6.69+1.41 1.14+1.22 0.67+0.14 1.00 £ 0.00
0.3 9.35+2.41 6.70 + 1.42 1.15+1.24 0.67+0.14 1.00 £ 0.00
0.2 9.30+2.43 6.68 £1.43 1.13+1.20 0.67+0.14 1.00 £ 0.00
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7.4.2. P-value Pruning

The results for P-value pruning using repeated CV for the tuning parameter selection
are shown in Table 7.11 and Table 7.12. Like the results for LD pruning, the results
show that a large number of false positives were selected for P-value pruning.
However the number of false positives selected was considerably greater for P-value
pruning compared to LD pruning, leading to a lower specificity rate. The increase in the
mean number of SNPs selected in a model leads to an increase in the sensitivity rate.
As CV is predominantly used for model prediction, it is unsurprising that a large
number of SNPs is selected. Pruning by P-value will produce a dataset of the most
significant SNPs without regard of LD and therefore would over-select models to a
greater extent. Pruning by LD would at least remove a number of SNPs in LD with

causal SNP which P-value pruning would not.
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Table 7.11 Mean and standard deviation results for P-value pruning using repeated Cross-validation for tuning parameter selection for differing

sample sizes with the percentage of variance explained = 2.75%

t:::::;? p No. (:Jfriﬁ:’:gafter No. of SNPs selected p::i;ci(\)lfatsr:is No. of f:::ssposmve Sensitivity Specificity
N = 250
None 20000.00 £ 0.00 34.15+33.93 2.95+2.06 30.31+32.01 0.29+0.21 1.00 £ 0.00
0.2 4240.82 + 215.10 56.14 £ 82.12 3.18 +2.16 51.93 + 80.37 0.32+£0.22 0.99 £ 0.02
0.18 3836.78 £ 208.17 67.94 + 95.92 3.26£2.20 63.56 £+ 93.98 0.33+£0.22 0.98 £0.02
0.16 3430.12 £199.71 94.12 £ 119.39 3.44 £2.25 89.41+117.17 0.34+£0.23 0.97 £0.03
0.14 3022.39 £190.14 152.41 +141.17 3.91+2.27 146.59 + 138.73 0.39+0.23 0.95 +0.05
0.12 2612.69 £ 179.20 234.39 £ 126.73 4.44 £ 2.06 227.40 £ 124.94 0.44 £0.21 0.91 £ 0.05
0.10 2200.74 £164.71 298.39 £+ 53.58 4.84 +1.66 291.02 £52.99 0.48 +£0.17 0.87 £0.03
0.08 1783.59 + 149.36 299.57 £ 13.83 4,70 £1.58 292.50 £ 13.83 0.47 £0.16 0.83 £0.01
0.06 1362.86 + 129.83 277.82 +16.47 4.38 +1.59 271.38 +16.25 0.44 +0.16 0.80 £ 0.02
0.04 934.28 £ 104.45 233.61 + 18.84 4.48 + 1.62 227.39 £ 18.69 0.45 +£0.16 0.75 £0.02
0.02 494.68 + 70.89 168.62 + 14.87 4.81+1.61 161.95 + 14.79 0.48 +£0.16 0.66 £ 0.03
N =500

None 20000.00 + 0.00 78.18 + 32.15 8.32+1.36 66.78 + 31.25 0.83+0.14 1.00 £ 0.00
0.2 4465.04 + 217.16 135.49 + 149.13 8.29+1.35 123.95 + 148.96 0.83+£0.13 0.97 £0.03
0.18 4055.86 +210.67 183.34 + 184.65 8.18 +1.40 171.79 £ 184.67 0.82+0.14 0.96 +0.05
0.16 3644.21 +202.70 249.90 £ 202.72 8.07 £1.45 238.39 + 202.95 0.81£0.15 0.93 £ 0.06
0.14 3229.57 £193.26 328.62 +187.21 7.88+£1.49 317.26 £+ 187.60 0.79+£0.15 0.90 £ 0.06
0.12 2809.99 + 181.02 387.15+135.91 7.72+£1.48 375.99 + 136.19 0.77 £0.15 0.87 £0.05
0.10 2385.39 £+ 167.49 401.91 +79.41 7.67 £1.45 390.80 + 79.71 0.77+£0.14 0.83+0.04
0.08 1954.96 + 150.16 386.80 + 31.81 7.76 £1.38 375.54 £ 32.14 0.78 £0.14 0.81 £0.02
0.06 1516.37 £ 131.59 351.01 + 18.58 7.96 £1.32 339.42 +18.92 0.80+0.13 0.77 £0.02
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0.04
0.02

None
0.2
0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02

1065.22 +£107.50
592.66 + 75.57

20000.00 + 0.00
4835.41 + 221.45
4420.08 + 216.65
3999.41 + 208.94
3571.95 + 200.65
3137.60 + 191.64
2694.61 +181.44
2242.02 +165.49
1774.57 £ 146.65
1282.82 +£122.97

755.97 + 88.98

299.95+17.66
221.39+16.72

91.83 £28.20

98.46 +£42.31

101.49 +50.59
110.50 +71.87
130.96 £ 106.70
192.92 +167.98
304.33 +192.06
410.76 £ 129.95
42413 £43.71
372.09 £ 21.22
278.73 £19.55

8.16 £1.29
8.45+1.20

N =1,000

9.92 +0.33
9.92+£0.33
9.92 +0.33
9.92+£0.33
9.93+0.32
9.91+0.35
9.88 +0.38
9.85+0.41
9.84 +0.44
9.84 £0.41
9.86 +0.39

287.88 +17.89
208.63 + 16.64

76.94 + 27.83
83.53 £41.89
86.54 +50.20
95.54 £71.54
115.92 £ 106.29
177.80 + 167.63
288.98 +191.63
395.11 +129.77
408.40 + 43.54
356.16 + 21.08
262.39 £ 19.36

0.82+0.13
0.84 +£0.12

0.99 +0.03
0.99 +£0.03
0.99 +0.03
0.99 £0.03
0.99 +0.03
0.99£0.04
0.99 +0.04
0.98 £0.04
0.98 + 0.04
0.98 £0.04
0.99 +0.04

0.73£0.02
0.64 +£0.03

1.00 +0.00
0.98 £0.01
0.98 £0.01
0.98 £0.02
0.97 £0.03
0.94 £0.05
0.89 +0.07
0.82 £0.06
0.77 £0.03
0.72 £0.02
0.65+0.03
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Table 7.12 Mean and standard deviation results for P-value pruning using repeated Cross-validation for tuning parameter selection for differing

percentage of variance explained with N = 500

t:::::;? d No. of SNPs selected p::i;ci(\)lfatsr:is No. of false positive SNPs Sensitivity Specificity
Variance Explained = 1%
None 19.57 +25.72 1.45+1.52 17.83 +24.42 0.15+0.15 1.00£0.00
0.2 69.68 + 157.51 1.70+£1.70 67.56 £ 156.27 0.17 £0.17 0.98 £ 0.04
0.18 117.51 £ 203.78 1.92+1.78 115.05 + 202.32 0.19+0.18 0.97 £0.05
0.16 214.21 +237.91 2.44 £1.89 211.03 +236.21 0.24+£0.19 0.94 £ 0.07
0.14 315.20+£219.49 2.95+1.89 311.19+217.94 0.29+0.19 0.90+£0.07
0.12 386.41 £ 149.64 3.53+1.71 381.72 £ 148.65 0.35+0.17 0.85 + 0.06
0.1 405.27 £ 69.37 3.86+1.55 400.22 + 68.92 0.39+0.16 0.81+0.03
0.08 382.49 £ 22.03 3.98 +1.57 377.24 £ 21.97 0.40+0.16 0.78 £ 0.02
0.06 341.84+17.51 4.05+1.56 336.46£17.51 0.41+0.16 0.74 £0.02
0.04 286.67 £17.19 4.16 £ 1.52 281.18 +17.13 0.42 £0.15 0.68 £0.03
0.02 200.89 +17.13 4.12 +1.46 195.40 + 16.86 0.41 +0.15 0.57 £0.04
Variance Explained = 2.75%

None 78.18 +32.15 8.32+1.36 66.78 £ 31.25 0.83+0.14 1.00 £ 0.00
0.2 135.49 + 149.13 8.29+1.35 123.95 + 148.96 0.83+£0.13 0.97 £0.03
0.18 183.34 + 184.65 8.18 +1.40 171.79 + 184.67 0.82+0.14 0.96 +0.05
0.16 249.90 £ 202.72 8.07 £1.45 238.39 + 202.95 0.81 £0.15 0.93 £0.06
0.14 328.62 +187.21 7.88+1.49 317.26 + 187.60 0.79 +0.15 0.90 £ 0.06
0.12 387.15 £ 135.91 7.72 £ 1.48 375.99 £ 136.19 0.77 £0.15 0.87 £ 0.05
0.1 401.91+£79.41 7.67 £1.45 390.80£79.71 0.77+£0.14 0.83+0.04
0.08 386.80 £ 31.81 7.76 £ 1.38 375.54 £ 32.14 0.78+0.14 0.81 +£0.02
0.06 351.01 +18.58 7.96 +1.32 339.42 +18.92 0.80+0.13 0.77 £0.02
0.04 299.95 £ 17.66 8.16 +1.29 287.88 £17.89 0.82 £0.13 0.73 £0.02
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0.02

None
0.2
0.18
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02

221.39+16.72

96.51 £ 29.61
131.68 +99.80
156.45 + 127.77
197.22 +153.21
252.31 +164.58
314.41 + 150.63
351.50+112.48
362.63 +62.97
344.43 + 26.40
299.99 + 18.30
226.60 + 16.91

8.45+1.20

208.63 + 16.64

Variance Explained = 5.5%

9.81+0.48
9.80 +0.49
9.78 £0.53
9.72 £ 0.63
9.62+0.74
9.47 +0.88
9.38+0.91
9.36 £ 0.89
9.42 £0.83
9.47 £0.77
9.60 £ 0.67

81.70 £ 29.47
116.80 £ 99.78
141.52 +127.82
182.07 + 153.27
237.28 +164.79
299.57 + 150.95
336.81+112.93
348.01 +63.40
329.65 + 26.84
284.84 + 18.58
211.03+16.91

0.84 +£0.12

0.98 £0.05
0.98 + 0.05
0.98 £0.05
0.97 £ 0.06
0.96 £ 0.07
0.95 +0.09
0.94 +£0.09
0.94 +0.09
0.94 £0.08
0.95+0.08
0.96 £0.07

0.64 £0.03

1.00 £ 0.00
0.97 £ 0.02
0.97 £0.03
0.95+0.04
0.93 £0.05
0.90 +0.05
0.87 £0.05
0.83+0.03
0.80 £0.02
0.75+0.02
0.68 £0.03
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Table 7.13 and Table 7.14 show results for variable selection by BIC using P-value
pruning. Although it is difficult to compare results with the LD pruning method, as the
pruned subset contained a different number and combination of SNPs, the results
showed a similar pattern to the LD pruning results. The BIC method produced similar
sized models with higher specificity rate than the repeated CV method. The mean
number of SNPs selected and sensitivity rate again increased slightly in models that
were pruned with a low pruning threshold but decreases as the dataset becomes
heavily pruned. The two high powered scenarios (N = 1,000 and %Var = 5.5%) show the
selection of true positives to be consistent regardless of the P-value pruning threshold
whilst the number of false positives decreased, suggesting that this tuning parameter

method may work well with a large sample size when very heavy pruning is required.

Results for the permutation method (Table 7.15 and Table 7.16) also show the same
patterns to the LD pruning method. In fact the sensitivity and specificity rates as well
as the mean numbers of SNPs selected were nearly the same as the LD pruning
method (Table 7.9 and Table 7.10) and did not vary much with across different pruning
threshold.
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Table 7.13 Mean and standard deviation results for P-value pruning using BIC for tuning parameter selection for differing sample sizes with the

percentage of variance explained = 2.75%

t:::::;? d No. of SNPs after pruning No. of SNPs selected pgs?i;i?/fet;;is No. of f::\s;ssposulve Sensitivity Specificity
N =250
None 20000.00 £ 0.00 8.81+6.73 1.82+1.20 6.63+6.19 0.18 £0.12 1.00 £ 0.00
0.2 4240.82 £ 215.10 9.49+7.31 1.88+1.23 7.20+6.70 0.19+0.12 1.00 £ 0.00
0.18 3836.78 £ 208.17 9.31+7.20 1.88 +£+1.23 7.04 £6.61 0.19+0.12 1.00 £ 0.00
0.16 3430.12 £ 199.71 9.41+7.31 1.89+1.24 7.17 £6.70 0.19+0.12 1.00 £ 0.00
0.14 3022.39 £190.14 9.69+7.29 1.91+1.24 7.39+6.75 0.19+0.12 1.00 £ 0.00
0.12 2612.69 + 179.20 10.06 £ 7.66 1.95+1.27 7.72 £6.99 0.19+0.13 1.00 £ 0.00
0.10 2200.74 £164.71 9.91+7.61 1.93+1.24 7.59 £ 6.98 0.19+0.12 1.00£0.00
0.08 1783.59 + 149.36 10.25+7.94 1.97+1.25 7.86+7.31 0.20+0.12 1.00 £ 0.00
0.06 1362.86 + 129.83 10.52 £+ 8.01 1.98 +1.26 8.13+7.38 0.20+0.13 0.99 +0.01
0.04 934.28 £ 104.45 11.72 £ 8.99 2.07£1.28 9.21 £ 8.36 0.21+£0.13 0.99+£0.01
0.02 494.68 + 70.89 12.88 +12.03 2.00+1.43 10.46 + 11.04 0.20+0.14 0.98 +0.02
N =500

None 20000.00 + 0.00 6.77 £ 6.09 3.48+2.18 2.59+4.04 0.35+0.22 1.00 £ 0.00
0.2 4465.04 + 217.16 7.33£6.09 3.66+£2.10 2.891+4.12 0.37+£0.21 1.00 £ 0.00
0.18 4055.86 +210.67 7.26 +£5.96 3.66+2.11 2.83+3.91 0.37+0.21 1.00 £ 0.00
0.16 3644.21 +202.70 7.31+6.14 3.68 £ 2.06 2.88+4.27 0.37+£0.21 1.00 £ 0.00
0.14 3229.57 +193.26 7.37 £6.37 3.69+2.12 2.91+4.39 0.37+0.21 1.00 £ 0.00
0.12 2809.99 + 181.02 7.06 £5.93 3.60 £ 2.07 2.71+£4.00 0.36 £0.21 1.00 £ 0.00
0.10 2385.39+ 167.49 6.79 +5.88 3.50+2.10 2.55+3.84 0.35+0.21 1.00 £ 0.00
0.08 1954.96 + 150.16 6.23+5.72 3.32+2.09 2.27 £3.77 0.33+£0.21 1.00 £ 0.00
0.06 1516.37 + 131.59 4.97 £4.72 2.91+2.03 1.54 +2.85 0.29+0.20 1.00 £ 0.00
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0.04
0.02

None
0.2
0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02

1065.22 +£107.50
592.66 + 75.57

20000.00 + 0.00
4835.41 + 221.45
4420.08 + 216.65
3999.41 + 208.94
3571.95 + 200.65
3137.60 + 191.64
2694.61 +181.44
2242.02 +165.49
1774.57 £ 146.65
1282.82 +£122.97

755.97 + 88.98

3.51+3.41
2.80+3.13

15.94 +4.59
1591+4.51
15.90 + 4.49
15.87 £4.52
15.82 £4.49
15.78 £ 4.44
15.77 £ 4.47
15.74+4.44
15.74 £ 4.44
15.73+4.43
15.58 £ 4.37

2.38£2.00
2.06 £ 2.06

N =1,000

9.29+1.26
9.29+1.26
9.28 £1.26
9.28£1.26
9.28 +1.27
9.28£1.26
9.28 +1.27
9.28 £1.27
9.28 +1.27
9.28£1.26
9.25+1.32

0.80+£1.45
0.55+1.14

4.19+3.21
4.19+3.14
417 +3.13
416 £3.13
4.14 £3.12
4.09 +£3.07
4.08 +3.08
4.07 £3.07
4.07 £3.07
4.07 £3.07
3.95+3.00

0.24 £0.20
0.21+0.21

0.93+0.13
0.93+0.13
0.93+0.13
0.93+0.13
0.93+0.13
0.93+0.13
0.93+0.13
0.93+0.13
0.93+0.13
0.93+0.13
0.92+0.13

1.00 £ 0.00
1.00 +0.00

1.00 +0.00
1.00 £ 0.00
1.00 +0.00
1.00 £ 0.00
1.00 £0.00
1.00 £ 0.00
1.00 £0.00
1.00 £ 0.00
1.00 £0.00
1.00 £ 0.00
0.99 +0.00
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Table 7.14 Mean and standard deviation results for P-value pruning using BIC for

tuning parameter selection for differing percentage of variance explained with N = 500

. No. of true  No. of false
Pruning No. of SNPs oo - e P
threshold selected positive positive Sensitivity Specificity
SNPs SNPs
Variance Explained = 1%
None 4,12 +£3.79 0.73+£0.80 3.28 +3.50 0.07 £0.08 1.00 +0.00
0.2 5.41+4.47 0.85+0.85 4.43+423 0.08+0.09 1.00%0.00
0.18 5.56 +4.68 0.88 £ 0.87 454 +£4.42 0.09 £0.09 1.00£0.00
0.16 5.55 +4.67 0.87+0.87 455440 0.09+0.09 1.00+0.00
0.14 5.56+4.84 0.87+0.84 4,57 £4.60 0.09 £0.08 1.00£0.00
0.12 5.64 + 4.89 0.88+0.85 4.63+4.62 0.09+0.09 1.00+0.00
0.1 5.66 +5.15 0.87+0.89 466+4.81 0.09+0.09 1.00+0.00
0.08 4.63 £4.80 0.74+0.80 3.77+450 0.07+0.08 1.00+0.00
0.06 2.98 +4.08 0.56+0.72 2.33+3.79 0.06+0.07 1.00+0.00
0.04 1.21+£1.28 0.32+0.53 0.87%+1.13 0.03+0.05 1.00%0.00
0.02 0.53+0.64 0.19+0.43 0.34+0.53 0.02+0.04 1.00%0.00
Variance Explained = 2.75%
None 6.77 £6.09 3.48+2.18 2.59+4.04 0.35+0.22 1.00£0.00
0.2 7.33£6.09 3.66+2.10 2.89+4.12 0.37+0.21 1.00%0.00
0.18 7.26 £5.96 3.66+2.11 2.83+391 0.37+£0.21 1.00£0.00
0.16 7.31+6.14 3.68+2.06 2.88+4.27 0.37+0.21 1.00%0.00
0.14 7.37 £6.37 3.69+2.12 2.91+4.39 0.37+£0.21 1.00£0.00
0.12 7.06 £ 5.93 3.60+2.07 2.71+4.00 0.36+0.21 1.00%0.00
0.1 6.79 £ 5.88 3.50+2.10 2.55+3.84 0.35+0.21 1.00£0.00
0.08 6.23 +5.72 3.32+2.09 2.27 +3.77 0.33+0.21 1.00 £ 0.00
0.06 497 +£4.72 291+2.03 154+285 0.29+0.20 1.00+0.00
0.04 3.51+3.41 2.38 +2.00 0.80 £ 1.45 0.24 £ 0.20 1.00 £ 0.00
0.02 2.80+3.13 206+2.06 0.55+1.14 0.21+0.21 1.00%0.00
Variance Explained = 5.5%

None 18.37 £9.45 797+237 7.88+691 0.80+0.24 1.00+0.00
0.2 19.03 £9.81 8.04+2.34 8.37+7.38 0.80 +£0.23 1.00 £ 0.00
0.18 19.03+9.79 8.05+2.32 833+7.22 0.81+0.23 1.00 £ 0.00
0.16 18.83 £ 9.60 8.03+£2.30 8.18+7.11 0.80 +£0.23 1.00 £ 0.00
0.14 18.80+9.71 7.99+233 8.16%7.17 0.80+0.23 1.00 £ 0.00
0.12 18.36 £9.45 7.97 £2.35 7.81+£6.93 0.80+0.24 1.00 £ 0.00
0.1 17.87 +£9.28 7.91+239 7.44+6.75 0.79+0.24 1.00%0.00
0.08 16.50 + 8.68 7.76+245 6.37+598 0.78+0.25 1.00%0.00
0.06 15.17 £ 8.27 7.58+256 540+550 0.76+0.26 1.00%0.00
0.04 13.01 £6.90 7.30+2.73 3.90+3.93 0.73+£0.27 1.00 £ 0.00
0.02 12.01£6.39 7.16+2.84 331+335 0.72+0.28 0.99+0.01
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Table 7.15 Mean and standard deviation results for P-value pruning using the permutation method for tuning parameter selection for differing

sample sizes with the percentage of variance explained = 2.75%

Pruning threshold No. of SNPs after No. of SNPs No. of true No. of false Sensitivity Specificity
pruning selected positive SNPs positive SNPS
N =250
None 20000.00 + 0.00 2.13+1.50 0.87 £ 0.86 1.13+1.16 0.09 £ 0.09 1.00 £ 0.00
0.2 4240.82 + 215.10 2,22 +1.54 0.91+0.88 1.16 £1.20 0.09 £ 0.09 1.00 £ 0.00
0.18 3836.78 £ 208.17 2.18+1.53 0.91+0.87 1.14+1.19 0.09 £ 0.09 1.00£0.00
0.16 3430.12 £ 199.71 2.14 +£1.49 0.89 £ 0.86 1.11+1.13 0.09 £ 0.09 1.00 £ 0.00
0.14 3022.39+£190.14 2.20+1.56 0.89 +0.87 1.16£1.23 0.09 £ 0.09 1.00£0.00
0.12 2612.69 + 179.20 2.15+1.51 0.89 £ 0.88 1.13+1.18 0.09 £ 0.09 1.00 £ 0.00
0.1 2200.74 £ 164.71 2.11+1.54 0.88 £ 0.88 1.09+1.16 0.09 £ 0.09 1.00 £ 0.00
0.08 1783.59 + 149.36 2.16 £1.53 0.89 £ 0.88 1.13+1.18 0.09 £ 0.09 1.00 £ 0.00
0.06 1362.86 + 129.83 2.17 £1.53 0.89 £ 0.87 1.14+1.18 0.09 £ 0.09 1.00 £ 0.00
0.04 934.28 + 104.45 2.20+1.55 0.90 £ 0.87 1.14+£1.20 0.09 £ 0.09 1.00 £ 0.00
0.02 494.68 + 70.89 2.17+£1.54 0.89 £ 0.88 1.14+1.16 0.09 £ 0.09 1.00 £ 0.00
N =500

None 20000.00 + 0.00 5.94+2.31 3.80+1.43 1.37+1.32 0.38+0.14 1.00 £ 0.00
0.2 4465.04 +217.16 5.91+2.32 3.79+1.44 1.35+1.29 0.38+0.14 1.00 £ 0.00
0.18 4055.86 + 210.67 5.92+2.41 3.79+1.46 1.35+1.33 0.38 £0.15 1.00 £ 0.00
0.16 3644.21 + 202.70 5.95+2.36 3.81+1.45 1.34+1.34 0.38+0.14 1.00 £ 0.00
0.14 3229.57 £193.26 5.94 £2.32 3.80+1.44 1.35+1.30 0.38+0.14 1.00 £ 0.00
0.12 2809.99 + 181.02 5.96 £ 2.32 3.82+1.43 1.37+1.30 0.38+0.14 1.00 £ 0.00
0.1 2385.39 + 167.49 5.95+2.35 3.80+1.45 1.33+1.28 0.38+0.14 1.00 £ 0.00
0.08 1954.96 + 150.16 5.87 +2.27 3.77 £1.43 1.33+1.27 0.38+0.14 1.00 £ 0.00
0.06 1516.37 + 131.59 5.92+2.35 3.81+1.47 1.33+1.28 0.38 £0.15 1.00 £ 0.00
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0.04
0.02

None
0.2
0.18
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02

1065.22 £107.50
592.66 + 75.57

20000.00 + 0.00
4835.41 + 221.45
4420.08 + 216.65
3999.41 + 208.94
3571.95 + 200.65
3137.60 + 191.64
2694.61 +181.44
2242.02 +165.49
1774.57 £ 146.65
1282.82 +£122.97

755.97 + 88.98

5.95+2.35
5.92+2.33

12.25+2.25
12.32+2.33
12.28 +2.41
12.25+2.32
12.24 £ 2.29
12.22+2.31
12.25+2.28
12.26 +2.28
12.25+2.30
12.24 +2.31
12.27 £2.27

3.80+1.45
3.80+1.44
N =1,000
8.81+1.06
8.82+£1.05
8.81+1.06
8.83+1.04
8.81+1.05
8.80 £ 1.06
8.80+1.05
8.82+£1.05
8.79+1.08
8.79+1.04
8.81+1.05

1.36+1.35
1.36+1.32

1.29+1.24
1.31+1.25
1.28+1.24
1.29+1.26
1.27+1.24
1.29+1.26
1.28+1.24
1.30+1.24
1.28+1.23
1.29+1.26
1.29+1.24

0.38+0.14
0.38+0.14

0.88+£0.11
0.88+0.10
0.88+£0.11
0.88+0.10
0.88+0.11
0.88+0.11
0.88+0.11
0.88+0.10
0.88+0.11
0.88+0.10
0.88+0.10

1.00 £ 0.00
1.00 £ 0.00

1.00 +0.00
1.00 £ 0.00
1.00 +0.00
1.00 £ 0.00
1.00 £0.00
1.00 £ 0.00
1.00 £0.00
1.00 £ 0.00
1.00 £0.00
1.00 £ 0.00
1.00 £ 0.00
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Table 7.16 Mean and standard deviation results for P-value pruning using the

permutation method for tuning parameter selection for differing percentage of

variance explained with N = 500

. No. of true  No. of false
Pruning No. of SNPs . oo e -
threshold selected positive positive Sensitivity Specificity
SNPs SNPs
Variance Explained = 1%

None 153+138 043+0.63 1.05+1.15 0.04+0.06 1.00+0.00
0.2 1.54 +1.36 0.43 £0.63 1.05+1.16 0.04 £ 0.06 1.00 £ 0.00
0.18 1.55+1.38 0.44 £0.64 1.05+1.14 0.04 £0.06 1.00 £0.00
0.16 1.55+1.37 0.44 £0.64 1.05+1.16 0.04 £ 0.06 1.00 £ 0.00
0.14 155+135 043+0.63 1.06+1.12 0.04+0.06 1.00+0.00
0.12 1.54+138 0.43+0.63 1.05+1.17 0.04+0.06 1.00%0.00
0.1 1.58 £1.35 0.45+0.64 1.06+1.12 0.04 £ 0.06 1.00 £ 0.00
0.08 1.55+135 0.44+0.64 1.05+1.13 0.04+0.06 1.00%0.00
0.06 1.56+1.41 0.43+£0.63 1.06+1.16 0.04 £ 0.06 1.00 £ 0.00
0.04 1.53+1.34 0.43+0.64 1.05+1.13 0.04+0.06 1.00%0.00
0.02 1.55+1.40 0.45+0.64 1.04£1.15 0.04 £ 0.06 1.00 £ 0.00

Variance Explained = 2.75%
None 594 +231 3.80+1.43 1.37+1.32 0.38+0.14 1.00 £ 0.00
0.2 591+232 3.79+144 135+1.29 0.38+0.14 1.00+0.00
0.18 5921241 3.79t1.46 1.35+1.33 0.38+0.15 1.00 £ 0.00
0.16 595+2.36 3.81+145 134+1.34 0.38+0.14 1.00+0.00
0.14 5.94 £2.32 3.80+1.44 1.35+1.30 0.38+0.14 1.00 £ 0.00
0.12 596+2.32 3.82+143 137+130 0.38+0.14 1.00+0.00
0.1 5.95+2.35 3.80+1.45 1.33+1.28 0.38+0.14 1.00 £ 0.00
0.08 5.87+2.27 3.77+143 133+1.27 0.38%+0.14 1.00+0.00
0.06 5.92+2.35 3.81+1.47 1.33+1.28 0.38£0.15 1.00 £ 0.00
0.04 595+235 3.80+145 136+1.35 0.38+0.14 1.00+0.00
0.02 5.92+2.33 3.80+1.44 1.36+1.32 0.38+0.14 1.00 £ 0.00

Variance Explained = 5.5%
None 9.28+2.44 6.66 £1.43 1.13+1.23 0.67+0.14 1.00 £ 0.00
0.2 9.34+2.43 6.68+143 1.14+1.22 0.67+0.14 1.00+0.00
0.18 9.32+2.43 6.66 £1.42 1.14+1.22 0.67+0.14 1.00 £ 0.00
0.16 931+236 6.69+140 1.13+1.20 0.67+0.14 1.00+0.00
0.14 9.33+2.40 6.69+1.42 1.15+1.20 0.67+0.14 1.00 £ 0.00
0.12 9.33+2.41 670141 1.12+1.20 0.67+0.14 1.00+0.00
0.1 9.31+2.47 6.66 £1.43 1.14+1.21 0.67+0.14 1.00 £ 0.00
0.08 9.28+2.39 6.67+142 1.12+1.18 0.67+0.14 1.00+0.00
0.06 9.30+2.42 6.68 £1.42 1.12+1.22 0.67+0.14 1.00 £ 0.00
0.04 933+243 6.68+141 1.14+1.21 0.67+0.14 1.00+0.00
0.02 9.38+2.36 6.72+£1.40 1.14+1.22 0.67+0.14 1.00 £ 0.00
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7.4.3. LD clumping

There were some differences between the results for LD pruning and for LD clumping
when CV was used for tuning parameter selection. The mean number of SNPs selected
along with the sensitivity rate decreased as the LD pruning threshold increased, but
both the sensitivity and specificity rates increased as the LD clumping pruning
threshold increased. The LD clumping method ensures that the most statistically
significant variants remain, producing a dataset similar to that of pruning by P-value
without the SNPs in LD of the most significant SNPs. Therefore the mean number of
false positives selected was likely to lie between the values of LD pruning and P-value
pruning. As seen with the other pruning methods, the increase in power of the causal
SNPs leads to an increase to the model size and decrease in both sensitivity and

specificity rates.

The results for the BIC using LD clumping (Table 7.19 and Table 7.20) showed slightly
better results compared to the LD pruning method (Table 7.7 and Table 7.8). This is
expected as LD clumping will ensure the most statistically significant SNPs will remain
in the dataset and not be pruned. This was also illustrated when the datasets were
more heavily pruned, the mean model size and number of true positives selected
decreased using LD pruning, but there is little change using LD clumping. However the
mean number of false positive selected also increased when the dataset is more
heavily pruned by LD clumping. As seen with all the pruning methods, using the BIC the
datasets that were pruned selected a slightly higher number of SNPs than the same

dataset that was not pruned.

For all three tuning parameter selection methods the permutation selected the least
number of SNPs in each scenario however the method was not affected by both SNP
pruning method or the pruning threshold used. The results for LD clumping (Table 7.21
and Table 7.22) were again the same as the results for both LD pruning (Table 7.9 and
Table 7.10) and P-value pruning (Table 7.15 and Table 7.16).
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Table 7.17 Mean and standard deviation results for LD clumping using repeated Cross-validation for tuning parameter selection for differing

sample sizes with the percentage of variance explained = 2.75%

t::::;‘r;? p No. o:ri:;sgafter No. of SNPs selected p::i:ci(\)lfetsr;‘:’s No. of f::j s SPOSItWe Sensitivity Specificity
N = 250
None 20000.00 + 0.00 31.32+31.43 2.99 +2.07 28.13 £ 30.15 0.29+£0.21 1.00 £ 0.00
0.9 14973.03 £ 23.12 32.84 +31.93 3.04 £ 2.08 29.45 + 30.41 0.30+£0.21 1.00 £ 0.00
0.8 13219.21 £ 24.81 33.82+32.14 3.08 £ 2.06 30.43 £30.64 0.31+0.21 1.00 £ 0.00
0.7 11538.73 £ 26.19 36.65 + 34.40 3.18 £ 2.09 33.23 £ 32.98 0.32£0.21 1.00 £ 0.00
0.6 9944.99 + 26.67 39.82 +£36.36 3.31+2.09 36.38 £ 35.00 0.33+0.21 1.00 £ 0.00
0.5 8454.05 + 25.53 43.89 £ 39.58 3.39+2.10 40.47 £ 38.30 0.34+£0.21 1.00 £ 0.00
0.4 7062.36 £ 23.52 51.31+44.33 3.57+2.07 47.72 +43.14 0.36+£0.21 0.99+0.01
0.3 5729.32 +22.12 61.29 + 51.08 3.75 £ 2.05 57.54 + 50.00 0.38 £ 0.20 0.99 £ 0.01
0.2 4388.77 £+ 20.16 79.56 £ 59.70 3.96 £ 2.00 75.63 £ 58.77 0.40+£0.20 0.98 £0.01
N =500

None 20000.00 + 0.00 73.13 £30.37 8.31+1.34 61.97 £30.03 0.83+£0.13 1.00 £ 0.00
0.9 15019.94 £ 19.62 74.83 + 30.96 8.34+1.34 64.90 + 30.27 0.83+£0.13 1.00 £ 0.00
0.8 13272.66 £ 21.06 76.35+31.15 8.37+1.34 66.69 + 30.50 0.84 £0.13 0.99 £0.00
0.7 11582.75 £ 22.54 78.63 + 32.85 8.38 +1.33 69.29 + 32.25 0.84 £0.13 0.99 £ 0.00
0.6 9978.88 £ 22.15 81.41 +33.27 8.44+1.31 72.40+32.78 0.84 £0.13 0.99 £0.00
0.5 8480.43 + 23.58 85.87 £ 34.90 8.49+1.29 77.27 £ 34,53 0.85+0.13 0.99 + 0.00
0.4 7086.22 +23.19 91.00+37.42 8.41+1.29 82.55+37.10 0.84 £0.13 0.99+0.01
0.3 5755.76 £ 21.39 99.20 £ 40.40 8.32+1.30 90.87 £40.10 0.83+£0.13 0.98 £ 0.01
0.2 4416.63 £ 20.10 113.45+47.34 8.18+1.31 105.27 £47.11 0.82 £0.13 0.98 £0.01
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None
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

20000.00 + 0.00
15040.79 + 16.01
13299.53 +£17.21
11602.81 £ 19.44
9996.51 + 20.79
8489.93 + 20.96
7096.75 +21.11
5769.18 + 20.28
4429.58 + 20.11

87.69 +27.31
87.69+27.31
88.19 + 27.62
89.94 + 28.75
91.89 + 29.37
94.69 £ 29.61
99.27 +32.18
105.69 +34.20
116.76 £ 39.76

N =1,000
9.92 +0.33
9.92+£0.33
9.92 +0.33
9.92+£0.33
9.92 +0.33
9.92+0.34
9.84 +0.42
9.76 £0.51
9.66 +0.58

73.62 + 26.55
74.94 £ 27.10
76.08 +27.41
78.47 £ 28.61
81.05+29.24
84.60 + 29.57
89.37 +32.16
95.92 £ 34.18
107.10 £39.75

0.99+0.03
0.99 £0.03
0.99+0.03
0.99 £0.03
0.99+0.03
0.99 £0.03
0.98 + 0.04
0.98 £ 0.05
0.97 £ 0.06

1.00 £ 0.00
1.00 £ 0.00
0.99 +0.00
0.99 £ 0.00
0.99 +0.00
0.99 £ 0.00
0.99 + 0.00
0.98 £0.01
0.98+0.01
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Table 7.18 Mean and standard deviation results for LD clumping using repeated Cross-

validation for tuning parameter selection for differing percentage of variance

explained with N = 500

Pruning No. of SNPs No. o'f .true No. of false e e s
threshold selected positive positive SNPs Sensitivity  Specificity
SNPs
Variance Explained = 1%

1 18.67 £ 24.35 145+150 17.10+£23.13 0.15+0.16 1.00+0.00
0.9 19.89 + 25.55 1.50+£1.55 18.27+24.41 0.15+0.16 1.00+0.00
0.8 20.91+26.57 1.53+157 19.28+25.44 0.15+0.16 1.00+0.00
0.7 23.11 £ 28.25 1.63+£1.62 21.40+27.11 0.16+£0.16 1.00%0.00
0.6 25.54+30.17 1.71+1.65 23.78+29.00 0.17+0.17 1.00+0.00
0.5 29.30+33.29 1.82+1.69 27.48+32.16 0.18+0.17 1.00+0.00
04 33.67+36.88 192+1.70 31.76+35.75 0.19+0.17 1.00+0.01
0.3 41.20+4292 2.08+1.74 39.12+41.76 0.21+0.17 0.99+0.01
0.2 55.12+53.31 230%+1.77 52.82%+52.22 0.23+0.18 0.99+0.01

Variance Explained = 2.75%

1 73.13+30.37 831+134 6197+30.03 0.83+0.13 1.00+0.00
0.9 74.83+30.96 834+1.34 64.90+30.27 0.83+0.13 1.00+0.00
0.8 76.35+31.15 8371134 66.69+30.50 0.84+0.13 0.99+0.00
0.7 78.63+32.85 838+1.33 69.29+32.25 0.84+0.13 0.99+0.00
0.6 81.41+33.27 844+131 72.40%+32.78 0.84+0.13 0.99+0.00
0.5 85.87+3490 8.49+1.29 77.27+34.53 0.85+0.13 0.99+0.00
04 91.00+3742 841+1.29 82.55%+37.10 0.84%+0.13 0.99+0.01
0.3 99.20+40.40 8.32+1.30 90.87+40.10 0.83+0.13 0.98+0.01
0.2 113.45+47.34 8.18+1.31 105.27+47.11 0.82+0.13 0.98%+0.01

Variance Explained = 5.5%

1 89.98+26.89 9.81+048 76.73+t25.61 0.98+x0.05 0.99+0.00
0.9 90.90+28.11 9.81+0.48 78.53+27.99 0.98+0.05 0.99+0.00
0.8 91.96+29.32 9.82+0.48 80.09+£29.23 0.98+0.05 0.99+0.00
0.7 93.09+29.50 9.82+0.48 81.80+29.39 0.98+0.05 0.99+0.00
0.6 95.55+3143 9.821+0.48 84.86x31.37 0.98+x0.05 0.99+0.00
0.5 98.59+32.38 9.82+0.47 88.59+32.33 0.98+0.05 0.99+0.00
04 102.46+35.31 9.70£0.59 92.69+35.30 0.97+0.06 0.9910.00
0.3 108.81+37.56 9.56+0.68 99.23+37.55 0.96+0.07 0.98+0.01
0.2 120.73+43.14 9.39+0.79 111.24+43.01 0.94+0.08 0.97%0.01
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Table 7.19 Mean and standard deviation results for LD clumping using BIC for tuning parameter selection for differing sample sizes with the

percentage of variance explained = 2.75%

t::::;‘r;? p No. of SNPs after pruning N(s)(;_-I: fcfé\ldPs p::i:ci(\)lfetsr;‘:’s pI:sc»)i:ci(\)l Lf::jss Sensitivity Specificity
N = 250
None 20000.00 + 0.00 9.69+7.53 2.00+1.28 7.54 £ 6.98 0.20+£0.13 1.00 £0.00
0.9 14973.03 £ 23.12 9.77 £ 7.44 1.99 £ 1.29 7.63£6.84 0.20+£0.13 1.00 £ 0.00
0.8 13219.21 £ 24.81 9.90+7.28 1.99+1.28 7.77 £6.73 0.20+£0.13 1.00 £0.00
0.7 11538.73 £ 26.19 10.04 £ 7.26 2.02+£1.29 7.92+6.74 0.20+£0.13 1.00 £ 0.00
0.6 9944 .99 * 26.67 9.60+6.93 2.02+1.27 7.55+6.46 0.20+£0.13 1.00 £0.00
0.5 8454.05 + 25.53 9.67 £ 6.87 2.02+£1.28 7.64 £ 6.35 0.20+£0.13 1.00 £ 0.00
0.4 7062.36 £ 23.52 9.82 £6.99 2.05+1.29 7.77 £6.47 0.20+£0.13 1.00 £0.00
0.3 5729.32 £ 22.12 9.61 +6.84 2.01+£1.27 7.60 £6.37 0.20+£0.13 1.00 £ 0.00
0.2 4388.77 +20.16 9.56 £6.93 1.99+1.29 7.57 £6.43 0.20+£0.13 1.00 £ 0.00
500

None 20000.00 + 0.00 7.90+6.63 4.02 £2.25 3.27 +4.57 0.40+£0.23 1.00 £0.00
0.9 15019.94 £ 19.62 8.02 +6.62 4.08 +2.26 3.55+4.76 0.41 £0.23 1.00 £ 0.00
0.8 13272.66 £ 21.06 8.30+6.80 4,17 £2.26 3.84+4.97 0.42 £0.23 1.00 £ 0.00
0.7 11582.75 £ 22.54 8.36 £ 6.69 4.23+2.27 3.91+£4.88 0.42 £0.23 1.00 £ 0.00
0.6 9978.88 £ 22.15 8.79+7.18 4.36+2.31 4,29 £5.46 0.44 £0.23 1.00 £0.00
0.5 8480.43 + 23.58 8.79 £ 6.89 4.40%2.29 4.36+5.24 0.44 £0.23 1.00 £0.00
0.4 7086.22 £ 23.19 8.8516.79 4.45 +2.27 4.40+5.18 0.44 £0.23 1.00 £0.00
0.3 5755.76 £ 21.39 8.93+6.87 4.45 £ 2.29 4.49 £5.23 0.44 £0.23 1.00 £0.00
0.2 4416.63 £ 20.10 9.03 £6.83 4.46 £2.27 458 £5.16 0.45+£0.23 1.00 £ 0.00
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None
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

20000.00 *+ 0.00
15040.79 + 16.01
13299.53 +£17.21
11602.81 £+ 19.44
9996.51 + 20.79
8489.93 + 20.96
7096.75 +21.11
5769.18 + 20.28
4429.58 + 20.11

15.80+4.21
15.50 £ 4.18
15.26 £ 4.16
14.98 +4.08
14.87 +4.02
14.73 £ 3.97
14.59 £ 3.75
14.57 +3.92
14.40£3.75

N =1,000
9.36+1.11
9.37+1.10
9.39+1.07
9.40 £1.07
9.41+1.04
9.44 +£1.00
9.39+0.96
9.34+£0.96
9.27 £0.98

4.49 +3.23
4.63 £3.27
4.75+3.34
4.84 +3.38
5.03+3.43
5.22£3.54
5.19 +3.37
5.24 £3.59
5.14+3.44

0.94+0.11
0.94+£0.11
0.94+0.11
0.94+£0.11
0.94 +£0.10
0.94 +£0.10
0.94 +0.10
0.93+0.10
0.93+0.10

1.00 £ 0.00
1.00 £ 0.00
1.00 £ 0.00
1.00 £ 0.00
1.00 £ 0.00
1.00 £ 0.00
1.00 £ 0.00
1.00 £ 0.00
1.00 £ 0.00
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Table 7.20 Mean and standard deviation results for LD clumping using BIC for tuning

parameter selection for differing percentage of variance explained with N = 500

Pruning  No. of SNPs No. o.f'true No. of false . o
threshold selected positive positive SNPs Sensitivity Specificity
SNPs
Variance Explained = 1%

None 4.83 +3.75 0.84 +0.84 3.98 +3.60 0.09+0.09 1.00+0.00
0.9 5.08 + 3.83 0.86 + 0.85 4.17 £ 3.62 0.09+0.09 1.00+0.00
0.8 5.24 +3.89 0.88 +0.85 4.32 +3.68 0.09+0.09 1.00+0.00
0.7 5.20+3.89 0.89+0.84 4.29 + 3.69 0.09+0.08 1.00+0.00
0.6 5.34+4.19 0.91+0.86 4,42 +£4.00 0.09 £0.09 1.00£0.00
0.5 5.13+3.65 0.90 £ 0.86 4.23 £ 3.45 0.09+0.09 1.00+0.00
0.4 5.23+4.02 0.89 +0.87 4.34 +3.81 0.09+0.09 1.00+0.00
0.3 5.17 +3.84 0.90 £ 0.86 4.28 + 3.60 0.09+0.09 1.00+0.00
0.2 4.91 + 3.57 0.86 +0.84 4.06 +3.38 0.09+0.08 1.00+0.00

Variance Explained = 2.75%

None 7.90 £ 6.63 4.02+2.25 3.27+4.57 0.40+0.23 1.00£0.00
0.9 8.02 £ 6.62 4.08 £2.26 3.55+4.76 0.41+0.23 1.00+0.00
0.8 8.30+£6.80 4,17 £2.26 3.84 +4.97 0.42 +£0.23 1.00£0.00
0.7 8.36 £ 6.69 4.23+£2.27 3.91+4.88 0.42+0.23 1.00+0.00
0.6 8.79+7.18 4361231 4,29 £5.46 0.44 £0.23 1.00£0.00
0.5 8.79 £ 6.89 4.40+2.29 4.36+5.24 0.44+0.23 1.00+0.00
0.4 8.85+6.79 4.45 +2.27 440+5.18 0.44 £0.23 1.00£0.00
0.3 8.93 +6.87 4.45 +2.29 4.49 £5.23 0.44+0.23 1.00+0.00
0.2 9.03 +6.83 4.46 £2.27 458 £5.16 0.45+0.23 1.00£0.00

Variance Explained = 5.5%

None 20.18+9.35 839+190 10.03+8.07 0.84+0.19 1.00+0.00
0.9 20.70 £ 9.75 852+1.91 10.71 £ 8.10 0.85+0.19 1.00 £ 0.00
0.8 21.17+999 862+1.82 11.43+8.56 0.86+0.18 1.00+0.00
0.7 21.09 £ 9.25 8.70+£1.73 11.59 + 8.02 0.87 £0.17 1.00 £ 0.00
0.6 21.17+9.21 875+1.72 11.96+8.09 0.87+0.17 1.00+0.00
0.5 21.50+9.31 8.80+1.64 12.63 + 8.34 0.88 £0.16 1.00 £ 0.00
0.4 21.50+9.20 873+1.62 12.76+8.33 0.87+0.16 1.00+0.00
0.3 21.32 +£9.01 8.65+1.63 12.67 + 8.15 0.86 £ 0.16 1.00 £ 0.00
0.2 21.05+861 858+1.57 1247+7.83 0.86+0.16 1.00+0.00
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Table 7.21 Mean and standard deviation results for LD clumping using the permutation method for tuning parameter selection for differing

sample sizes with the percentage of variance explained = 2.75%

t::::;‘r;? p No. of SNPs after pruning N(s)(;_-I: fcfé\ldPs p::i:ci(\)lfetsr;‘:’s pI:sc»)i:ci(\)l Lf::jss Sensitivity Specificity
N = 250
None 20000.00 + 0.00 2.20+1.61 0.91+£0.88 1.13+1.20 0.09 £0.09 1.00 £0.00
0.9 14973.03 £ 23.12 2.19+£1.60 0.90 £ 0.88 1.14 £ 1.22 0.09 £ 0.09 1.00 £ 0.00
0.8 13219.21 £ 24.81 2.21+1.59 0.89+0.88 1.17+£1.23 0.09 £0.09 1.00 £0.00
0.7 11538.73 £ 26.19 2.17 £1.50 0.90 £ 0.86 1.12+£1.15 0.09 £ 0.09 1.00 £ 0.00
0.6 9944 .99 * 26.67 2.18+1.61 0.89+0.88 1.15+1.21 0.09 £0.09 1.00 £0.00
0.5 8454.05 + 25.53 2.18£1.53 0.90 £ 0.87 1.14 £1.19 0.09 £ 0.09 1.00 £ 0.00
0.4 7062.36 £ 23.52 2.17+1.54 0.89 £ 0.86 1.14+1.20 0.09 £0.09 1.00 £0.00
0.3 5729.32 £ 22.12 2.19+£1.57 0.89 £ 0.87 1.17+£1.22 0.09 £ 0.09 1.00 £ 0.00
0.2 4388.77 +20.16 2.17 £ 1.56 0.89 £0.87 1.14+£1.18 0.09 £0.09 1.00 £0.00
500

None 20000.00 + 0.00 5.93+2.40 3.80+1.43 1.37+£1.37 0.38+0.14 1.00 £0.00
0.9 15019.94 £ 19.62 5.95+2.39 3.80+1.43 1.37 £1.37 0.38+0.14 1.00 £ 0.00
0.8 13272.66 £ 21.06 5.99 +2.37 3.84+1.45 1.38+1.36 0.38 £0.15 1.00 £0.00
0.7 11582.75 £ 22.54 5.98 £ 2.33 3.82+1.45 1.37+£1.31 0.38 £ 0.15 1.00 £ 0.00
0.6 9978.88 £ 22.15 5.95+2.32 3.80+1.44 1.35+1.30 0.38+0.14 1.00 £0.00
0.5 8480.43 + 23.58 5.92 +2.32 3.80+1.46 1.33+1.26 0.38 £0.15 1.00 £0.00
0.4 7086.22 £ 23.19 5.91+2.36 3.78£+1.48 1.33+£1.29 0.38 £0.15 1.00 £0.00
0.3 5755.76 £ 21.39 6.03 £ 2.39 3.84+1.47 1.38+1.32 0.38 £0.15 1.00 £0.00
0.2 4416.63 £ 20.10 5.95+2.37 3.83+1.47 1.33+1.27 0.38 £0.15 1.00 £ 0.00
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None
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

20000.00 *+ 0.00
15040.79 + 16.01
13299.53 +£17.21
11602.81 £+ 19.44
9996.51 + 20.79
8489.93 + 20.96
7096.75 +21.11
5769.18 + 20.28
4429.58 + 20.11

12.29+2.23
12.29+2.28
12.28 +2.35
12.28 +2.32
12.24 +2.29
12.31+2.28
12.27£2.31
12.25+2.29
12.30+2.34

N =1,000
8.81+1.02
8.81+1.03
8.81+1.06
8.81+1.04
8.82+1.04
8.84+£1.04
8.81+1.06
8.80 £1.05
8.81+1.06

1.29+1.25
1.29 +1.27
1.29+1.25
1.30+1.26
1.29+1.27
1.28+1.25
1.30+1.25
1.30+1.24
1.32+1.26

0.88+0.10
0.88+0.10
0.88+0.11
0.88+0.10
0.88+0.10
0.88+0.10
0.88+0.11
0.88+0.11
0.88+0.11

1.00 £ 0.00
1.00 £ 0.00
1.00 £ 0.00
1.00 £ 0.00
1.00 £ 0.00
1.00 £ 0.00
1.00 £ 0.00
1.00 £ 0.00
1.00 £ 0.00
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Table 7.22 Mean and standard deviation results for LD clumping using the permutation

method for tuning parameter selection for differing percentage of variance explained

with N = 500
Pruning No. of SNPs No. o.f'true No. of false o o
threshold selected positive positive Sensitivity Specificity
SNPs SNPs
Variance Explained = 1%

None 151+138 042+062 1.05+1.14 0.04+0.06 1.00+0.00
0.9 1.56+139 043+064 1.06+1.15 0.04+0.06 1.00+0.00
0.8 158+139 044+063 1.08+1.17 0.04+0.06 1.00+0.00
0.7 1.54 +1.38 0.44 £ 0.63 1.04 £1.17 0.04 £ 0.06 1.00£0.00
0.6 1.58+1.40 044+064 108+1.16 0.04+0.06 1.00+0.00
0.5 1.55+1.36 0.43+0.63 1.06+1.14 0.04+0.06 1.00%0.00
0.4 1.53+1.37 0.43+0.64 1.04+£1.13 0.04 £ 0.06 1.00+£0.00
0.3 1.58+1.39 0.45+0.63 1.07+1.17 0.04+0.06 1.00%0.00
0.2 1.58+1.43 0.44 £0.63 1.08+£1.19 0.04 £ 0.06 1.00+£0.00

Variance Explained = 2.75%

None 5.931+2.40 3.80+1.43 1.37+1.37 0.38+0.14 1.00+£0.00
0.9 595+2.39 3.80+143 137+1.37 0.38%+0.14 1.00+0.00
0.8 5.99 +£2.37 3.84+1.45 1.38+1.36 0.38£0.15 1.00+£0.00
0.7 5,98+2.33 3.82+145 137+131 0.38%+0.15 1.00+0.00
0.6 5.951+2.32 3.80+1.44 1.35+1.30 0.38+0.14 1.00+£0.00
0.5 592+2.32 3.80+146 133+1.26 0.38+0.15 1.00+0.00
0.4 5.91+2.36 3.78+1.48 1.33+1.29 0.38£0.15 1.00+£0.00
0.3 6.03+2.39 3.84+147 138+1.32 0.38%0.15 1.00+0.00
0.2 5.95+2.37 3.83+1.47 1.33+1.27 0.38£0.15 1.00+£0.00

Variance Explained = 5.5%

None 9.32+2.43 6.67£1.41 1.13+1.24 0.67+0.14 1.00+£0.00
0.9 9.32+2.44 6.67+141 1.14+1.24 0.67+0.14 1.00+0.00
0.8 9.39+241 6.69+£1.43 1.17+1.24 0.67+0.14 1.00+£0.00
0.7 9.32+2.43 6.67+145 1.15+1.21 0.67+0.14 1.00+0.00
0.6 9.32+2.44 6.67 £1.45 1.16+1.24 0.67 £0.15 1.00+£0.00
0.5 9.34+2.40 6.71+142 1.12+1.19 0.67+0.14 1.00+0.00
0.4 9.28+2.34 6.68 £1.40 1.12+1.17 0.67+0.14 1.00+£0.00
0.3 936+2.50 6.69+142 1.13+1.22 0.67+0.14 1.00+0.00
0.2 9.31+2.42 6.68 £1.43 1.13+1.21 0.67+0.14 1.00+£0.00
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7.5 Conclusion

In this chapter, a simulation study was conducted to assess the performance of a
number of pruning methods implemented in my Prune package for variable selection.
Data was simulated from the GRAPHIC dataset from a single chromosome. The results
showed that the tuning parameter selection method was more influential on variable
selection than the pruning method itself. Repeated 10-fold Cross-validation selected a
large number of false positives regardless of pruning method (Table 7.5, Table 7.6,
Table 7.11, Table 7.12,Table 7.17 and Table 7.18), however the mean number of false
positives selected was greater with P-value pruning (Table 7.11 and Table 7.12). This
particular combination of pruning method and tuning parameter selection method
yielded the lowest specificity rate across all scenarios. This is unsurprising as CV is
designed for model prediction rather than variable selection, however the mean
number of false positives selected is concerning as the simulation was conducted on a
single chromosome rather than genome-wide where the number of false positives
selected is likely to increase substantially. Both Cho et al. (11) and Yao et al. (149) have
used a combination of P-value pruning and Cross-validation for tuning parameter
selection and both studies also selected a high number of SNPs (129 and 80
respectively). Hong et al. also showed that the combination of P-value pruning and
tuning parameter selection by CV selects a large number of variables; in this case over

500 of the 1,000 SNPs were selected across four penalised regression methods (146).

10 casual SNPs were simulated which may be a reasonable number of causal variants
in a genome-wide study rather than there being 10 causal SNPs in each chromosome.
Therefore it is likely that the number of true positive SNPs selected is more
representative of a genome-wide study whilst the mean number of false positives may
not be as representative. Of the three pruning methods LD pruning produces the

highest specificity rate.
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The BIC also selected a high proportion of false positive SNPs (Table 7.7, Table 7.8,
Table 7.13, Table 7.14, Table 7.19 and Table 7.20). This was particularly the case in the
underpowered scenarios (N = 250 or %VAR = 1%) where mean number of false
positives selected increased as the pruning threshold increased. With the exception of
some high powered scenarios, results showed that the LD based pruning methods
increased the mean number of SNPs selected compared to not pruning at all which, in
turn increased both the number of true and false positive SNPs selected. This increase

was gradually countered by the increase in pruning.

In most scenarios, for both repeated CV and the BIC methods, the mean number of
false positives selected increased between the mid-powered scenario and high
powered scenario (i.e. between N =500 and N = 1,000 and between %VAR = 2.5% and
5.5%). This could be partially due to defining any selected SNP with an r? > 0.5 with a
causal as a true positive rather than a lower threshold. It may be the case that SNPs
with0<r?<0.5 may be selected due to the LD in the high powered scenario especially
at the higher LD pruning thresholds. In this simulation, no pruning window was used
which may affect the sensitivity rate. By not implementing a pruning window, there is
a small chance that the simulated causal SNP may be in LD with another SNP with a
large distance between them by chance and not a true association between alleles.
Therefore selection of this SNP may also increase the sensitivity rate with false

positives although the r’ > 0.5 threshold helps protect against this situation.

It is recommended that to prune a GWAS dataset to apply the LASSO, LD clumping
should be used and the tuning parameter should be selected by the permutation
method. The permutation method produced similar results regardless of pruning
method or pruning threshold (Table 7.9, Table 7.10, Table 7.15, Table 7.16, Table 7.21
and Table 7.22). The method selected the lowest number of false positives; an average
of 1 false positive SNP was selected in every scenario, where both the BIC and

repeated CV select a higher number of false positives. Due to the number of false
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positives selected on a simulation on a single chromosome for BIC and repeated CV,
the permutation method outperforms the other two tuning parameter selection
methods in terms of variable selection. Of the three pruning methods LD clumping
seems to select a slightly higher mean number of true positive SNPs in most scenarios

using the permutation method.

/.6 Summary

In this chapter, | ran a simulation study on the effects of SNP pruning methods, the
pruning threshold and the tuning parameter selection method on variable selection.
To current knowledge this is the first study that looks at the effects of pruning on
variable selection. Results showed that pruning with LD clumping and using the
permutation method produced the best performance for variable selection due to the
high number of false positive SNPs selected by other methods, especially as both
repeated 10-fold CV and the BIC selected a number of false positive SNPs across a

single chromosome.
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8 Application of the LASSO on the GRAPHIC

study with SNP pruning

8.1 Introduction

In Chapter 4, | was unable to apply the LASSO to the full GWAS dataset of the GRAPHIC
study (10) due to computational constraints (see section 4.7). | suggested SNP pruning
as a step to reduce the number of dimensions in order to fit LASSO models on a
genome-wide scale. In Chapter 6, | discussed a number of SNP pruning methods that
could be utilised as well as my Prune package which applies these SNP pruning
methods. | then followed up by conducting a simulation study applying these SNP
pruning methods and to see the effect each pruning method has on variable selection

using the LASSO.

In this chapter, | return to the GRAPHIC study and apply the LASSO to the GWAS
dataset after pruning SNPs. | firstly re-run the analysis on chromosome 19 to compare
the number of SNPs selected by varying tuning parameter selection methods and
pruning thresholds. This was to check whether results between the simulation study
and the GRAPHIC dataset were consistent with each other, as the phenotype in the
simulation study was different to the LDL phenotype in terms of effect sizes and
variation. | then select the best combination pruning method and tuning parameter
selection methods based on both the simulation study and the application on
chromosome 19 and apply them on the full GRAPHIC study dataset. LDL-c was again
used as the phenotype and the same quality control procedures discussed in section

4.4 were applied to both analyses.
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8.2 Application of the LASSO on chromosome 19

after pruning the dataset

8.2.1 Methods for chromosome 19 study

The dataset consists of 12,376 SNPs and 979 subjects. My Prune package was used to
prune the datasets. The three pruning methods were used, LD, P-value and clumping
with three pruning thresholds for each pruning method. The LD pruning and clumping
methods pruned the dataset with the r* measure using thresholds of 0.8, 0.5 and 0.2
and a pruning window of 500 adjacent SNPs. The P-value pruning method used
thresholds of 0.2, 0.05 and 0.02. A random starting position for LD pruning was
selected and the same start position was used for all pruning thresholds. Section 4.8.1
outlines the procedures for fitting the LASSO using the three tuning parameter
selection methods, repeated 10-fold Cross-validation, BIC and the permutation
method. An increase in the pruning threshold was again defined as a decrease in the
threshold value. The same imputation procedures were also implemented (see section

4.8.1). The LASSO model was fitted using glmnet (53).

8.2.2 Results of chromosome 19 study

Table 8.1, Table 8.3 and Table 8.4 show the number of SNPs selected for each
combination of SNP pruning method, tuning parameter selection method and pruning
threshold. The results for LD pruning were consistent with the SNP pruning simulation.
The number of SNPs selected by both repeated CV and BIC decreased as the pruning
threshold increased, while the permutation method remained stable (Table 8.1). LD
pruning allows any SNP to be pruned out therefore selected SNPs using a lower LD
threshold could be pruned as the pruning threshold increases. This was the case in this
analysis reducing the number of associations in the dataset but did not affect the

number of SNPs and which regions were selected using the permutation method.
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Table 8.2 shows the SNPs selected using the permutation method for LD pruning. The
table shows that as pruning increases and if the selected SNP was pruned out of the
dataset, this SNP was replaced with another SNP in the same region and in LD with the
pruned out SNP (r? > 0.53 in all cases). The BIC method selected the same four SNPs as
the permutation method shown in Table 8.2 for the pruning thresholds of r’ <0.8 and
r> < 0.5. For the r? < 0.2 threshold the two SNPs on the APOE gene were selected;
rs4420638 (p = 1.58E-07) and rs445925 (p = 3.37E-06).

Table 8.1 Number of SNPs selected on chromosome 19 after pruning the dataset by LD

using various forms of tuning parameter selection methods and LD pruning thresholds

LD Number of

pruning SNPs in Cross- BIC Permutation
threshold dataset after validation method

() pruning

No 12,376 41 4 4
pruning

0.8 8,615 41 4 4

0.5 6,190 31 4 4

0.2 3,655 11 2 4
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permutation method for tuning parameter selection.

Table 8.2 SNPs selected on chromosome 19 for varying levels of LD pruning and the

LD pruning Selected Base P-value LD betwe_;en SNPs
threshold SNP position (r)
DNM2 - CARM1

No pruning rs17001002 10,948,031 1.25E-05 -
0.8 rs11881156 10,950,125 1.79E-05 0.993
0.5 rs11881156 10,950,125 1.79E-05 -
0.2 rs11881156 10,950,125 1.79E-05 -

ZNF529 - ZNF567

No pruning rs10402182 37,160,529 4.53E-06 -
0.8 rs1525133 37,199,250 4.53E-06 1
0.5 rs2967440 37,059,215 5.87E-06 0.981
0.2 rs2967436 37,059,215 5.87E-06 0.539

APOE

No pruning rs7412 45,412,079  1.70E-12 -
0.8 rs7412 45,412,079  1.70E-12 -
0.5 rs7412 45,412,079  1.70E-12 -
0.2 rs445925 45,415,640 3.37E-06 0.712

APOE

No pruning rs4420638 45,422,946  1.58E-07 -
0.8 rs4420638 45,422,946  1.58E-07 -
0.5 rs4420638 45,422,946  1.58E-07 -
0.2 rs4420638 45,422,946  1.58E-07 -

Like the simulation study in the previous chapter the combination of P-value pruning
and repeated CV performed particularly poorly (Table 8.3). Using a p < 0.2 threshold,
the LASSO model selected 770 SNPs from a dataset of 2,600 SNPs (29.62% of all SNPs
after pruning). The proportion of SNPs selected increased as the pruning threshold
increased and with a threshold of p < 0.02, 59.80% of SNPs (183 SNPs from a dataset of
306) were selected. In fact, the numbers of SNPs selected in this case were comparable
to a similar scenario in the simulation study (see N = 1,000 in Table 7.11) even though
this analysis consisted of a smaller dataset after pruning than the simulation study.

Like the results of the simulation study, the number of SNPs selected by the BIC
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method was similar regardless of P-value pruning threshold. The same four SNPs
(rs17001002, rs10402182, rs7412 and rs4420638, see Table 4.18) were selected
regardless of P-value pruning threshold. Interestingly however, the number of SNPs
selected increased using the permutation method as the pruning threshold increased
compared to the simulation study, where the numbers of SNPs selected remained

stable regardless of pruning threshold.

Table 8.3 Number of SNPs selected on chromosome 19 after pruning the dataset by P-

value using various forms of tuning parameter selection methods and P-value pruning

thresholds
P-value Number of
. SNPs in Cross- Permutation
pruning ey us BIC
dataset after validation method
threshold ]
pruning

No 12,376 41 4 4
pruning

0.2 2,600 770 4 8

0.05 719 358 4 16

0.02 306 183 4 19

The results for LD clumping (Table 8.4) also showed similar results with the simulation
study. The number of SNPs selected greatly increased using repeated CV as the
pruning threshold increased while both the BIC and permutation methods remained
relatively stable. Both methods selected the same SNPs for each pruning threshold. On
top of the four SNPs (rs17001002, rs10402182, rs7412 and rs4420638, see Table 4.18)
selected by these two methods a fifth SNP; rs10853810 (p = 0.000166) was selected

when a LD clumping threshold of r’ < 0.2 was applied.
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Table 8.4 Number of SNPs selected on chromosome 19 after pruning the dataset by LD

clumping using various forms of tuning parameter selection methods and LD clumping

pruning thresholds

LD Number of
clumping SNPs in Cross- _
threshold dataset after validation BIC  Permutation

() pruning

Nc{ 12376 41 4 4

pruning

0.8 8595 a1 4 A

0.5 6109 45 p 4

0.2 3539 93 c c

8.2.3 Conclusion from the chromosome 19 study

With the exception of using the permutation method after P-value pruning the results

of the analysis of various SNP pruning methods and tuning parameter selection

methods showed similarities to the simulation study in the previous chapter.

The combination of P-value pruning and permutation method increased the number of

SNPs selected as the pruning threshold increased while the number of SNPs selected in

the simulation study remained stable, much like the number of SNPs selected using the

permutation method with LD pruning and clumping. This is illustrated in Figure 8.2

which shows the histogram for each combination of pruning method and threshold for

the permutation method. The vertical red line represents the median A selected across

the 100 repetitions. The median estimate is very similar for the LD pruning and

clumping methods as the pruning threshold changes whereas the median A decreases

as the pruning threshold increases for P-value pruning. A similar pattern is seen for

repeated CV after pruning by LD clumping (Figure 8.1) where the number of SNPs

selected also increased.
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Both the BIC and permutation method showed consistent selection of SNPs and/or
regions for most SNP pruning methods seem to be similar for variable selection. P-
value pruning however should not be considered as a method of pruning for the LASSO
as a number of false positives may be selected (Table 8.3). LD clumping is likely to
select a larger model for LD pruning, as this method ensures that highly associated
SNPs are not pruned although the results of this analysis show that SNPs in high LD
with the top SNP in a region may be selected instead using LD pruning (Table 8.2).

LD pruning P-value pruning LD clumping
= O =0 =2
(] (5] (] (5] (] (5]
C C C
o o o
g 2 g 2 g 2
e e e
Lo Lo Lo
= N — =
0.0 1.0 2.0 3.0 00 01 02 03 04 0.0 1.0 2.0 3.0
R-zsquared = 0.8 P=02 R-zquared = 0.8
5 8 5 8 5 8
o o o
g 2 g o g 2
e e e
L L L
e S B e s = T T T 1 " T T T T
0.0 1.0 2.0 3.0 00 01 02 03 04 0.0 1.0 2.0 3.0
R-zquared = 0.5 P=0.05 R-zquared = 0.5
5 8] 5 R 5 8]
o o o
g 2 g o g 2 [[
& T T & T
L L L
o] o] o]
T 1T 1T T 11 T T T T 1 —T 1T T T T 1
0.0 1.0 2.0 3.0 00 01 02 03 04 0.0 1.0 2.0 3.0
R-squared < 0.2 P=0.02 R-squared < 0.2

Figure 8.1 Histogram of 100 lambdas estimates using Cross-validation for each pruning

method and pruning threshold. The red vertical line represents the median estimate.
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Figure 8.2 Histogram of 100 lambdas estimates using the permutation method for each

pruning method and pruning threshold. The red vertical line represents the median

estimate.
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8.3 Genome-wide association study on the GRAPHIC

using the LASSO

8.3.1 Methods for GWAS

After quality control the GWAS dataset consisted of 591,774 SNPs and 979 subjects
(see section 4.4), LDL-c was again used as the phenotype. LD clumping was used to
prune the GRAPHIC GWAS dataset as this method ensures that the most statistically
significant signals remain in the dataset. Both BIC and the permutation methods were
selected as tuning parameter selection methods. These methods have shown that
there is little difference in terms of variable selection across varying levels of pruning
thresholds when pruning by LD clumping. For this reason a pruning threshold of rl<
0.2 was selected with a window size of 500 SNPs. Each chromosome was pruned
separately to allow a random starting position for pruning on each chromosome. The
time taken to prune each chromosome varied between 7 minutes 43 seconds for
chromosome 1 and 1 minute and 53 seconds for chromosome 22. Table 8.5 shows the
number of SNPs remaining in each chromosome after pruning. A total of 138,812
remained after pruning (23.46% of all SNPs). Missing genotypes were again imputed
with the median genotype value. Figure 8.3 plots the univariate P-values of each SNP
before and after imuputation, again there is little difference between the P-values in
most SNPS (mean absolute difference = 0.004). 162 SNPs were removed as they had an
absolute difference P-value > 0.1 after imputation. The BIC values were calculated
across 625 A values with an increase 0.01 each time. The permutation method used

200 repetitions. The LASSO model was fitted using glmnet (53).
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Table 8.5 Number of SNPs remaining after pruning the GRAPHIC study dataset using

the Prune package with window size = 500 and pruning threshold of r? < 0.2

No. of

No. of SNPs SNPs
Chromosome on remaining
chromosome after LD
clumping

1 48,494 11,304
2 47,899 11,193
3 39,615 9,023
4 34,217 8,193
5 35,870 8,354
6 40,655 8,403
7 32,235 7,466
8 31,753 6,982
9 28,139 6,535
10 32,500 7,254
11 30,629 6,832
12 29,614 6,987
13 23,049 5,302
14 19,492 4,661
15 18,258 4,451
16 19,114 4,765
17 16,761 4,444
18 17,962 4,515
19 12,376 3,539
20 15,560 3,934
21 8,741 2,255
22 8,841 2,420

Total 591,774 138,812
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Figure 8.3 Scatter plot comparing P-values for each SNP before and after imputation.
Imputation was conducted by replacing missing genotype with the median genotype
from the population. The red diagonal line represents the line if there is no change in

P-values.

8.3.2 Results of GWAS

Figure 8.4 shows the coefficient path plot for the LASSO model fitted to the GRAPHIC
dataset. There is clearly one large SNP with a large association with LDL compared to
the remaining SNPs. This SNP was rs7412, the top SNP by P-value (Figure 4.7) and the
only SNP selected by the Bonferroni correction method in section 4.5.2. The BIC
method however selected a A = 6.25 which returned a null model, therefore no SNPs
were selected by this method. The permutation method selected a median A = 4.733
(mean =4.770, S.E. =0.225) which selected one SNP; rs7412. Figure 8.5 shows the

histogram of the 200 A estimates using the permutation method. For the next SNP
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(rs4420638) to enter the model a A < 4.672 was required which was close to the

median estimate.

Coefficients

-6
|

Log Lambda

Figure 8.4 Coefficient path plot for the LASSO on the GRAPHIC study. Each line
represents a SNP and the path shows the Bcoefficient on the y-axis as the penalty (on a
log(A) scale) increases on the bottom x-axis. The top x-axis shows the number of SNPs

remaining in the model at each log(4) penalty value.
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Figure 8.5 Histogram of 200 lambdas estimates using the permutation method. The red

vertical line represents the median estimate.

8.4 Discussion

In this chapter, | conducted a GWAS study on the GRAPHIC study using the LASSO after
pruning the dataset. Pruning was required to reduce the number of SNPs in the
dataset in order to make the analysis more computationally viable (see section 4.7).
The pruning was not needed to remove SNPs in correlation as there is evidence that
the LASSO is able to handle correlated data in both the literature (24-26) and in

previous chapters (see section 4.8.2.3).

LD clumping was used as the method for pruning the dataset from my Prune package.
This allowed greater flexibility for pruning as each chromosome was allowed to be
pruned separately, and each with a random starting position for pruning. The pruning
process in total took just over an hour in time, in contrast pruning in PLINK (19,20)
using the same options (window size = 500, step size = 1, threshold = r? < 0.2) took

over 6 days, again highlighting the usefulness of the Prune package in terms of time
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taken to prune a large dataset. Pruning if performed on each chromosome separately

could be run in parallel with each other, further reducing the computational time.

Pruning by LD clumping ensured that the top SNPs by P-value remained in the dataset
especially given the high pruning threshold used. Results on chromosome 19 showed
that the LASSO performed well in selecting associated regions when the top SNP by P-

value was removed from the data by LD pruning (Table 8.2).

The BIC and permutation methods were used for tuning parameter selection as these
methods have performed well in terms of variable selection. The BIC method, which is
the more conservative method of the two did not select any SNP while the
permutation method after selecting the median value of 200 repetitions selected a
single SNP; rs7412 which showed the strongest association with LDL in the dataset.
The A estimate permutation method was close to selecting more SNPs; 97 of the 200 A
estimates selected more than one SNP therefore a greater number of repetitions could
have been used to provide greater accuracy. In Chapter 4, the Bonferroni correction
and FDR methods were applied to GRAPHIC study dataset without pruning. The
Bonferroni correction method also selected rs7412 (see section 4.5.2) while the FDR
method selected both rs7412 and rs4420638 (see section 4.6.2). Both associations for
rs7412 and rs4420638 have been replicated in previous studies
(164,166,172,176,178,180,182,183,187).
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9 Applications of integrative analyses in

penalised regression

9.1 Introduction

In recent years there has been a shift from GWAS on single datasets to work
performed in consortia that collaborate to combine multiple datasets in order to
increase the sample size and power to detect associations. The large increase in
sample size would again lead to computational issue using the LASSO and pruning
would certainly be required. In section 2.3.5, | briefly discuss the meta-analysis in
penalised regression and in particular the difficulty in combing summary statistics from
penalised estimates. Given the difficulty in combining LASSO summary estimates into a
meta-analysis, there has been very little work done in this field (37). An alternative
method to meta-analysis is integrative analysis. Integrative analyses require individual
level data (ILD) for each study to pool together for analysis. This differs from meta-
analysis which analyses each dataset individually then pools summary statistics

together.

In this chapter, | firstly review the current literature for integrative analysis based
methods using penalised regression. | follow up by conducting a simulation study
comparing meta-LASSO method against the stacked LASSO and separate LASSO. The
stacked LASSO pools all datasets together and fits a LASSO model without regard of
heterogeneity and the separate LASSO that applies the LASSO individually first then

pools the summary results together.
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9.2 Integrative analysis in penalised regression

Although it is difficult and costly to obtain individual level data (ILD) analyses are
considered the gold standard (235). Curran and Hussong discuss the potential
advantages of integrating data which include the ability to replicate results in studies,
increased statistical power and ability to explore between-study heterogeneity (35).
Lambert et al. ran simulations comparing meta-regressions using summary statistics
and individual patient data (IPD) and concluded that the IPD analyses result in a higher
power to detect interaction effects (236). Berlin et al. showed that meta-analysis
based methods also may fail to detect differences between subgroups that IPD

analyses are able to find (237).

There have been a number of methods that integrate datasets and analyse using
penalised regression in gene expression data. There is high heterogeneity between
studies in gene expression due to varying experimental factors and arrays leading to
varying outcome measurements. Often transformations of the expression values is
required (238), these transformations known as “intensity approaches”. Huang et al.
showed by simulation on gene expression data that an intensity approach which
combines all the dataset and applies the elastic net, outperforms meta-analysis that

applies the elastic net in individual datasets (239).

9.2.1 Variations of the group LASSO for integrative analysis

In section 2.3.3, | reviewed the group LASSO (29) as a method to group desired
variables within a single dataset, shown in (2.7). Gy, ... , G denotes the pre-defined

groups of variablesand i = {1, ... N} denotes the i subject.
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1 N K 2 K
B = argmin— > (yi - xikak> £ ) 0GM,  O1)
i=1 k=1

k=1

Ma et al. proposed an extension to the group LASSO by grouping B estimates across
multiple datasets Hy, ... , Hp and applied this to pancreatic cancer studies (240). The
study proposed two methods (9.2); the group LASSO (8§ = 1) and group bridge LASSO (&
=0.5).

2

N D P
Z (ydi - Z xdijﬁdj) + 1 Z”ﬁ]”j (9.2)
d =1

1i=1 =1

D
A 1
p(A) = arg mﬁm N dZ

where,
6 = the bridge penalty

1
D 2
2
Il = [0
d=1
j = {1,.. P}denotes thej" SNPand d = {1, .. D} represents the

d™" dataset.

The penalty allows each B;; to be estimated within individual datasets, and then
grouped and penalised across datasets. The paper provides an algorithm to compute
the group bridge LASSO that can be solved using Least Angle Regression (LARS), the
group LASSO model can be fitted using the coordinate descent algorithm (241) (See
section 2.4.2). The study compares integrative analysis of both the group LASSO and
bridge group LASSO. The LASSO and bridge penalties are also applied on individual
studies and variable selection is defined as when a gene is selected in at least one
study. K-fold Cross-validation was used for variable selection in this study. It is
therefore unsurprising that the results showed that the analysis on individual datasets
over selects the number of variables and hence includes a large number of false
positives (See Table 1). There integrative analyses methods show slightly superior

performance than the intensity approaches in most simulated scenarios. The bridge
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penalty outperformed the LASSO penalty as the bridge consistently selected a lower
number of genes in the final model while maintaining a similar number of true
positives. Integrative analysis with the bridge penalty also consistently showed the

lowest prediction errors.

A previous study by a number of the same authors also compared the group bridge
penalty (6 = 0.5) with AIC and BIC as the tuning parameter selection methods against
the group LASSO, and another of other grouping methods, including the group LASSO,
which used BIC and Mallows Cj, as the tuning parameter selection method (242).
Results were similar to the Ma et al. study (240) with the group bridge LASSO
outperforming the competing methods in terms of both variable selection and

prediction with the BIC especially performing well (See Table 1 (242)).

As discussed by the authors, the aim of the bridge group LASSO is to identify “a
common set of covariates across multiple studies” by pooling S,; estimates across
studies. Therefore the method does not allow any selection within studies (31,240).
Another grouping method that has been suggested is the sparse group LASSO (84). This
method uses two penalties and is similar to the elastic net, the first is a group penalty
that penalises across datasets and the second is a LASSO penalty on the variables

within each dataset (9.3).

D N
ﬂ()l)—argmln Z Yai — zxduﬁdj +/112“13d1” (9.3)
+ 4, IIﬁdJ-II1

This proposed method, allows for variables to be penalised both within and across
datasets and can be solved using coordinate descent (243). Lin et al. used the sparse

group LASSO to pool together multiple diverse datasets, in this case, SNP datasets and
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gene expression studies (243). 3 datasets of 15,235 SNPs were simulated from
chromosome 22 with the 3 phenotype and 3 expression datasets simulated based from
the simulated SNP data. The authors use a 30 x 30 search grid to find the optimal
combination of 1; and A,.The study compares the sparse group LASSO with a sparse
group ridge regression and meta-analysis, each method was applied to the SNP data
and gene expression datasets separately and were then combined. Variable selection
was based on a gene level although the causal variants were simulated on individual
SNPs. Results show that the sparse group LASSO performed better than the competing
methods, especially when combining all datasets (See Figure 1 and 2 (243)). The group
bridge method was not considered as previous simulations suggested poor
performance compared to sparse group ridge in a single SNP dataset setting (244).
Park et al. used the sparse group LASSO with latent variables to account for the

overlapping between groups in single dataset analyses (245).

9.2.2 The meta-LASSO method for integrative analysis

The meta-LASSO method, proposed by Li et al. (246) incorporates a dual penalty much
like other variations of the LASSO such as the elastic net (18). The study applies the
meta-LASSO to gene expression data analysing the expression 88 genes across 5
datasets of immune cells of subjects with either atherosclerosis or cardiac events such
as myocardial infarction or stroke. Therefore each dataset is composed of a binary
phenotype y,4; and a vector of gene expression profiles of P genes. By assuming the
conditional probability that y,;; = 1 given the vector of gene expression, then y,;
follows a logistic regression model (9.4). To account for heterogeneity, the effect
estimate f; is parametrized (9.5). y; denotes the overall effect of the j gene across
all datasets and the {;; term is the effect difference estimate that accounts for
heterogeneity on thejth gene in the d" dataset. Ba; is reparameterized by multiplying
yj and {,;. Therefore if there is no heterogeneity then {;; =1 and B4; = y;. As gene

expression values only take positive values, a constraint is placed such that {;; = 0.
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The overall estimate, y; take positive values also therefore produce positive B

estimates only.

<P1‘(3’di = 1]xg;)
lo

Pr(yq; =0 del-)) = Boa + XaiPaj (9.4)

Baj = ViSaj d=1,...D;j=1.,P (95)
such that:
Caj 20
D P P D
maxd Y LaCaars) = & Y nl = 2 Y. Y [da (0.6
0V, a1 j=1 j=1d=1
where,

v = {y;}and Ly(ag,v,{y) is the log-likelihood function s.t.:

Ng
Lg(ag,v,8q) = zydi{ad +x4;(v.¢a)}
i=1

—log[1+ explag + x%;(y.3)}]

The meta-LASSO analysis can then solved by applying a penalty on both of the y; and
{aj components each with a separate tuning parameter 4, and 1;(9.6). The loss
function L (ay, v, {4) can take the form of other distributions such as normal or
poisson distribution. The 4, tuning parameter controls variable on the overall gene
effect across all m datasets and therefore can remove genes from all datasets if they
are deemed no to be associated. The A; tuning parameter controls variable selection
at an individual dataset level. The authors also show that (9.6) can be further simplified

into one tuning parameter (9.7) where the penalty applied on |yj| is 1.

j=1d=1

D P P D
max Zld(“d'%fd) -1 Zl)/jl -4 ZZK‘”' (9.7)
d=1 j=1
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where
A= /’ly.ﬂz

The studies compared the meta-LASSO to a number of other methods such as the
“separate LASSO”, the “stack LASSO”, the group LASSO, the adaptively weighting (AW)
method, Fisher’s method and both Fixed (FEM) and Random (RAM) effects meta-
analysis models in a simulation study. The separate LASSO method used in the study
fits a LASSO model to each dataset separately, however it is not clear how results from
each dataset are combined or if they are combined at all. The stacked LASSO method
assumes that there is no heterogeneity between studies and hence f;; is the same for
all d. Datasets are combined together to fit a “stacked LASSO” model which is in effect

a standard LASSO model as the data has been pooled together (9.8).

D lataa) =2 |5 (9.9
d=1 =1

B; = The effect estimate across all d datasets

where

For the meta-LASSO and other penalised regression methods used in the simulation
study, the tuning parameter was selected by minimizing the BIC (9.9). For the AW
method, Fisher’s method, FEM and RAM methods, a gene is selected if the gene is

found to be significant across all studies

D
BIC(A) = Z{—zzd (Bus) + DFylog(No)} (9.9)
d=1

The study used sensitivity and specificity as its outcome variables across varying levels
of heterogeneity among datasets over 100 repetitions. Ten studies each with 1,000
genes were simulated each with a sample size of 50 subjects. To simulate
heterogeneity between datasets, the authors slightly modified the parameterization
equation (9.5) to include yc’flj (9.10). The modification is to allow some variance

between the overall estimates between studies.
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,3;]. = VZJ-(ZEJ- 1,..M;j=1,..,10 (9.10)

This was performed by allowing y;; ~ N(3,0.5)? and {j; follows a Bernoulli
distribution with probability (7). The inclusion of the Bernoulli distribution allowed
each of the 10 important genes to either have an effect f; ~ N(3, 0.5)*with
probability T, or ,32]- = 0 with probability 1 — my. m, took three values: 0.2, 0.5 and

0.9 that denote high, mid and low levels of heterogeneity.

For the high and mid ranged levels of heterogeneity (r, = 0.2 and 0.5 respectively)
the meta-LASSO clearly outperformed the other methods (See Table 2 (246)). At a low
level of heterogeneity (ry = 0.9) the stack LASSO and FEM methods outperformed the
meta-LASSO as both had higher rates of sensitivity and specificity. When homogeneity
is strong there is very little variance between datasets and hence each simulated
dataset would produce similar summary statistics such as beta effect coefficients and
P-values. The combination of m datasets would increase the power in the analysis and
with the beta effect coefficients and P-values being similar across the datasets, a high
sensitivity and specificity would be expected. The meta-LASSO would suffer in this
scenario as the {;; penalty would have very little impact as there is very little
heterogeneity between the datasets and there is little need to penalise within a
dataset. The group LASSO also performed well against competing methods for the high
and mid ranged levels of heterogeneity, especially in terms of sensitivity, but did not
perform well in the low heterogeneity setting. The high sensitivity and specificity of
most of the methods in the simulation in the low heterogeneity scenario suggests that
large effect sizes have been simulated and brings into question if this method works

when smaller effect sizes, or lower powered associations are simulated.
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9.2.2.1 Algorithm to fit meta-LASSO models

The authors provide a brief algorithm to fit meta-LASSO models to solve the function
shown in equation (9.7). The algorithm is based to optimising y; and {4, separately,
both can be optimised using coordinate descent algorithm (see section 2.5). y; is
optimised using the “stacked” LASSO method discussed in the section above, where as

{qj is optimised separately for each d

The solutions for y; and {4; and are derived using the same calculations shown in

section 2.5.2. The algorithm is outlined in Table 9.1.
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Table 9.1 Algorithm to fit meta-LASSO models for logistic regression

Let y;4 = A set of phenotype

Let y; = A 1 X P matrix of overall estimates
Let {4; = A D X P matrix of effect difference estimates
Let B4; = A D X P matrix of effect estimates s.t. B4; = ¥ {4

Let Sy4 = A vector of intercept estimates

ﬁdj= 0
Setq ¥j =0
(aj =1

foralld={1,..,D},j={1,.., P}

Set Old.Betayj = Bg;

Calculate X; = x4 qj

Update y; using coordinate descent (section 2.5.2) by “stacking” X;jy, ... X;jq
and yi1, - Yia

Calculate X;q = x;jq ¥;

Update {4; using coordinate descent (section 2.5.2) by setting x = X4 for each d
and setting a constraints.t. {4; =0

Update B4; = v¥; {a;j

Repeat steps 2 — 7 until max|ﬁdj — old. Betadj| < 0.00001

9.2.3 The Data Shared LASSO for integrative analysis

Gross and Tibshirani propose the Data Shared LASSO (DSL) (247) which is a similar

approach to the meta-LASSO. Following the notation from the previous section, the

reparameterisation used assumes an additive relationship between the overall

estimate and the heterogeneity estimate (9.11) and is solved by minimising (9.12).
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Baj = ¥; + Ca; d=1,..,D0;j=1,..,P (9.11)

2

1 D N P
mingf(0) = oN Z Z Vida — injdﬁjd
d=1i=1 j=1 (9.12)
D
ea (bl + Y il
d=1

The 1, term controls the strength of the penalty of the heterogeneity penalty relative

I . . 1.
to the overall penalty, similar to the a term used in elastic net (18). r; = 5

suggested assuming D > 3. The authors aim is to identify common variables across
and within subgroups from a larger dataset. The DSL is not tested by simulation but
only on a real-life dataset. Although this study uses a dataset of movie reviews, sub
grouped into genres of drama, comedy and horror, it can easily be applied in an
integrative analysis setting where each “subgroup” is a separate dataset and hence
penalise both within and across datasets. Likewise the meta-LASSO could potentially

combine subgroups as “datasets” for analysis.

The authors used a real-life dataset for analysis for variable prediction rather than

selection and were compared to a stacked LASSO (r = o) and the separate

1

LASSO(r = Z)' The dataset was split into a training set (n = 16,386) and test set (n =

18,109) with Mean Squared Error (MSE) calculated from the test set. Results showed
that the DSL produced the lowest MSE in the all, drama and horror genres with the
stacked LASSO performing slightly better in comedy. With the exception of the horror

genre however the difference in MSE between the 3 methods is small (See Table 1).
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9.2.3.1Fitting the Data Shared LASSO

The DSL can be easily fitted using coordinate descent by using an augmented data
approach. This approach pools together all the y; phenotypes into a single vector, an
augmented matrix Z that is created using the predictor variables (9.13) where each cell
in the matrix represents either an N x P matrix of 0's or a dataset x,; of the same

dimensions. This makes the total dimensions of Z = ND x P(D + 1).

A X, rx O A 0

Y, X, 0 n1X A O

Y=l M|[Z=M M M O M
(9.13)

M M M M ) M

Yo Xp, 0 0 A A 15X

The augmentation allows the DSL method to be fitted using coordinate descent and
can be fitted using the glmnet package. However in a GWAS setting this may prove
difficult especially as both N and P are large for each dataset. Some GWAS datasets can
potentially contain millions of SNPs and therefore lead to problems with memory in R

(see section 4.7) and therefore is likely to be an unviable method with this particular

algorithm.

9.3 Simulation study comparing the meta-LASSO

against the LASSO

In this section, | run a simulation comparing the meta-LASSO against the stacked LASSO
and separate methods on SNP datasets. The aim of this simulation is to assess the
performance of the meta-LASSO in a genetic association setting where the power to

select a causal SNP is often low. The stacked LASSO pools all datasets together without
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regard for heterogeneity. The separate LASSO fits the LASSO separately on each
dataset. The comparison against the stacked LASSO is to determine whether there is
any advantage of the meta-LASSO in a GWAS setting as opposed to just combining all

the datasets together.

The meta-LASSO method can be applied to a GWAS study by redefining the gene effect
estimates to SNP effect estimates. Using the parametrization (9.5), y; is defined as the
overall SNP effect of the j SNP across all d datasets, {q; still accounts for
heterogeneity across datasets on thejth SNP in the d" dataset. Baj denotes the SNP
effect of thejth SNP in the d" dataset. However as Ba; can now take negative values,

the constraint placed on (;; such that {;; = 0 is not applicable and is not included.

9.3.1 Methods

5 datasets of 50 independent SNPs and 100 subjects were simulated. SNP 10, 20, 30,
40 and 50 were simulated as causal SNPs with MAFs of 0.02, 0.1, 0.2, 0.25 and 0.4
respectively. The MAFs for remaining SNPs were randomly generated from a uniform
distribution with ranging between 0.01 and 0.5. The MAF for each SNP was the same
across all 5 datasets. SNPs that contained the same combination of alleles across all
individuals in a dataset were re-simulated until this was not the case. Each dataset was

standardised separately.

1,000 simulations were run for each analysis with the seed varying between 1 and 101,
with the exclusion of seed 56 and 10 repetitions for each seed. One dataset failed to
converge for seed 56 and therefore results for that seed was not included. Closer
inspection running the simulation for this dataset showed that the algorithm was
converging however it was taking a greater number of iterations than the default
setting of 10,000 iterations. In contrast the other datasets took < 10 iterations to

converge. Li et al. proposed a simplification of the dual penalty by fixing the penalty on
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Yj to 1(9.7). This penalty however is too strong for the simulated dataset and returns a

null model. The penalty was therefore fixed to 0'004(2 1N )
diVd

10-fold CV, BIC and the permutation method were all used for tuning parameter
selection. The permutation method used 100 repetitions with the optimal tuning
parameter selected as the median from the 100 repeated estimates. The CV and BIC
methods used a range of 100 lambda values. These were determined by calculating the
smallest lambda value required for a null model as the largest lambda value, and the
remaining 98 values were equidistant values between this value and 0. For the meta-
LASSO the sub-splitting required for CV and the permutations on the phenotype for
the permutation method were both performed within respective datasets. The BIC for

the meta-LASSO was calculated as shown in (9.9).

For the stacked LASSO all 5 datasets are pooled together into on larger dataset and
then fitted with each tuning parameter selection method across all datasets. For the
separate LASSO, tuning parameter selection was applied to the 5 datasets separately,

allowing a different optimum A in each dataset.

Heterogeneity between datasets was simulated by varying the percentage variance
explained of each causal SNP (3.1) between datasets (Table 9.2). Each causal SNP was
simulated with a positive B. Firstly a scenario to compare how both Cross-validation
and the permutation would perform with the meta-LASSO was simulated in a high
powered setting, similar to the Li study (246). In this scenario each causal SNP

explained 5% of the variation with no heterogeneity between datasets.

For the remaining scenarios, a baseline scenario was used that simulates 1% variance
explained and across all datasets. In the remaining scenarios heterogeneity between
datasets is increased. Each dataset varied in the percentage of variance explained but

still averages 1% across all 5 datasets.
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Table 9.2 Simulation of heterogeneity in datasets and the percentage of variance

explained in each dataset

Heterogeneity Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

High variance

. 5 5 5 5 5
explained
Baseline 1 1 1 1 1
Low 0.7 1.3 1 0.7 1.3
Mid 0.5 1.5 1 0.5 1.5
High 0 2 1 0 2

Variable selection performance is evaluated by two measures; the first is sensitivity
and specificity which is based on the proportion of truly positive and negative SNPs as
described by Li et al. (246). In this case sensitivity is defined as the proportion of truly
causal SNPs that are selected with a non-zero ;. For the remainder of this chapter
this measure will be known as the single selection measure. Specificity is defined as
the proportion of truly non-causal SNPs estimated as 8;; = 0. The second measure
considered is based on the meta-LASSO and separate LASSO’s ability to replicate
selection of any SNPs across the 5 datasets. In this case a replication defined as a SNP
that is selected in more than one dataset. Sensitivity is defined as the proportion of
truly causal SNPs that are replicated. Specificity is defined as the proportion of non-
causal SNPs estimated as 8;; = 0 in at least 4 of the 5 datasets (i.e. does not
replicate). LASSO models for the stacked and separate method were fitted using
glmnet. The meta-LASSO function was written in R using the algorithm described in
Table 9.1 and using the coordinate descent algorithm described and written (see

section 3.2.1).
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9.3.2 Results in the high variance explained scenario

Sensitivity and specificity rates in the high power scenario are shown in Table 9.3. The
results for the BIC are similar to those shown by Li et al. in low heterogeneity (246).
Both the meta-LASSO and stacked LASSO performed well with high sensitivity (0.972
and 1.00) and specificity rates (0.995 and 0.982). In both this and the Li et al.
simulation the stacked LASSO produced a higher sensitivity rate than meta-LASSO and
in both simulations the separate LASSO produced a high specificity but the sensitivity

were lower than the competing methods.

For Cross-validation, the meta-LASSO performed well producing a high sensitivity rate
(0.986) compared to the competing tuning parameter selection methods, but also the
lowest specificity rate (0.992). Both the stacked and separate LASSO methods produce
lower specificity rates (0.764 and 0.803) for CV than the BIC (0.982 and 0.948) and
permutation method (0.995 and 0.991). This suggests that the stacked and separate
LASSO based methods will select a greater number of false positives than the meta-
LASSO method. The stacked LASSO selected on average 10.72 FPs in each model where
the separate LASSO selected on average 8.87 FPs using CV. The meta-LASSO however
does not select as many false positives (mean number of false positives selected =
0.36) suggesting that CV is a more conservative method for variable selection when
using the meta-LASSO. While the stacked LASSO selected every true SNP using CV, the

separate LASSO produced a lower sensitivity rate.

Across the 1,000 simulations the stacked LASSO selected the most causal SNPs and
produced the highest sensitivity with every tuning parameter selection method. The
meta-LASSO method performed well using the permutation method in terms of
reducing the number of false positive SNPs selected and produced the highest
specificity rate (0.998) across all methods and tuning parameter selection methods. In
fact all three methods produced the highest specificity using the permutation method

compared BIC or CV suggesting that this method should be the preferred choice in any
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study where the number of false positives is to be reduced as much as possible. While

the sensitivity rate for the permutation method was similar with the other tuning

parameter selection methods using the meta-LASSO and stacked LASSO, this was not

the case for the separate LASSO which produced the lowest sensitivity rate (0.486)

amongst the three tuning parameter selection methods.

The sensitivity rates for each of the 5 simulated causal SNPs were similar for each

method and tuning parameter selection method (Table 9.4), although the sensitivity

rate for the rarest causal SNP (MAF = 2%) was slightly lower than the other causal

SNPs.

Table 9.3 Mean and standard deviation of sensitivity and specificity results using single

selection measure in a high variance explained scenario using the meta-LASSO, stacked

LASSO and separate LASSO with Cross-validation, BIC and permutation method as

tuning parameter selection methods over 1,000 simulations.

Method

Meta-
LASSO
Stacked
LASSO
Separate
LASSO

Cross-validation BIC Permutation method
Sens Spec Sens Spec Sens Spec
0.986 + 0.992 + 0972+ 0.995 + 0.985 + 0.998 +
0.028 0.016 0.058 0.008 0.029 0.005
1.000 + 0.764 + 1.000 + 0.982 + 0.999 + 0.995 +
0.000 0.122 0.006 0.021 0.015 0.011
0.857 + 0.803 + 0.702 + 0.948 + 0.486 + 0.991 +
0.096 0.064 0.129 0.023 0.092 0.006
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Table 9.4 Sensitivity rates of the 5 causal SNPs in the high variance explained scenario
using the meta-LASSO, stacked LASSO and separate LASSO and Cross-validation, BIC

and permutation method as tuning parameter selection methods over 1,000

simulations.

Minor allele Meta - Stacked Separate

Method frequency LASSO LASSO LASSO

MAF = 2% 0.972 1.000 0.833

MAF = 10% 0.989 1.000 0.860

Cross-validation MAF = 20% 0.989 1.000 0.859

MAF = 25% 0.989 1.000 0.866

MAF = 40% 0.993 1.000 0.868

MAF = 2% 0.948 0.999 0.682

MAF = 10% 0.975 1.000 0.706

BIC MAF = 20% 0.978 1.000 0.703

MAF = 25% 0.977 1.000 0.710

MAF = 40% 0.981 1.000 0.709

MAF = 2% 0.970 0.996 0.472

Dermutat MAF = 10% 0.988 1.000 0.490

e:n':‘t‘hi:" MAF = 20% 0.988 0.999 0.490

MAF = 25% 0.986 0.999 0.489

MAF = 40% 0.992 1.000 0.489

The sensitivity and specificity results based on replication across datasets for the meta-
LASSO and separate LASSO is shown in Table 9.5. For the meta-LASSO, SNP selection
using this measure increased the sensitivity for all tuning parameter selection methods
with only a small decrease (between 0.003 and 0.004) in specificity for each tuning
parameter selection method. There was a significantly large increase in the sensitivity
rates for the separate LASSO using the repetition measure compared to the single
selection measure. The specificity again slightly decreases for CV but increases for the

BIC and permutation method.

The results for both LASSO based methods suggest that the replication measure may
be a better measure to use for SNP selection compared to the single selection measure
as this measure selects a larger proportion of true positives and at worst, a small

increase in the number of false positives.
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Table 9.5 Mean and standard deviation of sensitivity and specificity results for the
proportion of replicated results in a high variance explained scenario using the meta-
LASSO, stacked LASSO and separate LASSO with Cross-validation, BIC and permutation

method as tuning parameter selection methods over 1,000 simulations.

Cross-validation BIC Permutation method
Method
Sens Spec Sens Spec Sens Spec
Meta- 0.998 + 0.988 + 0.989 + 0.992 + 0.999 + 0.989 +
LASSO 0.018 0.024 0.047 0.014 0.083 0.007
Separate 0.997 0.744 0.973 £ 0.977 £ 0.793 0.999 +
LASSO 0.023 0.136 0.082 0.028 0.177 0.004

9.3.3 Results on varying levels of heterogeneity

9.3.3.1 Results based on the single selection measure

Table 9.6 shows the results for Cross-validation for the varying levels of heterogeneity.
The three methods produce very different results. As heterogeneity increased the
sensitivity for the meta-LASSO and stacked LASSO decreased. The greatest decrease
occurred between the mid and high levels of heterogeneity. The specificity rate
remained mostly consistent between heterogeneity levels for all three methods using
CV. The sensitivity rate for the separate LASSO increases slightly as the heterogeneity

increases.

The stacked LASSO again performs well in terms of sensitivity compared to the
competing methods however, the specificity remains low (> 0.83 across all levels of
heterogeneity) with on average 7.56 false positive selected at baseline (specificity =
0.832) and decreasing to 4.82 in the high heterogeneity scenario (specificity = 0.893).
In contrast both the meta-LASSO and separate LASSO performed poorly in terms of
sensitivity where between a quarter and a fifth all truly causal SNPs were selected

(0.174 - 0.264 for meta-LASSO and between 0.177 — 0.181 for separate LASSO). While
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the separate LASSO still selects a number of false positives, the specificity rate is higher
than the stacked LASSO and both the sensitivity and specificity for this method remain
stable regardless of heterogeneity. The use of CV for the meta-LASSO works well in
terms of reducing the number of false positives (sensitivity between 0.992 and 0.989)

and in fact seems a relatively conservative method.

Table 9.6 Mean and standard deviation of sensitivity and specificity results using the
single selection measure for varying levels of heterogeneity using the meta-LASSO,

stacked LASSO and seperate LASSO with Cross-vaildation over 1,000 simulations.

. Meta - LASSO Stacked LASSO Separate LASSO
Heterogeneity

Sens Spec Sens Spec Sens Spec

Baseline 0.264 0992+ 0.741¢ 0.832+ 0.177 0929+
0.197 0.016 0.291 0.137 0.104 0.048

Low 0.257 0992+ 0.732+ 0.834 0.178 + 0.929
0.191 0.016 0.294 0.138 0.103 0.048

Mid 0.250 0991+ 0.705% 0.840 0.179 0929+
0.188 0.016 0.306 0.138 0.103 0.049

High 0.174 0989+ 0432+ 0.893 0.181 + 0.927 +
0.158 0.018 0.329 0.126 0.104 0.049

The results for BIC (Table 9.7) show similar patterns to those shown for the CV. As
heterogeneity increased the sensitivity for the meta-LASSO and stacked LASSO
decreases. The sensitivity for the separate LASSO increases as heterogeneity increases.
The specificity of the meta-LASSO and separate LASSO decreases while the specificity
of the stacked LASSO increases. These patterns for the BIC replicate the patterns

shown by Li et al. in their simulation (see Table 2 (246)).

BIC has been shown to be a conservative method for variable selection (see section
3.3.2.3). It is unsurprising therefore that all three LASSO methods produce high
specificity rates using BIC as only a small number of variables are selected. Much like
the simulation performed by Li et al. the meta-LASSO outperforms the competing
methods using the BIC for tuning parameter selection. Both the meta-LASSO and
stacked LASSO returned high specificity rates with little difference between them but
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the meta-LASSO produced a slightly higher sensitivity rate. The separate LASSO returns
the lowest sensitivity and specificity of the three methods using BIC. For the
permutation method the stacked LASSO outperforms the competing methods (Table
9.8). All three methods produce a high specificity rate however; the stacked LASSO has
a higher sensitivity rate than both the meta-LASSO and separate LASSO. The poor
performance of the meta-LASSO compared to the stacked LASSO could be attributed
to the strength of the penalty chosen. As previously discussed, each dataset will have a
different minimum A estimate to produce a null model. However by permuting with

the same A across all datasets, variable selection may be restricted in some datasets.

In 3.3.2, the permutation method performed well against the competing tuning
parameter selection methods in terms of variable selection. All 3 methods produced
similar results in this simulation for the three tuning parameter selection methods.
Each method allowed a number of false positives using CV while the BIC does not
select many true positives. The permutation method has similar specificity rates as BIC
but a higher sensitivity rate. The separate LASSO produces the lowest sensitivity rate of
all three methods regardless of which tuning parameter method is used. This is
unsurprising as models are fitted individually on datasets rather than together
therefore the analysis will lack power to select causal SNPs. For each tuning parameter
selection method, the sensitivity increased slightly in the high heterogeneity scenario,
while they decreased for the meta-LASSO and stacked LASSO. While the separate
LASSO may lack the power to select truly causal SNPs, the increase in variance
explained in 2 of the 5 datasets will increase the power within these datasets. In
general meta-LASSO seems to be a conservative method compared to the stacked
LASSO regardless of which tuning parameter is used as shown by the high specificity
and low sensitivity for all three tuning parameter selection methods (Table 9.6, Table

9.7 and Table 9.8).

Given the lack of true positives selected, the meta-LASSO would work best with the
permutation method for tuning parameter selection. The method already controls the
FPR well and the use of permutation method will allow a higher TPR than BIC or CV.

The stacked LASSO using the permutation method however showed superior
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performance across all methods as the sensitivity rate was higher and specificity was

only slightly lower than the meta-LASSO.

Table 9.7 Mean and standard deviation of sensitivity and specificity using the single

selection measure for varying levels of heterogeneity using the meta-LASSO, stacked

LASSO and seperate LASSO with BIC over 1,000 simulations.

H ) Meta - LASSO Stacked LASSO Separate LASSO
eterogeneity Sens Spec Sens Spec Sens Spec

Baseline 0.095 0.999 0.076 £ 0.999+ 0.049+ 0.992 +
0.105 0.005 0.117 0.004 0.047 0.006

Low 0.098 0.998 + 0.081+ 0.999+ 0.049+ 0.992 +
0.107 0.005 0.121 0.004 0.045 0.005

Mid 0.096 0.998 + 0.071+ 0999+ 0.050% 0.993
0.105 0.005 0.113 0.004 0.048 0.006

High 0.086 0.997 + 0.049+ 0.998+ 0.055% 0.992 +
0.100 0.007 0.088 0.006 0.054 0.006

Table 9.8 Mean and standard deviation of sensitivity and specificity results using the

single selection measure for varying levels of heterogeneity using the meta-LASSO,

stacked LASSO and seperate LASSO with the permutation method over 1,000

simulations.

Heterogeneity Meta - LASSO Stacked LASSO Separate LASSO
Sens Spec Sens Spec Sens Spec
Baseline 0.307 = 0.992 + 0.423+ 0.987+ 0.073 0.987
0.173 0.011 0.217 0.017 0.051 0.007
Low 0.299 + 0.992 + 0416+ 0.987 + 0.073 0.987 +
0.171 0.011 0.217 0.017 0.050 0.007
Mid 0.286 0.992 + 0.397+ 0.987+ 0.073 0.987
0.167 0.011 0.216 0.017 0.051 0.017
High 0.171 + 0.992 + 0.224+ 0.986 0.074 0.987 +
0.141 0.011 0.183 0.018 0.050 0.007
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9.3.3.2 Results based on the proportion of the replication measure

Table 9.9, Table 9.10 and Table 9.11 show the results for Cross-validation, BIC and the
permutation methods respectively for both the meta-LASSO and separate LASSO using
the replication measure. In each case the meta-LASSO performed well using this
measure compared to the single selection measure. There is little difference in
specificity rates between the two measures however there is an increase in sensitivity
for each tuning parameter selection method. These results suggest that when a true
positive is selected, there tends to be a replication in another dataset but this is not
the case when a false positive is selected. Given the implications of these results the
meta-LASSO with a replication measure should be used variable selection over the
single selection measure proposed by Li et al. Both the sensitivity and specificity rates
increased using the separate LASSO with CV. The sensitivity for permutation method
and BIC both increased for the replication measure compared to the single selection
measure but the specificity rate decreased slightly. This shows that the separate LASSO
rarely selects SNPs using BIC and permutation method and when a SNP is selected it is

rarely replicated, again this can be attributed to the lack of power.
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Table 9.9 Mean and standard deviation of sensitivity and specificity results for both selection measures across varying levels of heterogeneity

using the meta-LASSO and seperate LASSO with Cross-validation over 1,000 simulations.

Heterogeneity

Baseline

Low
Mid
High

Meta -

LASSO

Separate LASSO

Single selection

Sensitivity
0.264 £ 0.197
0.257 £0.191
0.250 £ 0.188
0.174 £ 0.158

Specificity
0.992 + 0.016
0.992 + 0.016
0.991 £ 0.016
0.989 £ 0.018

Replication

Sensitivity
0.331+£0.240
0.325 £ 0.237
0.320 £ 0.237
0.231+£0.201

Specificity
0.988 +0.023
0.988 +0.023
0.987 £ 0.024
0.983 +0.026

Single selection

Sensitivity
0.177 £ 0.104
0.178 £ 0.103
0.179 £0.103
0.181 £ 0.104

Specificity
0.929 +0.048
0.929 + 0.048
0.929 +0.049
0.927 £ 0.049

Replication

Sensitivity
0.212 £ 0.234
0.215+0.235
0.215+0.234
0.219+0.243

Specificity
0.958 + 0.065
0.957 £ 0.064
0.957 £ 0.064
0.955 + 0.066

Table 9.10 Mean and standard deviation of sensitivity and specificity results for both selection measures across varying levels of heterogeneity

using the meta-LASSO and seperate LASSO and BIC over 1,000 simulations.

Heterogeneity

Baseline
Low
Mid

High

Meta - LASSO Separate LASSO
Single selection Replication Single selection Replication
Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity
0.095+0.105 0.999+0.005 0.129+0.144 0.998+0.008 0.049+0.047 0.992+0.006 0.020+0.064 1.000 +0.003
0.098 £0.107 0.998 £+0.005 0.136+0.151 0.997+0.008 0.049+0.045 0.992+0.005 0.020+0.063 0.999 +0.004
0.096 £0.105 0.998+0.005 0.132+0.146 0.997+0.008 0.050+0.048 0.993+0.006 0.019+0.062 0.999 +0.004
0.086 £0.100 0.997 £0.007 0.125+0.146 0.995+0.011 0.055+0.054 0.992+0.006 0.027+0.077 0.999 +0.004
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Table 9.11 Mean and standard deviation of sensitivity and specificity results for both selection measures across varying levels of heterogeneity

using the meta-LASSO and seperate LASSO and permutation method over 1,000 simulations.

Meta - LASSO Separate LASSO
Heterogeneity Single selection Replication Single selection Replication
Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity  Specificity

Baseline 0.307 0.992 + 0.388 0.989 + 0.073 0.987 + 0.046 0.998
0.173 0.011 0.212 0.015 0.051 0.007 0.092 0.006

Low 0.299 0.992 0.381 £ 0.989 0.073 0.987 0.045 + 0.998
0.171 0.011 0.212 0.015 0.050 0.007 0.091 0.006

Mid 0.286 0.992 + 0.365 * 0.989 + 0.073 0.987 + 0.044 + 0.998
0.167 0.011 0.208 0.015 0.051 0.017 0.090 0.006

High 0.171 % 0.992 0.229 £ 0.988 0.074 0.987 0.043 0.998
0.141 0.011 0.183 0.015 0.050 0.007 0.090 0.006
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9.3.4 Sensitivity analysis

Results of the simulation showed that the meta-LASSO seems to be a conservative
method which produced a low sensitivity and high specificity regardless of the tuning
parameter selection method that is used. Perhaps surprisingly, this is even the case
when using Cross-validation which tends to over select variables. The reason for this
must be attributed to the penalty on {;; as removing this penalty from equation (9.6)
reduces the equation to the stacked LASSO. Two reasons were considered as to why
the meta-LASSO did not select many variables. The first is the nature of the penalty

on {4j, and the second is the strength of the fixed penalty on y;. To check that this was
not due to the strength of the fixed penalty, a sensitivity analysis was run by varying
the fixed A. The results are shown in Table 9.12, Table 9.13 and Table 9.14 for the three
respective tuning parameter selection methods. The results show that there is little
difference in sensitivity and specificity rates and that the conclusion to this simulation
study would remain the same if a different fixed A value was selected. The specificity
rate remained similar across all levels heterogeneity, tuning parameter selection
methods and fixed lambdas (between 0.987 and 0.999). The sensitivity rate for CV and
permutation method was highest for A = 0.002 suggesting a smaller penalty would
work best, however there is only a 2-3% difference in sensitivity compared to the A =
0.004. A\ =0.006 seemed to perform best for the BIC however this increase in
sensitivity compared to A = 0.004 was also small (<1% at most levels of heterogeneity).
A grid search method could have been used in this simulation rather than fixing one
penalty in order to find the optimum penalty. The meta-LASSO using the permutation
method performed well compared to the other tuning parameter selection methods.
This method produced a higher sensitivity rate while maintaining a similar specificity
rate compared to the BIC. Results suggest that A = 0.002 produced the best results as
the specificity rate remained high but the sensitivity rate increased. These results
however still do not outperform those using the stacked LASSO regardless of the

heterogeneity level.
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Given the strength of the fixed penalty has little effect on the sensitivity and specificity
rates it seems the nature of the penalty on {;; leads to the meta-LASSO producing
conservative models. This is because the shrinkage of the heterogeneity estimates is
towards 0 as does the fixed penalty on y;. While the meta-LASSO is able to perform
well when there are large effect estimates (Table 9.3) and when the effects sizes for a
causal SNP across studies are small, the heterogeneity between SNPs will also be small.
If the heterogeneity between SNPs is small then little shrinkage is required to remove

the SNP from the model and hence lower the sensitivity rate.

Table 9.12 Mean and standard deviation of sensitivity and specificity rates for the
meta-LASSO using Cross-validation across varying levels of heterogeneity and fixed A

estimates over 1,000 simulations.

Stacked A= A= A= A= A=

Heterogeneity Measure  \cso  0.002 0.004 0.006 0.010 0.020

0.741+ 0.292+ 0.264% 0.242+ 0.224+ 0.224+

Baseling SeNSitivity 5991 0213 0197 0189 0190  0.197

Speciicity 0-832% 0990% 0992% 0992% 0992% 0994+

0137 0019 0016 0015 0014 0.012

Sensitivity 0732% 0288% 0257% 0237% 0218% 0217%

Low 0294 0211 0191 0.185 0.186 0.189

Specificity 0-834% 0991% 0992% 0992% 0992% 0994+

0138 0018 0016 0015 0014 0.012

Sensitivity 0705% 0275% 0250% 0230% 0214% 0212%

Mid 0306 0204 0188 0.181 0.182 0.190

Specificiyy 0-B40% 0990% 0991% 0992% 0992% 0993+

0138 0018 0016 0015 0014 0.013

Sensitivity  0432% 0177% 0174% 0166% 0.156% 0.146%

ot 0329 0169 0158 0.155 0.152 0.147

2 . . 0893+ 0987+ 0989+ 0990+ 0.991+ 0.993+
Specificity

0.126 0.021 0.018 0.016 0.016 0.012

266



Table 9.13 Mean and standard deviation of sensitivity and specificity rates for the

meta-LASSO using BIC across different levels of heterogeneity and fixed A estimates

over 1,000 simulations.

Heterogeneity Measure Stacked A= A= A= A= A=

LASSO 0.002 0.004 0.006 0.010 0.020
S 0.076+ 0.099+ 0.095+ 0.106+ 0.097+ 0.092+

Baseline 0.117 0.109 0.105 0.105 0.097 0.092
Specificity 0.999+ 0999+ 0.999+ 0.998+ 0.998+ 0.998 +

0.004 0.005 0.005 0.006 0.005 0.005
S 0.081+ 0.092+ 0.098+ 0.101+ 0.098+ 0.217 %

Low 0.121 0.106 0.107 0.107 0.096 0.189
Specificity 0.999+ 0999+ 0998+ 0.998+ 0.998+ 0.994+

0.004 0.004 0.005 0.005 0.005 0.012
Sy 0.071+ 0.096+ 0.096+ 0.102+ 0.096+ 0.091%

Mid 0.113 0.104 0.105 0.107 0.095 0.093
Specificity 0.999+ 0999+ 0.998+ 0.998+ 0.998+ 0.998 t

0.004 0.005 0.005 0.005 0.005 0.005
Sy 0.049+ 0.079+ 0.086+ 0.093+ 0.086+ 0.075%

High 0.088 0.096 0.100 0.100 0.089 0.083
Specificity 0.998+ 0998+ 0.997+ 099+ 0.996+ 0.997

0.006 0.006 0.007 0.007 0.006 0.006
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Table 9.14 Mean and standard deviation of sensitivity and specificity rates for the
meta-LASSO using permutation method across different levels of heterogeneity and

fixed A estimates over 1,000 simulations.

Stacked A= A= A= A= A=

Heterogeneity Measure | \cso  0.002 0.004 0.006 0.010 0.020

0.423+ 0357+ 0307+ 0.273+ 0.243+ 0.273

Baseline SeNsitivity 5517 0192 0173 0161 0154 0173
Specificity 0987% 0990 0992% 0993+ 0994 0993%
0017 0013 0011 0010 0009 0.011
Sensitivity 0416% 0349% 0299% 0268+ 0238+ 0267
Low 0217 0189 0171 0.159 0.152 0.169
Specificity 0987% 0990 0992% 0993+ 0994 0993%
0017 0013 0011 0010 0009 0.011
Sensitivity 0397% 0332% 0286% 0.254% 0228+ 0260%
id 0216 0.8 0.167 0156 0.150 0.168
Specificity 0987% 0990 0992% 0993+ 0994 0993%
0017 0013 0011 0010 0009 0.011
Sensitiviey 0224% 0.185% 0171% 0.161% 0156 0172%
ot 0.183  0.156 0141 0132 0.128 0.142
s Specificity 0986% 0990 0992% 0990+ 0994 0992
0018 0013 0011 0001 0009 0.011

9.4 Discussion

In the previous section, a simulation study was conducted to assess the relative
performance of the meta-LASSO when the simulated effect sizes are not overpowered.
The Li study simulated effect sizes of B4; ~ N(3, 0.5)%, in my high-powered simulation
the B,; effect estimates varied between 1.13 and 0.32 depending on the MAF of the
causal SNP. Even with a smaller effect size the high powered scenario produced similar
results as the Li et al. simulation. This simulation showed the same patterns for the
three LASSO based methods as the Li et al. simulation, with the sensitivity and
specificity rates decreasing and heterogeneity increased for both meta-LASSO and
stacked LASSO. The separate LASSO saw an increase in sensitivity and a decrease in
specificity as heterogeneity increased. These patterns were apparent in the lower
powered simulations and across all three tuning parameter selection methods. To test
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whether the selection of a fixed A had any effect on the simulation results, a sensitivity
analysis was conducted to test varying values of the fixed penalty. The results showed
that the fixed penalty in fact had little effect on the overall result and that the stacked

LASSO using the permutation method was the best performing method overall.

Two defined measures were used in this simulation; the first was the single selection
measure which calculated the total proportion of true and false SNPs that were
selected, and the second was the replication measure which calculated the proportion
of true and false SNPs replicated the correct result. The simulation showed that
replication measure produced a higher sensitivity while maintaining a similar
specificity as the single selection measure. The replication measure can be used to
protect against selecting variables that are only selected in one dataset and may in fact
be a false positive. This simulation showed that when a true positive is selected, there
tends to be a replication in at least one dataset but this is not the case when a false

positive is selected.

9.5 Conclusion

In this chapter, | have reviewed a number integrative analysis based methods that
incorporate penalised regression. | followed up by conducting a simulation study
comparing the meta-LASSO method (246) against both the stacked LASSO and
separate LASSO in a SNP study setting. The results showed that the meta-LASSO
performed well for both CV and BIC compared to the stacked and separate methods
but did not perform well using the permutation method. For each tuning parameter
selection method the meta-LASSO produced a low sensitivity and high specificity rates
suggesting that the method is quite conservative for SNP selection. Of the three tuning
parameter selection methods the permutation method performs the best but is

outperformed by the stacked LASSO using the permutation method.
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Results of the simulation showed that the meta-LASSO seems to be a conservative
method which produced a low sensitivity and high specificity regardless of the tuning
parameter selection method that is used. There were two potential reasons for this,
first is the nature of the penalty on {;;, the second is the strength of the fixed penalty
on y;. A sensitivity analysis was performed to see the influence of the fixed penalty;
the results showed that there was little difference in varying this penalty (Table 9.12,
Table 9.13 and Table 9.14). Therefore the conservative nature of this method seems to

be due to the {4; penalty as it shrinks to O further removing variables from the model.

| also suggest an alternative measure for variable selection for both the meta-LASSO
and separate LASSO which selects variables only if the SNP is selected in more than
one dataset (i.e. replicated). Li et al. suggest variable selection to be based on if any
SNP from any one dataset is selected (246). Results showed that the replication
measure produces a similar specificity rates but a higher sensitivity rates which

suggests a more powerful measure for variable selection.

To current knowledge this is the first study that applies the meta-LASSO in a SNP study
and also tests if the method works in a setting where the causal variables not
overpowered. This is also the first study that tests other tuning parameter selection

methods such as Cross-validation and the permutation method for the meta-LASSO.
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10 The Integrative LASSO

10.1 Introduction

Results from the simulation study in Chapter 9 comparing a number of methods for
integrative analysis produced low sensitivity rate in the lower powered scenario where
the level of heterogeneity was varied. The stacked LASSO method was the exception to
this rule; however the method is unable to allow for heterogeneity between datasets.
In this chapter, | propose an alternative method, the Integrative LASSO (IL). The
purpose of the Integrative LASSO is to penalise SNPs within datasets but also penalise
some SNPs into the model by averaging B estimates across datasets and therefore

potentially increasing the sensitivity rate.

In this chapter, | firstly describe the Integrative LASSO and explain the reasoning
behind the penalties that are used. | provide an algorithm to apply the IL method to
datasets by coordinate descent. | then provide an example of how the Integrative
LASSO works using a test dataset and finally conduct a simulation study comparing the
IL to meta-LASSO, stacked LASSO and separate LASSO which were discussed in greater

detail in Chapter 9.

10.2  The Integrative LASSO

Consider the same scenario described in the previous chapter where there are D

datasets Hy, ... , Hp for an integrative analysis. Each dataset of the D datasets consists
of N, subjects and the same P SNPs. The following notation is used, leti = {1, ... N}
denote the /" subject, j = {1,... P} denote the /"SNP andd = {1,... D} represents

the o dataset. For simplicity it is assumed that each dataset consists of the same
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number of subjects contains the same SNPs in each dataset. Each dataset is

standardised separately. The Integrative LASSO (IL) minimises the following function:

D 1 Ng P
B(A) = argmin Z—Z Yai — Zxdijﬁdj
b 2Na =
D P D P 1 D 2 (10.2)
+21) > [Ba wZZ(ﬁd, - Zﬁd,-)
d=1j=1 d=1j=1 a=1

The IL incorporates two penalty terms with elements of both the fused LASSO (32) and
elastic net (18) in the second penalty. The first penalty penalises SNPs within each
dataset which will produce separate f8; for each of the D datasets, similar to the
penalty on { for the meta-LASSO method (246). The second penalty attempts to
average f34; estimates across datasets by penalising the squared difference between
each f,; estimates towards the mean estimate of these estimates across all datasets.
For this chapter, the A, penalty is called the LASSO penalty and the 4, penalty will be
referred to as the variance penalty. The variance penalty penalises ,; estimates
towards the mean across all D datasets. The logic behind this penalty is that a casual
SNP is likely to have a non-zero beta estimates with the same sign in most, if not all,
datasets leading to a non-zero mean. In contrast mean beta across all D datasets for a
non-causal SNP is likely to be zero. Therefore by forcing the SNPs towards the mean
across all datasets the IL attempts to retain the causal SNPs by penalising these SNPs
away from zero while non-causal SNPs are penalised further towards zero. An increase
in A, penalises SNPs towards the mean f3; across all D datasets therefore for any large
penalty on A, combined with a small penalty on 1, the estimates are forced towards a
OLS regression model, where the estimates across all datasets will be the same and
none or a very small number of the SNPs are removed from the model. The square
difference was used rather than the absolute difference for two reasons; the first was
that removing SNPs from the datasets has greater importance (i.e variable selection is

performed). The second reason is that the squared term in the elastic net encourages a
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grouping effect that the absolute penalty does not (18), therefore this would aid in

grouping SNP estimates across datasets.

10.3  Fitting the Integrative LASSO via coordinate

descent

The Integrative LASSO can be fitted using the coordinate decent algorithm (CDA). This
section presents the algebra and my own algorithm for the IL. Both the algebra and
algorithm presented are similar for to those | show for the LASSO in sections 2.4.2 and

3.2.1.

10.3.1 The algebra for fitting the Integrative LASSO via coordinate descent

The Integrative LASSO minimises the function shown in (10.1). Removing the

A, penalty from this function, a function that fits the separate LASSO on each dataset
is obtained which can be performed by coordinate descent and the solution to
minimising the LASSO is shown in section 2.5.2.1. We can therefore concentrate on
minimising the variance penalty. We wish to minimise this function of 1, (f (1,)) for
some 3 wherel = {1, ...,D}, k = {1, ..., P} and therefore differentiate w.r.t B to

produce a solution.
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We firstly expand summation of the penalty over the D datasets (10.2).

P 1 D 2
> (ﬁdk -z ﬁdk)
k=1 d=1

D
fO) =
d=

1

(10.2)
P D 2 D 2
1 1
=Z ﬁ1k—5 Bax | + -+ ﬁDk_BEﬁdk
k=1 d=1 d=1
Foranyl = {1, ..., D} equation (10.2) can be generalised as:
P D 2
1
fO) =) (ﬁlk -=> ﬁdk)
k=1 d=1
D 12 2 (10.3)
+ Z <5mk D ﬁdk)
m=1m+l, d=1
We now differentiate w.r.t. B, and simplify:
D D D
6f (1) D—-1 1 1 1
5Bun =2 D ﬁlk—BZﬁdk —25 z ﬁmk—Ez.Bdk
d=1 m=1m=l, d=1

D D D
1 D—-1
(Db-1) (ﬁlk D z ﬁdk) - ( Z ﬁmk) + D Z ,Bdk]
d=1 £l

m=1m

2
D

= % (D —Dpfy — (m_il#ﬁm"> + (Dl; - D; 1>Zﬁdk]
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o) 2
. 6:8lk B D

(D =Dy — ( 2 ﬁmk)] (10.4)
)

Therefore the Integrative LASSO can be solved for any sz by:

. L& P
P=——-|-= Yi— W — Z X1iiB | Xuik
Zi=1 e\ N i=1 j=1,j%k
+ A, sign(Bu) (10.5)
D
2
+ 4, D (D — 1)y — ( z ﬁmk)]
m=1m=l
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The derivative of the LASSO penalty function again yields directional derivatives

dependant on the sign of . For any [ a right (positive) and left (negative) derivatives

are calculated using the following steps:

L p
Let N Yi— MW — Z XiiiB | Xk
i—1 j=1)%k
D
2
+ /125 (D =Dy — ( 2 ,Bmk>]
m=1m=l

= S(l,y,,u,x,ﬁ,/lz)

N

Let lezl-k = Sxx;
i=1
I(T'd e _S(l;y,#,x’ﬁ'AZ) + Al
. Sxx;
if B >0 4 - =Sy, wx,B,22) + 4
L - Sxx;
(‘r‘d = _S(l;y,#,x’ﬁ'AZ) - Al
. Sxxl
if Br <0 5 1 —-S(Ly,u,x,B8,4) — A4
L Sxxl
er = _S(l;y:ﬂ:xrﬁ'AZ) + Al
. _ Sxx;
if B =10 1 1 = =Sy, ux,0,1;) — A4
\ Sxx;

In order to update Sy for any iteration, if l[d.rd > 0 then:

.sz7<= Bix —rd

(10.6)

(10.7)
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10.3.2 My coordinate descent algorithm for the Integrative LASSO

Table 10.1 shows the pseudo code for my coordinate decent algorithm to fit the
Integrative LASSO. The algorithm is very similar to the coordinate descent algorithm
for the LASSO described in section 2.4.2. Each dataset is optimised separately and
repeated over a loop across datasets until convergence is met. Convergence is based
on the sum of the absolute differences between iterations from the current iteration
loop (B) and the beta estimates from the previous iteration loop (Oldbeta) both within
(step 19) and across datasets (step 20). However the convergence threshold can be
different for the two loops. An alternative convergence threshold that could be used is
the maximum absolute difference across all SNPs. The inclusion of the variance penalty

is shown in step 16.

Table 10.1 My pseudo code to fit the Integrative LASSO using the coordinate descent

algorithm

e D =the number of datasets

e Letd = the dth dataset, whered = {1, ..., D}

e Let N = the number of subjects in the dataset

e Leti=theith subject, wherei={1, .., N}

e Let P = the number of SNPS in each dataset

e Letj=thejh SNP, wherej={1, .., P}

e x,;= The N x P standardised SNP matrix for the dth dataset

e y, = A continuous phenotype with mean p4 and standard deviation 2 for

the dth dataset

1. Specify two penalty thresholds for the LASSO penalty and variance
penalty. Call them 4, and A,.

2. Specify the maximum number of iterations that are to be used within each
dataset. Call it NIter1

3. Specify the maximum number of iterations that are to be used across

dataset. Call it NIter2
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N o

© ®

10.
11.
12.
13.

14.
15.

16.

17.

Specify convergence threshold > 0 for convergence within a dataset. Call
it THRESH1

Specify convergence threshold > 0 for convergence across datasets. Call it
THRESH2

Calculate the intercept which is the mean of yq. Call it mu, for all d
Calculate sxxq for all d, where sxxq = Y¥5_ox5;

Generate a D x P matrix of initial estimates of length P. Call it Betahat ()

Generate the same D x P matrix of initial estimates of length P. Call it

Oldbeta

Setd = 1
Setiter2 =1
Setiterl = 1

For each cell in the dth row of Oldbeta, replace the Oldbeta values with
those in the dth row of Betahat ()

Setj =1

Take the jth column of §, ,@j and remove the dt row. Call this vector
OtherBetas

Calculate
N 2N .
r= Yic1(Vai — mug)xg; — A, > ((D 1) fgj— 2 OtherBetas)

Calculate the left (1d) and right derivatives (rd)

ld= —r+ N1,

a- 1ffaj =0 {rd = —r— N

b.

A~ Td= —T+Nj.1
If Baj > 0 {ld = —r+NA,

rd= —r—NJA

C. Ifﬁd1<0{ld= —T—Nﬂ.l

18.

Let New. beta denote the updated Beta estimate. In order to calculate this:
a. Ifrdxld <0 then ﬁdj=0
b. Ifrd x ld > 0 then

rd
sxxq

i.  Calculate New.beta,; = ﬁdj -

ii. Updatemuy; = muy + (New. betay; — ,L?dj)xdj
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iii.  Replace ,@dj = New. betay;
19. Decide if the convergence criterion within dataset has been met.
a. Ifo=1| ij - OIdbetadj| < THRESH1andj = P then convergence

criterion has been met. Go to Step 20

b. Ifo=1| ij - OIdbetadj| > Thresh1 then convergence criterion has not
been met.
i. Ifiterl = Nlterl. Stop. Model has not converged
ii. [Ifj = P,setiterl = iterl+ 1.Go to step 14.
iii. Ifj < P&iterl < Nlter,setj = j+ 1.Go to step 15.
20. Decide if the convergence criterion across datasets has been met.

a. If¥?  3F 1| Baj — Oldbeta,;| < THRESH2 and d = D then
convergence criterion has been met. ;j contains a matrix of beta
estimates obtained by the Integrative LASSO for tuning parameter 1,
and A,.

b. If¥?  ¥F_1| Baj — Oldbeta,;| > THRESH2 then convergence
criterion has not been met.

i. Ifiter2 = Nlter2. Stop. Model has not converged
ii. Ifd = D,setiter2 = iter2+ 1.Go to step 12
iii. Ifd < D,setd = d+ 1.Go to step 12

10.4 Example of the Integrative LASSO on a test

dataset

For this example, a dataset was simulated as described in section 9.3.1 with 5 datasets

of 50 independent SNPs and 100 subjects in each dataset. Each of the five causal SNPs

explained 5% of the total variance of the phenotype. Each casual SNP was simulated

with a positive effect estimate. A seed was set to 1 using the set . seed () command

in R. 10,000 iterations (NIterl in Table 10.1) and a convergence threshold of 0.0001

(THRESH1 in Table 10.1) was used for convergence within each dataset. 40 iterations
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(NIter2 in Table 10.1) and a convergence threshold of 0.001 (THRESH2 in Table 10.1)

was used for convergence within each dataset.

10.4.11llustration of the variance penalty

The smallest A; required for a null model was 0.52513. Values of 1, ranged between 0
and 0.62. When 4, > 0.62 the model failed to converge within each dataset and is

discussed futher in section 10.4.2.

Figure 10.1 shows the coefficient path plot for the 45 non-causal SNPs (top left) and
the 5 causal SNPs in all 5 datasets across a range of 1, values with no LASSO

penalty, 4; = 0. When A, = 0 the B estimates obtained are the OLS regression
estimates for each SNP in each dataset. As the variance penalty increases, these
estimates were forced towards the mean B across all datasets which is the §;
produced by pooling all datasets together and fitting an OLS regression. It is clear in
Figure 10.1 that the non-causal SNPs were generally being shrunk towards 0, which is
the approximate simulated mean for a non-causal SNP. The causal SNPs do not shrink
towards 0 but to some value > 0 as their simulated effect is also some positive non-

zero value. The shrinkage for each SNP is shown in greater detail in Appendix D.

The addition of the LASSO penalty will also penalise SNPs towards 0, much like the
separate LASSO method discussed in Chapter 9. Figure 10.2 shows the coefficient path
plot for the 45 non-causal SNPs and the 5 causal SNPs in all 5 datasets across a range of
A, values with the LASSO penalty 4; = 0.1. A number of SNP estimates have shrunk to
0 and have been removed from the model. The increase in the variance penalty is
further forcing the remaining non-causal SNPs with larger effect estimates towards O.
When 4, = 0, 67 of the 250 SNPs remain in the model including 24 of the 25 casual
SNPs (sensitivity = 0.960, specificity = 0.809). By increasing the variance penalty a

number of SNPs were forced out of the model but also some SNPs were forced back

280



into the model. This is all dependant on the mean B estimate for the SNP across the
datasets when A; = 0.1. A total of 71 SNPs were selected when A, = 0.62 (sensitivity
=1.000, specificity = 0.796), an overall increase of 4 SNPs being selected. The aim for
this method is to attempt include a larger number of true positives in the model and
the increase in the variance penalty forces the single causal SNP estimated as 0 when
A, = 0 on SNP 10 into the model (Figure 10.2). Of the remaining SNPs forced into the

model, the B estimates remain small (|,8dj| < 0.0011).

When 4; = 0.2 and 1, = 0, the model selects 17 SNP, 13 of which are causal SNPs
(sensitivity = 0.520, specificity = 0.982). Figure 10.4 shows the effect of the variance
penalty as some causals SNPs are forced back into the model. When 4, = 0.62, the
model selects 27 SNPs of which 21 are causal SNPs resulting in a higher sensitivity rate
and only slightly lower specificity rate (sensitivity = 0.778, specificity = 0.973). In this
case, no SNPs were removed from the model when the variance penalty was
increased. Further increasing the LASSO penalty to A, = 0.3 (Figure 10.5) shows similar
results, where 1, = 0, 7 causal SNPs were selected (sensitivity = 0.280, specificity =
1.000) whereas A, = 0.62 selects a further two causal SNPs (sensitivity = 0.360,

specificity = 1.000). None of the non-causal SNPs are selected at this point.

In this example, 1, = 0.3 is the largest A, value that will penalise SNPs into the model.
After this point increasing A, will shrink the mean (3 estimates across all datasets
towards 0. As the LASSO penalty increases, the f; estimates shrink towards 0 as does
the mean across all datasets. Therefore for ; > 0.3, the mean B estimates across all

datasets becomes too small to be able to force more SNPs into the dataset.

281



Beta

Beta

03 01

03 01

Non-causal SNPs

1 111

'3

;

|I!

:

E
Beta

Lambdaz

Beta

0.3 01

03 01

T e

—— e — e —

0.2 04

02 04

LambdaZ

Beta

Beta

-03 01

-03 01

SNP20

e,
bl LRy
i e P R raRlRLRRIRLIEL
n e ——
-

T T T T T 1
00 02 04 06

Lambdaz

__________

Lambdaz

Figure 10.1 Coefficient path plots for the Integrative LASSO when A; = 0. The top left plot shows the forty-five non-causal SNPs in each of the

five datasets. The remaining five plots show the five causal SNPs. Each line represents a SNP from a dataset and the path shows the Bcoefficient

on the y-axis as the A4, penalty increases on the bottom x-axis.
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the five datasets. The remaining five plots show the five causal SNPs. Each line represents a SNP from a dataset and the path shows the

Bcoefficient on the y-axis as the A, penalty increases on the bottom x-axis.
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on the y-axis as the 4, penalty increases on the bottom x-axis
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10.4.2Convergence issues of the Integrative LASSO

For all values of A4, a variance penalty of 1, > 0.62, the model failed to converge
within each dataset. This was the case for all seeds although the 4, varied. When 4; =
0 and A4, = 0.63, the sum of the absolute difference in B estimates in the last iteration
in a single dataset varied between 0.2985 and 0.5867 and increasing the number of
iterations to 100,000 did not make any difference to these values. To see if the model
would converge across datasets the stop rule in step 19bi (Table 10.1) was removed.
Convergence in this case was also not reached with the sum of the absolute beta
estimates across all datasets varying between 0.70 and 1.38 after the fourth iteration
(Figure 10.6). The lack of convergence was not due to any single SNP in a dataset but
for most SNPs in each dataset. Figure 10.7 shows the maximum value of the absolute
difference of beta estimates at each iteration was > 0.028 after the fourth iteration. To
ensure this was not due to a small sample size, it was increased to 500 in each dataset.
Using the same combination of penalties the model did not converge. The plots of the
sum and maximum of the absolute difference across all datasets are shown in the
Appendix E (Figure E.0.1 and Figure E.0.2). The sum of the absolute difference varied
between 0.678 and 1.326 while the maximum absolute difference varied between

0.011 and 0.028.

As the LASSO penalty increases the sum of the absolute difference in B estimates
decreases as a number of SNPs are removed from the dataset and these SNPs do
converge. Therefore as the 4, increases the sum of the absolute difference within and
across datasets steadily decreases however, the model still does not converge within

dataset but does converge across datasets for 1; < 0.38.

Although the model fails to convergence in every dataset for at some value of 4,, this
becomes less important when considering the Integrative LASSO in terms of variable
selection. For variable selection the LASSO penalty has greater importance than the

variance penalty. As seen in section 10.4.1, as the A, penalty increases, the number of
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SNPs in the model also increases. A large 4, penalty may over select the number SNPs
in a model. Therefore while the variance penalty is desirable it should be restricted to
an extent such that models to not over select too many variables. The example
illustrated in section 10.4.1, shows that at the limit where the model fails to converge
(A2 = 0.62), the IL selects a few more SNPs into the model but does not select too

many more SNPs. Most of these extra SNPs are truly causal SNPs.

10
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Figure 10.6 Plot of the sum of absolute difference after each iteration across all

datasets against its iteration number
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Figure 10.7 Plot of the maximum value in the absolute difference across all SNPs in all

datasets after each iteration across all datasets against its iteration number

10.5 Simulation study comparing the Integrative

LASSO with the LASSO and meta-LASSO

In this section, | run a simulation comparing the Integrative LASSO against the meta-
LASSO, separate LASSO and stacked LASSO. The results of the competing methods are

shown in section 9.3.2 and 9.3.3.

10.5.1 Methods

Simulation of datasets is described in section 9.3.1 with the same levels of
heterogeneity used in each scenario as shown in Table 9.2. Repeated 10-fold Cross-
validation, BIC and the permutation methods were used for tuning parameter
selection. For each dataset the minimum A; penalty for a null model was calculated,

this value was then rounded up to 2 decimal places and was used as the largest 4, for
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that dataset. Testing showed that models were failing to converge for some A, values
varying between 0.52 and 0.59.Therefore for BIC and the permutation method the A,
ranged between 0 and 0.50 in order to allow convergence in every simulated dataset.
BIC was calculated using a grid search of all combinations of A; and 4, penalties at

intervals of 0.01 for each penalty.

A grid search cannot be used for the permutation method as unlike the BIC and CV
methods as there is no measure, such as BIC and MSE that is attributed to the
selection of tuning parameters. The permutation method selects the tuning parameter
based on the smallest A; penalty required for a null model after permutation of the
dataset. This value of 1; was obtained for each value of 1, by selecting the median
penalty across 25 permutations. For each value of 1,, the minimum A; required for a
null model was estimated. As the aim is to attempt to select as many true positive
SNPs as possible, with the A, corresponding to the smallest A, penalty was selecting as

the optimum tuning parameters.

The upper limit for the variance penalty was reduced to 0.35 for 10-fold CV. CV divides
the dataset further into smaller sets, this reduction in sample size again lead to issues
with convergence in the training set for larger values of 1,. There were also issues with
convergence for rare SNPs using CV, again due to the smaller sample size. Simulated
SNPs with a low minor allele count (MAC) in any dataset particularly struggled to
converge regardless of the A, penalty applied. The smallest MAF for simulated SNPs
was increased to 0.05 from 0.01. In each case, if a SNP previously had a MAF < 0.05,
0.04 was added to the MAF before simulating the dataset to allow the SNP to remain
relatively rare. The MAF for the causal SNP which previously had a MAF of 0.02 was set
to 0.05. Increasing the sample size was not considered as this would increase the
power to select causal SNPs and therefore would not be a fair as a comparison with
the previous simulation. For repeated CV and BIC, the optimum combination of tuning
parameters was performed using a grid search of all combinations of A1, and A,

penalties at intervals of 0.01 for each penalty. The combination of 1, and A, that
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produced the smallest MSE across the 10 folds was selected for CV, likewise the
smallest BIC value and its corresponding combination of A, and A, was selected for
the BIC. A total of 1,000 simulations were run with 10 repetitions for each seed 1-101.
Seed 56 was omitted as it was omitted in the simulation study conducted in section
9.3. Both the single selection and replication measures were considered as measures

for variable selection (section 9.3.1).

10.5.2 Results

10.5.2.1 Results for high variance explained scenario

Table 10.2 compares the sensitivity and specificity rate the Integrative LASSO against
the meta-LASSO, stacked LASSO and separate LASSO methods (see section 9.3.2) for
the single selection measure. In this scenario, the IL performs well in terms of
sensitivity rates compared to the competing methods using 10-fold CV. Only the
stacked LASSO, which selected all causal SNPs in the 1,000 simulations, produced a
higher sensitivity rate. The specificity rate however was much lower than the
competing methods (0.538). As shown in Table 10.3 this is due to a large mean number
of SNPs selected. On average half of all SNPs were selected in the model (mean =
128.850, S.D. = 27.424). Figure 10.4 plots all the estimated A, and 1, penalties over the
1,000 simulations and shows that CV consistently selected a relatively small 4; and
relatively A, large penalty. A combination of these penalties will include a large
number of SNPs in the model. The permutation method also performs poorly.
Although not many non-causal SNPs are selected, the IL does not select may true
positives either and produces the lowest sensitivity rate across all methods and tuning

parameter selection methods.

The BIC worked well for the IL in this scenario selecting every causal SNP across the

1,000 simulations. Unlike CV, the BIC maintained a high specificity rate (0.960) and on
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average selected 9 non-causal SNPs (Table 10.3). The stacked LASSO produced a similar

sensitivity rate but a slightly higher specificity rate (0.982).

Table 10.2 Mean and standard deviation of sensitivity and specificity results using the
single selection measure in a high variance explained scenario using the meta-LASSO,
stacked LASSO, seperate LASSO and Integrative LASSO with Cross-vaildation, BIC and

permutation method as tuning parameter selection methods over 1,000 simulations.

Cross-validation BIC Permutation method
Method
Sens Spec Sens Spec Sens Spec
0.986 + 0.992 + 0.972 + 0.995 + 0.512 + 1.000 +
Meta-LASSO ) 028 0.016 0.058 0.008 0.211 0.000
Stacked 1.000 * 0.764 + 1.000 * 0.982 + 0.999 + 0.995 +
LASSO 0.000 0.122 0.006 0.021 0.015 0.011
Separate 0.857 + 0.803 0.702 0.948 + 0.486 + 0.991 +
LASSO 0.096 0.064 0.129 0.023 0.092 0.006
Integrative 0.997 + 0.538 + 1.000 * 0.960 + 0.390 + 0.996 +
LASSO 0.013 0.121 0.000 0.020 0.103 0.004

Table 10.3 Mean and standard deviation summary statistics for variable selection using

the Integrative LASSO over 1,000 simulations in the high variance explained scenario.

Number Number

Tuning parameter Number of true of false
selectgiopn method Lambdal Lambda2 of SNPs positive positive
selected SNPs SNPs

selected selected

ey L 0.056 0.314 £ 128.850+ 24914+ 103.936+
Cross-validation

0.015 0.036 27.424 0.324 27.337

BIC 0.075+ 0.102 + 34.002+  25.000 9.002 +
0.007 0.166 4.445 0.000 4.445

Permutation method 0.279 0.254 + 10.595 9.761 0.834 +
0.003 0.147 2.721 2.581 0.936
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Figure 10.8 Scatter plot of the selected A;and A, values for each of the 1,000
simulations using repeated 10-fold Cross-validation in the high variance explained
scenario

Table 10.4 compares the sensitivity and specificity rate for each method using the
replication measure. For CV the specificity rate is lower using this measure (0.272)
compared to single selection measure (0.538). In comparison the meta-LASSO
produces high sensitivity and specificity rates (0.998 and 0.988) and is clearly the best
method for variable selection by the replication measure using CV. The IL shows
superior performance to the meta-LASSO using the permutation method with a higher
sensitivity rate. This sensitivity rate, however is lower than the separate LASSO which
shows the best performance as all three methods produce the same specificity rates
however the separate LASSO has the highest sensitivity rate (0.793). Of all
combinations of integrative analysis methods and tuning parameter selection methods
the IL with BIC shows the best performance as it selects all causal SNPs and has a high

specificity rate (0.984) using the replication measure.
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Table 10.4 Mean and standard deviation of sensitivity and specificity results for the
proportion of replicated results in a high variance explained scenario using the meta-
LASSO, stacked LASSO, seperate LASSO and Integrative LASSO with Cross-vaildation,

BIC and permutation method as tuning parameter selection methods over 1,000

simulations.
Method Cross-validation BIC Permutation method
Sens Spec Sens Spec Sens Spec
Meta-LASSO  0.998 + 0.988 + 0.989 + 0.992 + 0.517 + 1.000 *
0.018 0.024 0.047 0.014 0.213 0.000
Separate 0.997 + 0.744 + 0.973 + 0.977 0.793 + 0.999 +
LASSO 0.023 0.136 0.082 0.028 0.177 0.004
Integrative 1.000 + 0.272 1.000 + 0.984 + 0.628 + 1.000 +
LASSO 0.000 0.167 0.000 0.022 0.207 0.002
10.5.2.2 Results for varying levels of heterogeneity

In this simulation all three tuning parameter selection methods for varying levels of
heterogeneity performed poorly compared to the simulation results shown in section

9.3.3.

Table 10.5, Table 10.6 and Table 10.7 show the mean and standard deviation
sensitivity and specificity rates for the IL method using 10-fold CV, BIC and
permutation method. In each case the IL produced the lowest sensitivity rate of all
methods. This suggest that the IL lacks power to detect associations compared to the
competing methods and that the stacked LASSO with the permutation method for
tuning parameter selection may be the best method for variable selection in

integrative analyses.
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As seen in previous section, CV tends to select large models with the IL which were
also the case in this simulation. A mean of 18 SNPs were selected for the lower
heterogeneity levels (Table 10.8). Most of the selected SNPs were non-causal SNPs
(specificity = 0.933 —0.934) and only an average of 3 causal SNPs were selected
(sensitivity = 0.147 — 0.149). The number of SNPs selected produced a high standard
deviation of the mean, which was also seen in the high variance explained scenario
(Table 10.3.) Figure 10.9 plots the selected A; and A, values against each other. The
plots show that in each case there seem to be two distinct groupings in ;. This is in
contrast to the high variance explained scenario where there were no divisions in the
distribution of A; (Figure 10.8). One grouping selects a small value of A; between 0 and
0.20, the other larger values of 1; between 0.25 and 0.35. The majority of the
simulations selected a large 1,, as the median number of SNPs selected at each level of
heterogeneity was approximately 1. The group of small A; values seemed to be a
correlated with A, as larger averaging penalties were being selected alongside small
LASSO penalties. This combination of penalties would increase the numbers of SNPs in
the model. A large LASSO penalty will select a small number of SNPs in the model
regardless of the variance penalty that is selected, as shown in section 10.4.1. These
two contrasts in A; selection lead to a large variance in the number of SNPs selected.
In order to reduce the variance repeated CV could be used, however this is at the

expense of computational time.

Variable selection by the BIC produced the lowest sensitivity rate across all
simulations. One of the problems with the BIC in these scenarios was that, nearly all (n
>938) of the final models did not utilise the variance penalty, instead selecting 4, = 0.
This is because the BIC penalises on the number of parameters in the model and
therefore is likely to select the simplest model possible. This was also the case in the
high variance explained scenario where 531 of the 1,000 models selected A, = 0. Of
the three tuning parameter selection methods, the permutation method shows the
best performance for variable selection using the IL as there is a higher sensitivity rate

and similar specificity rate than the BIC.
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Table 10.5 Mean and standard deviation of sensitivity and specificity results using the single selection measure for varying levels of

heterogeneity using the meta-LASSO, stacked LASSO and seperate LASSO with Cross-vaildation over 1,000 simulations.

Meta - LASSO Stacked LASSO Separate LASSO Integrative LASSO

Het it
eterogenetty Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Baseline 0.264 + 0.992 + 0.741 ¢ 0.832+ 0.177 0.929+ 0.147 + 0.934 +
0.197 0.016 0.291 0.137 0.104 0.048 0.233 0.126

Low 0.257 0.992 + 0.732 ¢ 0.834 + 0.178 + 0.929 ¢ 0.148 £ 0.933 £
0.191 0.016 0.294 0.138 0.103 0.048 0.230 0.126

Mid 0.250 £ 0.991+ 0.705 + 0.840 0.179 ¢ 0.929+ 0.149+ 0.933 ¢
0.188 0.016 0.306 0.138 0.103 0.049 0.228 0.125

High 0.174 0.989 + 0432+ 0.893 + 0.181 + 0.927 + 0.125+ 0.944 +
0.158 0.018 0.329 0.126 0.104 0.049 0.189 0.105
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Table 10.6 Mean and standard deviation of sensitivity and specificity using the single selection measure for varying levels of heterogeneity

using the meta-LASSO, stacked LASSO and seperate LASSO with BIC over 1,000 simulations.

Meta - LASSO Stacked LASSO Separate LASSO Integrative LASSO

Het it
eterogeneity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Baseline 0.095 + 0.999 + 0.076 £ 0.999 + 0.049 + 0.992 + 0.014 + 0.998 +
0.105 0.005 0.117 0.004 0.047 0.006 0.025 0.003

Low 0.098 + 0.998 + 0.081 + 0.999 + 0.049 + 0.992 + 0.014 + 0.998
0.107 0.005 0.121 0.004 0.045 0.005 0.023 0.003

Mid 0.096 + 0.998 + 0.071 ¢ 0.999 + 0.050 + 0.993 + 0.014 + 0.998 +
0.105 0.005 0.113 0.004 0.048 0.006 0.025 0.003

High 0.086 * 0.997 + 0.049 + 0.998 + 0.055 + 0.992 + 0.016 0.998
0.100 0.007 0.088 0.006 0.054 0.006 0.026 0.003
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Table 10.7 Mean and standard deviation of sensitivity and specificity results using the single selection measure for varying levels of

heterogeneity using the meta-LASSO, stacked LASSO and seperate LASSO with the permutation method over 1,000 simulations.

Meta - LASSO Stacked LASSO Separate LASSO Integrative LASSO

Het it
eterogeneity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Baseline 0.307 £ 0.992 + 0.423 + 0.987 + 0.073 0.987 + 0.038 £ 0.995 +
0.173 0.011 0.217 0.017 0.051 0.007 0.038 0.005

Low 0.299+ 0.992 + 0.416 + 0.987 + 0.073 0.987 + 0.038 £ 0.995 +
0.171 0.011 0.217 0.017 0.050 0.007 0.037 0.005

Mid 0.286 + 0.992 + 0.397 + 0.987 + 0.073 0.987 + 0.038 £ 0.995 +
0.167 0.011 0.216 0.017 0.051 0.017 0.037 0.005

High 0.171 ¢ 0.992 + 0.224 + 0.986 + 0.074 0.987 + 0.041 + 0.995 +
0.141 0.011 0.183 0.018 0.050 0.007 0.039 0.005
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Table 10.8 Mean and standard deviation summary statistics for variable selection using
the Integrative LASSO with Cross-Vaildation as the tuning parameter selection method

over 1,000 simulations across varying levels of heterogeneity.

Number Number

Number of true of false
Heterogeneity Lambdal Lambda2 of SNPs positive positive
selected SNPs SNPs

selected selected

0.246 + 0.192 + 18.644 + 3.686 + 14.958 +

FREIG 0.086 0.104 33.937 5.817 28.425
Low 0.245 + 0191+ 18708+ 3.691+ 15017+
0.086 0.105 33.848 5.761 28.399
Viid 0.244 0190+ 18862+ 3724+ 15138+
0.086 0.105 33.529 5.707 28.117
High 0.250 + 0185+ 15647+ 3.128+ 12519+
0.082 0.106 28.022 4.736 23.573
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Figure 10.9 Scatter plot of the selected A;and A, values for each of the 1,000

simulations using 10-fold Cross-validation
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Table 10.9 shows the results of the simulation using the replication measure. Due to
the lack of power to select variables in this scenario the sensitivity rate decreases and
specificity rate increases for the BIC and permutation methods. Of the SNPs selected
using these methods there were not many SNPs that were replicated. In only 11 of the
1,000 models were one of the causal SNPs replicated, and in one of these cases, two
causal SNPs were replicated. Of the three methods, the meta-LASSO performed the
best for variable selection using the replication measure as it produced the highest
sensitivity rate as well as a high specificity rate (< 0.983) for all tuning parameter

selection methods.
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Table 10.9 Mean and standard deviation of sensitivity and specificity results for the proportion of replicated results in across varying levels of
heterogeneity using the Integrative LASSO with Cross-vaildation, BIC and permutation method as tuning parameter selection methods over

1,000 simulations.

Cross-validation BIC Permutation method
Heterogeneity Single selection Replication Single selection Replication Single selection Replication

Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec

Baseline 0.147+ 0934+ 0.200f 0.911+ 0.014+ 0998+ 0.002+ 1.000+ 0.038+ 0995+ 0.015+ 1.000z
0.233 0.126 0.346 0.196 0.025 0.003 0.024 0.000 0.038 0.005 0.054 0.003

Low 0.148+ 0.933+ 0.202+ 0.910+ 0.014+ 0998+ 0.002+ 1.000x 0.038+ 0.995+ 0.013+ 1.000=
0.230 0.126 0.343 0.197 0.023 0.003 0.019 0.001 0.037 0.005 0.050 0.003

Mid 0.149+ 0933+ 0.202+ 0.910+ 0.014+ 0998+ 0.002+ 1.000+ 0.038+ 0995+ 0.014+ 1.000z
0.228 0.125 0.340 0.195 0.025 0.003 0.024 0.001 0.037 0.005 0.051 0.002

High 0.125+ 0944+ 0.178+ 0.929+ 0.016+ 0.998+ 0.003+ 1.000+ 0.041+ 0995+ 0.016% 1.000=

0.189 0.105 0.312 0.161 0.026 0.003 0.025 0.000 0.039 0.005 0.054 0.002
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10.6  Discussion

The simulation study showed that the Integrative LASSO performed poorly compared
to the competing methods of the meta-LASSO, stacked LASSO and separate LASSO,
especially in terms of the sensitivity rate. The exception to this is when applying the
BIC in a high powered scenario where the IL was able to select all causal SNPs. The lack
of power to select causal SNPs were for a number of reasons. The first is the LASSO
penalty (4,) which is applied separately on each dataset individually. The simulations
have shown that stacked LASSO and meta-LASSO were the best performing methods
for variable selection and both of these methods include a penalty across all datasets
rather than individually. This provides greater power to select causal SNPs as the
sample size increases. The penalty on individual datasets is required however in order

to allow for averaging across datasets.

The second reason was the lack of flexibility for the LASSO penalty. Both the separate
LASSO and IL apply penalties to datasets separately; however in most cases the
separate LASSO outperformed the IL in terms of selecting causal SNPs. The difference
was that the separate LASSO was allowed to have a different A in each dataset
whereas the IL was forced to have the same A penalty in each dataset and therefore
was less flexible. By fixing the same penalty in all datasets the IL will restrict variable
selection in certain datasets where the A; required for a null model. The IL could be
allowed to have different A, penalties in each dataset as shown in (10.8). This would
essentially make the IL the same as the separate LASSO with a variance penalty.
However allowing separate A, penalties for each dataset comes at great computation
cost, when selecting the optimum combination of 1,4 and 4,. The BIC and CV methods
both use a two-dimensional grid search to calculate the optimum combination of 4;
and 4,. By allowing each dataset a separate 4,4 the grid search would be in six
dimensions for five datasets and the number of combinations required to find the

optimal tuning parameter increases.
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A14 is a vector of D A4 penalties for each of the D datasets

The range of averaging penalties that were used was restricted due to issues with
convergence for some large 4,. As the variance penalty is based on the fused LASSO
other algorithms that fit the fused LASSO such as augmented Lagrangian method
(ALM) could be considered (248). Allowing models to converge for larger 4,
potentially allows more SNPs to be selected. The example shown in section 10.4.1 only
penalised SNPs back into the model for a lower LASSO penalty, with the ability for the
model to converge at a larger variance penalty, this may allow SNPs to enter the model

for a larger LASSO penalty.

Results in the high variance explained scenario showed that the BIC performed well,
selecting all causal SNPs (Table 10.2). The LASSO penalty for the permutation method
was selected as the smallest median 4, over 25 permutations with the corresponding
A, penalty was selecting as the optimum tuning parameters. Allowing A, to be the
smallest possible value would allow a greater number of SNPs and potentially true
positives to be selected. The permutation method however produced a lower
sensitivity rates using both single SNP and replication measures compared to most
competing methods. 10-fold CV also performed poorly in both measure, selecting a
large mean number of SNPs in both scenarios which included a number of false
positives (Table 10.3 and Table 10.8). Repeated CV should be used due to the high

variance in both 4; and A, estimates.
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10.7 Conclusion

In this chapter, | proposed a novel approach to penalised regression in integrative
analyses. The Integrative LASSO method applies two penalties, the first is a LASSO
penalty on each dataset individually, and the second penalises SNPs towards the mean
B across all datasets. Testing showed that the model was unable to converge for a
large variance penalty using coordinate descent algorithm and therefore other
algorithms such as augmented Lagrangian method (ALM) (see section 2.4.1) could
instead be used. A large variance penalty is of less importance to the LASSO penalty for
variable selection as it penalty tends to increase the number of SNPs selected in a
model. As the IL uses a fusion penalty the fused-LASSO signal approximator (FLSA) by
Friedman et al. (51) could also be considered, however this would only give

approximate solutions rather than exact ones.

The simulation study showed that the sensitivity rate for the IL was lower than the
competing methods with the exception of BIC in the high variance explained scenario.
The poor performance of the IL compared to the meta-LASSO and stacked LASSO is
because the IL penalises datasets individually rather than pooled across all dataset.
The poor performance relative to the separate LASSO is likely to be because the IL
applies the same penalty in all datasets where the separate LASSO allows each dataset
to have a different tuning parameter. By fixing the same penalty in all datasets the IL
will restrict variable selection in certain datasets where the A, required for a null
model. The IL method could however be modified to allow a different LASSO penalty in
each dataset which would give the method similar or superior performance to the

separate LASSO.
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Of all the methods used in the simulation study, the stacked LASSO using the
permutation method for tuning parameter selection showed the best performance in
terms of variable selection in both the high variance explained scenario (Table 10.2)
and the lower powered scenario where the heterogeneity varied (Table 10.7) using the
single selection measure. The performance of the stacked LASSO is only beaten by the
meta-LASSO for the BIC in the low powered scenario with varying levels of
heterogeneity (Table 10.6); however the permutation method outperforms the BIC in

terms of variable selection.
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11 Conclusions and future work

In the past decade, genome-wide association studies play a key role in understanding
complex diseases by identifying many casual genetic variants or regions associated
with disease. The aim of these studies is to identify causal SNPs of regions in order to
develop new therapies, improve diagnosis and better disease prevention (3). For
example, four GWAS studies have identified the rs12916 SNP (MAF ~0.4) on the
HMGCR gene (Table 4.5) to have a small but significant effect with LDL
(171,179,180,182). The SNP has been shown to increase the LDL levels by 2.8 mg/dL
for every minor C allele (180), and has been the target for therapeutic drugs such as
statins that are designed to lower LDL cholesterol and are used by tens of millions of

people world-wide (249).

Current methods to identify associated SNPs in GWAS are not without their flaws
however. Methods such as Bonferroni correction and FDR are performed on a
univariate level and as shown both in the literature (127) and this thesis (see section
4.8.2) these methods are also unable to account for LD therefore select multiple
associated SNPs within a region. In such regions of high LD it is often difficult to
determine which of a group of SNPs the causal variant is. The causal SNP may not
necessarily be the top SNP by P-value which could be due to a combination of random
error and LD with the truly causal SNP. There is also a case that the causal SNP may not
be present in the GWAS dataset and all SNPs in an associated region are associations
rather than the causal SNP. In each case however, further investigation is often

required to determine the truly associated SNP.

In this thesis, | consider penalised regression, specifically the LASSO (9) as an
alternative method for variable selection in both single and multi-cohort datasets. The

three main aims of this thesis were:
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1. Apply the LASSO to discover genetic associations with Low-density Lipoprotein
(LDL-c) in the Genetic Regulation of Arterial Pressure of Humans in the
Community (GRAPHIC) study (10). Compare the results of this analysis with

analyses performed using Bonferroni correction, FDR and the current literature.

2. Determine the best methods to reduce the dimensionality of the dataset such

that the impact on variable selection is minimised.

3. Compare the current penalised regression methods for integrative analysis by a
simulation study and also present and test an alternative approach for

integrative analysis.

11.1  Summary of findings

11.1.1 Aim 2: Determining the best methods to reduce the dimensionality

of the dataset

In order to fully address Aim 1, Aim 2 needed to be addressed. In section 4.7, |
described that due to the computational intensivity of the LASSO on such a large
dataset (591,774 SNPs and 979 subjects), | was unable to fit the LASSO to the GRAPHIC
study dataset initially due to first memory restrictions and then time restrictions.
Therefore to be able to perform a GWAS on the GRAPHIC cohort SNP pruning was
required. In Chapter 7, | conducted a simulation study to determine the effects of SNP
pruning on LASSO models. As was the case throughout this thesis, three tuning
parameter selection methods were considered; repeated 10-fold CV, BIC and the

permutation method. | considered three pruning approaches, P-value pruning, LD
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pruning and LD clumping. All three of these approaches were implemented in my

Prune package written in R and is described in section 6.4.

Both the repeated 10-fold CV and BIC performed poorly regardless of pruning method.
Both tuning parameter selection methods were influenced by pruning and both
selected larger sized models and therefore as the pruning threshold increased. This
was particularly the case when pruning by P-value and selecting the tuning parameter
by CV. This particular combination of pruning and tuning parameter selection methods
yielded the lowest specificity rate across all scenarios. This has also been seen in
previous studies in which the combination of P-value pruning and CV has selected a
large model (11,146,149). LD clumping ensures that the top independent associations
remain in the dataset and the SNPs that are correlated with the top associations are

removed.

In contrast the permutation method showed good performance for each pruning
method. Although it was the most conservative of the three tuning parameter
selection methods, this greatly reduced the number of false positives selected with an
average of 1 false positive SNP selected in every scenario. Unlike the BIC and CV
methods, the permutation method was robust against pruning. There was little
difference in the sensitivity and specificity rate regardless of the pruning method and
threshold used. Of the three pruning methods, LD clumping was able to select a
slightly higher number of true positives and therefore | concluded this was the best
combination of pruning method and tuning parameter selection method for variable

selection in GWAS data.

11.1.2 Aim 1: Application of LASSO to the GRAPHIC study to identify

associations with LDL
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11.1.2.1 The LASSO on chromosome 19

A genetic association study was conducted on chromosome 19, as the GRAPHIC
dataset (Table 4.14 and Figure 4.1) and previous literature (Table 4.5) both suggested

that this chromosome contained a number of associations.

The Bonferroni correction method, selected four SNPs, rs7412, rs4420638, rs2075650
and rs445925. However as SMAs are unable to account for the LD between SNPs and
therefore some correlation between the four selected SNP were discovered.
Correlations were found between both rs7412 and rs445925 (r> = 0.712, Figure 4.12)
and rs4420638 and rs2075650 (r? = 0.416, Figure 4.13), resulting in only two
independent signals being selected from the same region. Both rs7412 and rs4420638

have been identified to have an association with LDL in previous studies.

The FDR method selected 13 SNPs (Table 4.17) and two novel genetic regions, one
between ZNF520 and ZNF567 genes (Figure 4.18) and the second between DNM2 and
CARML1 genes (Figure 4.19). Both these regions have not been identified in previous
studies and require further investigation. The identified region between DNM2 and
CARML1 is close (~200kb) to the LDLR gene which has been identified in multiple
previous studies (Table 4.6). It is not known if these two regions are truly associated

and therefore requires further investigation.

The LASSO using the BIC and permutation methods was able to select the top
associations in the four regions selected by the FDR analysis. The difference between
the two methods was that the LASSO eliminates the correlated SNPs from the model
selecting four SNPs compared to thirteen and therefore produces a simpler model.
This suggested that for this analysis that the LASSO using either the BIC or permutation
method produces a similar performance to the FDR method in terms of variable

selection but is able to remove correlated data. Repeated 10-fold CV selected 41 SNPs.
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The analysis using the LASSO was repeated using a range of pruning methods and
threshold that were used in the simulation study discussed in the previous section.
Results showed that both the BIC and permutation method where relatively consistent
in most cases and the same regions were identified regardless of pruning method and
threshold. Unlike the simulation study, the number of SNPs selected increased as the
pruning threshold increased after P-value pruning and tuning parameter selection was
performed by the permutation method. Despite this, it reinforced my earlier
conclusion that the permutation method showed the best performance for variable
selection after pruning. Repeated CV also showed similar performance to the
simulation with the number of SNPs selected decreasing after pruning by LD but
increasing after pruning by either P-value or LD clumping. Previous studies that have
applied penalised regression to GWAS datasets have commonly used P-value based
pruning or CV for tuning parameter selection. This combination was shown to have the
worst performance for variable selection as the model selected included a high
number of false positives, which was also noticed in previous literature (11,149).
Overall the results between the applications on this real dataset were consistent with

the results from the simulation study which validates my conclusion for Aim 2.

11.1.2.2 The LASSO on the GRAPHIC study

In Chapter 4, | applied the Bonferroni correction and FDR methods to the GRAHPIC
study dataset. The Bonferroni correction method only selected the top association
with LDL-c, rs7412 on the APOE gene on chromosome 19 (BP = 45,412,079, p =
1.70x10'12). The FDR method also selected rs7412 as well as a second SNP on the APOE
gene rs4420638 (BP = 45,422,946, p = 1.58x107’). Although in close proximity to one

another, both SNPs have independent effects.

As stated in a number of studies (11-16), the LASSO is unable to fit a whole genome-

wide dataset therefore SNP pruning is required to reduce the dimensionality of the
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dataset. Based on the conclusions from the single chromosome analysis and for Aim 2,
both the BIC and permutation methods were used for tuning parameter selection and
the dataset was pruned by LD clumping. The BIC, which is the more conservative of the
two tuning parameter selection methods, selected a null model. The permutation
method selected the top SNP, rs7412 with the A estimate being close to also selecting
rs4420638. Both the Manhattan plot (Figure 4.7) and Q-Q plot (Figure 4.6) showed that
there were not many association in this dataset and it is therefore unsurprising that
not many associations were discovered in this analysis. To current knowledge, this is
the first study that had used LD clumping as a form of pre-screening in a GWA study
and also the first time either the BIC or permutation method been used in human GWA

study.

11.1.3 Aim 3: The LASSO in integrative analysis

In Chapter 10, | considered the role of penalised regression in the context of a multi-
cohort study, in particular integrative analyses. | began by comparing a number of
proposed methods in the current literature and then selected the meta-LASSO method
proposed by Ma et al. (240) as the basis for a simulation study. This study was
proposed in the context of gene expression data, which often has a small sample size
and number of genes. | adapted this method for GWAS data and tested the method

against the stacked LASSO and separate LASSO in terms of variable selection.

The results of the meta-LASSO showed that it was a relatively conservative method in
terms of variable selection, while not many false positive SNPs were selected, not
many true positive SNPs were selected either. This was the case for all three tuning
parameter selection methods. The separate LASSO performed poorly as it lacked
power. Overall the stacked LASSO showed superior performance using the
permutation method selecting the highest sensitivity rate across the simulation and
maintaining a high specificity rate at the same time (Table 9.8). The meta-LASSO

outperformed the stacked LASSO using the BIC for tuning parameter selection. | also
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proposed an alternative definition for variable selection; the replication measure. The
sensitivity and specificity rates were high using the replication measure compared to

the single selection measure.

Although the stacked LASSO showed the best overall performance in this simulation,
there were two problems with this method; the first is that the method is unable to
account for heterogeneity between dataset. The second is that the method still
selected a low number of true positives using the permutation method. | therefore
suggested an alternative penalised approach; the Integrative LASSO. This approach
penalises the effect estimates in each dataset and also penalises the variance of the
estimates across cohorts. | provide an algorithm that can be used to fit the IL. In
section 10.4.1, | showed an example of how the IL method works and this example
showed some potential promise for the use of the variance penalty. However as
discussed in section 10.4.2 there are issues concerning convergence when the variance
penalty is large. Two reasons were considered for the lack of convergence, the first
was due to the opposing penalties that for some SNPs are penalising in two different
directions leading to a “tug of war” type situation. The second is that for a large
variance penalty there are many solutions and the algorithm is simply moving from
one solution to the next across iterations. More work is required to determine the

reason why the IL does not converge in these situations.

The simulation study showed that the IL method did not perform well compared to the
competing methods that were used in Chapter 10. In fact the IL performed worst of
the four methods in terms of variable selection. This is likely due to the nature of the
penalty that penalizes each dataset separately, and by doing so the method lacks
power compared to the stacked LASSO and meta-LASSO which both have a penalty

penalizing all SNPs across all datasets.
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11.1.4 Addressing the criticisms of the LASSO in GWAS

There are two main criticisms of the LASSO outlined by Zou et al. net (18).

1. When P > N, thenthe LASSO is only able to select at most N variables for a

model.

2. Inagroup of highly correlated variables, the LASSO tends to select one variable

without regard for which variable is selected.

The first criticism is of little concern in GWAS, study sample sizes tend to be large,
typically containing thousands or hundreds of thousands of subjects, meanwhile the

number of truly causal variants is very small in comparison to these sample sizes.

The second criticism can be argued as an advantage for the LASSO in GWAS and was
illustrated in the application of the LASSO on chromosome 19 (see section 4.8.2). Both
Bonferroni correction and FDR methods are unable to account for LD between SNPs
and therefore selected a number of false positive SNPs that are correlated with the
lead SNP in the region. My analyses show that the LASSO does select only one SNP out
of a group of highly correlated SNPs, however it is not “without regard for which
variable is selected” (18), rather the LASSO consistently selects the SNP with the
highest correlation with the phenotype. All other SNPs that were correlated with this
top SNP were removed from the model. This has also been seen in other studies that
conclude the LASSO is able to handle LD in GWAS (24-26). The removal of these false
positives from the model is particularly desirable for variable selection in GWA studies.
When an association in a region happens to be perfectly correlated (r* = 1) with one or
more SNPs, the assertion that the selected SNP is selected at random is somewhat true
as discussed in section 4.8.2.3. However, regardless of whether one or all of these
SNPs were selected, further investigation would be required to determine which SNP is

the truly causal variant.
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Hoffmann et al. also listed a number of criticisms of penalised regression methods in

GWA studies (13) which included:

3. The inability to scale for very large GWAS datasets

4. Poor performance on simulated data

5. Finding too many ‘hits’ to be biologically plausible for a given GWAS sample size
6. They do not identify novel, well-supported associations that are not detectable

by standard methods

Amongst others, all four criticisms reference a study by Hoggart et al. who uses
penalised Bayesian approaches (250), which | did not consider in my thesis. Not all
these criticisms may extend to the frequentist methods such as the LASSO, especially
criticism 5 which only references the Hoggart study. The issue regarding the inability to
scale for large GWAS is well established and was one of the aims of my thesis. As
concluded in section 11.1.1, this can be overcome using LD clumping as a SNP pruning

method.

Hoffmann et al. cites a study by Wu et al. regarding the poor performance in simulated
data (145). In my thesis, | showed that performance in terms of variable selection is
heavily influenced by the tuning parameter selection method used (see section 3.3.2).
Wu et al. did not use any tuning parameter selection method to select a model; rather
they pre-selected a model size therefore, the poor performance could easily be due to
the author’s choice of model size rather than the method itself. Throughout this thesis,
| have demonstrated that, in both simulations and real data, the permutation method
and to a lesser extent the BIC perform well for variable selection in GWA studies

however, neither have previously used in a GWAS.
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One of the conclusions made in section 11.1.2, was that the LASSO showed similar
performance to FDR when both methods were applied to the GRAPHIC study. This
