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Abstract 

 

Risk assessment tools quantify the risk of an outcome using multiple covariates 
(risk factors). Risk assessment tools are recommended by diabetes prevention 
guidelines to allow blood tests to be targeted at individuals with an increased 
risk of currently having non-diabetic hyperglycaemia or undiagnosed diabetes. 
This thesis presents work on the identification, development and validation of 
such risk assessment tools.  
 
Key Findings: 
 

 A systematic review of risk assessment tools for prevalent non-diabetic 
hyperglycaemia was undertaken. This is the first systematic review to focus 
on risk assessment tools for prevalent non-diabetic hyperglycaemia. 
Eighteen risk assessment tools for prevalent non-diabetic hyperglycaemia, 
and prevalent non-diabetic hyperglycaemia or undiagnosed Type 2 diabetes 
are summarised.  

 An empirical comparison of logistic regression, decision trees, support vector 
machines and the novel application of chain event graphs for developing risk 
assessment tools found logistic regression and linear support machine 
vectors had the best external performance. This is the first empirical 
comparison for a binary medical outcome in cross-sectional data to include 
an external validation.  

 Risk groups for the Leicester Practice risk score were established, allowing 
consistent advice to be given across general practices when utilising the tool.  

 The Leicester Self-Assessment and Leicester Practice risk scores were 
externally validated using a nationally representative longitudinal dataset. 
Both gave comparable performance for identifying prevalent non-diabetic 
hyperglycaemia or undiagnosed diabetes to the dataset on which they were 
developed. Furthermore, both identified a small proportion of the population 
with a substantially increased risk of developing diabetes when utilised in the 
recommended two-stage screening programme and thus are advocated for 
use across England. 

 
This thesis aids those wishing to use a risk assessment tool for non-diabetic 
hyperglycaemia in their selection or development of an appropriate tool, as well 
as addressing some of the previous limitations of the Leicester Self-Assessment 
and Leicester Practice risk scores.  
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Chapter 1:  Introduction 

1.1 Chapter outline 

This chapter provides the background and general motivation for this thesis. 

Firstly, Section 1.2 gives an introduction to Type 2 Diabetes Mellitus (T2DM) 

and non-diabetic hyperglycaemia (NDH), including trends in its prevalence, 

common co-morbidities and tested interventions. Section 1.3 discusses whether 

screening for NDH or undiagnosed T2DM is justified in the United Kingdom 

(UK), considering the advice of the UK National Screening Committee (NSC) 

and the National Institute for Health and Care Excellence (NICE). Section 1.4: 

introduces risk assessment tools (RATs), details the outcomes related to T2DM 

they may detect, the RATs developed for such outcomes in UK populations and 

discusses the finding of systematic reviews for RATs with such outcomes. 

Finally, Section 1.5 outlines the aims of this thesis.   

Work in this chapter contributed to the following publication: 

 Edwardson CL, Gray LJ, Yates T, Barber SR, Khunti K, Davies MJ. 

Detection and early lifestyle intervention in those at risk of type 2 

diabetes. EMJ Reviews. 2014; 2:48-57.   
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1.2 Type 2 Diabetes Mellitus and non-diabetic hyperglycaemia 

Worldwide, the prevalence of diabetes is predicted to rise rapidly over the 

coming decades, with the 415 million adults with diabetes estimated in 2015 

expected to rise to 642 million by 2040 (1). The majority of individuals with 

diabetes have T2DM, with around 90% of diabetes cases in high income 

countries thought to be T2DM (2-4). It is estimated almost half (46.5%) of 

individuals with diabetes are unaware, having not been diagnosed with the 

condition (1). This is of concern because, as shown in Figure 1.1 below, 

untreated T2DM can lead to numerous long-term complications including heart 

disease, blindness and kidney disease (5). T2DM can reduce an individual’s life 

expectancy by as much as 10 years (6). Around 10% of the National Health 

Service (NHS) expenditure in 2012 was attributed to diabetes, the majority of 

which is T2DM, and this figure is forecast to rise to 17% by 2035 (7).  

 

Figure 1.1 T2DM terminology and associated co-morbidities 

T2DM is a chronic metabolic disease defined by high blood glucose due to 

insulin resistance, where the body is unable to use insulin effectively to absorb 

glucose into its cells, as well as impaired insulin production by the pancreas (8). 

T2DM can be diagnosed by using either an oral glucose tolerance test (OGTT) 

or a glycated haemoglobin A1c (HbA1c) test. There are usually two blood 

measurements taken for an OGTT: fasting plasma glucose (FPG), which is the 

Non-diabetic Hyperglycemia

Type 2 diabetes Mellitus 

Morbidities (including CVD, CKD, blindness 
and foot damage) and premature mortality
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glucose measured after 12 hours of fasting, and the 2 hour post-challenge 

plasma glucose, which is measured two hours after a specified amount of 

glucose solution is consumed. HbA1c measures the amount of glucose that is 

attached to the haemoglobin in the blood; this gives a measure of the average 

level of glucose in the blood over the last eight to 12 weeks, since the red blood 

cells have a 120 day lifespan (9).   

The deterioration of beta-cell function and insulin sensitivity is a gradual process 

and thus Figure 1.1 is a simplification of the relationship between glucose levels 

and the development of complications associated with T2DM. The risk of 

macrovascular and microvascular diseases, which are known to be 

complications of T2DM, increase as glucose levels increase (10,11). The risk of 

morbidities and mortality increase exponentially as glucose levels increase and 

begin before the glucose levels which define T2DM have been reached (11). 

The cut-off points for T2DM defined by the World Health Organisation (WHO) 

which are widely accepted are as follows (12,13):  

 FPG ≥7.0mmol/l 

 2-h plasma glucose  ≥11.1mmol/l 

 HbA1c  ≥6.5% (≥ 47mmol/mol)          

All three cut-off points are based on the increased levels of diabetes related 

complications observed in each of the measures; the HbA1c cut-off is based on 

studies which show moderate retinopathy rises above ‘background levels’ at 

this point (14).  

Several studies have demonstrated that interventions to reduce glucose, blood 

pressure and cholesterol in T2DM patients can decrease the risk of 

complications (15-18). However individuals with T2DM can remain undiagnosed 

for several years before the condition is detected in clinical practice, with a 

recent study using data from Italy predicting on average individuals live with the 

condition undiagnosed for between four and six years (19). This results in 

treatment to reduce hyperglycaemia and cardiovascular disease (CVD) risk 

factors being delayed (20). The International Diabetes Federation advises that if 

individuals are diagnosed earlier with T2DM then they can start to manage the 

disease and thus have a greater chance of avoiding complications (21). Despite 
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this advice, there is no firm evidence that earlier detection of T2DM reduces the 

risk of complications (22). The ADDITION trial was a randomised controlled trial 

(RCT) of individuals with screen diagnosed T2DM comparing intensive 

treatment to conventional treatment, no significant difference was found in the 

incidence of cardiovascular events and death (23). Although, lower than 

predicted rates of complications for both the intensive treatment and 

conventional treatment arms were observed, as this study did not have an 

unscreened arm for comparison it does not provide direct evidence that earlier 

detection of T2DM leads to a reduction in complications (22). Simmons et al. 

present evidence that mortality rates (all-cause, cardiovascular or diabetes-

related) over 10 years were not reduced by diabetes screening at the population 

level (24).  

NDH is a condition where an individual has glucose raised above normal levels 

but not in the T2DM range (25). As well as an increased risk of microvascular 

disease being observed for individuals with NDH (10); individuals with NDH also 

have a higher chance of developing T2DM than an individual with normal 

glucose levels (26,27). One specific type of NDH is impaired glucose regulation 

(IGR), this is where either impaired glucose tolerance (IGT) or impaired fasting 

glucose (IFG) has been identified using an OGTT (4). Estimates of progression 

to T2DM within a year suggest those with isolated IGT have over five times the 

risk, those with isolated IFG have 7 times the risk and those with both IGT and 

IFG have over 12 times the risk compared to normoglycemic individuals (10). 

IGT is defined as a 2-h OGT above 7.8mmol/l but below 11.1mmol/l, while IFG 

is defined as FPG above 6.1mmol/l but below 7mmol/l. It was estimated in 2013 

that 6.7% of 20-79 year olds in the world had IGT, with this figure projected to 

rise to 7.8% by 2040 (1).  

It is also recommended that HbA1c levels raised above normal levels but not 

elevated enough for a diagnosis of T2DM should be classified as NDH (6). With 

follow-up studies having shown similar rates of progression to diabetes from 

HbA1c defined NDH as seen for IFG (10). There is no agreed consensus on the 

HbA1c range that should be classified as at high risk of diabetes, with the 

International Expert Committee and the UK-based NICE recommending it be 
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6.0- 6.4% (42– 46mmol/mol); whereas the American Diabetes Association 

(ADA) suggests 5.7 -6.4% (39 –46 mmol/mol) (14,28,29). 

The term to use for the condition NDH has been hotly debated (30). ‘Pre-

diabetes’ which was once commonly used, has been criticised for being 

misleading by some experts as it implies that progression to T2DM is inevitable, 

which is untrue (14). Some critics of the ‘Pre-diabetes’ term prefer the phrase ‘at 

high risk of diabetes’ (30). However this term can be confusing as it does not 

specify that high risk has been defined by a blood test measurement rather than 

a statistical model. Therefore, throughout this thesis I use the term NDH for the 

condition as it avoids these two issues. Where necessary, the exact type of 

NDH, for example IGR or by HbA1c, will be specified. 

Lifestyle and pharmacological interventions have been shown to delay or 

prevent T2DM in those with NDH, with several studies showing that the risk of 

progression could be reduced by between 30-60% (31-33). Furthermore, 

studies have shown good evidence that the benefits of such lifestyle 

interventions can be long lasting, with one study still seeing participants in the 

intervention arm enjoying a reduced risk of progression to T2DM 14 years after 

the intervention had ended (34). A 47% reduction in severe retinopathy, which 

was statistically significant at the 5% level, was also found for individuals in the 

intervention arm of this study (35). Yet many individuals have NDH without 

knowing it and thus the condition may progress untreated along the pathology 

for many years (21). 

The recently launched NHS Diabetes Prevention Programme (DPP) aims to 

identify individuals at high risk of developing T2DM and refer them to an 

evidence-based behaviour change programme in order to aid them to reduce 

their risk (36). By 2020 the programme will be running across the whole country 

with a projected 100,000 individuals being referred each year (36). In order to 

identify individuals with NDH or undiagnosed T2DM early and offer these 

interventions, screening of individuals is required. The next section, 1.3, will 

discuss guidelines from the UK NSC and NICE on when to screen for a 

condition, in particular their guidance on screening for NDH and undiagnosed 

T2DM.   
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1.3 Should screening for non-diabetic hyperglycaemia or 

undiagnosed Type 2 diabetes mellitus take place? 

The UK NSC guidelines set numerous criteria that should preferably be met 

before they will recommend screening for a condition (37). Firstly, the condition 

should be a vital and well-understood health problem for which all feasible cost-

effective primary preventions have been employed. There needs to be a 

validated test, which is acceptable to the population, with agreed cut-off levels 

and policy on the action to be taken after a positive test. Evidence of an 

effective treatment or intervention is required; furthermore health-care providers 

should have implemented agreed evidence-based policies in order to best 

manage patient outcomes. RCTs should have shown that the whole screening 

programme decreases mortality and morbidity. Evidence is also necessary to 

show that the screening programme is: acceptable to both healthcare 

professionals and the public, is the most cost-effective option available and its 

benefits are greater than any damage it causes. Before a screening programme 

begins, sufficient staffing and facilities need to be obtainable. Finally there 

should be scientific rational for the eligibility criteria.  

A short report by NICE on screening for T2DM highlights that some of the 

criteria for screening are not met in the case of T2DM; furthermore both this 

report and NICE public health guidance 38 do not advocate universal screening 

(28,38). Instead both UK NSC and NICE endorse selective screening for T2DM, 

advising screening takes place in stages with the first stage being to identify 

those with an increased risk of having the condition using non-invasive RATs. 

Under this staged approach, those with high risk scores should then receive a 

blood test, either FPG or an HbA1c. Finally those with high measurements from 

the blood test, that have not displayed any symptoms of diabetes, should have 

a second confirmatory blood test to either confirm T2DM or NDH or to rule out 

the result of the first blood test as abnormally high. Both UK NSC and NICE 

recognise that in addition to identifying individuals with T2DM earlier than 

waiting for symptoms to lead to a diagnosis, screening for T2DM will also 

identify individuals with NDH who will benefit from proven lifestyle change 

programmes (28,38).  
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Whether to use OGTTs or HbA1c tests of blood glucose for screening and 

diagnostic tests has been widely debated, this is because the two find 

overlapping but different groups of individuals for both NDH and T2DM (39). 

The UK NSC report puts forward using HbA1c for the screening blood test 

followed by either an OGTT or HbA1c for the diagnostic test, stating there is 

growing evidence to warrant HbA1c’s use (38). Additionally suggesting that 

uptake of OGTT would be lower due to the inconvenient and time-consuming 

nature of having to fast overnight and then have a two hour test, as well as 

raising concerns that OGTTs measurements can vary from week to week. The 

NSC report recommends that individuals with HbA1c ≥6.0% on the screening 

test are followed up with a diagnostic test, though it warns with this cut-off point 

20% of individuals with OGTT defined T2DM will be missed (38). 

NICE public health guidance 38, displayed in Figure 1.2, recommends 

individuals found to have undiagnosed T2DM receive standard care for newly 

diagnosed T2DM; while it advises those found to have NDH are offered group 

and individual level quality–assured intensive lifestyle interventions (28). In 

addition to these interventions it states individuals with NDH should be offered a 

blood test at least once a year, with individuals with high risk scores but normal 

glucose levels being reassessed at least every three years.   

From the above discussion it is clear that RATs are a key element of the 

screening programme; they are the focus of this thesis and will therefore be 

introduced and explained in the next section, 1.4.   
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Figure 1.2 NICE guidelines on identifying and managing risk of T2DM (28) 

  

http://www.google.co.uk/url?sa=i&source=imgres&cd=&cad=rja&uact=8&ved=0CAkQjRwwAGoVChMI-pOMvNC_yAIVglAaCh2M0Qup&url=http://www.guidelinesinpractice.co.uk/sep_12_holt_diabetes_sep12&psig=AFQjCNEXjGnBW-qcjwNKkDb9b34hvfVYSg&ust=1444831920119046
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1.4 Risk assessment tools  

RATs help to optimise the often limited resources required for detecting 

diseases by allowing screening to be targeted at those with the highest risk. In 

addition to this they can make invasive tests, such as blood tests, more 

acceptable to individuals as the chances of having the disease is higher than if 

universal screening was being carried out. RATs can be developed to attribute 

a risk score, based on the probability of having a particular health outcome, for 

an individual given their characteristics (risk factors); the higher the risk scores, 

the greater the probability of an individual having a particular outcome. These 

characteristics could be variables that are already stored in a database or 

factors that are cheap and easy to collect from individuals, for example through 

a self-completed questionnaire. RATs have the additional advantage that they 

educate individuals about their risk factors informing them of facts that using a 

blood test alone would not.   

Two key aspects of RATs’ accuracy of performance are their discriminative 

ability and calibration (40). Discrimination informs how well a RAT splits 

individuals into those who have the outcome of interest and those who do not. 

The area under the receiver operator curve (AUROC) or C-statistic is commonly 

used to measure the discrimination of a RAT. The AUROC is detailed in section 

2.3.2 of this thesis, briefly the AUROC gives the probability that a randomly 

chosen case will have a higher risk score than a randomly chosen non-case. An 

AUROC of 0.5 indicates that the RAT discriminates no better than chance 

alone; with discrimination of above 0.70 deemed to be good and one above 0.8 

excellent (41). Calibration refers to whether the predicted probabilities of having 

the outcome match the observed probabilities of having the outcome across the 

whole RAT. There are several ‘goodness-of-fit’ statistics which can be 

calculated such as the Hosmer-Lemeshow, Brier score or Chi-squared test 

value; plots of predicted probabilities against actual probabilities for grouped 

intervals of a risk score can also be used to visually assess calibration. 

Thresholds can be chosen for risk scores, with individuals scoring above a 

chosen threshold being considered to have screened positive by the risk score. 

Statistical metrics for the performance of binary screening decisions, such as 
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those produced by using a threshold for a risk score are detailed in section 

2.3.1 of this thesis.   

The Finnish diabetes risk score (FINDRISC) was one of the first scores to be 

developed for identifying those at risk of developing diabetes over the next 10 

years (42). Baseline characteristics were collected through participants 

completing questionnaires and attending non-invasive clinical examinations, 

such as weight measurement, in 1987 (for development data) and in 1992 (for 

validation data). Participants were then followed-up for the outcome of drug-

treated diabetes until the end of 1997. A logistic regression model was fitted for 

this outcome, with all independent variables split into categories. The 

independent variables considered were easy to obtain values that did not 

require laboratory tests or any specialist skill to measure.  
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Figure 1.3 shows the variables included in FINDRISC; age, body mass index 

(BMI), waist circumference, antihypertensive drug therapy and history of high 

blood glucose were all independent significant predictors; while physical activity 

and vegetable or fruit consumption which were not significant predictors were 

included to emphasise their importance in diabetes prevention. A score value 

was assigned to each category of each variable based on its coefficient in the 

logistic regression model, with the FINDRISC score being the sum of the scores 

for the variable categories an individual has. The score developed discriminated 

excellently with an AUROC of 0.85 and 0.87 for the development and validation 

cohorts respectively. However the original paper does not report any calibration 

measurements. 

 

Figure 1.3 FINDRISC Questionnaire (43) 
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1.4.1 Outcomes of risk assessment tools relating to T2DM  

RATs can be developed for different types of outcomes by using different types 

of datasets. Cross-sectional studies collect data at one specific time-point and 

therefore give the prevalence of a disease; thus if a cross-sectional dataset is 

collected for a population of individuals without a diagnosis for a particular 

disease it can be utilised to develop a RAT for detecting the risk of having that 

disease without being diagnosed, for example undiagnosed T2DM. Such RATs 

are often referred to as diagnostic models (44). On the other hand, prospective 

cohort studies collect follow-up data, either the time-to-event (diagnosis with a 

disease or first adverse event) or simply whether an outcome (diagnosis of 

disease or occurrence of an adverse event) has occurred by one specific-point 

in the future. The latter can be used to develop a RAT to identify those that are 

most likely to progress to a particular outcome by a certain point in the future, 

as was the case for FINDRISC, this outcome is called the cumulative incidence. 

Whereas using time-to-event data allows a RAT to be created for the incidence 

rate of an event or disease, this RAT will identity those which are more likely to 

have an outcome at any point in time. RATs that specify the risk of a future 

event are frequently referred to as prognostic models (44).     

RATs for the following outcomes are useful in either identifying individuals with 

undiagnosed T2DM or those likely to develop T2DM in the future and hence as 

stated in section 1.3 can be useful in the screening programme:  

 Prevalent NDH and undiagnosed T2DM 

 Prevalent undiagnosed T2DM 

 Incidence (either incidence rate or cumulative incidence) of T2DM  

RATs are not only useful in identifying those likely to be in or progress to the 

first two stages of Figure 1.1, they are also valuable for assessing the risk of 

other outcomes along the T2DM pathology, for example they could be utilised to 

identify which individuals with T2DM are at the biggest risk of developing 

chronic kidney disease over the next five years.    
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1.4.2 UK risk assessment tools  

In the UK four RATs have been developed in the area of T2DM (45-48). Firstly 

the Cambridge Risk Score (CRS) was developed using cross-sectional data on 

549 individuals without diagnosed diabetes from Ely general practices along 

with data on 101 cases of newly diagnosed T2DM in the last year from general 

practices in Wessex (48). Cross-sectional data on 528 individuals from the Ely 

general practice were used as ‘test data’ to assess the model.  A logistic 

regression model was built for the outcome of T2DM (undiagnosed or newly 

diagnosed); independent variables considered were all routinely collected data. 

Figure 1.4 below shows the variables that were significant and thus included in 

this RAT. The CRS had excellent discrimination in the test group with a C-

statistic of 0.80.     

 

Figure 1.4 Cambridge Diabetes Risk Score (48) 

The CRS was developed using a notational sample which may have 

detrimentally affected the parameter estimates, this was done due to a lack of 

cases. The dataset consisted of predominantly Caucasians and the RAT does 

not include ethnicity as a risk factor so will under estimate risk in black and 
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minority ethnic (BME) groups (49). A study testing the performance of the CRS 

in Caribbean and South Asian individuals living in the UK, found that further 

studies were required to establish ethnicity specific cut-points (50).           

The QDScore was developed using over 16 million person-years of 

observations from an ethnically and socio-economically diverse prospective 

cohort drawn from 355 general practices around England and Wales (47). It 

included independent variables which individuals would be likely to know 

themselves or variables that are readily available in their patient records. A Cox 

proportional hazards model was used to produce separate a risk equation for 

men and women for the outcome of incident diabetes recorded in patients 

records over the ten year follow-up period. The RATs includes the following 

variables: self-assigned ethnicity, age, sex, body mass index, smoking status, 

family history of diabetes, Townsend deprivation score, treated hypertension, 

cardiovascular disease, and current use of corticosteroids (47). Fractional 

polynomial terms were included in the model for age and BMI; as well as 

interactions between the age terms and each of smoking status, family history 

of diabetes and the BMI terms. Due to the use of the Townsend deprivation 

score, interaction terms and fractional polynomial terms the QDScore cannot be 

paper based. However the RAT is available on a simple web calculator 

meaning, it can be easily used by both clinicians and the general public. The 

external validation of this RAT, using over 1.2 million person-years of 

observations, showed both good discrimination and calibration. The QDScore 

was designed to identify those likely to develop T2DM over the next ten years 

and hence is suitable to be used to identify those whom require intervention or 

lifestyle change rather than those that currently require a T2DM test.  

Two risk scores have been developed for use in the multi-ethnic UK setting 

(45,51) using ADDITION-Leicester, a dataset containing 6,390 individuals aged 

40- 75 years old which was yielded by invitation of a population based sample 

of individuals without diagnosed diabetes from Leicester and the surrounding 

county for screening between 2004 and 2008. Participants completed a 

biomedical questionnaire and had anthropometric measurements taken. All 

participants that were screened received an OGTT using 75g of glucose as well 

as having their HbA1c measured. Both the risk scores were externally validated 
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using over 3,000 individuals screened in the Screening Those At Risk (STAR) 

study (45,51) which was carried out in Leicestershire.  

The first of the scores developed in Leicester, the Leicester Self-Assessment 

(LSA) score (51), was developed with the aim that it could be completed by a 

lay person to identity those with NDH or undiagnosed T2DM. This aim was met 

by only including variables individuals would know about themselves already or 

could easily measure, for example waist circumference; and by assigning a 

whole number score to each category of each variable based on the logistic 

regression model coefficient so that individuals can calculate their score by 

adding whole numbers. The variables included in the RAT, shown in Figure 1.5, 

were all significant apart from sex which was included due to previous evidence 

of its predictive ability for this outcome. The discrimination of this risk score was 

good with an AUROC for the external validation data of 0.72. Figure 1.5 also 

displays the risk groups used to communicate the meaning of a particular LSA 

score and advise individuals what action to take based on their LSA score.  

 

Figure 1.5 Leicester Self-Assessment Risk Score and its risk groups (44) 
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The second score developed in Leicester, the Leicester Practice Risk Score 

(LPRS) (45), was developed in order for general practices to utilise data which 

are routinely stored in primary care to identity individuals most likely to have 

NDH or undiagnosed T2DM. It is also the first score developed which includes 

HbA1c to define T2DM in its outcome, which is helpful given the new guidelines 

(12) and the fact that more practices are using this as the test for T2DM. This 

score was also developed using a logistic regression model. As the score was 

designed to be calculated using software the continuous variables were kept 

continuous. Figure 1.6 details the equation for calculating the LPRS given in the 

original publication. The discrimination was good with AUROCs in an external 

dataset of 0.71 for undiagnosed T2DM by OGTT, 0.69 for NDH or undiagnosed 

T2DM by OGTT, 0.69 for HbA1c ≥6.5% and 0.67 for HbA1c ≥6.0% (45).    

 

Figure 1.6 Leicester Practice Risk Score (45) 

Implementation of LPRS in two prevention trials has shown that it produces a 

significantly higher yield of undiagnosed T2DM and NDH than population 

screening programmes in the same area, showing it is an inexpensive way to 

target screening at individuals with the greatest risk (52).  Interestingly, uptake 

of blood tests for those identified as high risk was similar to that seen for 

population-level screening. However, this has not been the case for other 

studies which have shown risk stratification to increase the attendance at 

screening (53), and the low uptake in this case could well be due to individuals 

not wanting to participate in the prevention trial or the low level of risk 

communication.  
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1.4.3 Discussion of the finding of systematic reviews into risk 

assessment tools with outcomes of NDH and/or T2DM 

Several systematic reviews into RATs for the outcomes listed in section 1.4.1 

have been published (54-59). Table 1.1 lists these systematic reviews along 

with the outcome(s) of the RATs included in the review, the different methods 

used to build the RATs included and the number of RATs found. The systematic 

reviews reveal a vast number of RATs have been developed for both the 

outcomes of prevalent undiagnosed T2DM and incident T2DM. However, only 

three RATs with an outcome of prevalent NDH and undiagnosed T2DM have 

been included in these reviews. This is due to the fact that although two of the 

reviews included such RATs, their search terms focused on finding RATs with 

either prevalent undiagnosed T2DM or incident T2DM rather than NDH (57,59).    
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Table 1.1 Systematic reviews for NDH and/or T2DM outcomes 

First Author 

of review 

Outcome(s) of risk 

assessment tools in 

review  

Number of risk 

assessment tools 

included in review  

Methods used to develop 

risk assessment tools found 

Abbasi (54) Incident T2DM 25 Logistic regression model 

(76%), Cox survival model 

(12%) & Weibull Survival 

model (12%) 

Brown (55) Prevalent undiagnosed 

T2DMa 

17 Logistic regression model 

(88%) & Decision tree (12%) 

[RAT with incident T2DM as 

outcome used Cox survival 

model]  

Buijsse (56) Incident T2DM >46 (as 46 studies 

included, some 

with multiple 

RATs) 

Logistic regression, Cox 

survival model (method not 

stated for individual RATs) 

Collins (57) Prevalent undiagnosed 

T2DM and NDH, 

prevalent undiagnosed 

T2DM  or incident 

T2DMb 

43 Logistic regression model 

(72%), Cox survival model 

(19%), Decision tree (7%) & 

Weibull survival model (2%) 

Noble (58) Incident T2DM 94 Not stated in reviewd 

Thoopputra 

(59) 

Prevalent undiagnosed 

T2DM and NDH, 

prevalent undiagnosed 

T2DM  or incident 

T2DMc 

41 Logistic regression model 

(74%), Cox survival model 

(17%) & Decision tree (9%) 

a Also included one RAT for incident T2DM  
b Also included three RATs with outcome of prevalent NDH and undiagnosed T2DM, three 
RATs with outcome of prevalent undiagnosed and diagnosed T2DM 
c Only includes one RAT with outcome of prevalent at NDH and undiagnosed T2DM 
d Through searching available papers the majority were developed using Logistic regression 
or Cox survival model with one developed using Weibull survival model 

This section will evaluate the findings of these reviews in light of guidance for 

research into RATs which are intended to be used in clinical practice.  There 

are three important stages of research for RATs which are intended to be used 

in practice: model development with internal validation, external validation and 

impact studies of RAT’s used in clinical practice (40).   
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The systematic reviews find that over 100 RATs for T2DM outcomes have been 

developed and internally validated. As displayed in Table 1.1, RATs were 

developed using four different methods. The technique used depended on 

whether the outcome was a prevalent or incident outcome. As can be seen in 

Table 1.1, the majority of RATs for incident T2DM were developed using logistic 

regression, several used a Cox survival model and a handful were derived from 

Weibull survival models. Logistic regression was also the most common method 

for RATs for the prevalent outcomes, while the rest used decision trees 

(classification trees). 

RATs based on Logistic, Cox or Weibull regression calculate an individual’s risk 

score using their values for the selected variables along with the model’s beta-

coefficients. Normally a score is allocated for each variable by multiplying the 

value for each variable by its beta-coefficient given in the regression model, 

although these beta-coefficients are frequently rounded. Adding the score for 

each variable gives the overall risk score of an individual. Although some risk 

scores were yielded using a more crude method of assigning beta-coefficients 

into score points, with their points being neither proportional to the beta-

coefficients or a rounded version of the beta-coefficients (42). Logistic 

regression has a binary outcome, hence RATs based on Logistic regression for 

incident T2DM were for cumulative incidence. It has been suggested by some 

that survival models better represent the prospective nature of the data (56).  

Decision trees separate individuals into different groups using a series of 

stages. At each stage the chosen factor (continuous or categorical) is split into 

two categories, choosing the variable and cut-point that best separate 

individuals into those with a high chance of having the outcome and those with 

a high chance of not having the outcome (60). This process of splitting the 

individuals into different groups is repeated until the discriminative benefit of 

adding more splits is smaller than a predefined penalty. Decision trees are 

prone to being unstable unless statistical techniques, such as bootstrapping, 

boosting or bagging are applied (61); which develop the decision tree using 

several resampled versions of the data.  
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Two studies compared modelling techniques in the development of their RATs 

(62,63). Wilson et al. reported only the logistic regression results but stated that 

Cox proportional hazards models had produced near identical results and were 

therefore not displayed (63). Heikes et al. observed equal accuracy for models 

based on logistic regression and a decision tree, opting to use the decision tree 

because of its ‘greater ease of use’ (62). 

RATs tend to use data from questionnaires or routine non-invasive measures, 

this is good as it should ensure the RATs are considered acceptable by most 

individuals (56,59). The RATs which considered biochemical measures in 

addition to non-invasive measures showed they tend to slightly improve 

performance; while genetic profiling presently appears to be of little use (54,56). 

Categorisation of continuous risk predictors was common with Collins et al. 

reporting 49% of the RATs categorised all continuous variables (57). However 

this practice is not advised, as it has been shown to lead to loss in the predictive 

power of the models and more worryingly severe bias when ‘optimal’ cut-points 

for the categories are derived using the data (64). On the other hand, Buijsse et 

al. highlight that the complexity of methods used are limited by the context in 

which the resulting RAT will be completed (56). The reason for the 

categorisation of continuous risk predictors in some cases is due to the fact that 

this allows the RAT to be completed in practice as a paper questionnaire. The 

majority of RATs did not consider nonlinear terms, despite the fact that it is 

advised when a nonlinear relationship between a risk factor and the outcome is 

observed, this may again be due to simple RATs being required (57,64). 

Though, with technology, for example smart phone apps, to calculate more 

complex RATs becoming more widely available, RATs may be allowed to 

develop further with the emphasis shifting from simplicity to accuracy (56).  

The treatment of missing data in the datasets used to develop RATs is an 

important methodological issue, yet it was often not discussed in the RAT 

development papers (40,57). Of those that detailed the treatment of missing 

data the vast majority used a complete-case analysis, this is where any 

individuals with missing data are excluded from the dataset used to develop the 

RAT. Few RATs used multiple imputation which has been found to have more 
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valid results and better discrimination than the complete-case approach (65). 

Multiple imputation uses all the observed values on an individual to assign 

plausible values for the missing data, this process is repeated a number of 

times, leading to a number of datasets which are then used to make several risk 

models and an average is taken to determine the risk score. If a complete-case 

analysis is used its good practice to carry out a sensitivity analysis to assess the 

potential impact of missing data, although few did this.    

Variables to include in the RATs were frequently chosen using an automated 

selection method, such as forward selection or backward elimination for 

regression models (57).  Many of these automated approaches are criticised for 

being prone to over-fitting, where the performance seen for the data the model 

was developed from is over optimistic (66,67). Though there are more 

sophisticated stepwise techniques which have been developed to avoid these 

issues, such as Least Absolute Shrinkage and Selection Operator (LASSO) and 

Least Angle Regression (LAR) (68), these have yet to gain popularity with those 

developing RATs. Moreover it has been pointed out that any completely 

automated approach will encounter problems as they fail to take into account 

the context of the specific situation (69). Variables should be selected using 

statistical methods alongside expert clinical knowledge as well as previous 

evidence (66); as seen in the development of FINDRISC where physical activity 

and vegetable or fruit consumption which were not significant predictors were 

included to emphasise their importance in diabetes prevention (42). Finally, 

several RATs firstly carried out bivariate tests of association of candidate 

independent variables with the outcome to reduce the number of independent 

variables (57). This method is unwise as it may well remove variables that are 

good predictors of the outcome once another variable has been adjusted for 

(70,71). 

Calibration and discrimination are two important measures of a RAT’s utility 

(40). The vast majority of RATs reported discrimination, normally using AUROC, 

for at least one of the following: the data used to derive the model, an internal 

validation dataset or an external validation dataset (54,56-59). On the other 

hand, calibration was frequently not reported in development papers (54,56-59). 

The Hosmer-Lemeshow goodness-of-fit test was the most commonly used 
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measure of calibration (57). However Hosmer-Lemeshow has been shown to 

give misleading results in some situations, therefore it has been recommended 

that calibration plots should be preferred (72-74).    

Common ways to internally validate were resampling methods or by cross-

validation, where the dataset is split into a training set used for model 

development and a test set used to test the validity. However cross-validation 

has been criticised for being imprecise and thus it has been suggested that 

resampling methods such as bootstrapping or v-fold cross-validation are more 

robust ways to carry out internal validation (75).  

External validation assesses the statistical performance of a RAT in a dataset 

independent to the dataset used to develop the RAT (76).  Many RATs have not 

being externally validated and impact studies are particularly infrequent (54-59). 

External validations that have been carried out tend to show the performances 

of the RATs in external populations are poorer in terms of discrimination, 

sometimes to a concerning extent (77). Yet, the systematic review by Abbasi et 

al. (54) examined the external validity of 25 risk scores and found that the 

RATs’ discrimination in their external dataset was comparable to the 

discrimination observed in the internal dataset; in some cases even being 

marginally better than that seen for the internal dataset, the authors suggest this 

could be due to higher heterogeneity in the external populations than the 

internal populations. The dataset used to externally validate the RATs in this 

review had a lower incidence of T2DM than most of the datasets used to 

develop these RATs, this resulted in poor calibration with significantly less 

observed cases than predicted by the prediction models. Recalibrating the 

prediction models, as done in this paper, by recalculating the intercept term in 

logistic regression models and the baseline survival function in survival models, 

deals with miscalibration due to differing incidence rates. This resulted in well 

calibrated RATs for this population, however poor calibration in external 

populations is not solely due to this issue and thus recalibration of intercept 

term or baseline survival function will not always result in a RAT which performs 

well (78). 
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Recalibration of the intercept term or baseline survival function is not the only 

way models can be required to be adapted when being externally validated. 

Noble et al. note that researchers externally validating RATs often had to 

remove variables from models as they were not in the external dataset. Where 

this happened it was common that an additional variable was added to account 

for the missing information; also common was altering the way in which 

categories for some variables were defined, for example ethnicity (58). Although 

these are still valid external validations as it assesses the performance of RATs 

in different settings, as Buijsse et al. highlight external performance is generally 

better in datasets which had the same variables definitions as the dataset on 

which the RAT was developed (56). Poor external performance is often seen 

when the demographic of the external population differs from that of the original 

population on which the RAT was developed, this being especially evident when 

ethnicities or countries of the populations differ (49). It has been suggested that 

re-estimating the existing model’s coefficients in these situations could be a 

solution resulting in a model with satisfactory performance for this external 

population (79). However others state that ideally each population should have 

its own specific RATs developed, though this is expensive and unfeasible in 

many cases (80).         

An impact study assesses the rate of uptake of a RAT and the subsequent 

interventions that are available in a real world setting, as well as whether having 

these available leads to improvement in outcomes. An example is the GOAL 

study which found that some individuals that are encouraged to change lifestyle 

will achieve it but most will have difficulty (81). The majority of RATs have not 

had studies into their impact in practice carried out; although current research is 

starting to focus on this area more, some of the RATs have been developed 

without thinking about their use in practice and thus are unlikely to be used 

(58,59). Interventions carried out in individuals identified as being at high risk of 

diabetes by RATs have achieved positive changes in risk factors, such as 

reduced weight; while these changes were statistically significant only some 

were clinically significant (82-84). One study’s preliminary findings indicate that 

intervention in individuals detected by a diabetes risk score reduces incident 

diabetes in real world settings (85). Further research is needed to understand 
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the issues that inhibit and enable the use of self-assessment RATs in practice, 

as well as the cost and cost effectiveness of using RATs (58,59).  

Since only three RATs with an outcome of prevalent NDH and undiagnosed 

T2DM have been included in these reviews, due to a lack of focus on RATs with 

this outcome, a systematic review focusing on RATs which include prevalent 

NDH in their outcome is included in this thesis. The findings that the basic 

decision tree may be unstable, means that extensions of the method which use 

resampled versions of the data are considered in the method comparisons 

chapter. Although this chapter considers the utility of methods and their 

variations in practice alongside statistically performance when comparing 

different methods, many RATs have been developed without thinking about 

their use in practice and thus are unlikely to be used (58,59). The methods 

comparison chapter will be an empirical comparison, using one dataset to 

develop RATs and another to assess the external validity, since RATs 

performance in external populations was often much worse than expected and 

external validation is the gold standard.   

RATs developed in this thesis are built taking into consideration the way(s) they 

would be used in practice, as not to render them unusable in practice. Further to 

this RATs developed in this thesis will only use data available from 

questionnaires or routine non-invasive measures, as it should ensure the RATs 

are considered acceptable by most individuals (56,59). Finally RATs developed 

in this thesis which are intended to be implemented in practice will use expert 

clinical knowledge and previous evidence in addition to the statistical data as 

this is recommended (66).  
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1.5 Overview of thesis 

The work reported by this thesis had two main aims. Firstly, to investigate 

methodological issues, informing the field of RATs as a whole. Secondly, to 

identify, develop and validate RATs for NDH and T2DM outcomes, thus helping 

to provide valid RATs which may be implemented in practice. The core chapters 

of this thesis which detailed the work carried out to meet these aims are 

summarised below in bullet point form. 

 Chapter 3 presents a systematic review which identifies, summarises 

and assesses the methodology of RATs which detect those with NDH.  

 Chapter 4 reports a comparison of existing methods for developing 

RATs, both in terms of implementation in practice and statistical 

performance. It also details a resampling study to assess the effects of 

differing the sample size of the development dataset on the performance 

of each of the methods. 

 Chapter 5 describes the performance of utilising the chain event Graph 

(CEG) for the novel application of RATs. 

 Chapter 6 assesses whether the LSA risk score should be replaced with 

a RAT which was developed with HbA1c as its outcome. 

 Chapter 7 establishes risk groups for LPRS to enable consistent advice 

to be given across different general practices when utilising the RAT.  

 Chapter 8 presents an external national validation of the LSA and LPRS 

using a nationally representative longitudinal dataset.  

Chapter 2 details the datasets used for this work and statistical methods used to 

assess the performance of the RATs throughout this thesis. Finally Chapter 9 

summarises the findings in light of the previous findings in the field.   
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Chapter 2:  Datasets and statistical metrics 

2.1 Chapter Outline 

This chapter gives a summary of each of the three datasets which are analysed 

in this thesis. Additionally, the chapter details statistical metrics which are used 

to assess the performance of risk assessment tools (RATs) in this thesis.       
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2.2 Datasets analysed in this thesis 

The three datasets used in the various analyses in this thesis are detailed 

below. Briefly the ADDITION-Leicester and Screening Those at Risk (STAR) 

datasets are cross-sectional datasets comprised of individuals from 

Leicestershire; while the English Longitudinal Study of Aging (ELSA) dataset is 

a longitudinal dataset which contains individuals from across England. Table 2.1 

displays the analyses, by chapter, each of the datasets are utilised for.  

Table 2.1 Datasets used for the analyses included in each chapter  

 Dataset used for analyses 

Chapter ADDITION-
Leicester 

STAR ELSA 

4 Methods for developing risk assessment 
tools using cross-sectional data and 
resampling study on the effects of the sample 
size of the development dataset on 
performance 

√ √  

5 Chain event graphs for developing risk 
assessment tools using cross-sectional data 

√ √  

6 Development of self-assessment risk 
assessment tools with HbA1c outcome and 
comparison of external validity for HbA1c 
outcome with LSA score  

√ √  

7 Establishing risk groups for the Leicester 
Practice Risk Score 

√ √  

8 Evaluating the ability of the Leicester Self-
Assessment and Leicester Practice Risk 
Scores to identify individuals who go on to 
develop diabetes using longitudinal data   

  √ 

Datasets used to develop and validate RATs should firstly reflect well the 

population in which they are intended to be used, especially in terms of the 

variables known to be related to the outcome. Datasets should be cohorts 

rather than from case-control studies, with prospective cohorts being advocated 

as allowing optimal recording of risk factors and outcomes (86). Results are 

more likely to be reliable if large high quality dataset are used (40). Finally, 

datasets used for external validation should ideally be in a different location, 

providing geographic external validation (87).    
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2.2.1 ADDITION-Leicester 

The ADDITION-Leicester dataset was yielded as part of the multi-centre 

ADDITION (Anglo-Danish-Dutch Study of Intensive Treatment in People with 

Screen Detected Diabetes in Primary Care) study (88). ADDITION-Leicester 

included population based blood screening tests, to identify individuals with 

undiagnosed Type 2 diabetes mellitus (T2DM) as well as those with non-

diabetic hyperglycaemia (NDH). After blood screening tests individuals 

identified as having undiagnosed T2DM were invited into a randomised 

controlled trial of cardiovascular disease risk reduction; while individuals 

identified as having NDH, specifically impaired glucose regulation (IGR), were 

followed-up annually for five years to study the progression from NDH to T2DM. 

This thesis only uses data from the baseline screening phase of the ADDITION-

Leicester study, which is detailed further below.  

Twenty general practices from both urban and rural areas across Leicestershire 

were included in the study, resulting in a multi-ethnic dataset (88). All of these 

practices met a set inclusion criteria regarding the completeness of 

demographic data in their practice database. Individuals from these practices 

who did not have diagnosed diabetes and were aged 40-75 years old, or aged 

25-75 years old for individuals from black and minority ethnic (BME) groups, 

were eligible for the study. Six of the practices invited all their eligible patients to 

participate in the screening phase of the study, while 14 practices invited 

random samples of their eligible individuals. Of the 30,950 individuals invited 

6,749 (21.8%) attended the diabetes screening (89). Only 359 individuals were 

younger than 40 years old, due to the low proportion of individuals in this age 

group the analyses in this thesis exclude these individuals. The number of 

individuals included in each of the analyses varies, as exclusion criteria for the 

completeness of the data are used for some of the analyses.  

The diabetes screening was carried out using a standard 75g Oral Glucose 

Tolerance Test (OGTT) (88). Individuals with either fasting plasma glucose 

(FPG) or 2-hour Glucose Tolerance Test (GTT) in the diabetic range (FPG ≥7.0 

mmol/l or 2-hour GTT ≥11.1 mmol/l (90)), had a second glucose test to confirm 

diabetes at an additional visit within a week of the original visit. 206 (3.2%) of 

the individuals aged 40 years or older were found to have screen-detected 
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T2DM. The remaining individuals were classified as having either normal blood 

glucose, 80.5%, or NDH (IGR), 16.3%, according to the World Health 

Organisation (WHO) definitions (13,46).  

The screening phase of the study collected the following data from participants: 

detailed family and medical histories, clinical measurements, anthropometric 

measurements, biomedical measurements and their answers to several 

validated questionnaires for a range of outcomes. The biomedical measures 

collected included glycated haemoglobin A1c (HbA1c), which has since been 

recommended for diagnosing T2DM (12). This enables ADDITION-Leicester to 

be used to assess whether the Leicester Self-Assessment (LSA) needs to be 

replaced with a new self-assessment RAT, developed with a binary HbA1c 

outcome, work which is carried out in Chapter 6. Furthermore, the validated 

questionnaires included two questionnaires for the purpose of predicting risk of 

diabetes, Finnish Diabetes Risk Score (FINDRISC) and Cambridge Risk Score 

(CRS) (42,48). Meaning values of potential risk factors were recorded for 

individuals in this dataset; which is helpful for developing potential risk scores 

as done with the dataset in Chapter 6.  

ADDITION-Leicester is used in the analyses in Chapters 4, 5, 6 and 7 of this 

thesis. The numbers included in different analyses varies slightly, the 

characteristics of individuals aged 40 years and older in ADDITION-Leicester 

are displayed in Table 2.2. 

.  
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Table 2.2 Characteristics of individuals aged 40 years and older who took part 
in diabetes screening for the ADDITION-Leicester study (n=6,390) 

Age, years 57.3 (9.6) 
Sex, Male (%) 47.7 
Ethnicity, White European (%) 75.8 
Body mass index (kg/m2) 28.1 (5.0) 
Waist (cm) 94.2 (13.1) 
IGR or undiagnosed T2DM by OGTT (%) 19.6 
HbA1c ≥6.0% (%) 23.2 
Fasting plasma glucose (mmol/l) 5.2 (0.9) 
HbA1c (%) 5.7 (0.6) 
Systolic blood pressure (mmHg) 137.9 (19.4) 
Diastolic blood pressure (mmHg) 85.7 (10.5) 
Current smoker (%) 14.5 
Used high blood pressure drugs: self-reported (%) 23.4 
Medical record of antihypertensive medication use (%) 23.8 
Cholesterol (mmol/l) 5.6 (1.1) 
History of high blood pressure (%) 27.8 
History of Angina (%) 4.8 
1st Degree Relative with diabetes (%) 25.2 

Mean (SD) displayed unless stated. 

One advantage of this dataset is that it is a cohort of the general population with 

over a 20% participation rate meaning findings from using this dataset should 

be able to be generalised to the population. Furthermore, the dataset primarily 

consisted of 40- 75 year olds, the age group in which RATs are recommended 

for NDH and T2DM outcomes, meaning little data was lost when excluded 

individuals outside the age group of interest. The dataset is multi-ethnic, 

although the majority of individuals who participated who were not white 

European were of south Asian ethnicity. Additionally, both OGTT and HbA1c 

measurements were collected which is very rare amongst population screening 

studies. Many potential risk factors, including all well-known factors, were 

collected; however they did contain a reasonable amount of missing data. 

Finally, the size of the dataset was sufficient with a large ratio of NDH or 

undiagnosed T2DM to candidate predictors.    
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2.2.2 Screening those at risk (STAR)  

The STAR study was a study of a targeted screening program which aimed to 

identify individuals with abnormal glucose tolerance, either NDH or undiagnosed 

T2DM (46). Individuals aged 40-75 years old, or aged 25-75 years old for 

individuals from BME groups, who did not have diagnosed diabetes and had at 

least one recognised risk factor for T2DM, were eligible to participate in the 

study. Eligible individuals from 17 general practices across Leicestershire were 

invited by letter to participate. Additionally, opportunistic recruitment of 

participants was also carried out at retail centres in Leicestershire during the 

“Be a star campaign” for health awareness. It is important to note that the 

general practices used to recruit individuals were different from those used for 

ADDITION-Leicester.       

Participants required at least one of the following risk factors to be eligible for 

the study (46):  

 Coronary heart disease 

 Hypertension 

 Dyslipidemia 

 Cerebrovascular disease 

 Peripheral vascular disease 

 History of impaired glucose tolerance (IGT) 

 Gestational diabetes 

 First-degree relative with T2DM 

 Body mass index (BMI) >25 kg/m2 

 Current or former smoker 

Individuals with a terminal illness or who were housebound were excluded from 

the STAR study.  

3,225 participants were screened for abnormal glucose using a 75g-OGTT. As 

in the ADDITION-Leicester study, the WHO 1998 criteria were used to diagnose 

abnormal glucose tolerance (T2DM or NDH (IGR)) (90). The diagnosis of T2DM 

also required a second confirmatory OGTT. During the screening visit trained 

research staff also collected biomedical and anthropometric data for each 

individual, and participants self-completed a general health questionnaire. 
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Finally the dataset includes patients’ past medical and medication history, which 

was obtained by a qualified nurse. 

STAR is used to externally validate the work carried out in Chapters 4, 5, 6 and 

7 of this thesis. Although the number of individuals included in the different 

analyses varies as different exclusion criteria for the completeness of the data 

are used for some of the analyses. The participants under 40 years old (n=54) 

are excluded from every analysis in this thesis due to the small number of 

individuals of this age and since population level two-stage risk screening is 

only recommended for 40-75 year olds (28). Table 2.3 below gives a summary 

of the characteristics of the 3,173 individuals from STAR aged 40 years or 

older. 

Table 2.3 Characteristics of individuals aged 40 years and older who took part 
in diabetes screening for the STAR study (n=3,173) 

Age, years 56.6 (9.6) 
Sex, Male (%) 46.4 
Ethnicity, White European (%) 70.9 
BMI (kg/m2) 27.9 (5.1) 
Waist (cm) 94.9 (13.0) 
IGR or undiagnosed T2DM by OGTT (%) 21.4 
HbA1c ≥6.0% (%) 29.2 
Fasting plasma glucose (mmol/l) 5.3 (1.0) 
HbA1c (%) 5.8 (0.7) 
Systolic blood pressure (mmHg) 134.0 (20.7) 
Diastolic blood pressure (mmHg) 80.4 (10.8) 
Current smoker (%) 25.4 
Antihypertensive medication use (%) 22.6 
Cholesterol (mmol/l) 5.4 (1.0) 
History of high blood pressure (%) 33.6 
History of Angina (%) 5.5 
1st Degree Relative with diabetes (%) 34.9 

Mean (SD) displayed unless stated. 

The key disadvantage of this dataset is that the study was carried out in the 

same location as the ADDITION-Leicester and thus it does not provide a 

geographical external validation only a temporal external validation for the 

analyses carried out in Chapters 4, 5, 6 and 7. Another disadvantage was that 

individuals required one known risk factor for T2DM to be included in the study, 

meaning this was not a population screening study. Although the risk profile 

was similar to the ADDITION-Leicester risk profile. Advantages of the dataset 

are it is a multi-ethnic cohort which primarily consisted of 40- 75 year olds. 

Furthermore, both OGTT and HbA1c measurements were collected along with 
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many potential risk factors, including all well-known factors.  Finally, the size of 

the dataset was sufficient with a large ratio of NDH or undiagnosed T2DM to 

candidate predictors.    
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2.2.3 English Longitudinal Study of Aging (ELSA)   

ELSA is an ongoing panel study of a nationally representative cohort of people 

aged 50 years and older living in England (91). ELSA collects data from 

participants every two years, each round of data collection is known as a wave. 

The first wave (conducted in 2002 and 2003) of the study recruited individuals 

living in private housing aged 50 years or older and their partners, irrespective 

of age, from households in which an individual participated in the Health Survey 

for England in 1998, 1999 or 2001 and agreed to follow-up (92). Refreshment 

samples of people aged between 50- 53 years were added to the study cohort 

in waves 3, 4 and 6 to ensure the cohort continued to be representative of 

individuals of this age. The study collects a broad range of data including 

demographic, economic, social, psychological, mental and physical factors 

along with various blood assays (92). The socio-demographics of the ELSA 

dataset have been found to be generally reflective of the English population 

(92).  

Participants are asked to complete a questionnaire every wave, with nurse visits 

being conducted every other wave (every four years) to collect further 

information, such as blood test measurements (92). ELSA was purposely 

designed with the ability to study the prevalence of NDH and/or undiagnosed 

T2DM at waves 2, 4 and 6 as well as the incidence of self-reported diagnosed 

T2DM at every wave (93). A fasting blood glucose measurement and an HbA1c 

measurement is taken from willing individuals during nurse visits, every four 

years. Participants are asked at each wave whether they have ever been told 

they have diabetes by a doctor and if they are taking insulin or medication for 

diabetes. ELSA is a freely available dataset accessed through the United 

Kingdom (UK) Data Archive (94).   

The analyses in Chapter 8 of this thesis use this dataset to assess the 

performance of the LSA and Leicester Practice Risk Score (LPRS), which were 

developed for cross-sectional outcomes, for both cross-sectional outcomes of 

NDH or undiagnosed T2DM at baseline and longitudinal outcomes of diabetes 

incidence within four and eight years. Wave 2 (conducted in 2004 and 2005) is 

taken as the baseline, as this is the first wave which included nurse visits and 

therefore blood measurements. 9,432 individuals participated in wave 2 of the 
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study (92). The analyses in Chapter 8 include differing numbers of individuals 

as the use of the risk score is assessed for many differently defined diabetes 

outcomes, as well as being assessed on its own and as part of a two-stage 

screening programme. To be included in any of the analyses individuals had to 

be aged 50-75 years old and free from diagnosed diabetes in wave 2, Table 2.4 

displays the characteristics of the 6,778 individuals in this age range and free 

from diabetes diagnosis in wave 2. 

Table 2.4 Characteristics of individuals aged 50-75 years and free from 
diabetes at Wave 2 of the ELSA study (n=6,778) 

Age (years), Median (IQR) 61 (57-67) 
Sex (Male) 44.5% 
Ethnicity (White European) 98.0% 
BMI (Kg/m2) 27.8 (4.7) 
Waist circumference (cm) 94.7 (12.8) 
Family History of diabetes (at eight year follow-
up) 

14.2% 

History of high blood pressure 38.5% 
Antihypertensive medication use  12.5% 
Glycated haemoglobin (%) 5.5 (0.5) 
Fasting plasma glucose (mmol/l) 4.9 (0.7) 
Systolic Blood Pressure (mmHg) 132.9 (17.7) 
Diastolic Blood Pressure (mmHg) 76.3 (10.5) 
Blood total cholesterol (mmol/l) 6.1 (1.1) 
Current Smoker 14.6% 

Mean (SD) displayed unless stated. 

This study has the benefit of being designed to be nationally representative of 

older individuals in the UK, meaning it provides a dataset for geographical 

external validation of the LSA and LPRS. Additionally the study is a prospective 

cohort meaning the validity of the two RATs could be assessed for longitudinal 

T2DM outcomes, in addition to the cross-sectional NDH or undiagnosed T2DM 

outcomes. One issue with the dataset is that it does not contain any individuals 

in their forties, meaning the whole age range in which screening is 

recommended could not be assessed. The size of the dataset was good, 

although some risk factors of the LPRS and LSA had missing data. A particular 

weakness was family history of diabetes was not collected at baseline and had 

to be imputed from the final follow-up.      



 

36 
 

2.3 Statistical methods for assessing risk assessment tools 

The core statistical methods used across this thesis are detailed in this section. 

Specifically, how to calculate each of the statistical metrics along with what 

exactly it is that they are used to assess in the context of this thesis and in 

which chapters of the thesis they are employed.   

2.3.1 Statistical methods for assessing binary screening decisions 

Sensitivity, specificity, Positive Predictive Value (PPV) and Negative Predictive 

Value (NPV) are all statistical metrics which evaluate the performance of binary 

predictions for a specified binary outcome. Prevalence of the disease, 

proportion correctly classified and proportion classified with high risk are also 

statistics of interest when considering the performance of binary screening 

decisions, and thus will also be detailed. In the case of this thesis, these metrics 

are used to assess how well screening decisions given by a defined threshold 

of a risk score match the actual outcome of interest, the true glucose status of 

individuals. 

Table 2.5 indicates the four possible situations which can arise from the use of 

binary screening decisions (95). The letters a, b, c and d are used to notate the 

number of individuals in a dataset which fall into each of the situations. Firstly, 

individuals who have the disease and are correctly screened as positive are 

known as true positives; the number of true positives is labelled a. However, 

individuals may also be screened incorrectly as positive when they do not have 

the disease, these are termed false positives; the number of false positives is 

notated by b. Another possibility is that individuals without the disease are 

correctly screened as negative, such individuals are counted as true negatives; 

the number of true negatives is labelled c. Finally, individuals with the disease 

can be incorrectly screened as negative, these are known as false negatives; 

the number of false negatives is notated by d.  
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Table 2.5 The four possible situations resulting from using a binary screening 
decision to screen for a binary outcome with commonly used letter-notation also 
indicated 

 True disease status  

Disease No disease Totals 

Screening 

decision 

Positive True positives 

a 

False positives 

b 

 

a+b 

Negative False negatives 

c 

True negatives 

d 

 

c+d 

 Totals a+c b+d a+b+c+d 

 

Thresholds for deciding binary screening decisions should be chosen to 

sensibly balance the number of individuals in the four possible situations given 

the context. The statistical metrics detail to what extent that happens, giving the 

proportion of individuals from a combination of the situations being in one (or 

two) situation(s). Equations (2.1) to (2.7) detail how each of the statistical 

metrics are calculated using the notations introduced in Table 2.5. Sensitivity is 

the proportion of individuals with the disease who correctly receive a positive 

screening decision (96). Specificity is the proportion of individuals without the 

disease who are correctly given a negative screening decision (96).  

 Sensitivity =
𝑎

𝑎 + 𝑐
 (2.1) 

 
Specificity =

𝑑

𝑏 + 𝑑
 

(2.2) 
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As equation (2.3) details, PPV is the proportion of individuals given a positive 

screening decision who actually have the disease (97). Similarly NPV is the 

proportion of individuals given a negative screening decision who are actually 

free from the disease (97). PPV and NPV are of interest to patients who have 

received the result of a screening test, since they are the probabilities of having 

the disease given screening positive and not having the disease given 

screening negative respectively.   

 PPV =
𝑎

𝑎 + 𝑏
 (2.3) 

 
NPV =

𝑑

𝑐 + 𝑑
 

(2.4) 

The prevalence of the disease is the proportion of individuals who have the 

disease out of all individuals screened. Changes to the prevalence directly 

result in changes to the predictive values with increasing prevalence increasing 

PPVs and decreasing NPVs are produced (95). While, in theory the sensitivity 

and specificity of a screening decision does not vary with changing levels of 

prevalence.     

 
Prevalence =

𝑎 + 𝑐

𝑎 + 𝑏 + 𝑐 + 𝑑
 

(2.5) 

As displayed by (2.6), the proportion of individuals correctly classified is the sum 

of the true positives and true negatives divided by the total number of 

individuals screened. The proportion classified as high risk is the total number 

of individuals with a positive screening decision over the total number of 

individuals screened.  

Proportion correctly classified =
𝑎 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑
 

(2.6) 

Proportion classified as high risk =
𝑎 + 𝑏

𝑎 + 𝑏 + 𝑐 + 𝑑
 

(2.7) 

All the statistical metrics detailed here are commonly reported as both 

proportions, as shown in equations (2.1) to (2.7), and percentages yielded by 

multiplying these proportions by 100. They are reported throughout the thesis, 

along with 95% confidence intervals (CIs).   
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2.3.2 Area under the receiver operator characteristic curve 

The receiver operator characteristic (ROC) curve is a plot of the true positive 

rates against the false positive rates yielded by taking each observed risk score 

as the cut-point which determines the screening decisions (98). As the example 

in Figure 2.1 indicates, the true positive rate is simply the sensitivity of a 

particular cut-point; while the false positive rate is one minus the specificity. The 

area under the ROC is the area between the curve and the lines 𝑥 = 1 and 𝑦 =

0.  

 

Figure 2.1 Example of a ROC curve 

The area under the receiver operator characteristic curve (AUROC) is the 

probability that a randomly selected individual with the disease will have a 

higher risk score than a randomly selected individual without the disease (98). 

The AUC is a commonly used statistical metric for assessing the discrimination 

of a risk score (54-59,99). 

As in Figure 2.1 it is common to display a line from the bottom left-hand corner 

to the top right-hand corner as a reference when plotting the ROC curve (98). 

This is known as the line of no discrimination, since it shows where the ROC 

curve would lie if its discrimination is no better than chance. The area under the 

line of no discrimination is 0.5, indicating that only half the time a randomly 
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selected individual with the disease will have a higher risk score than a 

randomly selected individual without the disease. On the other hand, a risk 

score with perfect discrimination would go from the bottom left-hand corner to 

the top left-hand corner and then across to the top right-hand corner. The area 

under a perfect ROC curve would be 1, since every individual with the disease 

has a higher risk score than every individual without the disease. 

2.3.3 Brier score 

Brier scores measure the accuracy of the predicted probabilities of the outcome. 

The Brier score is often thought of as a measure of calibration and was chosen 

to assess calibration in this thesis. However the Brier score measures overall fit 

of a models, of which calibration is a component rather than being a measure of 

calibration alone (100,101). The Brier score was chosen since it is more 

consistent than tests of perfect calibration, such as the Hosmer-Lemeshow test, 

which has historically been used (73). Plots of observed against predicted risk 

by decile are also used in the thesis to assess calibration. 

The Brier score is the average of the sum of squared errors in predicted 

probabilities of each classification and whether that classification was observed 

for each individual. Since this thesis only predicts binary classifications the Brier 

score can be simplified to equation (2.8); where 𝑓𝑖𝑗  is the predicted probability 

of outcome j for individual i, and 𝐸𝑖𝑗 is an indicator of whether event j was the 

true outcome for individual i (taking 0 when j is not the true outcome and 1 when 

j is the true outcome). The Brier score is a value between 0 and 1, the closer 

the value is to 0 the better the calibration of the model.  

 
Brier Score =

1

𝑁
∑ ∑ (𝑓𝑖𝑗 − 𝐸𝑖𝑗)

2𝑛

𝑖=1

2

𝑗=1

  
(2.8) 

The Brier score is affected by the prevalence of the outcome, with a decrease in 

the prevalence leading to a decrease in the outcome index variance, which is 

the Brier score yielded from assigning each individual the prevalence as their 

prediction of the outcome (102). The outcome index variance is used as a 

reference for the Brier scores displayed in this thesis, since it gives the Brier 

score yielded from the non-informative model.    
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Some risk scores, such as those intended to be calculated by hand, may not be 

communicated as a probability due to making their calculation easy for a lay 

person to carry out, in their cases if possible the Brier score is calculated using 

the associated probability from the underlying model for each risk score.  

2.3.4 Net reclassification improvement 

Net reclassification improvement (NRI) measures the extent to which a new 

model correctly reclassifies individuals into risk categories for a binary outcome 

compared to the risk categories they were allocated using an existing model 

(103). As (2.9) shows NRI is the sum of the NRI for the events, 𝑁𝑅𝐼𝐸 , and the 

NRI for the non-events, 𝑁𝑅𝐼𝑁𝐸. In the context of this thesis events are 

individuals with the outcome of interest, while non-events are individuals without 

the outcome of interest. As expressed in (2.10), 𝑁𝑅𝐼𝐸 is the probability of events 

correctly moving up the risk categories minus the probability of events 

incorrectly moving down the risk categories when reclassified using the new 

model compared to the existing model. (2.11) indicates 𝑁𝑅𝐼𝑁𝐸 is the probability 

of non-events correctly moving down the risk categories minus the probability of 

non-events incorrectly moving up the risk categories.  

 NRI = 𝑁𝑅𝐼𝐸 + 𝑁𝑅𝐼𝑁𝐸  (2.9) 

 𝑁𝑅𝐼𝐸 = 𝑃(𝑢𝑝|𝑒𝑣𝑒𝑛𝑡) −  𝑃(𝑑𝑜𝑤𝑛|𝑒𝑣𝑒𝑛𝑡) (2.10) 

  𝑁𝑅𝐼𝑁𝐸 =  𝑃(𝑑𝑜𝑤𝑛|𝑛𝑜𝑛 𝑒𝑣𝑒𝑛𝑡) −  𝑃(𝑢𝑝|𝑛𝑜𝑛 𝑒𝑣𝑒𝑛𝑡)  (2.11) 
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Chapter 3:  Systematic Review of risk assessment tools for 

detecting those with non-diabetic hyperglycaemia 

3.1 Chapter Outline 

This chapter identifies, summarises and assesses the methodology of risk 

assessment tools (RATs) which detect those with non-diabetic hyperglycaemia 

(NDH).  

The work in this chapter has been: 

 Presented as a poster: 

Barber SR, Davies MJ, Khunti K, Gray LJ. ‘Risk assessment tools for 

detecting those at high risk of type 2 diabetes: a systematic review’. At: 

Diabetes UK Professional Conference 2014. Liverpool, UK. 5-7th March 

2014. 

 Published:  

Barber SR, Davies MJ, Khunti K, Gray LJ. Risk assessment tools for 

detecting those with pre-diabetes: A systematic review. Diabetes 

Research and Clinical Practice 2014; 105(1):1-13.  
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3.2 Introduction 

As stated in section 1.2, there are interventions that are effective in delaying 

and even preventing individuals with NDH progressing to Type 2 diabetes 

mellitus (T2DM). It has been shown the cost per case of detecting individuals 

with NDH is reduced by using RATs as part of the screening programme (104). 

However, as highlighted by section 1.4.3, a systematic review of RATs for 

detecting those with NDH has not been carried out, thus this chapter reports 

such a systematic review. In identifying, summarising and evaluating the RATs 

developed which detect those with NDH; the systematic review detailed in this 

chapter aids those that desire to use such a RAT in their selection or 

development of an appropriate RAT.   

3.2.1 Search Strategy 

The search strategy was devised to identify all articles which developed new 

RATs for the outcome of NDH with or without undiagnosed T2DM. The search 

strategy contains two sets of terms; one set of terms for the outcomes of 

interest, which includes terms for T2DM as well as NDH, and another set of 

terms for RATs. Articles had to contain a term from both sets to be considered 

for inclusion. The terms included in both sets were chosen after examining the 

terms used in the previous systematic reviews in the area as well as adding 

additional terms from the literature used for NDH. Two electronic sources, 

Medline and Embase were both searched from inception until the 7th January 

2013 using a specific search strategy, which is given in Appendix A. In addition, 

reference lists of relevant articles were also manually searched. In-process or 

un-indexed work which was available on Medline was included in this review; 

however conference abstracts were not considered as the full article was 

required.  

3.2.2 Inclusion/Exclusion Criteria 

The outcome of a RAT for inclusion had to be one of the following: 

1. NDH defined using oral glucose tolerance test (OGTT) i.e. impaired 

glucose regulation (IGR), impaired fasting glucose (IFG) and/or impaired 

glucose tolerance (IGT). (90) 
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2. NDH defined using glycated haemoglobin A1c (HbA1c) using any 

recommended definition. (14,28,29) 

3. 1 and 2 from above, i.e. NDH by both OGTT and HbA1c. 

4. 1 or/and 2 and current undiagnosed T2DM (by HbA1c or using OGTT). 

The RATs had to contain two or more risk factors. Articles only assessing 

associations were excluded. RATs that included genetic factors were excluded 

as they are not routinely available in clinical practice and are expensive and 

time-consuming to collect so do not offer the same benefits over diagnostic 

tests that other non-genetic RATs do (54,56). The RATs had to be developed 

either on a population-based sample or volunteers/opportunist sample, i.e. not a 

pre-screened sample, for example individuals at an obesity clinic. In order for 

the methodology to be assessed the article had to detail the development of the 

RAT. Finally this review was restricted to articles published in English. 

3.2.3 Article Selection 

I examined the titles and keywords section of the articles identified by the 

search and excluded those which were not on the topic of interest. I then read 

the abstracts of the remaining articles and again excluded articles based on the 

inclusion criteria; any articles which appeared potentially relevant were kept for 

further examination. Papers which I did not have full access to were requested 

at this stage. The remaining articles were then examined fully (the whole text) 

by myself and a second reviewer, Dr Laura Gray, with any discrepancies being 

resolved through discussion.  

3.2.4 Data Extraction 

Data was extracted using a standardised data extraction form, given in 

Appendix A, to ensure consistent information was collected for each RAT; it 

included a series of questions examining the methodology. Information on the 

treatment of missing data, the number of outcome events and populations the 

RATs were developed and validated (if in the same paper) on were collected. 

Data extraction for internal and external validations included the area under the 

receiver operator curve (AUROC), sensitivity and specificity to summarise the 

discriminative ability of the RATs at the optimal cut point and any calibration 

statistics reported. Finally the risk factors considered and those included in the 
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RATs, as well as the mechanism by which the RAT could be used in practice, 

were recorded.  

In addition to the data extraction from the paper, google scholar was used to 

determine the number of times each paper had been cited in other articles, this 

search was carried out on 27th June 2014. These articles were then examined 

to see whether impact studies, studies which assess the effect implying a RAT 

in practice, or external validation studies have been carried out. 

3.2.5 Analysis  

Simple statistics, such as medians and ranges, were calculated for size of 

datasets, AUROCs, number of risk factors considered, number of risk factors 

included and the number of events per candidate predictor variable (EPV). A 

candidate predictor variable is a variable that was considered for inclusion into 

the RAT at any stage. 
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3.3 Results 

Figure 3.1 shows the number of articles considered at each stage of the 

systematic review. After examining titles and then abstracts, 256 full papers 

were reviewed, from which 12 articles met the inclusion criteria. These 12 

papers, by 11 different authors, contained 18 RATs from which data were 

extracted.  

 

 

Figure 3.1 Diagram summarising paper selection 
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Table 3.1 shows that six RATs were developed using data from the United 

States of America (USA), four with data from the Middle East, two using data 

from each of the United Kingdom (UK), Canada and Germany and one using 

data from China. The majority of papers containing these RATs have been 

published in the last five years, with Barriga et al.’s 1996 article being the only 

paper published before 2000. Generally the RATs’ outcomes were defined 

using OGTT measurements, either fasting plasma glucose (FPG), 2-h post 

challenge blood glucose or both. However the four RATs published in Handlos 

et al. use HbA1c levels to define their outcomes (105) and the computer-based 

RAT by Gray et al. uses HbA1c measurements along with FPG and 2-h post 

challenge blood glucose measurements to define its outcome (45).  

3.3.1 Methods used to develop risk assessment tools 

Of the 18 RATs identified 11 (61%) used logistic regression to develop the RAT, 

six (33%) used decision trees and one (6%) used a support vector machine 

(SVM). Logistic regression and decision tree based RATs allocated scores as 

described in section 1.4. SVM uses multidimensional hyperplanes to split 

continuous variables in relation to other variables (continuous or categorical) in 

order to divide the outcome variable into groups of mainly events and other 

groups of mainly non-events (106). This method is explained in more detail in 

section 4.7 in the following chapter. 

3.3.2 Methodological quality 

Ten (55.6%) of the RATs were developed using population-based data, with the 

remainder developed using data collected either through advertising or 

opportunistic sampling.   

The risk factors considered for inclusion were listed in all but one article (107). 

The number of risk factors considered ranged from six to 26 with a median of 

16. The number of outcome events in the datasets used to develop the RATs 

ranged from 244 to 2156 with a median of 644 (Table 3.1), giving events per 

variable (EPV) ranging from 15.3 to 128.4 with a median of 56.8. The final RATs 

contained between two and 19 risk factors with a median of six being included. 

The RATs developed using logistic regression had a median of 12 variables 

(range 4-19), while the decision tree scores had a median of three variables 

(range 2-5) and the SVM score included 11 variables. Figure 3.2 shows the 
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number of times variables were included in RATs compared to the number of 

times they were considered for inclusion using either the logistic regression or 

decision tree method. It can be seen in Figure 3.2 for example, that sex was 

included in nine of the 11 risk scores developed using logistic regression, 

however it was not included in any of the decision tree models. Age was the 

most frequently included variable for both methods. The SVM included ten of 

the 14 variables it considered; smoking, alcohol use, education and household 

income being the variables considered but not included. The variables included 

in each RAT are displayed in Appendix A.   
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Table 3.1 Summary of risk scores included in this systematic review 

First 
author, 

year and 
citation 
number 

Country 

/countries 

Name of 
study used 
to develop 

score 

Name of risk 
assessment 

tool 

Difference to 
other tools by 
same authors 

Intended 

/suggested 
use 

Sampling 
frame 

Method 
used to 
develop 

score 

Sample 
size 

(number 
of 

events) 

EPV Outcome 

Treatment 
of 

missing 
data  

Barriga, 
1996 (108) 

USA 

SLVDS (San 
Luis Valley 
Diabetes 
Study) 

N/A 

Simultaneous 
approach: all 
variables 
(telephone 
interview, clinical 
and blood sample) 
considered for 
inclusion in RAT.  

By healthcare 
professional 

20–74 year 
olds (residents 
of Alamosa 
and Conejos, 
English or 
Spanish 
speakers) 

Decision 
Tree 

1351 
(244) 

15.25 

2-h post 
challenge 
glucose ≥140 
mg/dL 

Not 
mentioned 

Barriga, 
1996 (108) 

USA SLVDS  N/A 

Stage 1 of phased 
approach: RAT 
only considers 
variables that can 
be collect over the 
telephone to 
detect individuals 
likely to have 
outcome.  

In stages 
(starting with 
over 
telephone) 

20–74 year 
olds (residents 
of Alamosa 
and Conejos, 
English or 
Spanish 
speakers) 

Decision 
Tree 

1351 
(244) 

15.25 

2-h post 
challenge 
glucose ≥140 
mg/dL 

Not 
mentioned 

DuBose, 
2012 (109) 

USA 

NHAMES 
(National 
Health and 
Nutrition 
Examination 
Survey) 

TAG-IT-A N/A 
Community-
based 
screening 

12–18 year 
olds 

Logistic 
Regression 

3050 
(482) 

80.3 

Fasting blood 
glucose at or 
greater than 
100 mg/dL, 
defined by 
ADA as 
impaired 

Complete 
case 
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First 
author, 

year and 
citation 
number 

Country 

/countries 

Name of 
study used 
to develop 

score 

Name of risk 
assessment 

tool 

Difference to 
other tools by 
same authors 

Intended 

/suggested 
use 

Sampling 
frame 

Method 
used to 
develop 

score 

Sample 
size 

(number 
of 

events) 

EPV Outcome 

Treatment 
of 

missing 
data  

Gray, 2010 
(51) 

UK 
ADDITION-
Leicester 

Leicester risk 
assessment 
score 

To be used by 
layperson 

Self-
assessment in 
practice or 
community 
setting 

40–75 year 
olds from a 
multi-ethnic 
UK screening 
study 

Logistic 
Regression 

6186 
(1249) 

56.8 

Fasting blood 
glucose ≥6.1 
mmol/l and/or 
2 h blood 
glucose ≥7.8 
mmol/l 

available 
data 

analysis 
(with 

sensitivity 
analysis) 

Gray, 2012 
(45) 

UK 
ADDITION-
Leicester 

NS 

To be used by 
professional with 
data available in 
primary care 

In primary care 
using 
electronic 
database 

40–75 year 
olds from a 
multi-ethnic 
UK screening 
study 

Logistic 
Regression 

6390 
(1412) 

128.4 

Fasting blood 
glucose ≥6.1 
mmol/l and/or 
2 h blood 
glucose ≥7.8 
mmol/l and/or 
HbA1c ≥ 
6.5% (46 
mmol/mol) 

Not 
mentioned 

Handlos, 
2013 (105) 

Algeria, 
Saudi 
Arabia and 
UAE 

NS NS 
Regional score for 
Middle East & 
North Africa 

Various 
settings 

30–75 year 
olds offered 
screening in a 
central 
location of 6 
cities 

Logistic 
Regression 

6588 
(1173) 

55.9 
HbA1c ≥ 
6.0% (42 
mmol/mol) 

‘No’ 
imputed 
for missing 
values  



 

51 
 

First 
author, 

year and 
citation 
number 

Country 

/countries 

Name of 
study used 
to develop 

score 

Name of risk 
assessment 

tool 

Difference to 
other tools by 
same authors 

Intended 

/suggested 
use 

Sampling 
frame 

Method 
used to 
develop 

score 

Sample 
size 

(number 
of 

events) 

EPV Outcome 

Treatment 
of 

missing 
data  

Handlos, 
2013 (105) 

Algeria NS NS 
National score for 
Algeria 

Various 
settings 

30–75 year 
olds offered 
screening in a 
central 
location of 2 
cities 

Logistic 
Regression 

2155 
(386) 

18.4 
HbA1c ≥ 
6.0% (42 
mmol/mol) 

‘No’ 
imputed 

for missing 
values 

Handlos, 
2013 (105) 

Saudi 
Arabia 

NS NS 
National score for 
Saudi Arabia 

Various 
settings 

30–75 year 
olds offered 
screening in a 
central 
location of 2 
cities 

Logistic 
Regression 

2446 
(377) 

18.0 
HbA1c ≥ 
6.0% (42 
mmol/mol) 

‘No’ 
imputed 

for missing 
values 

Handlos, 
2013 (105) 

UAE NS NS 
National score for 
UAE 

Various 
settings 

30–75 year 
olds offered 
screening in a 
central 
location of 2 
cities 

Logistic 
Regression 

1987 
(407) 

19.4 
HbA1c ≥ 
6.0% (42 
mmol/mol) 

‘No’ 
imputed 

for missing 
values 

Heikes, 
2008 (62) 

USA NHANES III 
Diabetes 
Risk 
Calculator 

N/A 

Self-
assessment 
using paper-
based version 
and in clinical 
practice using 
electronic 
version 

≥20 years old 
Decision 
Tree 

7092 
(2156) 

119.8 

FPG ≥ 100 
mg/dL or 2-h 
OGTT ≥ 140 
mg/dL 

Used FPG 
alone 

when 2-h 
OGTT 

missing 
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First 
author, 

year and 
citation 
number 

Country 

/countries 

Name of 
study used 
to develop 

score 

Name of risk 
assessment 

tool 

Difference to 
other tools by 
same authors 

Intended 

/suggested 
use 

Sampling 
frame 

Method 
used to 
develop 

score 

Sample 
size 

(number 
of 

events) 

EPV Outcome 

Treatment 
of 

missing 
data  

Hische, 
2010 (110) 

Germany 

Mesy-Bepo 
(Metabolic 
Syndrome 
Berlin 
Potsdam 
Study) 

N/A 
Just clinical 
explanatory 
variables 

Clinical 
practice 

Individuals 
>18 years old 
from the cities 
of Berlin and 
Potsdam and 
the 
surrounding 
area 

Decision 
Tree 

1737 
(601) 

46.2 

2-h post 
challenge 
glucose ≥140 
mg/dL 

Not 
mentioned 

Hische, 
2010 (110) 

Germany Mesy-Bepo  N/A 

Clinical & 
laboratory 
explanatory 
variables 

Clinical 
practice 

Individuals 
>18 years old 
from the cities 
of Berlin and 
Potsdam and 
the 
surrounding 
area 

Decision 
Tree 

1737 
(601) 

23.1 

2-h post 
challenge 
glucose ≥140 
mg/dL 

Not 
mentioned 

Koopman, 
2008 (111) 

USA NHANES TAG-IT N/A 

Clinical and 
population 
settings, or to 
identify 
potential 
participants for 
research 

20–64 year 
olds 

Logistic 
Regression 

4045 
(1117) 

111.7 

Fasting blood 
glucose at or 
greater than 
100 mg/dL 

Not 
mentioned 
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First 
author, 

year and 
citation 
number 

Country 

/countries 

Name of 
study used 
to develop 

score 

Name of risk 
assessment 

tool 

Difference to 
other tools by 
same authors 

Intended 

/suggested 
use 

Sampling 
frame 

Method 
used to 
develop 

score 

Sample 
size 

(number 
of 

events) 

EPV Outcome 

Treatment 
of 

missing 
data  

Nelson, 
2003 (112) 

USA NHANES III NS N/A By clinicians 
40–74 year 
olds 

Logistic 
Regression 

2746 
(686) 

76.2 

2-h 
postchallenge 
glucose ≥140 
mg/dL 

Used BMI 
if 

triglyceride 
missing 

Robinson, 
2011 (113) 

Canada NS eCANRISK Electronic 

Self- 
assessment & 
clinical in 
Canada (by 
electronic 
device) 

Adults from 
seven 
provinces 
(most 40–74 
years old, 
multi-ethnic 
group) 

Logistic 
Regression 

4091 
(1273) 
[‘Test’ 
part of 
6223] 

106.1 

Fasting blood 
glucose ≥6.1 
mmol/l and/or 
2 h Blood 
glucose ≥7.8 
mmol/l 

Various 
techniques 
including 

mean 
imputation 

and 'no' 
imputation    

Robinson, 
2011 (113) 

Canada NS pCANRISK Paper-based 

Self-
assessment & 
clinical in 
Canada 

Adults from 
seven 
provinces 
(most 40–74 
years old, 
multi-ethnic 
group) 

Logistic 
Regression 

4091 
(1273) 
[‘Test’ 
part of 
6223] 

106.1 

Fasting blood 
glucose ≥6.1 
mmol/l and/or 
2 h blood 
glucose ≥7.8 
mmol/l 

Various 
techniques 
including 

mean 
imputation 

and 'no' 
imputation    

Yu, 2010 
(106) 

USA 
NHANES 
(1999–2004) 

Diabetes 
Classifier (II) 

N/A 
Self-assessed 
or professional 

≥20 years old 
Support 
Vector 
Machine 

Training 
part of 
4915 
(1709) 

122.1 

Fasting 
plasma 
glucose level 
≥100 mg/dL 

Not 
mentioned 
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First 
author, 

year and 
citation 
number 

Country 

/countries 

Name of 
study used 
to develop 

score 

Name of risk 
assessment 

tool 

Difference to 
other tools by 
same authors 

Intended 

/suggested 
use 

Sampling 
frame 

Method 
used to 
develop 

score 

Sample 
size 

(number 
of 

events) 

EPV Outcome 

Treatment 
of 

missing 
data  

Xin, 2010 
(107) 

China 

Beijing 
Community 
Pre-Diabetes 
Study 

N/A N/A 

By practitioners 
at general 
practices 
(especially in 
rural China) 

≥35 years old 
Decision 
Tree 

893 (393) N/A 

FPG ≥ 5.6 
mmol/l and 2-
h post 
challenge 
glucose ≥140 
mg/dL 

Not 
mentioned 

N/A – not applicable, NS – not stated. 
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Figure 3.2 Frequency of variables included in tools (white) compared to number 
of times variable considered for inclusion in tools (black) split by the method 
used to develop the tool (logistic regression or decision tree)  

Variables considered for inclusion in less than five RATs were not included in this figure. 

[*where several similar variables were considered for the same RAT (e.g. several different 

family history of diabetes variables), the white circle is frequency of at least one of the variables 

being included] 

Of the RATs developed using logistic regression, six used a stepwise procedure 

to select variables for inclusion. One included all factors that were significant in 

univariate analysis (109). The two scores developed by Robinson et al. (113) 

used the full model of all factors available and the two other RATs used non-

conventional methods to choose factors to include (111,112). 

The RATs developed using decision trees used CART algorithms (60) or 

Quilan's standard decision tree algorithm (114) to build their tree. Two of these 

were chosen after comparison with a logistic regression model which was also 

developed in each article (62,107); they both stated this was due to its simplicity 

and similar accuracies as the logistic regression model. Although, simple 
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logistic regression based RATs have been developed in other papers (51,113), 

which allowed them to be paper-based, only requiring simple addition. A 

comparison of a simplified logistic regression based RAT with decision tree RAT 

would be useful to see if the logistic regression method is still comparable with 

the decision tree method after the scoring system for the RAT developed using 

logistic regression has been simplified. 

The SVM method was also compared to logistic regression in one paper (106). 

Yu et al. used a SVM RAT as they thought the lack of parametric assumptions 

which exist in logistic regression would mean the method may perform well in 

detecting NDH and undiagnosed T2DM, which has complex relationships with 

its risk factors. However the SVM RAT and logistic regression RAT had a 

similar performance, the discrimination of the SVM model and logistic 

regression model were not significantly different (106).  

Ten (91%) of the RATs developed using logistic regression categorised all 

continuous risk factors (51,105,109,111-113), with only one (45) opting to 

preserve continuous risk factors. Of the ten scores which categorised 

continuous variables, two were developed to be paper-based, thus difficult 

calculations involving continuous variables needed to be avoided. Six others 

stated they could be used in a variety of settings, including community use or 

population settings, which could also require them to be paper-based.  

The treatment of missing data was not mentioned for eight (44%) of the RATs 

developed. Table 3.1 shows, the RATs which commented on missing data used 

an array of methods; including complete case analysis, ‘no’ imputation, mean 

imputation and a combination of techniques for different variables.  

3.3.3 Validation 

Table 3.2 and Table 3.3 display all RATs which included a validation in the 

same paper in which they were developed. Seven (39% of) RATs were 

validated using an external dataset (45,51,62,109-111). Fourteen (82%) of the 

RATs were validated internally using resampling techniques such as 

bootstrapping and cross-validation (45,62,105-108,110,112,113). Four of the 

RATs also randomly split their dataset into a ‘training’ set, which was used to 

create the RAT, and a ‘test’ set, which was used to validate the RAT 
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(62,106,113). Finally Xin et al.’s RAT was validated using a partially 

independent dataset (107); all cases were used in both the ‘training’ and ‘test’ 

cohorts however the non-cases were randomly split into these two cohorts. The 

reason given for this was a lack of cases in the dataset.  
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Table 3.2 Main features of the logistic regression risk scores 

Risk 
assessment tool 

Internal 
validation 

Internal 
AUROC (95% 

CI) 

Internal 
PPV of 

decision 
(%) 

Internal 
NPV of 

decision 
(%) 

Internal 
sensitivity of 
decision (%) 

Internal 
specificity of 
decision (%) 

Internal % 
needing 

further testing 
of decision 

Calibration 
External 

AUROC (95% 
CI) 

DuBose (109) N/A NS N/A N/A N/A N/A N/A NS 0.61 

Gray, 2010 (51)  Apparent 
0.69 (0.68–
0.71) 

27.7 (26.2–
29.3) 

88.8 (87.7–
89.9) 

72.1 (69.6–
74.6) 

54.1 (52.7–
55.5) 

NS NS 
0.72 (0.69–
0.74)a 

Gray, 2012 (45)   Apparent 
0.701 (0.684–
0.717) 

N/A N/A N/A N/A N/A 
Hosmer–
Lemeshow (p = 
0.97) 

Ranged from 
0.622 to 0.6851 
for different 
outcomesb 

Handlos (Middle 
East & North 
Africa score) 
(105) 

Bootstrap 

0.70 (for data 
from each of 
Algeria, Saudi 
Arabia & UAE) 

NS NS 

Varies from 74 
to 76 
depending on 
sample 

Varies from 50 
to 54 
depending on 
sample 

Varies from 50 
to 55 
depending on 
sample 

NS N/A 

Handlos (Algeria 
score) (105) 

Bootstrap 
0.70 (0.68–
0.73) 

NS NS 74 (70–78) 57 (54–59) 49 NS N/A 

Handlos (Saudi 
Arabia score) 
(105) 

Bootstrap 
0.70 (0.67–
0.72) 

NS NS 74 (70–78) 55 (53–57) 50 NS N/A 

Handlos (UAE 
score) (105) 

Bootstrap 
0.70 (0.67–
0.72) 

NS NS 78 (73–82) 52 (50–55) 54 NS N/A 

Koopman (111) N/A 
0.74 (ranged 
from 0.717 to 
0.753 when 

N/A N/A N/A N/A N/A NS 0.744 
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Risk 
assessment tool 

Internal 
validation 

Internal 
AUROC (95% 

CI) 

Internal 
PPV of 

decision 
(%) 

Internal 
NPV of 

decision 
(%) 

Internal 
sensitivity of 
decision (%) 

Internal 
specificity of 
decision (%) 

Internal % 
needing 

further testing 
of decision 

Calibration 
External 

AUROC (95% 
CI) 

split by race 
groups) 

Nelson (112) Bootstrap 
0.74 (0.72–
0.76) 

N/A N/A N/A N/A N/A NS N/Ac 

Robinson 
(electronic score) 
(113) 

‘Test’ part of 
split sample 
used to validate 
& Bootstrap 

0.75 (0.73–
0.78) 

N/A N/A N/A N/A N/A 

Chi-squared (p < 
0.001), Brier Score 
(p = 0.002), 
Hosmer–
Lemeshow 

N/A 

Robinson (paper-
based) (113) 

‘Test’ part of 
split sample 
used to validate 
& Bootstrap 

0.75 (0.73–
0.78) 

N/A N/A N/A N/A N/A 

Chi-squared (p < 
0.001), Brier Score 
(p = 0.002), 
Hosmer–
Lemeshow 

N/A 

N/A – not applicable, NS – not stated. 

a Gray et al. (51) was also externally validated in a youth South Asian population giving an  AUROC of 0.71 (when using OGTT to define the outcome of NDH 

or T2DM) and an AUROC of 0.67 (when using HbA1c to define the outcome of NDH or T2DM) (115). In addition this RAT was externally validated in a 

Japanese cohort for the outcome of T2DM (either by FPG or HbA1c) where an AUROC of 0.804 was observed (116). 
b Gray et al. (45) was also externally validated in a youth South Asian population giving an  AUROC of 0.72 (when using OGTT to define the outcome of NDH 

or T2DM) and an AUROC of 0.68 (when using HbA1c to define the outcome of NDH or T2DM) (115). In addition this RAT was externally validated in a 

Japanese cohort for the outcome of T2DM (either by FPG or HbA1c) where an AUROC of 0.814 was observed (116). 
c Nelson et al. (112) was externally validated by Piette et al. Honduran population for the outcome of FPG defined T2DM and had an AUROC 0.887 (117)
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Table 3.3 Main features of the decision tree and SVM risk scores 

Risk assessment 
tool 

Internal validation 
Internal 
AUROC 

Internal PPV 
of decision 

(%) 

Internal NPV 
of decision 

(%) 

Internal 
sensitivity 
of decision 

(%) 

Internal 
specificity 
of decision 

(%) 

Internal % 
needing 
further 

testing of 
decision 

Calibration 
External 

AUROC (in 
same paper) 

Barriga 
(Simultaneous 
approach) (108) 

Tenfold cross-validation 
used to choose tree 

0.73a 31 97 91 55 53 NS N/A 

Barriga (Stage 1 of 
serial approach) 
(108) 

Tenfold cross-validation 
used to choose tree 

0.665a 26 96 92 41 65 NS N/A 

Heikes (62) 
‘Test’ part of Split 
sample used to validate 
& cross-validation 

0.75 49 85 75 65 NS NS 0.6991b 

Hische (Clinical 
variables only) (110) 

Tenfold cross-validation 0.668a 48.0 84.4 89.3 37.4 73.1 NS 0.6129a 

Hische (Clinical & 
laboratory variables) 
(110) 

Tenfold cross-validation 0.722a 56.2 89.1 89.7 54.6 67.3 NS 0.614a 

Yu (106) 
‘Test’ part of Split 
sample used to validate 
& tenfold cross-validation 

0.739 67.3 80.9 70.9 65.9 NS NS N/A 

Xin (107) 
Partial split sample used 
to validatec & “Leave-
one-out” method 

0.689 N/A N/A N/A N/A N/A NS N/A 

N/A – not applicable, NS – not stated.  
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a Calculated from the sensitivity and specific values stated 

b Heikes et al.’s RAT was also externally validated in a different paper by a third party (AUROC: 0.67 for prediabetes, 0.70 for T2DM) (118). It was also 

externally validated for the outcome of T2DM (defined using either FPG or non-FPG levels) by Lee et al. in Korean datasets having AUROCs of 0.604 

(KHANES 2001 and 2005) and 0.618 (KHANES 2007-2008) (119). 

c  All cases were used in both the ‘training’ and ‘test’ cohorts however the non-cases were split into these two cohorts. 
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3.3.4 Discrimination and calibration 

Fourteen (78%) of the 18 RATs had an AUROC reported in their paper 

(45,51,62,105-107,109,111-113), the four RATs which did not were decision 

trees and they reported several values of specificity and sensitivity meaning an 

AUROC could be calculated from this information (108,110). The internal 

AUROCs of the RATs developed had a median of 0.7 (ranging from 0.66 to 

0.75) (Table 3.2 and Table 3.3). Only three RATs had calibration measures 

reported, stating the Hosmer-Lemeshow goodness-of-fit test value (two of which 

also reporting the Brier Score and Chi-squared test value) (45,113). Gray et al. 

(45) is the only RAT to have a calibration plot published, with the observed 

number of cases being plotted against estimated number of cases for each 

decile of the dataset’s predicted probability, giving a good visual demonstration 

that the RAT is well calibrated. However, Robinson et el.’s paper (113) presents 

a figure of the observed probabilities for each of the deciles dataset’s risk 

scores, however it does not compare this to an estimated probability for each 

group.        

3.3.5 Usability, impact studies and further external validation 

All RATs either stated an intended or suggested use (Table 3.1). However, 

several of these were merely proposed ways in which it could be used rather 

than an exact situation and it was clear they did not take some of the 

development decisions with a particular use in mind. For example, Handos et al. 

(105) suggested that the RATs they developed were easy to implement in 

various situations, however did not state a specific setting which they intended 

their RAT to be used in. Some were, however, more specific, for example Xin et 

al. stated they intended their score to be used by practitioners at general 

practices in rural China (107).  

Table 3.4 shows Google scholar identified that the number of citations for the 

articles in which these RATs were developed ranged from three to 131 with a 

median of 17.5. Examining these citations revealed that only three RATs 

(45,51,62) have had an impact study published. Heikes et al.’s RAT (62) was 

used as part of a community-based intervention which aimed to identity 

individuals at risk of a number of diseases including T2DM, this study found that 
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77% of individuals identified as at risk of diabetes were previously unaware they 

were at risk (120). Gray et al. (52) reported the use of the Leicester Practice 

Risk Score (LPRS) (45) in two studies (Let’s Prevent Diabetes and Walking 

Away from Diabetes) to help identify individuals with NDH. In both rates of 

around 30% NDH or undiagnosed T2DM were found in those invited for an 

OGTT, which is a notable increase on the 20% seen in previous population-

based OGTT screening in the same area (52). Khunti et al. (104) reported a 

cost per case analysis comparing screening blood tests alone to using a RAT, 

either the Leicester Self-Assessment (LSA) or LPRS (45,51), followed by 

screening blood tests. It found that using a RAT in combination with a blood test 

was more cost-effective than a blood test on its own, for both OGTT and 

HbA1c. For example, using HbA1c alone the estimated cost of detecting one 

case (NDH/T2DM) was £276, however this was lowered to £206 by screening 

using the LSA before the HbA1c screening and to £164 by using the LPRS first 

(104). Finally, Jones et al. (121) discusses the impact of using RATs in practice 

including the LSA. Noting that while the approach would work well in identifying 

individuals with NDH or undiagnosed T2DM, it would increase the workload in 

primary care.               

Table 3.4 Number of citations of paper with risk assessment tools included in 
this systematic review as well as whether any external validations or impact 
studies were carried out for risk assessment tools in papers citing them  

Risk assessment 

tool 

Number of times 

cited 

External Validation 

in citing paper 

Impact study in 

citing paper 

Barriga (108) 21 - - 

DuBose (109) 4 - - 

Handlos (105) 3 - - 

Heikes (62) 131 √ √ 

Hische (110) 3 - - 

Gray, 2010 (51)  29 √ √ 

Gray, 2012 (45)   17 √ √ 

Koopman (111) 18 - - 

Nelson (112) 26 √ - 

Robinson (113) 16 - - 

Yu (106) 44 - - 

Xin (107) 11 - - 

Google scholar was used to carry out this search on 27th June 2014 
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Searching the citations identified in google scholar, four RATs (45,51,62,112) 

have had external validation reported in another paper. Two RATs, LSA and 

LPRS (45,51,62,112), were validated in a young South Asian population giving 

similar AUROCs to the internal datasets (115). Yet, when both RATs were 

validated in a Japanese cohort for the outcome of T2DM (either by FPG or 

HbA1c) they had considerably higher AUROCs of over 0.8 (116). When Nelson 

et al.’s RAT (112) was externally validated with T2DM, defined by FPG, as the 

outcome a sizably greater AUROC, 0.887, to the internal value, 0.74, was seen 

again (117). Phillips et al. (118) reports an external validation of Heikes et al.’s 

RAT (45,46,62,112), notably the AUROC with T2DM as the outcome, 0.70, is 

higher than the AUROC when NDH is the outcome, 0.67. Finally, Heikes et al.’s 

RAT was assessed in Korean populations for the outcome of T2DM, the 

AUROCs dropped noticeably compared to the internal value (119).     
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3.4 Discussion 

This is the first systematic review with a search strategy that focuses on finding 

RATs that screen for individuals with NDH. The inclusion criteria set to find 

RATs that were applicable to general populations (hence the exclusion of RATs 

developed on pre-screened sample populations) in order to identify individuals 

who would benefit from interventions aimed at T2DM prevention. 

This review has revealed that similar levels of internal performance can be seen 

when developing RATs using decision tree compared to logistic regression; with 

both Heikes et al. (62) and Xin et al. (107) seeing similar levels of performance 

for RATs developed using the two methods (both favoured the decision tree 

score due to its simplicity). The score developed by Yu (106) saw similar 

internal performance for the RATs developed using either SVM or logistic 

regression. Although in the majority of cases there was not a head-to-head 

comparison, the decision trees generally used fewer variables than the RATs 

developed using logistic regression. This may be useful because the logistic 

regression method is susceptible to over-fitting when there is a low EPV. 

However decision trees are prone to being unstable unless using specific 

statistical techniques (61) which develop the decision tree using several 

resampled versions of the data, as the RATs developed by Barriaga et al. used. 

This instability means a decision tree may not perform well in another dataset; 

this is seen with the three decision trees which have been externally validated, 

the AUROC for the external validation was at least 0.05 lower than the internal 

AUROC for each, with one having a drop in AUROC of over 0.1 for the external 

data compared to the internal data. In comparison the three RATs developed 

using logistic regression which were externally validated saw similar results. 

In general the key characteristics of the data used to develop the RATs were 

well described; however many of the RATs yielded their sample from either 

advertising or opportunistic sampling rather than a population-based study. 

Careful consideration of the future use of the RAT needs to be taken before 

deciding if opportunistic sampling is appropriate, as the RAT will only be 

accurate for screening in similar settings. Yet, the intended future use of the 

RAT in several cases was an afterthought and did not inform the development 
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of the RAT. Not considering the intended use of the RAT may lead to poor 

decisions on methodological issues, such as the treatment of continuous 

variables. All but one RAT developed using logistic regression categorised all 

continuous data. This is not recommended (64), and the reason for doing so 

was only stated in two of the ten scores which were going to be used as paper-

based scores; with six of the ten not reporting a specific use. Another key 

methodological issue of importance prior to developing RATs, which should be 

clearly detailed, is the treatment of missing data (40), which was not reported 

for 44% of RATs. None of the RATs used multiple imputation which has been 

advocated, instead of the simpler methods used in developing the RATs in this 

review, due to findings it leads to more valid results and better discrimination 

(65).  

For the RATs developed using logistic regression, the most common way of 

selecting variables to be included was by backward elimination or another basic 

stepwise procedure. It has been proposed that stepwise procedures may miss 

sets of variables that fit well (122). Furthermore as stated in section 1.4.3, these 

methods have been criticised as they are prone to over-fitting (66,67). However 

over-fitting is not evident in the results of the external validations carried out for 

the logistic regression RATs in this review, this is likely due to good levels of 

EPV in their internal dataset. Variables should be selected using statistical 

methods alongside expert clinical knowledge/previous evidence (66,69). Expert 

knowledge/previous evidence were only considered when selecting the 

variables for a small number of the logistic regression risk scores (51,111,112). 

It is important that whichever method is used gives sufficient detail for it to be 

repeated, with the methodological decisions justified, as several fell short on 

one of these two areas. 

Validation (either internal or external) of the risk scores, by evaluating the 

discrimination and calibration, assesses whether they work and thus should 

always be reported, with external validation being the gold standard (40). All 

RATs had some form of validation carried out on them with the majority 

performing bootstrapping, a resampling method that gives a good indication of 

how over optimistic the RAT may be (123). However, several RATs used 

randomly selected ‘training’ and ‘test’ datasets for their development and 
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validation, an approach which is likely to lead to overly optimistic results (75). 

External validation should be carried out before a RAT is considered for use in 

the real world (40); however this was only the case for seven (39%) of the 

RATs. All of the four RATs that had external validations carried out in another 

paper were for the outcome of T2DM. Interestingly three of four of these 

validations showed considerably better discrimination for the outcome of T2DM 

than had been seen internal.  Only three (17%) of the RATs reported calibration 

(45,51,62), this is of concern as it is a vital characteristic to assess, particularly 

in the decision tree and SVM scores as these methods are prone to being 

unstable. 

Evaluating the impact that a RAT has in clinical practice is a vital step that 

needs to be undertaken before any RAT can be advocated (40). Only three of 

the RATs (45,51,62) presented have had subsequent impact studies published, 

further highlighting the need for greater focus on the use of the RATs before 

development.  
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3.5  Conclusion and implications for thesis 

This systematic review summarises 18 RATs which detect those at risk of NDH. 

Many of the findings emphasise those from other systematic reviews in the area 

discussed in section 1.4.3 (54-59). In general, greater thought to the intended 

use of RATs is needed before their development, as this will assist in making 

sensible decisions on how to develop the RAT, for example how to treat missing 

and continuous data. Other methodological issues of concern are the common 

lack of focus on calibration, external validation and impact studies of the RATs. 

Before these are used in practice, the level of calibration and validity of the 

RATs in the population of interest should be assessed. 

One new finding is that the SVM method has been applied effectively to 

produce a RAT in this field. Though this technique needs further scrutiny as no 

external validation was carried out and it will therefore be examined in more 

detail, being included in the methods which are studied in the next chapter. The 

decision tree RATs included in this review which had external validations 

carried out displayed issues with over-fitting and therefore statistical techniques 

which have been advocated to deal with over-fitting are explored in the next 

chapter. The logistic regression RATs which had external validations carried out 

did not encounter problems with over-fitting despite using techniques some 

have criticised for being prone to this. This demonstrates that the more complex 

statistical techniques such as Least Absolute Shrinkage and Selection Operator 

(LASSO) and Least Angle Regression (LAR) which have been advocated to 

avoid over-fitting (68), may not be required when the number of EPV is 

adequate as has been found in simulation studies (123). 
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Chapter 4:  Methods for developing risk assessment tools 

using cross-sectional data and a resampling study 

on the effects of the sample size of the 

development dataset on performance 

4.1 Chapter outline 

This chapter compares different methods for developing a risk assessment tool 

(RAT) for the outcome of non-diabetic hyperglycaemia (NDH) or undiagnosed 

Type 2 diabetes mellitus (T2DM) in a cross-sectional dataset with a view to 

establishing the best method, both statistically and practically. The methods 

compared are logistic regression, decision tree and support vector machine 

(SVM). In addition, this chapter includes a resampling study to assess the 

effects of differing the sample size of the development dataset on the 

performance of each of the methods.   
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4.2 Introduction to empirical comparison of methods  

Systematic reviews of the area have shown that logistic regression is the most 

common method used to develop RATs which have been published for diabetes 

related prevalent outcomes (55,57,59,99). Other methods which papers 

included in these four systematic reviews utilised to develop a RAT for a 

prevalent outcome were decision trees and SVMs. While comparisons were 

carried out in a few of the papers found in the systematic review in Chapter 3, 

each paper only compared one method to logistic regression method rather 

than a comparison of all three methods (62,106,107). Furthermore, the two 

papers which compared decision trees to logistic regression (62,107) did not 

consider implementing extensions of the method such as boosting or bagging 

which have been shown to outperform the basic method in other types of 

datasets (124). 

4.2.1 Findings of previous empirical comparisons in the medical field   

Empirical comparisons of methods which model the risk of a binary medical 

outcome in cross-sectional data have been carried out (124-128); however 

there are several issues with generalising the results of these studies to 

establish which of the three methods considered in this chapter best 

discriminates blood glucose status. Firstly, only one of these papers (128) 

contains a comparison for a prevalent binary blood glucose outcome, the 

outcome of interest of this chapter. The performance of the method varies 

depending upon the setting (124), even between different medical areas, and 

thus it is not recommended to apply the results of such studies to outcomes in 

different medical fields (125). External validations of the performances were not 

included in any of these empirical comparisons, with internal validations being 

relied upon instead; despite external validation being the gold standard for 

verifying stability of RATs (40). Table 4.1 summarises the findings of these 

studies as well as detailing the study specific limitations in answering the 

question posed in this chapter. This will enable sensible decisions to be made 

to avoid the same shortcomings in this empirical comparison, as well as 

ensuring promising extensions of methods are investigated.  

Caruana et al. carried out an empirical comparison of several methods in two 

unspecified medical datasets, as well as nine other non-medical datasets (124). 
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They found that the bagged trees and random forest methods had the best 

performance in one of the medical datasets; while random forest, logistic 

regression and neutral networks yielded the greatest levels of statistical 

performance in the other medical dataset. One concern with applying the results 

of this paper to the medical field in general is that the performance has been 

displayed as an average over eight metrics which are used in a variety of 

settings and thus no results for the preferred measure in medical field, area 

under the receiver operator curve (AUROC), are displayed (55,57,59,99). This 

study highlights the potential benefit of extensions to the basic decision tree 

method; therefore the empirical comparison in this chapter will investigate 

extensions when considering the decision tree method.    

Cooper et al. compared several methods to discriminate for the outcome of 

mortality of hospital patients presenting with pneumonia (125). The paper finds 

that the error rates for the different methods are close and a much larger 

dataset would be required to detect statistical significance in error rates 

between the models. This study did not include the SVM method and the 

decision tree which was included was a hierarchical mixture with logistic 

regression, thus the two alternatives to logistic regression that have been 

applied in the setting of interest of this thesis were not included. Another 

limitation was AUROC was not reported, this is due to the different context, with 

incorrectly saying a patient will not have the event resulting in death meaning 

error rates were used. 

Lehmann et al. evaluated numerous methods for discriminating between 

patients with Alzheimer's disease and healthy controls (126). They found that 

the more computationally intensive techniques, such as SVM and random 

forests, only performed a little better than traditional methods, like logistic 

regression. However this finding may be due to the small dataset used in this 

study (n=242). 

Maroco et al. tested the performance of methods in discriminating mild cognitive 

impairment from Dementia in patients with a previous diagnosis of mild 

cognitive impairment (127). They found that SVM yielded the best AUROC yet it 

produced poor sensitivity. They also found the AUROC produced under logistic 



 

72 
 

regression and random forests were significantly better than the basic decision 

tree method. This study did not consider weighting the cases in order to try to 

improve the sensitivity of the SVM. Additionally they did not consider the 

extensions of bagging or boosting the decision tree method. Although the fact 

they showed another extension of the method, random forest, outperforming the 

basic technique; advocates extensions of the decision tree method being 

included in the comparison in this chapter.  

Finally Tapak et al. carried out an empirical comparison of methods in 

discriminating diabetes status in Iranian participants (128). SVM performed 

extremely well in terms of AUROC and well in terms of sensitivity. Other 

methods, including logistic regression and random forest, resulted in poor 

sensitivity. Weighting of cases, which may have improved sensitivities, was not 

attempted in this study. Another limitation of this study is it did not include the 

decision tree method, despite the method having been used to develop several 

RATs for the outcome of interest and extensions of this method having 

performed well in discriminating other types of binary datasets (124). 
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Table 4.1 Summary of studies with empirical comparison of methods for discriminating binary outcome using medical dataset 

Paper (first author and 
reference) 

Dataset  Methods compared Summary of findings Limitations/weaknesses of study 

Caruana (124)  Two unspecified binary 
medical datasets were 
included amongst 11 
datasets from different 
settings. No further 
details about these 
datasets were given. 

SVMs, neural nets, 
logistic regression, naive 
Bayes, memory-based 
learning, random 
forests, decision trees 
(including bagged trees, 
boosted trees and 
boosted stumps)  
It also examined the 
effect of that calibrating 
the models via Platt 
Scaling and Isotonic 
Regression. 

Not one universally best 
method. Bagged trees 
and random forests 
performed well on one 
of the medical datasets. 
On the other, the best 
models were random 
forests, neural nets and 
logistic regression. The 
only models that never 
exhibit excellent 
performance on any 
problem are naive 
Bayes and memory-
based learning. 

The 2 medical datasets are for unspecified 
diseases.  
Only internal validation carried out. AUROC, 
the preferred measure in medical field, is not 
detailed. 

Cooper (125) Mortality of 14,199 
hospital patients 
presenting with 
pneumonia based on 
findings at initial 
presentation. Methods 
were trained on 70% of 
dataset and tested on 
other 30%. 

Neural network, rule-
based model, 
hierarchical mixtures of 
experts (using decision 
tree structure), simple 
Bayesian model, 
Bayesian networks, 
logistic regression and 
K-nearest neighbour 
method. 

‘Most of the models 
error rates are 
sufficiently close such 
that a very large test 
database would be 
needed to reliably 
establish whether the 
rates differ statistically.’ 

Not for the outcome of interest. 
Due to context error rates were used rather 
than AUROC. 
SVM not considered.  
Decision tree not considered in standard form 
and extensions such as bagging, boosting 
and random forest were not considered. 

Lehmann (126) 242 individuals from New 
York and Stockholm (116 
patients with mild AD and 
81 patients with 
moderate AD and 45 
healthy age-matched 
controls). Two sets of 

Linear discriminant 
analysis (principal 
competent and partial 
least squares, logistic 
regression (principal 
competent and partial 
least squares), bagged 

10-fold cross-validation 
showed that modern 
computer-intensive 
methods (such as 
random forests, SVM 
and neural networks) 
performed only slightly 

Small dataset.  
Not for the outcome of interest. 
Internal validation only. 
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models were built, one 
aiming to discriminate 
between mild AD patients 
and healthy controls, the 
other set of models trying 
to discriminate between 
moderate AD patients 
and healthy controls.   

decision tree, random 
forest, SVM and neural 
networks. 

better than the 
traditional methods.  

Maroco (127) Cohort study of 400 
patients with initial 
diagnoses of mild 
cognitive impairment that 
were classified at follow-
up as having either mild 
cognitive impairment or 
Dementia. 

Linear discriminant 
analysis, Quadratic 
discriminant analysis, 
logistic regression, 
neural networks, SVM, 
decision trees and 
random forests.  

Although SVM had the 
highest AUROC, it had 
the lowest sensitivity. 
Random forests and 
linear discriminant 
analysis were the best 
classifiers ‘when taking 
into account sensitivity, 
specificity and overall 
classification.’ 

Not for the outcome of interest. 
Internal validation only. 
No weighting to attempt to address for poor 
sensitivity. 
Extensions of boosting and bagging decision 
trees not included. 

Tapak (128) 6,500 Iranian subjects 
had diabetes status 
classified by fasting 
blood glucose. 

Logistic regression, 
linear discriminant 
analysis, neural 
networks, SVM, fuzzy c-
mean and random 
forests. 

SVM has the best 
performance, 
performing very well for 
the AUROC and well for 
the sensitivity.  
The AUROCs for the 
other classifiers are 
good however the 
sensitivities, which are 
of great importance, are 
poor. 

Internal validation only. 
No weighting to attempt to address poor 
sensitivity of methods was attempted.  
Extensions of boosting and bagging decision 
trees not included. 
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4.2.2 Datasets and methods compared 

There are several novel methods which are not being included in the 

comparison in this chapter, such as neural nets or naive Bayes. The reason for 

this is that these methods are rarely employed by those in the medical field, as 

shown by the systematic reviews (55,57,59,99). Including fewer methods allows 

their extensions to be considered and thus an in-depth comparison of methods 

which those in this field are familiar with and most likely to use in the future to 

be carried out.  

This chapter compares logistic regression, decision tree (including the 

extensions of bagged, boosted and random forest) and SVM (with both linear 

and radial kernels). The datasets used to evaluate these methods were 

summarised in Chapter 2. The ADDITION-Leicester dataset restricted to the 40-

75 year olds was used to develop the RATs; while the Screening Those at Risk 

(STAR) dataset restricted to the 40-75 year olds was used to assess the 

external validity of the RATs. ADDITION-Leicester contains 6,390 individuals 

within this age range, while STAR contains 3,173 individuals within this age 

range. The outcome for this empirical comparison of methods was impaired 

glucose regulation (IGR) or undiagnosed T2DM.  

As there is the issue of missing data in ADDITION-Leicester, this was dealt with 

using the recommended method of multiple imputation, which is detailed in 

section 4.3 (129). Additionally, as a sensitivity analysis the methods were 

applied using cases with complete data for the outcome and the seven 

predictors included in the Leicester Self-Assessment (LSA) score. Each method 

is firstly outlined and then results are presented for the outcome of IGR or 

undiagnosed T2DM. After each method has been employed to develop a RAT a 

discussion of the advantages and disadvantages of all methods both statistically 

and practically is given and the preferred method decided upon. This work 

informs the method chosen to develop the RAT with NDH or undiagnosed 

T2DM defined by glycated haemoglobin A1c (HbA1c) as the outcome in 

Chapter 6. 
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4.3  Multiple imputation of missing data 

4.3.1 Concept 

As shown in Table 4.2, the data being used for this empirical comparison has 

the issue of missing values. Only 67.5% of individuals have complete data on all 

candidate variables as well as the outcome variable. Carrying out the analysis 

using individuals with complete data on all candidate variables and the outcome 

variable would lead to losing around a third of the dataset and thus an 

undesirable reduction in statistical power (130). Furthermore, as many authors 

have pointed out a complete-case analysis often leads to biased results 

(70,131-135). Imputation methods use the observed values to estimate the 

missing values leading to reduced loss of information and if carried out carefully 

a reduction in the bias caused by the unobserved data (136). The most robust 

of the imputation methods is multiple imputation, which assigns several values 

for each missing value resulting in several copies of the dataset (130,137). 

These imputed values are based on the observed values of the other variables 

for that case and use a model based on the observed relationship between the 

variables across the whole dataset. Of course there is uncertainty in the 

relationship between the variables and this is well reflected by the variation in 

the numerous imputations for one missing value. The various versions of the 

dataset can then be analysed using complete-case methods with the results 

being combined by Rubin’s rules (138). Multiple imputation assumes that data 

that is missing is missing at random (MAR), this means that the unobserved 

data is missing only due to the observed values.  
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Table 4.2 Summary Statistics of outcome and candidate variables in 
ADDITION-Leicester dataset   

Variable Observed 
data only 
summary 

Observed and 
imputed data 
summary 

Number of Missing 
values (% in 
brackets) 

IGR or undiagnosed T2DM 
(%) 

19.6 19.6 30 (0.47) 

Age, years 57.3 (9.60) 57.3 (9.60) 1 (0.0) 
Sex, Male (%) 47.7 47.7 0 (0) 
Ethnicity, White European 
(%) 

75.8 75.4 103 (1.6) 

BMI (kg/m2) 28.1 (4.99) 28.2 (4.99) 221 (3.5) 
Waist (cm) 94.2 (13.1) 94.2 (13.0) 225 (3.5) 
Current smoker (%) 14.5 14.4 237 (3.7) 
Used high blood pressure 
drugs (%) 

23.4 24.8 1,232 (19.3) 

Previous high blood glucose 
(%)  

10.5 11.1 1,101 (17.2) 

Previous stroke (%) 2.1 3.2 1,646 (25.8) 
History of high cholesterol 
(%) 

17.4 19.1 1,530 (23.9) 

History of high blood 
pressure (%) 

27.8 29.3 1,438 (22.5) 

History of Angina (%) 4.8 6.5 1,657 (25.9) 
1st Degree Relative with 
diabetes (%) 

25.2 26.6 1,204 (18.8) 

Females with history of 
gestational diabetes (%) 

1.3 1.3 0 (0) 

Females with PCOS (%) 0.5 0.5 0 (0) 
On steroids (%) 5.1 5.1 0 (0) 

Values are mean (sd), unless stated 
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4.3.2 Potential pitfalls 

One potential hazard of using multiple imputation is that data may be missing 

not at random rather than under the missing at random assumption (136); that 

is to say the reason it is missing is to do with its value, for example people with 

higher wages may not wish to give the value of their wage on a questionnaire. 

To deal with the issue that imputing some of the variables could lead to bias 

results, a sensitivity analysis was carried out using only the data with complete 

values for the outcome variable and the seven variables included in the LSA 

score, as stated in section 4.2.2. This will provide another comparison of the 

methods and if the results of this comparison differ greatly it will be attempted to 

understand why, a recommended precautionary checking process (136).  

Another issue which needs careful consideration is which of the variables may 

explain the missing value, if variables predict either the value of a missing 

variable or the chance its missing it should be included in the model for its 

imputation even if it will not be in the subsequent analysis (139). In the multiple 

imputation here the systolic and diastolic blood pressure, which are not 

candidate variables for the RATs being built as they are not routinely known by 

members of the public and thus cannot be included in a self-assessment RAT, 

were included in the imputation of variables such as ‘used high blood pressure 

drugs’. The outcome variable will also be used in imputing missing values as 

not using it wrongly reduces the association between the variables and the 

outcome (140).       

4.3.3 Details of multiple imputation carried out 

In the dataset used here there are several variables with missing values, 

multivariate normal imputation and fully conditional specification (FCS) are two 

methods which are available in several statistics programmes to deal with a 

complex missing pattern such as this (141). FCS was used for the multiple 

imputation in this chapter, as there are lots of binary variables and this method 

allows them to be imputed under a logistic regression model rather than under 

the assumption of normality that would clearly be inappropriate (142,143). It 

also allows imputation under linear regression for variables with missing values 

which are continuous.  
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FCS, firstly gives all missing values a temporary value by randomly sampling 

with replacement from the observed values for that variable (141). It then 

replaces missing values for the first variable by sampling them from its 

conditional distribution, which is based on the relationship of the first variable 

with all the other variables included in its imputation model (144). This is 

repeated for all the other variables with missing values and once completed is 

called a cycle, after several cycles, say 10, the results are stable and a single 

imputation of the dataset has taken place. This procedure is repeated n times to 

give n imputed data sets. The FCS used here gave each variable with missing 

values a conditional distribution based on all the candidate variables, the 

outcome variable and the blood pressure measurements discussed above. 

As there is a high percentage of incomplete data, simulation studies suggest 

between 20 and 40 imputations may be needed; 20 imputations were used here 

due to computation issues with the subsequent analyses with higher numbers of 

imputations (145).  As non-normality of variables has been shown to adversely 

affect FCS imputations, continuous variables which did not follow a normal 

distribution were transformed before imputation and then transformed back 

along with the imputed values to their original scale afterwards (141). This 

imputation was carried out in Stata 13 (146) using the ice program (147).  

The variables prescribed high blood pressure drugs and history of high blood 

pressure were combined into one hypertension variable after imputation, with a 

positive response for either variable being classified as hypertension. The 

STAR dataset has much lower levels of missing data, with 3,105 (97.9%) of 

individuals aged 40- 75 years old having values for all 15 candidate variables. 

Since using multiple imputation on the external validation assumes the 

assumptions made in using multiple imputation were correct, the external 

validation was carried out on complete-case data.  
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4.4 Comparison of methods  

The methods are compared both in terms of both their statistical performance 

and in terms of the merits of implementing them in practice. The models’ 

discrimination were measured using the AUROC, while the calibration was 

measured using the Brier score. It should be noted that the Brier score 

measures overall fit of a model, of which calibration is a component rather than 

being a measure of calibration alone. The calculations of these statistics are 

detailed in Chapter 2. The AUROC is a commonly used measure of 

discrimination in medical statistics (124). It is reported as a value between 0 and 

1 or 0% and 100% and gives the probability that a randomly chosen case will 

have a higher value than a randomly chosen non-case. The 95% confidence 

intervals (CIs) are displayed for AUROCs calculated. The Brier score is a value 

between 0 and 1, the closer the value is to 0 the better the calibration of the 

model. Models’ discrimination and calibration were calculated for both the 

internal and external data as this allowed an assessment of the external validity 

which is the gold standard for prediction models (40). 10x10% cross-validation 

was used to assess the internal performance of the RATs developed; except for 

the RATs developed using logistic regression which were assessed using 10-

fold cross-validation as their development involved human input and thus the 

repetition was unfeasible (131).     

The practical comparison of methods includes the setting in which the RAT 

could be used in practice, for example an app may be required. It also 

considers whether individuals will be educated about risk factors by completing 

the RAT or whether it is a ‘black hole’ which just tells them their risk status but 

not the reasons for this status.      
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4.5 Logistic regression 

4.5.1 Method 

Logistic regression is the most commonly used method for developing cross-

sectional RATs with a binary outcome in the medical field (54,55,57,59,99), this 

is the main reason for its inclusion in this empirical comparison. The logistic 

regression model uses the values of the ith individual’s explanatory variables 

(𝑥𝑖1, 𝑥𝑖2, ⋯ , 𝑥𝑖𝑗) along with the coefficients (𝛼, 𝛽1, 𝛽2,⋯ , 𝛽𝑗) of the model to yield 

the log-odds of the ith individual having the outcome of interest (41). While under 

this equation the log-odds can take any value on the number line; transforming 

this value using the logistic function gives the probability of the ith individual 

having the outcome of interest, 𝑝𝑖, as a value between 0 and 1. Equation (4.1) 

gives the equation for the log-odds, while equation (4.2) gives the probability of 

an individual being a case given the values of their independent variables.    

 log (
𝑝𝑖

1 − 𝑝𝑖
) =  𝛼 + 𝛽1 𝑋𝑖1 +  𝛽2 𝑋𝑖2  +  ⋯ + 𝛽𝑗 𝑋𝑖𝑗 

 

(4.1) 

 
E[𝑌𝑖| 𝑥𝑖1,  𝑥𝑖2, ⋯ ,  𝑥𝑖𝑗] = 𝑝𝑖 = 

𝑒
 𝛼 + 𝛽1 𝑥𝑖1+ 𝛽2 𝑥𝑖2 + ⋯ + 𝛽𝑗 𝑥𝑖𝑗

1+𝑒
 𝛼 + 𝛽1 𝑥𝑖1+ 𝛽2 𝑥𝑖2 + ⋯ + 𝛽𝑗 𝑥𝑖𝑗

 
(4.2) 
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The logistic regression models for this analysis were fitted in Stata 13 (146). 

The values of the coefficients in the logistic regression model are assigned 

using the maximum likelihood method (41), which selects the values of the 

coefficients that are most likely given the data observed. As (4.3) displays, the 

outcome for each individual follows a Bernoulli distribution with parameter, 𝑝𝑖; 

meaning, as (4.4) shows, the probability of the outcome for individual 𝑖 being a 

case is given by 𝑝𝑖 while the probability of the outcome being a non-case is 

given by 1 − 𝑝𝑖 . (4.5) shows the equation that calculates the likelihood of the 

parameters (𝛼, 𝛽1, 𝛽2,⋯ , 𝛽𝑗) given the observed data. As can be seen it does 

this by multiplying the probably that the observed outcomes of interest for each 

individual would have happened given the parameters being considered and the 

observed independent co-variables for each individual.  

 𝑦𝑖 | 𝑋𝑖1,  𝑋𝑖2, ⋯ ,  𝑋𝑖𝑗 ~ Bernoulli(𝑝𝑖) 

 

(4.3) 

 
(𝑌 = 𝑦𝑖 | 𝑋𝑖1,  𝑋𝑖2,⋯ ,  𝑋𝑖𝑗)  =   {

𝑝𝑖                   for   𝑦𝑖 = 1 
1 − 𝑝𝑖            for   𝑦𝑖 = 0 

 

 

(4.4) 

 L(𝛼, 𝛽1, 𝛽2,⋯ , 𝛽𝑗) =  ∏ Pr𝑛
𝑖=1 (𝑌 = 𝑦𝑖|𝑋𝑖1,  𝑋𝑖2, ⋯ ,  𝑋𝑖𝑗)  

=  ∏ 𝑝𝑖
𝑦𝑖  (1 − 𝑝𝑖)

(1−𝑦𝑖)𝑛
𝑖=1  

(4.5) 

 

Stata 13 uses an algorithm to iteratively search for the most likely values of the 

parameters given the data, i.e. the values that maximise the likelihood function. 

The algorithm used in this analysis to fit the models is the Newton-Raphson 

method (148). Newton-Raphson begins with initial values for the parameters; it 

then adjusts these values to increase the likelihood at every iteration, stopping 

once the improvements in the likelihood are marginal. 
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Stata 13 uses the Wald’s test to work out the p-values of the variables included 

in logistic regression models. Under the null hypothesis, that 𝛽𝑗 = 0, the Wald’s 

test statistic, 𝑊𝑗 , is the square of the ratio of the coefficient for that parameter 

over the standard error for that parameter, as shown in (4.6). Under this null 

hypothesis, the test statistic,𝑊𝑗, follows a Chi-squared distribution with one 

degree of freedom (149). This allows a p-value to be calculated for each 

variable in a model.       

 
𝑊𝑗 =  (

𝛽𝑗

𝑆𝐸𝛽𝑗
)

2

 
(4.6) 

 

The variables to include in the logistic regression model selected here were 

initially chosen using backward elimination, the commonly favoured stepwise 

approach (131,132,150). Backward elimination starts with the full model, a 

model which contains all the candidate variables, it then removes the variable 

with the highest p-value and refits the model with all variables but this one. This 

process is repeated until all variables that are left in the model have a p-value 

lower than a pre-specified value, in this case 0.05.  

Collins et al. points out that models being developed for use in clinical practice 

should not rely exclusively on statistical significance of variables considered 

(57). They advise that it may be sensible to keep variables known to be 

important risk predictors in the model even if they are not statistically significant 

for this particular dataset. Another important issue to consider is that self-

assessment RATs used in clinical practice provide an educational message to 

those completing them about the relationship between the risk factors and the 

outcome. For this reason it may be wise to remove a significant variable from 

the model if its coefficient implies a relationship between the variable and the 

outcome which is not consistent with the known relationship or is contrary to 

general public health advice about that variable, for example if the model 

implies smoking is beneficial for the health outcome. Likewise a modifiable 

variable may be included which is not significant in order to educate those 

completing the RAT of the lifestyle changes they can make to reduce the risk of 
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the outcome, the Finnish Diabetes Risk Score (FINDRISC) included variables 

related to exercise and diet for this purpose (42).  

For the reasons outlined in the previous paragraph, after backward elimination 

had been carried out it was considered whether any adjustments to the model 

should be made to take into account the health message and previous evidence 

as is recommended. Then interactions of the variables included as well as 

quadratic terms for the continuous variables were considered for inclusion as 

the relationship between a risk factor and the outcome may be more complex 

than a linear one. Due to the large number of interactions that likely would be 

tested, the interactions and quadratic terms were added to the linear terms if 

their p-value was lower than 0.01 and 0.05 respectively. This was done using a 

forward stepwise procedure, starting with the model with linear terms only. The 

RAT was yielded from this model by taking the expected value of 𝑦𝑖 for an 

individual, given by (4.2), as their risk score.  

As discussed in Chapter 1 the logistic regression can be used to create a 

simple RAT which an individual can use to calculate a score for their risk of the 

outcome using only pen and paper. This requires the continuous variables to be 

grouped and the coefficients of variables for groups to be rounded. Such a RAT 

was developed using the same variables as selected for the RAT suitable for an 

electronic platform, however no interaction or quadratic terms were added. This 

RAT allocated a score to an individual by giving them a score for each category 

they fall into, which was the coefficient for that category multiplied by 10 and 

rounded to the nearest whole number. The two RATs are later compared to the 

RATs produced by other methods with a discussion which takes into account 

both the performance and ways in which they can be implemented in practice.   

In summary there are four stages to building the two RATs, with potentially a 

different model for each stage as follows: 

1. Backward elimination starting with the full model of all candidate 

variables, using a significance level of p<0.05 for inclusion. 

2. Model was then adjusted to take into account the health message of the 

model as well as previous evidence, as necessary.  
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3. Model which considers quadratic terms for continuous variables as well 

as interactions of all variables in the model at stage 2 was built. Adding 

these by forward selection starting with model built at stage 2, with 

statistical significance being p<0.01 for the interactions and p<0.05 for 

the quadratic terms. The model at this stage had an associated RAT 

calculated using equation (4.2) to work out the expected probability that 

an individual has the outcome given their independent variables. This 

RAT is appropriate for an electronic platform. 

4. Model with categories for continuous variables, this model includes the 

same variables as model 2 and does not consider interactions or 

quadratic terms. For this model an associated RAT was calculated, this 

being the sum of the scores for all categories an individual falls into. The 

score for each category was the coefficient for that category multiplied by 

10 and rounded to the nearest whole number.   

4.5.2 Results 

Performing stepwise backward elimination on the 15 candidate variables listed 

in section 4.3 results in the logistic regression model detailed in Table 4.3. This 

automatic approach yields seven variables, most of which have a relationship 

with the outcome which is the same as reported in the literature for T2DM and 

for other health outcomes. However being a current smoker decreases the risk 

of the outcome, this effect of smoking is not expected and with this being a RAT 

for self-assessment the impact of removing this variable on the statistical 

performance should be tested. Therefore a second logistic regression model 

was fitted with the smoking variable removed; this model also included body 

mass index (BMI) as this was only just not included in the automatically 

selected model and thus it may improve discrimination as well as giving an 

important health message. This logistic regression model is displayed in Table 

4.4.  
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Table 4.3 Logistic regression model selected by automatic backwards 
elimination 

Variable Coefficient 95% CI P Value 

Age (years)  0.0439 0.036, 0.052 <0.001 

Current smoker No Reference group   

Yes -0.256 -0.47, -0.044 0.018 

Ethnicity White Reference group   

Other 0.653 0.49, 0.82 <0.001 

History of high blood 

glucose 

No Reference group   

Yes 0.453 0.23, 0.67 <0.001 

Hypertension No Reference group   

Yes 0.333 0.17, 0.50 <0.001 

First degree family 

history of T2DM 

No Reference group   

Yes 0.502 0.33, 0.67 <0.001 

Waist circumference 

(cm) 

 0.0322 0.027, 0.038 <0.001 

 

Table 4.4 Logistic regression selected considering the health messages and 

previous evidence  

Variable Coefficient 95% CI P Value 

Age (years)  0.0459 0.038, 0.054 <0.001 

BMI (kg/m2)  0.0231 0.0027, 0.044 0.027 

Ethnicity White Reference group   

 Other 0.677 0.51, 0.84 <0.001 

First degree family 

history of T2DM 

No Reference group   

Yes 0.493 0.32, 0.67 <0.001 

History of high blood 

glucose 

No Reference group   

Yes 0.439 0.22, 0.66 <0.001 

Hypertension  No Reference group   

 Yes 0.331 0.17, 0.50 <0.001 

Waist circumference 

(cm) 

 0.0251 0.017, 0.033 <0.001 

 

Interactions and quadratic terms of the variables included in the logistic 

regression model displayed in Table 4.4 were considered. However, no 

interactions or quadratic terms were found to be significant at the previously 

stated levels; hence the first RAT, the one appropriate for an electronic 
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platform, was based on the model displayed in Table 4.4. The associated risk 

score being the expected outcome given the known risk factors (variables); this 

is yielded using the coefficients from the equation given in (4.2). The resulting 

equation for the RAT is displayed in (4.7); this RAT clearly would require the aid 

of an electronic device to be completed by members of the public or in a 

healthcare setting.   

 

𝑙𝑜𝑔𝑖𝑡−1

(

 
 
 
 
 
 

−7.68   
+  (0.0459 × 𝑎𝑔𝑒)

+(0.0231 × 𝑏𝑚𝑖)

+0.677 (𝑖𝑓 𝑒𝑡ℎ𝑛𝑖𝑐𝑖𝑡𝑦 𝑖𝑠 𝑛𝑜𝑡 𝑤ℎ𝑖𝑡𝑒 𝑒𝑢𝑟𝑜𝑝𝑒𝑎𝑛)

+ 0.493 (𝑖𝑓 1𝑠𝑡 𝑑𝑒𝑔𝑟𝑒𝑒 𝑓𝑎𝑚𝑖𝑙𝑦 ℎ𝑖𝑠𝑡𝑜𝑟𝑦)

+ 0.439 (𝑖𝑓 ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑜𝑓 ℎ𝑖𝑔ℎ 𝑏𝑙𝑜𝑜𝑑 𝑔𝑙𝑢𝑐𝑜𝑠𝑒)

+ 0.331 (𝑖𝑓 ℎ𝑦𝑝𝑒𝑟𝑡𝑒𝑛𝑠𝑖𝑜𝑛) +
(0.0251 × 𝑤𝑎𝑖𝑠𝑡) )

 
 
 
 
 
 

         

 

(4.7) 

Grouping the continuous variables included in the second model detailed in 

Table 4.4 and using these variables along with the others included in that model 

allows a RAT which can be completed by hand to be produced. This is done as 

described in section 4.5.1; the score for being in each category of the variables 

is shown in Table 4.5 along with the logistic regression model from which it is 

derived. An individual’s risk score is calculated by adding the score for each 

category they are in.  
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Table 4.5 Logistic regression model and scoring system for risk assessment 
tool with grouped continuous variables  

Variable Grouping Coefficient 95% CI P Value Scoring 

Age (years) 40-49 Reference 

group 

  0 

 50-59 0.440 0.25, 0.63 <0.001 4 

 60-69 0.861 0.66, 1.06 <0.001 9 

 70+ 1.16 0.93, 1.40 <0.001 12 

History of high blood 

glucose 

No Reference 

group 

  0 

Yes 0.437 0.22, 0.66 <0.001 4 

Ethnicity White Reference 

group 

  0 

Other 0.631 0.47, 0.79 <0.001 6 

First degree family 

history of T2DM 

No Reference 

group 

  0 

 Yes 0.475 0.30, 0.65 <0.001 5 

Waist circumference 

(cm) 

<90 Reference 

group 

  0 

 90-99 0.500 0.29, 0.71 <0.001 5 

 100-109 0.641 0.39, 0.90 <0.001 6 

 >109 0.956 0.65, 0.79 <0.001 10 

BMI (kg/m2) <25 Reference 

group 

  0 

 25-29 0.137 -0.078, 0.35 0.212 1 

 30-34 0.247 -0.017, 0.51 0.066 2 

 ≥35 0.458 0.127, 0.788 0.007 5 

Hypertension No Reference 

group 

  0 

Yes 0.361 0.20, 0.53 <0.001 4 
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As can be seen in Table 4.6, the AUROCs of both the logistic regression RATs 

built in this section were good, in both the internal and external datasets. The 

Brier scores were almost identical for the internal and external dataset, whereas 

the AUROC increased slightly in the external dataset for the tool appropriate for 

an electronic platform and decreased a little for the tool with grouped 

continuous variables.  

Table 4.6 Discrimination and calibration of logistic regression risk assessment 
tools  

Risk assessment 

tool 

Internal cross-

validated 

AUROC 

(95% CI)  

External 

AUROC 

(95% CI) 

Internal cross-

validated Brier 

score  

(Outcome index 

variance) 

External Brier 

score 

(Outcome index 

variance) 

Appropriate for 

electronic platform  

0.701  

(0.655, 0.748) 

0.714 

(0.692, 0.736) 

0.145  

(0.158) 

0.144 

(0.158) 

Continuous 

variables grouped 

0.723  

(0.685, 0.762) 

0.702 

(0.680, 0.724) 

0.143  

(0.158) 

0.145 

(0.158) 
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4.6 Decision Tree 

Several cross-sectional RATs in the area of diabetes with a binary outcome 

have used the decision tree method to develop the RAT (55,57,59,99). Those 

RATs developed for use in clinical practice tend to use only the basic version of 

the decision tree method; yet extensions of the method such as boosting, 

bagging or random forests have produced promising results in other empirical 

comparisons and are therefore considered here (61,124). Firstly, the basic 

decision tree method are outlined and the results using the simple version of 

this technique given before extensions of the method are introduced in turn 

along with their results.   

4.6.1 Basic method  

4.6.1.1 Concept of decision tree method 
The fictional example for the outcome of whether an individual is currently 

employed or not in Figure 4.1 is used to explain the concept of the decision tree 

method. Decision trees start with all the individuals with outcomes that are to be 

predicted in one big group and then sorts them into several groups using 

successions of splitting criteria based on the explanatory variables. The 

decision tree in Figure 4.1, starts with all the individuals in one group on the left 

side; the 100% indicating that all the data is in this group, the two decimal 

numbers, 0.299 and 0.601, specifying the fraction of that group which have an 

outcome of 0 (not currently employed) and 1 (currently employed) in the training 

data respectively. As can be seen in Figure 4.1 discrete explanatory variables, 

such as whether an individual is in full time education, can be used to separate 

the data; as can continuous variables, such as age, however continuous data 

require a single cut point to be chosen to split the data into two new groups. As 

can also be seen in the figure, once data have been split into different groups, 

these new groups can be split using different splitting criteria to one another. 

Also, note explanatory variables may be used in more than one splitting criteria 

in a decision tree, such as age is in the example in Figure 4.1.  

In the cases where the data has a binary outcome, such as in this chapter, each 

group is assigned an outcome based on the proportion of the two outcomes 

observed in that group from the training data; in Figure 4.1, this assigned 

outcome for each group can be seen at the top of its box, being either 0 or 1. In 
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unweighted decision trees the outcome assigned to a group is just the majority 

outcome observed in that group for the training data; this is the case in the 

example in Figure 4.1. Predicting the outcome of an individual using a decision 

tree just requires the following of the ‘branches’ with the splitting criteria which 

match that individual’s data until an end group is reached, one which is not split 

further, the individual is then predicted to have the outcome which has been 

assigned to this group. For example, using the decision tree in Figure 4.1 to 

predict whether a 20 year old who is not in full-time education is currently 

employed would lead to the prediction that they are currently employed. This is 

because being less than 21 years old they would follow the lower branch into 

the group with 20.8% of the data. From there they would again follow the lower 

branch, as they are not in full time education, leading them to be in the group 

with 7.8% of the data. As this group is not split any further the individual is 

predicted the outcome this group is labelled with, in this case 1 (or currently 

employed).  

 

Figure 4.1 Fictional example of a decision tree for whether an individual is 
currently in employment 

 

 

1

0.299  0.601

100%

1

0.197 0.803

79.2%

0

0.583 0.417

15.6%

1

0.102  0.898

63.6%

0

0.688 0.312

20.8%

0

0.900  0.100

13%

1

0.333  0.667

7.8%

Age>21 

Age≤21 

Age≤62 

Age>62 

In full time 

education 

Not In full time 

education 
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4.6.1.2 Details of method 
Now the concept of this method has been outlined in the previous section, the 

method is described here in greater detail and using the recognised terms. 

Decision trees start with all individuals grouped together in the root node, at this 

point the only information known about an individual is that they are part of the 

dataset and therefore the chance they have the outcome of interest is the 

prevalence of that outcome in the dataset. The decision tree then separates the 

individuals into two subgroups, choosing the explanatory variable and cut-point 

that ‘best’ separates individuals into those with a high chance of having the 

outcome and those with a high chance of not having the outcome (60). This 

process of splitting the individuals is then repeated for the subgroup which 

results in the ‘best’ separation of the data, again considering all possible cut-

points of all explanatory variables. This process of splitting the data is repeated 

until the discriminative benefit of adding more splits is smaller than the penalty 

chosen for making the tree more complex. Nodes are labelled as cases or non-

cases depending on what results in the lowest amount of misclassification of 

outcomes from the training data in that node, when cases are unweighted this is 

simply the majority outcome in that node of the training data. The nodes at the 

end of the decision tree, known as the terminal nodes or leaf nodes, are used to 

predict the outcome of individuals based on their explanatory variables.  

Most methods for choosing the best splits and when to stop splitting the tree are 

based on the impurity of the nodes. Impurity is a measure of how skewed the 

distribution of the outcome classes are in a node, lower impurity means a higher 

fraction of the outcome are from a single class and higher impurity means there 

are more even levels of the two classes of outcome (151). The basic decision 

trees in this thesis have been built in the statistical programme R using the rpart 

package (152), with the Gini index being used to measure impurity. The Gini 

impurity of a node gives the probability of wrongly guessing a randomly chosen 

outcome by randomly assigning a class to it based upon the fractions of the 

classes observed in that node (151). As can be seen in (4.8) the impurity for the 

node 𝑖, 𝐷𝑖 , is calculated by summing the squared proportion of cases and the 

squared proportion of non-cases and subtracting this from one. Note that when 
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all individual in a node belong to the same class 𝐷𝑖 = 0, this node is perfectly 

classified.  

The impurity of a decision tree is the probability of wrongly guessing a randomly 

chosen outcome by randomly assigning a class to it based upon the fractions of 

the classes observed in the terminal node it belongs to. This means any 

proposed decision tree’s impurity can be calculated by taking a weighted 

average of the impurities of its terminal nodes, the weighting , 𝑓𝑖, for each node 

being the fraction of the data in that node. The rpart function chooses the split at 

each step which reduces the impurity of the weighted terminal nodes the most. 

The cost-complexity criterion is used to decide what size tree should be 

selected; it balances the reduction in impurity of a larger decision tree with 

simplicity of a smaller decision tree. The cost-complexity, 𝐶𝐶(𝑇), is calculated 

for the decision trees considered using equation (4.9), where 𝑇 is the number of 

splits in the tree being considered and λ is the penalty term for having a more 

complex tree.   

 𝐷𝑖 = 1 − ∑𝑝𝑖𝑘
2

𝑘

 (4.8) 

 𝐶𝐶(𝑇) = ∑ 𝑓𝑖𝐷𝑖
𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙
 𝑛𝑜𝑑𝑒𝑠

 +  λ |𝑇| (4.9) 

The rpart function continues to add the ‘best’ split at each iteration while 𝐶𝐶(𝑇) 

is reduced, stopping once 𝐶𝐶(𝑇) can no longer be decreased by doing so. 

Selecting the penalty term for complexity is difficult; choosing a value too small 

will result in overfitting of the decision tree, while picking a value which is too 

high will result in a model that does not fit the data very well. An advocated 

technique to decide a suitable size for the tree to be grown is cross-validation 

(153). Cross-validation splits the dataset into 𝑘 subgroups; it builds 𝑘 fully grown 

decision trees, each time using all the dataset apart from one of the subgroups. 

The misclassification error of the unused subgroup is calculated for every size 

of tree in each of the decision trees built, the size of tree that has the lowest 

misclassification error against all the validation subgroups is chosen as the 

optimal size to prune the decision tree to. A decision tree is then built on the 

whole dataset using the pruning parameters found by cross-validation. The 
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basic decision trees assessed here used a 10-fold cross-validation to choose 

the parameter that determines the size of the decision tree that was built.     

Finally, several values were considered for weighting the importance of 

misclassifying a case compared to non-case, this was done for two reasons. 

Firstly, the prevalence of the outcome being 19.6% means a decision tree 

without weighting will have a very high specificity however this will likely be at 

the expense of having a very low sensitivity. Secondly, in this context, as is the 

case for many medical applications, a false negative is a worse error than a 

false positive (108). Especially since this is the first step in the screening 

process, meaning a false negative wrongly reassures individuals whereas a 

false positive is likely to be found to be incorrect at the next stage of the 

process. The extension of the impurity function displayed in (4.8) to include 

costs which account for whether a case or non-case has been misclassified is 

detailed elsewhere (154).  

A paper included in the systematic review in the previous chapter which used 

weights in developing its RATs highlighted that there are not any clear 

guidelines about what weighting to use (108). The dataset in that paper had a 

similar prevalence of outcome to dataset used in this chapter. The previous 

paper opted to use a weighting of 8:1, and this yielded high sensitivities 

however specificities were low as a result. As it was unknown what weighting 

would lead to a satisfactory balance, a range of weightings were investigated. 

Weights of 1:1, 2.5:1, 5:1, 7.5:1 and 10:1 for the importance of misclassifying a 

case compared to non-case were assessed. This range goes from unweighting 

to slightly above the level used in the paper, as it has shown this is large 

enough to yield high levels of sensitivity. The minimum number of observations 

in a terminal node will be assessed for 1, 10 and 100 and the complexity 

parameter evaluated at 0.1, 0.01 and 0.001. Only the results with complexity 

parameter set to 0.01 and 10 as the minimum number of observations in a 

terminal node are displayed in this chapter.  

 

   



 

95 
 

4.6.1.3 Basic method results 
Table 4.7 shows the internal and external AUROCs of decision trees with a 

variety of weights; the decision trees with weightings of 2.5:1 and 5:1 gave the 

best discrimination, although these AUROCs were still low, indicating poor 

discrimination. The Brier scores increase with increased weighting for cases. 

Changing the weights of the decision trees greatly affected the sensitivity and 

specificity; with sensitivity being very low for the unweighted tree and very high 

for the tree with a weighting of 10:1, conversely the specificity was very high for 

the unweighted tree and very low for the tree with a weighting of 10:1. 

Table 4.7 Internal and external AUROCs and Brier scores of decision trees with 
various weighting for cases-to-non-cases  

Weighting of 

cases compared 

to non-cases 

Internal cross-

validated 

AUROC  

(95% CI) 

External 

AUROC 

(95% CI) 

Internal cross-

validated Brier 

score  

(outcome index 

variance) 

External Brier 

score 

(outcome 

index variance) 

1 :1 0.500  

(0.500, 0.500) 

0.500  

(0.500, 0.500) 

0.158  

(0.158) 

0.158 

(0.158) 

2.5 :1 0.630 

(0.570, 0.690) 

0.627 

(0.603, 0.652) 

0.182 

(0.158) 

0.187 

(0.158) 

5 :1 0.636 

(0.580, 0.692) 

0.637 

(0.613, 0.660) 

0.262 

(0.158) 

0.275 

(0.158) 

7.5 :1 0.592  

(0.555, 0.628) 

0.582 

(0.565, 0.600) 

0.341 

(0.158) 

0.346 

(0.158) 

10 :1 0.589 

(0.552, 0.626) 

0.584 

(0.567, 0.602) 

0.395 

(0.158) 

0.399 

(0.158) 

Decision trees with 10 cross-validations, 10 as the minimum number of observations in terminal 

node and complexity parameter=0.01 
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Table 4.8 shows the decision tree with a weight of 5:1 produced the most 

suitable balance of sensitivity and specificity for this context and thus this 

weighting will be used when building decision trees to assess extensions of the 

decision tree method. Similar results were produced under this method with the 

minimum number of observations in the terminal node set to 1 and 100. 

Decreasing the complexity parameter to 0.001 led to only a modest increase in 

AUROCs; with the greatest external AUROC being 0.66.    

Table 4.8 Internal and external sensitivity and specificity of decision trees with 
various weighting for cases-to-non-cases  

Weighting of 

cases compared 

to non-cases 

Internal cross-

validated 

sensitivity  

(95% CI) 

External 

sensitivity 

(95% CI) 

Internal cross-

validated 

specificity 

(95% CI) 

External 

specificity 

(95% CI) 

1 :1 0.0  

(0.0, 0.0) 

0.0  

(0.0, 0.0) 

100.0  

(100.0, 100.0) 

100.0  

(100.0, 100.0) 

2.5 :1 26.9 

(17.0, 36.7) 

28.2 

(24.8, 32.0) 

88.8 

(82.9, 94.8) 

87.3 

(86.0, 88.6) 

5 :1 68.4 

(53.5, 83.2) 

74.1 

(70.4, 77.4) 

54.8 

(39.5, 70.1) 

49.0 

(47.0, 50.9) 

7.5 :1 91.3 

(84.5, 98.0)  

88.7 

(85.9, 91.0) 

22.1 

(14.7, 29.4) 

25.8 

(24.1, 27.6) 

10 :1 94.1 

(89.1, 99.2) 

93.4 

(91.1, 95.2) 

17.2 

(10.5, 23.8) 

18.5 

(17.1, 20.1) 

Decision trees with 10 cross-validations and 10 as the minimum number of observations in 

terminal node and complexity parameter=0.01 
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Figure 4.2 displays that six terminal leaves were included in the decision tree 

with a weighting of 5:1, four variables were included with waist being used in the 

splitting criteria at two nodes. 

 

Figure 4.2 Decision Tree with case weights=5, cross-validations=10, minimum 
number of observations in terminal node=10 and complexity parameter=0.01 

4.6.2 Boosted decision tree 

Boosting is a method which aims to increase the accuracy of the decision tree 

method by iteratively building numerous trees with the weights for misclassified 

outcomes being increased, or boosted, after each tree is built (155). This means 

the later trees in the process place a greater emphasis on correctly predicting 

the outcomes which have most often been misclassified. Firstly, a fraction of the 

dataset is chosen without replacement to develop the first decision tree, at this 

point the usual weights are used as no outcomes have yet been misclassified. 

After the tree has been built the weights of the outcomes are adjusted, 

increasing the weights of outcomes that were misclassified and as a result 

decreasing the weights of those that were correctly classified. This process is 

then repeated with a new subsample chosen from the dataset being used to 

build a tree and the weights again being recalculated. After this process has 
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been repeated a number of times, say 1000, the probability an individual is a 

case can then be calculated, by averaging how often it was classified as a case. 

To avoid over-fitting the contribution of each tree to this average is reduced the 

further into the iterative process it was fitted, the parameter that controls this is 

known as the shrinkage of the learning rate (156).  

An initial weight of 5:1 was used for the misclassification of the cases compared 

to non-cases as this was found to yield a suitable balance between sensitivity 

and specificity in section 4.6.1.3. As Hastie et al. suggest limiting the trees to 

have between 4 and 8 terminal nodes leads to sensible results which are not 

over-fitted, therefore maximum depths of 2 and 3 were assessed here (157). 

Friedman proposes the fraction of the dataset used for each subsample should 

be between 0.5 and 0.8 for datasets of moderate size such as this one, as 

smaller values avoid over-fitting 0.5 was initially considered here with various 

values subsequently assessed (158). 

This work will be carried out using the package gbm in R (159). The shrinkage 

of the learning rate interacts with the number of trees used in determining the fit 

and thus whether over-fitting occurs (156). Therefore shrinkage will be 

assessed at a range of values at 0.01 and 0.0001 as well as its default, 0.001. 

10-fold cross-validation will be utilised to select an appropriate number of trees 

to use.  

4.6.2.1 Boosted method results 
Cross-validation for the number of trees to include recommended the maximum 

number of trees possible regardless of the initial number of trees included in the 

model, meaning it was not computationally viable to build a model with the 

number of iterations the cross-validation results suggested were necessary. 

Although, as can be seen from Table 4.9, while the discrimination of the method 

rose when increasing the number of trees from 500 to 1,000 and again when 

increasing the number of trees to 5,000; this pattern did not continue for the 

model with 10,000 trees. This suggests that the AUROC will remain at around 

0.70 even if the number of trees was increased further. The Brier scores display 

the same pattern. Similar results were also seen when the maximum depth was 
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set to 3, 0.75 was the fraction of the data used at each iteration or the shrinkage 

varied.   

Table 4.9 Internal and external AUROC and Brier scores for boosted decision 
trees with varying number of iterations  

Number of Trees Internal cross-

validated 

AUROC 

(95% CI)  

External 

AUROC 

(95% CI) 

Internal cross-

validated Brier 

score 

(Outcome 

index variance) 

External Brier 

score 

(Outcome 

index variance) 

500 0.659 

(0.633, 0.685) 

0.664 

(0.640, 0.687) 

0.271  

(0.158) 

0.274 

(0.158) 

1,000 0.670  

(0.644, 0.696) 

0.678 

(0.655, 0.701) 

0.265 

(0.158) 

0.269 

(0.158) 

5,000 0.700 

(0.674, 0.723) 

0.703 

(0.681, 0.725) 

0.247 

(0.158) 

0.254 

(0.158) 

10,000 0.703 

(0.677, 0.729) 

0.703 

(0.681, 0.725) 

0.243 

(0.158) 

0.250 

(0.158) 

Boosted decision trees with 5:1 case-to-control weighting, shrinkage=0.001, fraction=0.5, 

maximum depth=2, minimum number of observations in terminal node=10, cross-validations=10 
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4.6.3 Bagged decision tree 

Bagging builds a number of decision trees using several bootstrapped samples 

of the dataset (160). A bootstrapped sample is simply a random sample of the 

dataset with replacement. An individual’s outcome can then be predicted under 

all the trees; with the outcome which it is classified as most frequently using all 

the trees being its predicted outcome under the bagged decision tree.   

The ipred package in R was used to build the bagged decision trees considered 

in this section (161). 100 bootstrapped samples were used due to 

computational constraints, research showing in previous datasets that this has 

been ample to optimise the discrimination of this method (160). A sample size 

equal to the overall size of the dataset was used for each bootstrapped 

subsample, this results in roughly 63.2% of the dataset being included at least 

once (162). Various maximum depths of the trees (2, 5, 7 and 10) and 

complexity parameters (0.1, 0.01 and 0.001) were considered. The reason 

cross-validation was not carried out to choose these values as it is too 

computational intensive as the package has acknowledged (161). The minimum 

number of observations in a terminal node was assessed for 1, 10 and 100.   
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4.6.3.1 Bagged method results 
Table 4.10 shows that although the discrimination improved when the depth of 

trees was increased from two to five; the AUROCs, both the internal cross-

validated and external, were not increased further by allowing the maximum 

depth to increase to seven or ten, with the AUROCs being at 0.68 in both 

datasets. The same pattern was seen for the various complexity parameters, 

maximum depths and for various minimum sizes of terminal node. The Brier 

scores for the model with a maximum depth of two were slightly worse than the 

models with a maximum depth of five, seven and ten. 

Table 4.10 Internal and external AUROC and Brier scores for bagged decision 
trees with varying maximum depths  

Maximum depth 

of trees 

Internal cross-

validated 

AUROC 

(95% CI)  

External 

AUROC 

(95% CI) 

Internal cross-

validated Brier 

score 

(Outcome 

index variance) 

External Brier 

score 

(Outcome 

index variance) 

2 0.645 

(0.621, 0.677) 

0.659 

(0.635, 0.683) 

0.152 

(0.158) 

0.151 

(0.158) 

5 0.680 

(0.652, 0.707) 

0.682 

(0.659, 0.706) 

0.148 

(0.158) 

0.148 

(0.158) 

7 0.678 

(0.651, 0.706) 

0.681 

(0.658, 0.704) 

0.149 

(0.158) 

0.149 

(0.158) 

10 0.677 

(0.649, 0.704) 

0.680 

(0.657, 0.703) 

0.149 

(0.158) 

0.149 

(0.158) 

Bagged decision trees with 5:1 case-to-control weighting, complexity parameter=0.001, 

bootstrapped samples=100, minimum node size=10  
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4.6.4 Random forest 

Random forests like bagged decision trees use several bootstrapped samples 

of the dataset (163). The way random forests differ from bagged decision trees 

is they only consider a random subset of the explanatory variables to base each 

split on, this means there is more variation between trees (164). An individual’s 

outcome is predicted under each of the decision trees, with the outcome it is 

classified as most frequently using all the decision trees being its predicted 

outcome under the random forest.   

The randomForest package in R was used to build the random forests 

considered here (165). As with the bagged decision tree the size of the 

bootstrapped samples are chosen to be the same as the size of the dataset. 

The number of variables considered at each split was four, since there are 15 

candidate variables and its proposed that the square root of the candidate 

variables should be the number of variables considered at each split (165). No 

penalty parameter for increasing the number of splits in a tree is included in the 

randomForest package. The minimum size of terminal node was varied with the 

default 1 being assessed along with 10 and 100. The number of trees used was 

also varied, with 25,100 and 1000 being assessed along with the default, 500.   
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4.6.4.1 Random forest results 
As can be seen in Table 4.11 the random forests discriminate better in the 

external dataset compared to the internal dataset, the model with ten as the 

minimum size of terminal node gives the best AUROC in both the internal and 

external data. The Brier scores show the calibration became worse as the 

minimum size of the terminal node was increased. Similar results were seen 

with models with different numbers of trees.   

Table 4.11 Internal and external AUROCs and Brier scores for random forests 
with varying the minimum numbers of observations in a terminal node  

Minimum size of 

terminal node 

Internal cross-

validated  

AUROC 

(95% CI)  

External 

AUROC 

(95% CI) 

Internal cross-

validated Brier 

score 

External Brier 

score 

1 0.635 

(0.612, 0.658) 

0.655 

(0.631, 0.679) 

0.284 

(0.158) 

0.221 

(0.158) 

10 0.655 

(0.631, 0.678) 

0.680 

(0.656, 0.703) 

0.446 

(0.158) 

0.370 

(0.158) 

100 0.638 

(0.614, 0.661) 

0.678 

(0.655, 0.701) 

0.638 

(0.158) 

0.657 

(0.158) 

Random forests with 5:1 case-to-control weighting, four variables considered at each split, 

trees=500 

4.6.5 Summary of results 

The basic decision tree method gave poor discrimination in the internal data, 

with similar levels of discrimination in the external dataset showing the models 

built were stable. The extension of boosted decision trees gave good 

discrimination once a large enough number of trees were used, 5,000 was 

sufficient. However, the Brier scores indicated the calibration of this method was 

poor with 5:1 case-to-non-case weighting. Bagged decision trees resulted in 

reasonable discrimination and calibration when the maximum depth allowed 

was at least five. Random forests produced poor calibration and the 

discrimination in the internal data was worse than that seen for the boosted or 

bagged decision trees. Therefore, the results from the comparison using 

multiple imputed data in model developed support the use of the boosted and 

bagged decision tree method.   
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4.7 Support Vector Machine 

The systematic review in Chapter 3 found only one RAT which was developed 

using the SVM method (106). In the dataset used the SVM method provided 

comparable discrimination to the logistic regression method. In empirical 

comparisons of methods for discriminating binary outcomes in the medical field, 

discussed in section 4.2.1, the SVM has performed well with some particularly 

encouraging results in a couple of the studies (127,128). This section will firstly 

outline the concept of the SVM method, and then give a more detailed 

description of the linear and non-linear variations of the method that will be 

included in this comparison. Finally, the results of the two SVM models will be 

reported.  

  

4.7.1 Concept of SVM method 

A SVM aims to split the data into events and non-events using a 

multidimensional hyperplane based on the explanatory variables (106). A 

hyperplane is a subspace of one dimension less than the whole space being 

considered. For example, a line is a hyperplane of 2-dimensional space; and a 

2-dimesional plane is a hyperplane of 3-dimesional space. In the illustrative 

examples used to explain the concept of SVM models in this section, only two 

explanatory variables will be used to allow the SVM models to be depicted 

easily as they will only be in 2-dimesions.  
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Figure 4.3 and Figure 4.4 show an illustrative example of a linear SVM using 

just two explanatory variables, with the outcome classes colour coded in red 

and green. The model utilises the position of the explanatory variables in 

relation to one another and aims to find a hyperplane that separates the two 

classes. In this case as there are only two explanatory variables the hyperplane 

is a line, furthermore as the SVM is linear the hyperplane is a straight line. As 

can be seen in Figure 4.3 there are numerous such hyperplanes that split the 

data cleanly into the two outcome classes. When this is the situation the optimal 

hyperplane is the one that has the biggest distance, known as margin, between 

itself and the support vectors. The support vectors are the data points that are 

closest to the hyperplane when measuring the distance of the data points from 

the hyperplane. The hyperplane must be chosen such that there is at least one 

support vector from each of the two classes, meaning there is an equal margin 

on each side of the hyperplane. 

 

Figure 4.3 Possible hyperplanes of an illustrative example of linear SVM with 
hard margin using only 2 explanatory variables 
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Figure 4.4 shows the optimal hyperplane which in this example has been 

chosen based on the position of the five support vectors which lie at the edge of 

the margin, two green outcomes along one supporting hyperplane and three red 

outcomes along the other supporting hyperplane.  

 

Figure 4.4 Illustrative example of linear SVM with hard margin using only 2 
explanatory variables, with optimal hyperplane and support vectors shown 

The example displayed in the Figure 4.3 and Figure 4.4, uses a ‘hard margin’ 

meaning no vector can be on the wrong side of its supporting hyperplane; as 

can be seen in Figure 4.4 there are no vectors within the margin or amongst the 

opposite outcomes. However, as is often the situation in medical datasets, 

sometimes the two classes cannot be completely separated by a hyperplane 

meaning that a SVM with ‘hard margin’ cannot be built. In order to overcome 

this limitation the method has to be adapted slightly, this was achieved by the 

introduction of ‘soft margins’ (166). 
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As shown in Figure 4.5, SVMs with soft margins allow vectors to be on the other 

side of their supporting hyperplane. How many vectors are on the opposite side 

of their supporting hyperplanes depends on the amount of ‘slack’ that is allowed 

in the SVM. In the example depicted in Figure 4.5, the three vectors with non-

zero slack values are indicated by the bold lines, the slack in each case simply 

being the distance these vectors are from their supporting hyperplane. SVMs 

with a soft margin separate the rest of the vectors, those with zero slack, aiming 

to maximum the margin as before, however the possible hyperplanes are 

penalised for each vector with a non-zero slack proportional to the value of that 

slack. Thus as labelled in Figure 4.5 vectors that have non-zero slack as well as 

those along the supporting hyperplanes are support vectors meaning they 

determine the hyperplane chosen. The equation that has to be optimised when 

building a linear SVM with soft margin will be detailed in the next section.   

 

Figure 4.5 Illustrative example of linear SVM with soft margin using only 2 

explanatory variables 
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The SVMs discussed so far in this section have been linear, however 

sometimes a linear SVM will be very ineffective in separating two classes and 

lead to lots of misclassification. Fortunately, numerous different shapes of 

hyperplane can be used to split the outcome classes by adjusting part of the 

equation to be optimised (106,167). This adjustment replaces part of the 

equation with a non-linear kernel function, thus the shape which is used for the 

hyperplane of a SVM is known as the type of kernel it has used. Figure 4.6 

shows an example of data for which a linear SVM would have performed poorly, 

demonstrating the radial kernel used provides a much more suitable SVM in this 

case.    

 
Figure 4.6 Illustrative example of radial SVM using only 2 explanatory variables 

The comparison in this chapter includes a SVM with a linear kernel and a SVM 

with a radial kernel. The first reason for selecting these kernels was they are the 

most commonly used kernels for this type of classification problem (126-128). 

The second reason was when comparing the performance of four kernels 

(linear, polynomial, radial and Sigmoid), in discriminating two different diabetes-

related binary outcomes; Yu et al. found that the SVM with linear kernel 

performed best for one outcome, and the radial kernel lead to the best 

performance in the other (106).  
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4.7.2 Details of method 

This section gives a more in-depth explanation of the method, detailing the 

mathematical equations behind the concept. The equations relating to linear 

SVMs are given first, after which the way in which these equations are adapted 

for radial SVMs is detailed. 

4.7.2.1 Details of linear SVM 
Firstly, each outcome variable , 𝑦𝑖 , is labelled either -1 if it is not the outcome of 

interest or 1 if it is the outcome of interest. If a linear SVM with hard margin can 

be implemented, this means there are multiple hyperplanes that cleanly 

separate individuals in to the two outcome classes. Hyperplanes can be notated 

as the set of explanatory variables 𝑿  that satisfy (4.10); where 𝑾 is the normal 

vector to the hyperplane and 𝑏 is a constant (166,168). As the optimal 

hyperplane, (𝑾∗, 𝑏∗ ), separates the data this means the inequality (4.11) is 

satisfied for all individuals in the dataset. Taking the modulus of the express on 

the left hand side of the function given in (4.10), |𝑾.𝑿𝑖 + 𝑏|, gives the 

perpendicular distance each individual data point is from the hyperplane, (𝐖, 𝑏). 

As explained in section 4.7.1, the optimal hyperplane is chosen to maximise the 

distance of the nearest data points to the hyperplane, the support vectors, from 

the hyperplane. As multiplying a hyperplane by a scalar, say 𝑘, results in the 

same hyperplane there are multiple solutions which are all the optimal 

hyperplane. This issue can be overcome by stipulating the normal vector of the 

optimal hyperplane ,𝑾∗, must have a norm, the dot product of the vector with 

itself, of a specific value and then finding the maximum margin of such 

hyperplanes. This is equivalent to setting the margin to a specific value, as the 

inequality (4.12) does, and minimising the norm of 𝑾 under this constraint.       

 𝑾.𝑿 + 𝑏 = 0 (4.10) 

 𝑦𝑖(𝑾.𝑿𝑖 + 𝑏) > 0    𝑓𝑜𝑟  ∀  𝑖 = 1,⋯ , 𝑛 (4.11) 

 𝑦𝑖(𝑾.𝑿𝑖 + 𝑏) ≥ 1    𝑓𝑜𝑟  ∀  𝑖 = 1,⋯ , 𝑛   (4.12) 

However, as stated in section 4.7.1, medical datasets can rarely achieve the 

clean separation of the two classes needed in SVMs with hard margins; even if 

they do, using hard margins may well be risking overfitting. To overcome this 

issue SVMs with soft margins were developed, the crucial difference being that 
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they allowed data points to break inequality (4.12), meaning they could be on 

the wrong side of its supporting hyperplane (166). This was done by including a 

slack variable , 𝜀𝑖, for each data point, as shown in inequality (4.13), which 

measures how far the data point is from satisfying inequality (4.12). As stated in 

section 4.7.1, the slack variables of potential hyperplanes are used to penalise 

them in order to discourage non-zero slack variables occurring and them being 

large when they do occur. This is done by adding them, scaled by the 

penalising parameter 𝐶, to the expression to be minimised. This gives (4.14), 

the expression to be minimised in the soft margin case. Notice ‖𝑾‖, the norm 

of 𝑾, has been replaced with 
1

2
‖𝑾‖2 as they are equivalent in the linear case 

and this overcomes the issue of ‖𝑾‖ containing a square root.  

 𝑦𝑖(𝑾.𝑿𝑖 + 𝑏)  ≥ 1 − 𝜀𝑖    𝑓𝑜𝑟  ∀  𝑖 = 1,⋯ , 𝑛    , 𝜀𝑖  ≥ 0 (4.13) 

 1

2
‖𝑾‖2 + 𝐶∑𝜀𝑖

𝑛

𝑖=1

 
(4.14) 

The minimum of (4.14) subject to the constraint (4.13) can be solved by 

introducing Lagrange multipliers, 𝛼𝑖, and finding the stationary point of the 

Lagrange function, this is detailed elsewhere (168). Do note however, that 

calculating the solution to this minimisation problem involves substituting 𝑾 =

 ∑ 𝛼𝑖𝑦𝑖𝑿𝑖
𝑛
𝑖=1  , where 𝛼𝑖 = 0 when the ith data point is not a support vector; this 

leads to ‖𝑾‖2 being replaced with ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗(𝑿𝑖 . 𝑿𝒋)𝑖,𝑗 .     

The linear SVM included in this chapter was built in Rstudio using the svm 

function from the e1071 library (169), with type set to ‘C-classification’ and 

kernel set to ‘linear’.  This minimises (4.14) subject to (4.13) using Platt’s 

sequential minimal optimisation algorithm (170). The iterative process of 

minimising (4.14) stops once the reduction seen is less than the value chosen 

for the tolerance of termination criterion. The parameters of tolerance of 

termination criterion and C were varied using the default values as well as 

checking the performance of values above and below the default. Values of 0.1, 

0.01, 0.001 and 0.0001 were assessed for the tolerance of termination criterion. 

These have been chosen as they span the default value, 0.001. C, the 

penalising parameter for non-zero slack values was evaluated at 0.1, 1, 10 and 



 

111 
 

100. The default value for C is 1. Finally, the class weights option of svm was 

utilised as there are roughly four times the number of non-cases compared to 

cases, which unadjusted for may lead to poor sensitivity which is of particular 

interest in this context. A weighting of 0.196 for non-cases and 0.804 for cases 

was used as this will lead to a balance in total weighting of cases and non-

cases if the number of support vectors are even from each class.  

4.7.2.2 Details of radial SVM 
Non-linear SVMs can be built by utilising kernel functions to learn about the 

data in a feature space with a higher dimension than the number of explanatory 

variables, meaning non-linear relationships can be taken into account. This is 

achieved by calculating the inner products, the generalisation of dot products, of 

pairs of data points in that feature space using the kernel function, 𝐾(𝑿𝒊, 𝑿𝒋) 

(167,168). The kernel function of vectors replaces the dot products used in the 

equations in section 4.7.2.1. The radial kernel function is given in (4.15).    

 𝐾(𝑿𝒊, 𝑿𝒋) = exp( −𝛾 ‖𝑿𝒊 − 𝑿𝒋‖
2
)      , 𝛾 > 0 (4.15) 

The radial SVM included in this chapter was built in Rstudio using the svm 

function from the e1071 library (169), with type set to ‘C-classification’ and 

kernel set to ‘radial’. The parameters of tolerance of termination criterion, C and 

𝛾 were varied using the default values as well as checking the performance of 

values above and below the default. Values of 0.1, 0.01, 0.001 and 0.0001 were 

assessed for the tolerance of termination criterion. These have been chosen as 

they span the default value, 0.001. C, the penalising parameter for non-zero 

slack values was evaluated at 0.1, 1, 10 and 100. The default value for C is 1. 

The default for 𝛾 is, one over the number of explanatory variables, or 0.0667 in 

this case; this was assessed along with 0.25 and 0.01. As with the linear SVM a 

weighting of 0.196 for non-cases and 0.804 for cases was used. Due to the 

computational intensity of the radial SVM method, only the first of the 20 

imputations was used in the development of the radial SVMs. 
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4.7.3 Results of SVM 

As can be seen from Table 4.12 the linear SVM had good discrimination in both 

the internal and external datasets. The radial SVM had good discrimination for 

the internal dataset but this dropped considerably for the external dataset.  

Table 4.12 AUROC of linear and radial SVMs on internal and external datasets 

with various penalty parameters (with 𝜸 and tolerance of termination criterion 
set to their default values) 

Kernel Penalising 

parameter, 

C  

Internal cross-

validated 

AUROC  

(95% CI) 

External  

AUROC 

(95% CI) 

Internal cross-

validated Brier 

Score 

(Outcome index 

variance) 

External 

Brier Score 

(Outcome 

index 

variance) 

Linear 0.1 0.701 

(0.675, 0.727) 

0.713 

(0.691, 0.734) 

0.178 

(0.158) 

0.155 

(0.158) 

1 0.701 

(0.675, 0.727) 

0.713 

(0.691, 0.734) 

0.178 

(0.158) 

0.154 

(0.158) 

10 0.701 

(0.675, 0.727) 

0.713 

(0.691, 0.734) 

0.178 

(0.158) 

0.154 

(0.158) 

100 0.701 

(0.675, 0.727) 

0.713 

(0.691, 0.734) 

0.178 

(0.158) 

0.154 

(0.158) 

Radial  0.1 0.687 

(0.659, 0.715) 

0.628 

(0.603, 0.6528) 

0.179 

(0.158) 

0.162 

(0.158) 

1 0.687 

(0.659, 0.715) 

0.628 

(0.603, 0.6528) 

0.179 

(0.158) 

0.162 

(0.158) 

10 0.687 

(0.659, 0.715) 

0.628 

(0.603, 0.6528) 

0.179 

(0.158) 

0.162 

(0.158) 

100 0.687 

(0.659, 0.715) 

0.628 

(0.603, 0.6528) 

0.179 

(0.158) 

0.162 

(0.158) 

 

The results from the comparison here support the use of the linear SVM method 

but not the radial SVM method due to its lack of external validity.  

To summarise, of all the methods compared using the multiply imputed internal 

dataset, logistic regression, boosted decision tree and linear SVM were the only 

methods which achieved acceptable levels of discrimination, with AUROCs 

greater than 0.70 in both the internal and external datasets. However, the 

boosted decision tree method resulted in models with poor calibration. The 

findings of this main analysis are discussed in detail in section 4.10, alongside 
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the findings of the sensitivity analysis, with both statistical performance and 

practical issues being considered.   
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4.8 Sensitivity analysis 

4.8.1 Candidate variables  

The sensitivity analysis included in this section was carried out to ensure none 

of the methods or their extensions were disadvantaged due to being built on a 

multiply imputed dataset. The sensitivity analysis only used data of individuals 

who have values for the all of the following variables: 

 Outcome (normal blood glucose/NDH or undiagnosed T2DM by oral 

glucose tolerance test (OGTT)) 

 Age (years) 

 BMI (Kg/m2) 

 Ethnicity (White European/Other ethnicity) 

 Sex (Male/Female) 

 Waist circumference (cm) 

 1st degree family history of diabetes (yes/no) 

 History of hypertension or antihypertensive use (yes/no) 

95.4% of individuals aged 40-75 years old in the ADDITION-Leicester dataset 

had the data required to be included in this sensitivity analysis, 6,099 

individuals. The same techniques as were used in the main analysis were 

implemented here, with the same parameters being used, apart from when the 

recommended value of a parameter is based on the number of candidate 

variables, which reduced to seven for this analysis. The decrease in the number 

of candidate variables resulted in the number of individuals included in the 

external dataset, STAR, increasing to 3,173.   

4.8.2 Logistic regression 

Performing stepwise backward elimination on the seven candidate variables 

included in this sensitivity analysis resulted in the logistic regression model 

detailed in Table 4.13. All variables included in this model had the same 

relationship with the outcome as reported in the literature, and thus were 

chosen to stay in the rest of the models built in this section. Some literature 

suggests males are at an increased risk of the outcome (171,172); however 

building another model with this variable included along with the rest resulted in 
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a non-significant increase in risk for females. For this reason sex was kept out 

of the rest of the logistic regression models built in this analysis.   

Table 4.13 Logistic regression model selected by automatic backwards 
elimination with continuous variable kept continuous (sensitivity analysis) 

Variable Coefficient 95% CI P Value 

Age (years)  0.0474 0.039, 0.055 <0.001 

Ethnicity White Reference group   

Other 0.794 0.63, 0.96 <0.001 

First degree family 

history of T2DM 

No Reference group   

Yes 0.362 0.20, 0.53 <0.001 

Waist circumference 

(cm) 

 0.0227 0.014, 0.031 <0.001 

Hypertension No Reference group   

Yes 0.405 0.25, 0.56 <0.001 

BMI (kg/m2)  0.0407 0.020, 0.062 <0.001 

 Considering interactions and quadratic terms lead to the interaction of 

hypertension and family history of diabetes being included along with a 

quadratic term for BMI. Table 4.14 shows having both a family history of 

diabetes and hypertension increases the chances of having NDH or 

undiagnosed T2DM compared to having neither or one of these risk factors 

alone.  
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Table 4.14 Logistic regression model with continuous variables kept continuous 
and interactions and quadratic terms considered (sensitivity analysis) 

Variable Coefficient 95% CI P Value 

Age (years)  0.0469 0.039, 0.055 <0.001 

BMI (kg/m2)  0.153 0.048, 0.26 0.004 

Squared BMI  -0.00173 -0.0033, -0.00016 0.031 

Ethnicity White Reference group   

 Other 0.783 0.62, 0.95 <0.001 

First degree family 

history of T2DM 

No Reference group   

Yes 0.162 -0.045, 0.37 0.124 

Hypertension  No Reference group   

 Yes 0.262 0.087, 0.44 0.003 

Waist circumference 

(cm) 

 0.0215 0.013, 0.030 <0.001 

Interaction: 

Hypertension & Family 

History 

 0.549 0.21,0.89 0.001 

 

  



 

117 
 

Table 4.15 displays the model and associated risk score when the continuous 

variables included are grouped, as can be seen all groups for each variable are 

significant. 

Table 4.15 Logistic regression model and scoring system for risk assessment 
tool with grouped continuous variables (sensitivity analysis) 

Variable Grouping Coefficient 95% CI P 

Value 

Scoring 

Age (years) 40-49 Reference 

group 

  0 

 50-59 0.412 0.21, 0.62 <0.001 4 

 60-69 0.854 0.65, 1.06 <0.001 9 

 70+ 1.16 0.92, 1.41 <0.001 12 

Ethnicity White Reference 

group 

  0 

Other 0.746 0.59, 0.91 <0.001 7 

First degree family 

history of T2DM 

No Reference 

group 

  0 

 Yes 0.338 0.17, 0.50 <0.001 7 

Waist circumference 

(cm) 

<90 Reference 

group 

  0 

 90-99 0.483 0.28, 0.68 <0.001 5 

 100-109 0.600 0.36, 0.84 <0.001 6 

 >109 0.871 0.57, 1.17 <0.001 9 

BMI (kg/m2) <25 Reference 

group 

  0 

 25-29 0.237 0.023, 0.45 0.030 2 

 30-34 0.409 0.146, 0.67 0.002 4 

 ≥35 0.707 0.380, 1.03 <0.001 7 

Hypertension No Reference 

group 

  0 

Yes 0.430 0.28, 0.58 <0.001 4 
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Table 4.16 shows the discrimination and calibration of the RATs built using 

logistic regression in this sensitivity analysis were similar to the main analysis. 

Good levels of discrimination were seen in both the internal and external 

datasets, though calibration was a little higher in the external data.  

Table 4.16 Discrimination and calibration of logistic regression risk assessment 
tools developed in the sensitivity analysis and main analysis 

Development 

data 

Risk 

assessment 

tool 

Internal 

cross-

validated 

AUROC 

(95% CI)  

External 

AUROC 

(95% CI) 

Internal 

cross-

validated 

Brier score 

(Outcome 

index 

variance) 

External 

Brier score 

(Outcome 

index 

variance) 

Complete-

case data 

(seven 

candidate 

variables and 

outcome) 

Appropriate 

for 

electronic 

platform* 

0.697 

(0.641, 0.753)  

0.706 

(0.684, 0.728) 

0.135 

(0.145) 

0.148 

(0.161) 

Continuous 

variables 

grouped 

0.686 

(0.631, 0.740) 

0.698 

(0.676, 0.720) 

0.136 

(0.145) 

0.148 

(0.161) 

Multiple 

imputed data 

(15 candidate 

variables) 

Appropriate 

for 

electronic 

platform  

0.701  

(0.655, 0.748) 

0.714 

(0.692, 0.736) 

0.145  

(0.158) 

0.144 

(0.158) 

Continuous 

variables 

grouped 

0.723  

(0.685, 0.762) 

0.702 

(0.680, 0.724) 

0.143  

(0.158) 

0.145 

(0.158) 

*(interaction of family history with hypertension and squared term for BMI) 
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4.8.3 Basic decision tree and extensions   

The majority of the results are very consistent with the main analysis. The basic 

decision trees and boosted decision trees fitted have similar results to the main 

analysis. Although, the difference between the internal and external AUROCs 

for the basic decision trees was a little larger in the complete-case analysis.  

Table 4.17 Internal and external AUROCs and Brier scores of decision trees 
with various weighting for cases-to-non-cases in the sensitivity analysis and 
main analysis  

Development 

data 

Weighting 

of cases 

compared 

to non-

cases 

Internal 

cross-

validated 

AUROC  

(95% CI) 

External 

AUROC 

(95% CI) 

Internal 

cross-

validated 

Brier score 

(Outcome 

index 

variance) 

External 

Brier score 

(Outcome 

index 

variance) 

Complete-

case data 

(seven 

candidate 

variables and 

outcome) 

1 :1 0.500  

(0.500, 0.500) 

0.500  

(0.500, 0.500) 

0.145 

(0.145) 

0.161 

(0.161) 

2.5 :1 0.625 

(0.568, 0.682) 

0.615 

(0.592, 0.637) 

0.167 

(0.145) 

0.177 

(0.161) 

5 :1 0.649 

(0.599, 0.699) 

0.626 

(0.602, 0.649) 

0.240 

(0.145) 

0.252 

(0.161) 

7.5 :1 0.599 

 (0.559, 0.639) 

0.583 

(0.566, 0.601) 

0.319 

(0.145) 

0.319 

(0.161) 

10 :1 0.598 

(0.560, 0.636) 

0.588 

(0.571, 0.604) 

0.375 

(0.145) 

0.368 

(0.161) 

Multiple 

imputed data 

(15 candidate 

variables) 

1 :1 0.500  

(0.500, 0.500) 

0.500  

(0.500, 0.500) 

0.158  

(0.158) 

0.158 

(0.158) 

2.5 :1 0.630 

(0.570, 0.690) 

0.627 

(0.603, 0.652) 

0.182 

(0.158) 

0.187 

(0.158) 

5 :1 0.636 

(0.580, 0.692) 

0.637 

(0.613, 0.660) 

0.262 

(0.158) 

0.275 

(0.158) 

7.5 :1 0.592  

(0.555, 0.628) 

0.582 

(0.565, 0.600) 

0.341 

(0.158) 

0.346 

(0.158) 

10 :1 0.589 

(0.552, 0.626) 

0.584 

(0.567, 0.602) 

0.395 

(0.158) 

0.399 

(0.158) 

Decision trees with 10 cross-validations, minimum number of observations in terminal node=10 

and complexity parameter=0.01 
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The reduced size of the development dataset for the sensitivity analysis allowed 

the number of trees to be increased to 20,000 in one model developed. The 

AUROC decreased slightly in both the internal and external data for this further 

increase in number of trees, showing that the number of trees needed for 

optimum discrimination had also been reached for the complete-case 

development data.   

Table 4.18 Internal and external AUROC and Brier scores for boosted decision 
trees with varying number of iterations in the sensitivity analysis and main 
analysis 

Development 

Data 

Number 

of 

Trees 

Internal cross-

validated 

AUROC 

(95% CI)  

External 

AUROC 

(95% CI) 

 

Internal 

cross-

validated 

Brier score 

(Outcome 

index 

variance) 

External 

Brier score 

(Outcome 

index 

variance) 

Complete-

case data 

(seven 

candidate 

variables and 

outcome) 

500 0.665 

(0.642, 0.688) 

0.663 

(0.639, 0.686) 

0.250 

(0.145) 

0.257 

(0.161) 

1,000 0.673 

(0.650, 0.696)  

0.674 

(0.651, 0.697) 

0.243 

(0.145) 

0.244 

(0.161) 

5,000 0.694 

(0.671, 0.717) 

0.696 

(0.674, 0.718) 

0.228 

(0.145) 

0.237 

(0.161) 

10,000 0.695 

(0.671, 0.718) 

0.694 

(0.672, 0.716) 

0.225 

(0.145) 

0.239 

(0.161) 

20,000 0.691 

(0.667, 0.715) 

0.688 

(0.665, 0.710) 

0.223 

(0.145) 

0.240 

(0.161) 

Multiple 

imputed data 

(15 candidate 

variables) 

500 0.659 

(0.633, 0.685) 

0.664 

(0.640, 0.687) 

0.271  

(0.158) 

0.274 

(0.158) 

1,000 0.670  

(0.644, 0.696) 

0.678 

(0.655, 0.701) 

0.265 

(0.158) 

0.269 

(0.158) 

5,000 0.700 

(0.674, 0.723) 

0.703 

(0.681, 0.725) 

0.247 

(0.158) 

0.254 

(0.158) 

10,000 0.703 

(0.677, 0.729) 

0.703 

(0.681, 0.725) 

0.243 

(0.158) 

0.250 

(0.158) 

Boosted decision tree with 5:1 case-to-control weighting, shrinkage=0.001, fraction=0.5, 

maximum depth=2, minimum number of observations in terminal node=10, cross-validations=10  
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The bagged decision tree method produced very similar AUROCs and Brier 

scores in the internal and external datasets to the main analysis, with a 

maximum depth of five, once again allowing the best AUROC to be achieved. 

Table 4.19 Internal and external AUROC and Brier scores for bagged decision 
trees with varying maximum depths in the sensitivity analysis and main analysis 

Development 

data 

Maximum 

depth of 

trees 

Internal 

cross-

validated 

AUROC 

(95% CI)  

External 

AUROC 

(95% CI) 

Internal 

cross-

validated 

Brier score 

(Outcome 

index 

variance) 

External 

Brier score 

(Outcome 

index 

variance) 

Complete-

case data 

(seven 

candidate 

variables and 

outcome) 

2 0.649 

(0.621, 0.677) 

0.657 

(0.634, 0.680) 

0.151 

(0.145) 

0.154 

(0.161) 

5 0.680 

(0.652, 0.707) 

0.678 

(0.656, 0.701) 

0.148 

(0.145) 

0.151 

(0.161) 

7 0.678 

(0.651, 0.706) 

0.675 

(0.653, 0.698) 

0.149 

(0.145) 

0.152 

(0.161) 

10 0.677 

(0.645, 0.704)  

0.673 

(0.651, 0.696) 

0.149 

(0.145) 

0.153 

(0.161) 

Multiple 

imputed data 

(15 candidate 

variables) 

2 0.645 

(0.621, 0.677) 

0.659 

(0.635, 0.683) 

0.152 

(0.158) 

0.151 

(0.158) 

5 0.680 

(0.652, 0.707) 

0.682 

(0.659, 0.706) 

0.148 

(0.158) 

0.148 

(0.158) 

7 0.678 

(0.651, 0.706) 

0.681 

(0.658, 0.704) 

0.149 

(0.158) 

0.149 

(0.158) 

10 0.677 

(0.649, 0.704) 

0.680 

(0.657, 0.703) 

0.149 

(0.158) 

0.149 

(0.158) 

Bagged decision trees with 5:1 case-to-control weighting, complexity parameter=0.001, 

bootstrapped samples=100, minimum node size=10 
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The number of variables considered at each stage of the random forest was set 

to three in this sensitivity analysis, as the number of candidate variables was 

reduced. The random forest method had lower Brier scores in the sensitivity 

analysis compared to the main analysis. The discrimination was again an issue, 

with 0.66 being the best AUROC achieved in the external dataset.     

Table 4.20 Internal and external AUROCs and Brier scores for random forests 
with varying minimum number of observations in terminal nodes in the 
sensitivity analysis and main analysis 

Development 

data 

Minimum 

size of 

terminal 

node 

Internal cross-

validated 

AUROC 

(95% CI)  

External 

AUROC 

(95% CI) 

Internal 

cross-

validated 

Brier score 

(Outcome 

index 

variance) 

External 

Brier score 

(Outcome 

index 

variance) 

Complete-

case data 

(seven 

candidate 

variables and 

outcome) a 

1 0.667 

(0.690, 0.643) 

0.638 

(0.614, 0.661) 

0.139 

(0.145) 

0.165 

(0.161) 

10  0.674 

(0.651, 0.698) 

0.649 

(0.625, 0.672) 

0.170 

(0.145) 

0.225 

(0.161) 

100  0.668 

(0.645, 0.691)  

0.659 

(0.636, 0.682) 

0.580 

(0.145) 

0.567 

(0.161) 

Multiple 

imputed data 

(15 candidate 

variables) b 

1 0.635 

(0.612, 0.658) 

0.655 

(0.631, 0.679) 

0.284 

(0.158) 

0.221 

(0.158) 

10 0.655 

(0.631, 0.678) 

0.680 

(0.656, 0.703) 

0.446 

(0.158) 

0.370 

(0.158) 

100 0.638 

(0.614, 0.661) 

0.678 

(0.655, 0.701) 

0.638 

(0.158) 

0.657 

(0.158) 

 
aRandom Forests with 5:1 case-to-control weighting, three variables considered at each split, 

trees=500 

bRandom forests with 5:1 case-to-control weighting, four variables considered at each split, 

trees=500 
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4.8.4 Support Machine Vector 

Table 4.21 shows the linear SVM method produced acceptable levels of 

discrimination, with the AUROC being a little lower in the external dataset 

compared to internal dataset. On the other hand, the radial SVM models 

produced AUROCs of 0.66 in the external dataset. These results are consistent 

with the findings of the main analysis.   

Table 4.21 AUROC of linear and radial SVMs on internal and external datasets 

with various penalty parameters (with 𝜸 and tolerance of termination criterion 
set to their default values) (sensitivity analysis) 

Kernel Penalising 

parameter, 

C  

Internal cross-

validated 

AUROC 

(95% CI)  

External AUROC 

(95% CI) 

Internal 

cross-

validated 

Brier Score 

(Outcome 

index variance) 

External 

Brier 

Score 

(Outcome 

index 

variance) 

Linear 0.1 0.695 

(0.670, 0.719) 

0.683 

(0.666, 0.700) 

0.172 

(0.145) 

0.156 

(0.161) 

1 0.695 

(0.670, 0.719) 

0.683 

(0.666, 0.700) 

0.172 

(0.145) 

0.156 

(0.161) 

10 0.695 

(0.670, 0.719) 

0.683 

(0.666, 0.700) 

0.172 

(0.145) 

0.156 

(0.161) 

100 0.695 

(0.670, 0.719) 

0.683 

(0.666, 0.700) 

0.172 

(0.145) 

0.156 

(0.161) 

Radial  0.1 0.684 

(0.658, 0.711) 

0.657 

(0.634, 0.681) 

0.173 

(0.145) 

0.158 

(0.161) 

1 0.684 

(0.658, 0.711) 

0.657 

(0.634, 0.681) 

0.173 

(0.145) 

0.158 

(0.161) 

10 0.684 

(0.658, 0.711) 

0.657 

(0.634, 0.681) 

0.173 

(0.145) 

0.158 

(0.161) 

100 0.684 

(0.658, 0.711) 

0.657 

(0.634, 0.681) 

0.173 

(0.145) 

0.158 

(0.161) 
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4.9 Resampling study on the effects of the sample size of the 

development dataset on performance of methods 

The sample size, or more specifically the number of events per candidate 

variable (EPV), is known to be an important element of developing a stable RAT 

(131). RATs which use too few EPV are prone to overfitting on the development 

dataset and overestimating predictive performance (173,174). Previous 

resampling studies considering the effects of the number of EPV on cross-

sectional prediction models have tended to concentrate on the accuracy of the 

parameter estimates in logistic regression models (173,175-178). This section 

details a resampling study focusing on the effect of the number of EPV on the 

predictive performance of RATs developed by each of the methods considered 

in the empirical comparison in this chapter. 

4.9.1 Methods 

Models were developed using the ADDITION-Leicester dataset, restricted to 

cases with complete data for the outcome and the seven predictors included in 

the LSA score and externally validated using the STAR dataset, these two 

datasets have been detailed earlier in section 4.2.2. Complete case analysis 

has been used for computational reasons to allow the impact of sample size on 

the relative performance of the different methods, some of which are 

computationally intensive, to be assessed; consistent results were found in the 

earlier empirical comparison of methods in both the multiply imputed and 

complete case datasets. 

For each sample size considered, 1,000 samples were drawn with replacement 

from the ADDITION-Leicester dataset. The event rate was fixed at 17.6% for 

every sample by stratified sampling according to the outcome. Six sample sizes 

were considered corresponding to the following numbers of EPV: 2, 5, 10, 15, 

20 and 50. 

One prediction model for each of the methods included in the empirical 

comparison in this chapter was assessed for each sample size. The models 

compared were: 

 Logistic regression: Backward elimination starting with the full model 

with a p-value of 0.05 or less required to stay in the model. 
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 Decision tree: 5:1 case-to-control weighting, 10 as the minimum 

number of observations in terminal node, cross-validations=10 and 

complexity parameter=0.01 

 Boosted decision tree: 5,000 trees, 5:1 case-to-control weighting, 

shrinkage=0.001, fraction=0.5, maximum depth=2, minimum number of 

observations in terminal node=10, cross-validations=10 

 Bagged decision trees: maximum depth=5, 5:1 case-to-control 

weighting, complexity parameter=0.001, bootstrapped samples=100, 

minimum node size=10 

 Random forest: minimum size of terminal node=10, 5:1 case-to-control 

weighting, four variables considered at each split, trees=500 

 Linear SVM: penalising parameter=1, 𝛾 and tolerance of termination 

criterion set to their default values 

 Radial SVM: penalising parameter=1, 𝛾 and tolerance of termination 

criterion set to their default values 

These were the models which performed the best out of those applied in the 

empirical comparison for each method, with the exception of the logistic 

regression model specified above. This is because the techniques considered 

for logistic regression in the empirical comparison involved a human element, 

meaning that repeating the required number of times to allow for their inclusion 

in a resampling study was not feasible. The automatic logistic regression 

method was carried in the R package rms using the fastbw command (179). 

The R packages used for the other methods have been detailed in the empirical 

comparison, earlier in this chapter. 

For each model developed using each sample the AUROC and Brier score 

were calculated for the internal sample using stratified 10-fold cross-validation 

and for the full external dataset. This allowed the metrics, yielded both internally 

and externally for each method, to be compared as the number of EPV varied. 

The mean percentage bias and Root Mean Square Error (RMSE) of the 

AUROCs and Brier scores across the 1,000 samples compared to the AUROC 

and Brier score achieved when using the full internal dataset to develop each 

model were calculated for each method and sample size. Equations (4.16) and 

(4.17) give the definition of the mean percent bias and RMSE respectively, 
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where 𝑆𝑖 is the value of the metric in the ith sample and 𝐹 is the metric yielded 

when using the whole internal dataset to develop the model.    

𝑀𝑒𝑎𝑛 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑏𝑖𝑎𝑠 =
100

𝑛
∑
𝑆𝑖 − 𝐹

𝐹

𝑛

𝑖=1

 

 

(4.16) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑆𝑖 − 𝐹)2
𝑛

𝑖=1

 

(4.17) 

To assess the stability of the discrimination, the proportion of external AUROCs 

within 1%, 2.5%, 5%, and 10% of their corresponding cross-validated internal 

AUROC was calculated for each method and sample size considered. 
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4.9.2 Results 

Figure 4.7 shows that the internal AUROCs yielded from logistic regression 

models with small numbers of EPV varied greatly with the simulations with two 

EPV producing AUROCs ranging between 0.450 and 0.930. As expected, the 

range of the AUROCs reduced as the number of EPV is increased. The external 

AUROCs followed the same pattern, however reassuringly the range of the 

AUROCs did not extend above 0.71; the external AUROC achieved using the 

whole internal dataset to develop this model. Instead the AUROCs produced 

converged to this value as the number of EPV increased.   

 

Figure 4.7 AUROCs of logistic regression RATs developed using samples with 
different numbers of EPV 

  



 

128 
 

Figure 4.8 demonstrates that the Brier scores of the simulations tended towards 

the Brier scores returned from implementing this logistic regression method 

using the full development dataset, 0.136 and 0.148 in the internal and external 

dataset respectively, as the number of EPV used in development were 

increased. The range of the external Brier scores did not go below 0.148.     

 

Figure 4.8 Brier scores of logistic regression RATs developed using samples 
with different numbers of EPV 
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Figure 4.9 shows that the range of the AUROCs decreased with increasing 

numbers of EPV. The majority of the external AUROCs were below 0.65. The 

medians for the different numbers of EPV increase towards 0.626, the external 

AUROC of the model development with the full internal dataset, as the number 

of EPV does. Figure 4.10 displays that the range of the Brier scores decreased 

with decreasing numbers of EPV.  

 

Figure 4.9 AUROCs of decision trees developed using samples with different 
numbers of EPV 

 

Figure 4.10 Brier scores of decision trees developed using samples with 
different numbers of EPV 
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Figure 4.11 indicates that the variability of the AUROCs produced by the 

boosted decision trees was reduced when the number of EPV was higher. The 

maximum external AUROC was 0.700, only marginally above the external 

AUROC of 0.696 produced when using the full internal dataset to develop this 

model. Figure 4.12 displays that the range of the Brier scores decreased with 

increasing numbers of EPV, surprisingly it showed that the average Brier score 

increased for higher numbers of EPV both internally and externally.   

 

Figure 4.11 AUROCs of boosted decision trees developed using samples with 
different numbers of EPV 

 

Figure 4.12 Brier scores of boosted decision trees developed using samples 
with different numbers of EPV 
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Figure 4.13 shows that both the internal and external AUROCs produced using 

the bagged decision tree method became more consistent as the number of 

EPV were increased. The majority of the external AUROCs were less than 

0.678, the external AUROC of the model built using method with the full internal 

dataset, although the external AUROCs tended towards this value as the 

number of EPV are increased. 

 

Figure 4.13 AUROCs of bagged decision trees developed using samples with 
different numbers of EPV 
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Figure 4.14 displays that as the number of EPV increased both the variability 

and averages of the Brier scores reduced. Few external Brier scores were 

below the 0.151 yielded from the model which was developed using the whole 

dataset.     

 

Figure 4.14 Brier scores of bagged decision trees developed using samples 
with different numbers of EPV 
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Figure 4.15 illustrates that the averages of the external AUROCs tended toward 

the external AUROC produced by the corresponding random forest model 

developed using the whole dataset, 0.649. However, the internal AUROCs 

produced when there were 50 EPV were all above the 0.674; the internal 

AUROC of the model developed using the whole dataset. Figure 4.15e 4.16 

displays that the variability of the Brier scores decreases with increasing 

numbers of EPV, however the majority of the internal scores were markedly 

above the 0.170 yielded from the model developed using the whole dataset.  

Figure 4.15 AUROCs of random forests developed using samples with different 

numbers of EPV

Figure 4.16 Brier scores of random forests developed using samples with 

different numbers of EPV 
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Figure 4.17 and Figure 4.18 show that the variability of both the AUROCs and 

Brier scores reduced as the number of EPV increased. The majority of the 

external AUROCs were less than 0.70, while most external Brier scores were 

above 0.148, indicating that models produced by the simulations which 

externally outperform the model developed using the whole internal dataset do 

so by a small margin. The model developed using the full dataset has an 

external AUROC and Brier score of 0.683 and 0.156 respectively.  

 

Figure 4.17 AUROCs of linear SVMs developed using samples with different 
numbers of EPV 

 

Figure 4.18 Brier scores of linear SVMs developed using samples with different 
numbers of EPV 
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Figure 4.19 and Figure 4.20 display that the variablity of the AUROCs and Brier 

scores decreased as the number of EPV was increased. There were numerous 

external AUROCs between 0.657, the value attained under the model 

developed with the full internal dataset, and 0.700. The vast majority of the 

internal Brier scores were less than the 0.173 observed for the corresponding 

radial SVM developed using the full internal dataset. 

 

Figure 4.19 AUROCs of radial SVMs developed using samples with different 
numbers of EPV 

 

Figure 4.20 Brier scores of radial SVMs developed using samples with different 
numbers of EPV 
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Figure 4.21 indicates that for two EPV, all methods except the logistic 

regression had a large positive mean bias for internal AUROC; however all 

methods had a negative mean bias for internal AUROC once the number of 

EPV had been increased to 10, all mean biases being between -2.5% and -

5.0% at this point. The internal mean biases tended to rise as the number of 

EPV increased from 10 to 50, with most methods having a mean bias between -

1% and 1% for 50 EPV. Alarmingly, the random forest has a mean bias of 

10.3% for 50 EPV, indicating unreliability of the random forest in the internal 

dataset.  

Apart from the basic decision tree method, the mean biases of the external 

AUROCs all followed a similar pattern. The plot indicates that for small numbers 

of EPV they produced markedly worse external AUROCs than could be 

achieved by the method using the full internal dataset, however as the number 

of EPVs increased the mean bias increased towards zero.  

 

Figure 4.21 Mean percentage bias of AUROCs produced using various sample 
sizes compared to using full internal dataset to development models for each 
method 
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Figure 4.22 shows that the mean percent bias decreased with increasing 

numbers of EPV for all methods except the boosted decision tree, in which the 

opposite occurred. Noticeably the mean biases for the internal Brier scores of 

both the linear and radial SVM scores were extremely low, being around -20.0% 

once the numbers of EPV was at least five, indicating that the internal Brier 

score may have been overestimated in the empirical comparison. However, 

somewhat reassuringly the mean bias was only around -5.0% for these models 

in the external data, indicating the utility of an external validation for RATs built 

using these methods. As with the mean biases of the AUROCs, the logistic 

regression mean biases were very similar in the internal and external data.     

 

Figure 4.22 Mean percentage bias of Brier scores produced using various 
sample sizes compared to using full internal dataset to development models for 
each method 
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Figure 4.23 displays that the RMSE of the both the internal and external 

AUROCs decreased as the number of EPV increased for the majority of 

methods. Significantly, the random forest did not follow this pattern for the 

RMSE of the internal AUROC. Generally, the linear and radial SVM had the 

lowest RMSE. The plot shows that the logistic regression had the highest 

RMSEs for low numbers of EPV.   

 

Figure 4.23 RMSE of AUROCs produced using various sample sizes compared 
to using full internal dataset to development models for each method 
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Figure 4.24 shows that the RMSE of Brier scores typically decreased with 

increased numbers of EPV. Although this was not the case for the linear and 

radial SVMs, with the internal RMSEs being around 0.035 when the number of 

EPV was 10 or more. The random forest produced a similar pattern for the 

external RMSEs, with values being around 0.02 when the number of EPV was 

10 or more. The logistic regression produced the smallest RMSEs both 

internally and externally once the number of EPV was 15 or more. 

 

Figure 4.24 RMSE of Brier scores produced using various sample sizes 
compared to using full internal dataset to development models for each method 
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Figure 4.25 demonstrates that the majority of simulations with two EPV had 

external AUROCs not within 10% of their corresponding internal AUROC. The 

sizable proportion of logistic regression models that have an external AUROC 

within 1% of the internal AUROC are mainly due to no variables being added to 

the logistic regression model in these cases. The logistic regression, boosted 

decision tree, bagged decision tree, linear SVM and radial SVM displayed the 

expected pattern of increased similarity of the external AUROC to the internal 

AUROC. In the methods which produced the best AUROCs in the empirical 

comparison, namely logistic regression, boosted decision tree and linear SVM, 

the improvement in comparability of internal and external AUROCs was still 

clear as the number of EPV was increased from 20 to 50.  

 

Figure 4.25 Proportion of external AUROCs within 1%, 2.5%, 5%, and 10% of 
their corresponding cross-validated internal AUROC across methods and 
sample sizes  
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4.10  Discussion 

4.10.1 Empirical comparison of methods 

4.10.1.1 Statistical performance 
As stated in Chapter 2 the AUROC was chosen as the metric to assess 

discrimination since it is a widely used measure in this field, (55,57,59,99). This 

is the statistic that is of greatest interest to most individuals developing or 

selecting a RAT to use; as such this is of importance in this comparison. The 

Brier score was chosen to measure calibration. Although this is not ideal, since 

it measures both calibration and discrimination together (100,101), when 

considered alongside the AUROC it gives a good indication of whether models 

with similar AUROC values have similar levels of calibration. Having scores 

provides a more reliable comparison of the amount of miscalibration than tests 

of perfect calibration, such as the Hosmer-Lemeshow, do (73). The Brier score 

is however affected by the prevalence of the outcome and thus, due to the 

marginally higher prevalence of the outcome in the external dataset, the Brier 

scores could be expected to be slightly higher in the external dataset for the 

complete-case analysis even when AUROCs are equal (180). 

The tables displaying the results of each method in the main and sensitivity 

analyses reported above were selected to give an accurate depiction of how 

each method performed. Results for changing parameters that were set for all 

models in a table led, most commonly, to similar results, or occasionally to 

worse results when deviating from recommendations in the literature or default 

values in programmes. For this reason and simplicity, the values will be 

primarily discussed here.  

Logistic regression resulted in AUROCs greater than 0.700 for both datasets; 

for both the RAT which used continuous values of the continuous variables and 

the RAT which used categorical values of continuous variables. These RATs 

resulted in AUROC of 0.714 and 0.702 respectively in the external dataset. 

These values indicate acceptable levels of discrimination for the outcome in this 

empirical comparison.  
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The basic decision tree RATs could not match the discrimination of the logistic 

regression RATs, with discrimination not reaching acceptable levels. Similar 

poor performance was observed in the sensitivity analysis. The boosted method 

improved levels of discrimination as the number of trees was increased; with the 

AUROCs in both datasets reaching 0.70 in the models with 5,000 and 10,000 

trees. The Brier scores for these models were very high, around 0.25 in both 

datasets, which was considerably higher than the outcome index variance. This 

showed that their calibration is poor, likely due to the weighting of the model in 

order to gain good levels of sensitivity, which is important in the context of the 

outcome. Looking at the Brier scores for the basic decision tree models it could 

be seen that the Brier score increased greatly for each increase in weighting. 

The bagged decision tree method produced reasonable levels of discrimination 

and calibration once the maximum depth of trees allowed was at least five, 

although with AUROCs being around 0.68 it fell short of matching the metrics 

achieved using logistic regression. Finally, the random forest method had 

unsatisfactory discrimination with the highest AUROC in the internal dataset 

being 0.655 in the main analysis. Further to this the Brier scores were very high 

indicating bad calibration.      

The SVMs with linear kernels gave AUROCs of greater than 0.70 in both 

dataset for the main analysis, similar to the logistic regression method’s 

performance. On the other hand, the radial SVMs resulted in poor discrimination 

in the external dataset with AUROCs of 0.628, showing that the AUROCs in the 

internal dataset were not stable. 

The statistical comparison suggests RATs developed using logistic regression 

method, either using continuous values or categorical values of continuous 

variables, as well as RATs developed using linear SVM method, give 

acceptable performance in terms of discrimination and calibration in both 

internal and external datasets.   

4.10.1.2 Comparison of practical issues 
This section compares the practical issues of building and using RATs with 

each of these methods, it focuses particularly on the methods which performed 

favourably in the statistical comparison. Firstly, the basic decision tree and the 
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logistic regression RAT with continuous variables grouped could be 

implemented on a paper platform using only pen and paper (51,110). In contrast 

the logistic regression RAT with continuous variables kept continuous, with 

interactions and quadratic terms included, would require an electronic platform 

for individuals to complete it since the calculations are more difficult. RATs built 

using boosted decision trees, bagged decision trees, random forests, linear 

SVMs or radial SVMs would all also require an electronic platform such as a 

phone app or website in order to allow individuals to calculate their risk. 

The paper-based risk score derived from logistic regression carries an 

educational message; as individuals complete it they learn about some of the 

risk factors for diabetes, including which ones personally place them at risk (51). 

A RAT created using the basic decision tree also has this potential to inform 

individuals about their risk factors, showing which combinations in particular 

affect their risk. RATs developed using electronic-based logistic regression can 

incorporate messages to tell individuals how much each risk factor adds to the 

score; yet since the individual is not required to engage with the RAT they might 

not take in this message as much as if they had completed a paper-based RAT. 

The other methods produce RATs which are more like ‘black holes’, where the 

information about individuals is inputted into an electronic system and only the 

risk score is reported back, this means individuals cannot see how their score 

has been calculated and the only way information on the RATs can be given is 

by generalising the model. 

Logistic regression and the basic decision tree are the least computationally 

intensive of the methods with the other methods, such as radial SVM or random 

forest, often having much longer run times on normal computer systems. This 

may make them less attractive to some developers to fit. It should also be 

considered that these more complex calculations will need to be incorporated 

into whichever electronic platform they are implemented on.  

The comparison of issues other than statistical performance advocates either 

the logistic regression method or basic decision tree method for developing 

RATs if statistical performance of all methods was equal. 
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4.10.1.3 Strengths and weaknesses of this empirical comparison 
An empirical comparison was favoured over a simulation study due to the 

complexity of the causes of abnormal glucose, meaning the assumptions 

required for a simulation study would be difficult to sensibly choose. The 

empirical comparison included the logistic regression, decision tree and SVM 

methods, which are the three methods that have been used in practice to 

develop RATs for diabetes-related binary outcomes (55,57,59,99). One 

limitation was several methods were not included in this comparison, such as 

neural networks, linear discrimination analysis and fuzzy C. In light of the 

previous empirical studies, in section 4.2, none of these method have been 

highlight as outperforming all the methods included in this comparison, with 

them at least being matched by one of the methods included. Additionally, 

limiting the number of methods meant that the extensions of those included 

could be studied. For example, the extensions of the decision tree methods 

which have been established to deal with the issues of stability were included, 

with recommendations from previous research in this area followed (155-

157,160). The two SVM kernels which have performed the best in diabetes and 

other medical datasets were included (106,126-128). As recommended, the 

logistic regression RATs developed took into account previous evidence and 

the health message they would convey (42,57). 

Unlike previous empirical comparison studies for binary medical outcomes (124-

128), this comparison included an external validation, which is the gold standard 

of validating performance (40). The high levels of missing data in ADDITION-

Leicester meant multiple imputation was carried out which carries its own 

assumptions which may be incorrect or result in bad performance for a certain 

method. However, since the external dataset had good levels of complete data 

this meant that multiple imputation was not required in the external dataset and 

thus the assumptions made in the multiple imputation were also checked. 

Furthermore, the sensitivity analysis included also provided a check that none 

of the methods were underperforming due to logistic assumptions made in the 

multiple imputation. Using a temporal validation gave methods the greatest 

chance to be stable in the external dataset, as RATs for abnormal glucose are 

often found not to be validated in different geographical settings. However, the 

comparison would have been strengthened by using several internal and 
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corresponding external datasets from a variety of geographical settings. Finally, 

the performance of methods depends on the nature of relationship between the 

outcome and the variables used to model, therefore the results of this empirical 

comparison are likely to be limited to binary glucose outcomes; hence caution 

should be taken if using these results to select a method for use in a different 

medical outcome.   
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4.10.2 Resampling study on the effect of sample size on the performance 

of methods 

Using small numbers of EPV is likely to lead to RATs giving unreliable 

estimates of predictive performance. The resampling study in section 4.9 

assessed the extent to which this occurred for each of the methods considered 

in the empirical comparison in this chapter. However, it should be noted that the 

required number of EPV differs between datasets, with factors such as the 

prevalence of binary risk factors affecting the reliability of models (181), and 

thus the results found are somewhat limited to the situation considered. 

Nevertheless, the study adds to the knowledge of previous resampling studies 

for cross-sectional outcomes by including several methods and focusing on 

predictive performance.  

Selecting the models which were among the best performing from the empirical 

comparison for each method allowed the effect of the number of EPV to be 

assessed in the model, which this chapter recommends for each method. For 

example, the boosted decision trees built in the resampling study had 5,000 

trees; as using 5,000 in the empirical comparison clearly outperformed using 

1,000 but produced very similar performance to the model built with 10,000. 

Since a fully automatic technique was required for logistic regression, the 

human input part of the method used in the empirical comparison was removed. 

The number of EPV when developing the models using the full internal dataset 

was 153.4. This is significantly higher than the currently proposed required 

sample sizes allowing models with a broad range of numbers of EPV, two to 50, 

to be compared to their corresponding models developed using 153.4 EPV. The 

STAR dataset used for external validation of these models had 91 EPV. 

The results show the AUROCs and Brier scores of the simulations varied 

greatly when the numbers of EPV were only two or five. The methods which 

produced reasonable AUROCs in the empirical comparison, logistic regression, 

boosted decision tree, bagged decision tree and linear SVM, all had noticeable 

reductions in the variability of both their internal and external AUROCs as the 

number of EPV increased throughout the range of values assessed. On the 

other hand, this pattern was not clear for the random forest simulations, which 

appeared to have similar external AUROCs for 10, 15 and 20 EPV, or the basic 
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decision tree method, which produced alike internal AUROCs for 10, 15 and 20 

EPV. These two methods had poor levels of discrimination in the empirical 

comparison and thus the lack of reduction in variability may indicate these 

methods have an issue with stability. This is certainly true of the random forest 

which produced apparent AUROCs ≥0.9 in the samples it was developed on in 

the empirical comparison.  

For the majority of methods the variability of the Brier scores reduced 

throughout the range of the number of EPV assessed; with mean bias 

decreasing also, apart from for the boosted decision tree which had increasing 

mean bias. The boosted decision tree produced very high Brier scores 

regardless of the number of EPV and thus had poor calibration. The mean 

biases for the linear and radial SVMs in the internal dataset indicate the Brier 

scores yielded in the empirical comparison may be an overestimate. Although 

this does not appear to have been repeated in the external dataset, with the 

absolute mean bias being less than 5%. 

For the three methods that produced good levels of discrimination in the 

empirical comparison, logistic regression, linear SVM and boosted decision 

tree, the reproducibility of the internal AUROC in the external data continues to 

improve with increased EPV. Considering the logistic regression for example, 

medians of 4.2%, 2.9% and 1.7% were seen for 10, 20 and 50 EPV; with 

57.6%, 74.9% and 92.5% of simulations having a difference of less than 5% for 

10, 20 and 50 EPV respectively. This pattern was also evident for the radial 

SVM and bagged decision tree; however the random forest and decision tree 

did not clearly show this increase in reproducibility, adding support to the earlier 

argument that these methods are not reliable. 

The results of this resampling study highlight that for the methods producing 

good AUROC and/or Brier scores in the empirical comparison, increasing the 

number of EPV reduces the variability of these metrics and increases the 

reliability. The results of this resampling study indicate that RATs built using the 

methods advocated in the empirical comparison in this chapter have noticeable 

improvements in reliability and performance when the number of EPV is 

increased from 10 to 20. For that reason the results advocate at least 20 EPV 
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should be used in datasets similar to those studied in this resampling study. 

However, the improvement seen in these models when the number of EPV is 

increased from 20 to 50 highlights a need for careful consideration of the 

number of candidate variables in light of previous evidence if the number of 

EPV is significantly below 50. 
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4.11 Conclusion and implications for this thesis  

The empirical comparison advocates using logistic regression and linear SVMs 

as methods which provide acceptable statistical performance for detecting 

those with NDH or undiagnosed T2DM both in internal and external datasets. 

As these methods provide similar statistical metrics, the practical issues around 

implementing them should be taken into account. Since RATs based on the 

linear SVM method do not give an easily comprehendible educational message 

in the way in which RATs derived using logistic regression can, the logistic 

regression method is favourable in practice.  

Using logistic regression with continuous covariables may produce a RAT with 

marginally better statistical performance in terms of AUROC values than seen 

when using logistic regression with continuous variables categorised. However, 

a RAT developed using logistic regression with continuous variables 

categorised conveys an educational message more clearly and can be used in 

a number of formats. For these reasons both are used to develop a RAT for 

NDH or undiagnosed T2DM defined by HbA1c rather than OGTT. This work is 

detailed in Chapter 6, assessing the need to update the self-assessment risk 

score in light of the increased use of HbA1c to measure blood glucose in 

practice. The newly developed RATs are tested against the existing diabetes 

self-assessment risk score, the LSA, as well as against one another in an 

external dataset before a recommendation is made about which risk score 

should be used in practice.  

The resampling study supports using at least 20 EPV, though the continued 

improvement in reliability and performance when the number of EPV are 

increased to 50 emphasises the need to carefully consider the evidence for 

including each candidate variable when the number of EPV is between 20 and 

50.  
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Chapter 5:  Chain event graphs for developing risk assessment 

tools using cross-sectional data 

5.1 Chapter Outline 

This chapter utilises the novel method of chain event graphs (CEGs) to develop 

a risk assessment tool (RAT) for the outcome of non-diabetic hyperglycaemia 

(NDH) or undiagnosed Type 2 diabetes mellitus (T2DM) in a cross-sectional 

dataset. The chapter establishes the technique of CEG-based RATs for cross-

sectional outcomes by overcoming the issues that arise from utilising the CEG 

method for this purpose. Additionally, it assesses the performance of this 

method in an external dataset for the outcome of interest of this thesis allowing 

a comparison with the established methods assessed in the previous chapter.  

The work in this chapter has been: 

 Orally presented:  

Barber SR, Smith JQ, Barclay LM, Bodicoat DH, Davies MJ, Khunti K, 

Gray, LJ. ‘Utilising the Chain Event Graph method to produce a risk 

score: evaluating the discrimination in detecting a binary diabetes 

outcome.’ At: 36th Annual Conference of the International Society for 

Clinical Biostatistics. Utrecht, Netherlands. 23rd-27th August 2015 

(C46.I) 
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5.2 Introduction 

CEGs are a type of model based on event trees which consider the numerous 

combinations of categories of each variable and how these relate to one 

another, simplifying these relationships in the model where this does not lead to 

information loss. Thus they may produce a RAT which discriminates better than 

one developed using logistic regression or a decision tree, as they might find 

useful combinations of risk factors which current commonly used methods could 

miss. In this chapter, the method is implemented to develop a RAT using the 

same dataset (ADDITION-Leicester), outcome and explanatory variables as the 

Leicester Self-Assessment (LSA) score used in order to compare this method to 

the others included in the comparison in the previous chapter. 

CEGs are derived from probability trees by combining nodes in the tree which 

have the same associated conditional probabilities (182). The nodes of the tree 

denote different states and the edges express events. CEG models are 

described by conditional independence statements, each node and the edges 

emanating from it have a corresponding conditional independence statement 

which gives the probabilities of the different events occurring from that state 

regardless of the categories taken for other variables in the tree. CEGs are an 

extension of discrete Bayesian Networks to allow for asymmetric dependence 

structures between the variables in the graphical model. Section 5.2.1 uses an 

illustrative example to explain how CEGs can be derived from a probability tree 

and section 5.2.2 describes how a RAT can be yielded from a CEG.  

 

5.2.1 Illustrative example 

N. B. This example is fictional and has been chosen to explain the method. 

Consider the probability tree given in Figure 5.1. The variables ethnicity, family 

history of diabetes, body mass index (BMI) and diabetes status have been 

added to the tree. Shafer et al. notes adding variables into trees in the order 

that they naturally occur is logical and helps to capture the relationship between 

the variables (183). In the case of this example, consistent with the context in 

this chapter, the data is cross-sectional so the logical order needed careful 

consideration and is not completely clear. The order in this example was 
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chosen to reflect the likely order in which variables present themselves in the 

real-world. Firstly, an individual’s ethnicity is determined at birth, then family 

history of diabetes may be present already or may occur in the years that follow, 

next an individual’s current BMI can be influenced by their lifestyle in the last 

few years and finally diabetes is added since these individuals are not known to 

have diabetes but may have developed it undetected recently. Another choice 

that needs to be made before a CEG can be built are the categories any 

continuous variable will take. In this example BMI needed to be categorised and 

has been categorised in low, average and high.  
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Figure 5.1 Example probability tree for relationship between ethnicity, 
family history of diabetes, BMI and diabetes status  

V4 and its floret is highlighted 
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The nodes, known as situations, of an event tree, Vi’s, detail the categories 

earlier variables in the tree have taken (182). For example an individual being in 

situation V4 means that they are a white European with a family history of 

diabetes. It should be noted, an individual being in situation V0 just means that 

they are part of the population of interest. The edges stemming from a situation 

give the categories that the variable being considered in that situation could 

take and the probability of each of those categories occurring given the 

situation, collectively the edges emanating from one situation are known as the 

floret associated with that situation. In the example in Figure 5.1 the floret 

associated with V4 gives the probability that an individual will have low, average 

or high BMI given the fact they are white European with a family history of 

diabetes.  

A CEG model can be yielded from a probability tree by merging situations which 

have the same associated probabilities in their florets into the same stage 

(182). In order for two situations to be merged into a stage the categories in 

their florets must be exactly the same and the probabilities of each of these 

categories occurring must be the same for every category. For example, if V4 

and V5 were merged into a single stage this would mean that the probabilities of 

having low BMI, average BMI or high BMI given being white Europeans with a 

family history of diabetes are equal to the probabilities of having low BMI, 

average BMI or high BMI given being of other ethnicity without a family history 

of diabetes. Figure 5.2 displays the CEG of the probability tree displayed in 

Figure 5.1 with V4 and V5 merged into a single stage.  



 

155 
 

 

Figure 5.2 Example CEG for relationship between ethnicity, family history 
of diabetes, BMI and diabetes status with V4 and V5 in the same stage 

The boxes around V4 and V5 and the dotted line linking them indicate that they are in the same 

stage. 
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If situations not only have the same associated probabilities in their florets but 

for their whole subtrees (the trees which originate from each of the situations) 

then they are said to be in the same position, and are displayed as a single 

node in the CEG (182). More explicitly for two situations to be merged into a 

position, their subtrees must have the same shape with the same categories 

along each edge. Furthermore each of the matching edges must have the same 

probabilities as one another. Figure 5.3 displayed the CEG of the probability 

tree displayed in Figure 5.1 with V4 and the node for the pathway of other 

ethnicity followed by no family history merged into a single stage.  
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Figure 5.3 Example CEG for relationship between ethnicity, family history of 
diabetes, BMI and diabetes status  

White European individuals with a family history of diabetes are in the same position as non-
white European individuals without a family history of diabetes. 
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In order to decide which situations should be merged a Bayesian approach is 

taken with numerous CEGs having their posterior likelihood scored and the 

maximum a posteriori (MAP) model being chosen (184).  As CEGs are 

comprised of several conditional independences, the likelihood of a CEG 

separates into the product of the likelihoods of each floret being observed (177). 

Since the data observed at each floret follows a multinomial distribution, giving 

each conditional probability vector a Dirichlet prior yields the marginal likelihood 

shown in equation (5.1). Where 𝑢 specifies the stages of the CEG, 𝑛 specifies 

the edges departing from each stage, 𝛼𝑢𝑛 the parameters of the Dirichlet priors 

describing the probability of having the outcome indexed by 𝑛 at stage 𝑢 and 

𝑥𝑢𝑛 the data counts giving the number of samples observed having the outcome 

indexed by 𝑛 at stage 𝑢 (185). 

∏
𝛤(∑ 𝛼𝑢𝑛𝑛 )

𝛤(∑ (𝛼𝑢𝑛+𝑥𝑢𝑛)𝑛 )𝑢   ∏
𝛤(𝛼𝑢𝑛+𝑥𝑢𝑛)

𝛤(𝛼𝑢𝑛)
𝑛  

(5.1) 

As the Dirichlet priors follow on from one another it makes sense to think of the 

hyperparameters for the priors as dummy counts running through the root-to-

sink paths (185). Using non-informative Dirichlet priors would evenly divide a 

number between the hyperparameters at each split of the tree starting with the 

root, V0. For each prior only the number allocated to that path would be 

available to be evenly split between the hyperparameters. 

 Under the assumption that the CEG models are a priori equally likely, the 

different CEGs can be scored and compared using their marginally likelihood 

alone (186). The Bayesian agglomerative hierarchical clustering (AHC) 

algorithm does not search all the possible CEGs, as an exhaustive search 

would; but instead it is a greedy search, in that it chooses the best CEG on 

each iteration of the algorithm and thus hopes to choose the best CEG out of all 

possible CEGs (184). Using the AHC algorithm allows CEG models to be 

selected from event trees with large numbers of situations in reasonable 

computational time; therefore this is the algorithm that was used when selecting 

the optimal CEG model from an event tree in this chapter.  
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The steps of the AHC algorithm are as follows:  

1. Start with the CEG, C0, with the finest partition into stages (where every 

situation in the original tree is an individual stage) 

2. Then combine each of the pairs of nodes which can be combined in turn 

(scoring each of these CEGs) 

3. The CEG (from step 2) with the highest score is selected as C1 and the 

pair of nodes which were merged become a single stage 

4. This process is repeated until the CEG with the coarsest partition (where 

every situation in the original tree that can merged has been), Cn, is 

reached 

5. Select CEG of C0, C1,.... , Cn with the highest score 
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Hypothetical Table 5.1 is an illustration of how the tree in Figure 5.1 may be 

merged using the AHC algorithm.  

Table 5.1 Illustrative example of possible merging of situations at each iteration 
of AHC algorithm 

CEG Stages merged at iteration  

C0 N/A 
C1 {V4, V5} 
C2 {V12, V17} 
C3 {V10, V13} 
C4 {V4, V5, V6} 
C5 {V12, V17, V18} 
C6 {V7, V8} 
C7 {V9, V10, V13} 
C8 {V14, V15} 
C9 { V11, V16 } 
C10 {V12, V14, V15, V17, V18} 
C11 {V9, V10, V11, V13, V16} 
C12 {V9, V10, V11, V12, V13, V14, V15, V16, V17, V18} 
C13 {V1, V2} 
C14 {V7, V8, V9, V10, V11, V12, V13, V14, V15, V16, V17, V18} 
C15 {V3, V4, V5, V6} 

Above it can be seen that V4 and V5 were merged during the first iteration of the 

algorithm. Suppose in this example, C11 was the MAP model, the model with the 

highest posterior likelihood, then the algorithm would chose this as the optimal 

model. C11 is displayed in Figure 5.4, the positions in the CEG are denoted, Wi.    

 

Figure 5.4 C11, the MAP CEG chosen by the AHC in illustrative example. 

The boxes around W4 and W5 and the line linking them shows that they are in the same stage 
but different positions. 



 

161 
 

In C11, displayed in Figure 5.4, the situations V5 and V6 have been merged into 

the same position, W5. This means individuals not of white European ethnicity 

with a family history of diabetes have the same probabilities of the different BMI 

categories and having diabetes or not (given their BMI category) as individuals 

not of white European ethnicity without a family history of diabetes.      

V4 has been merged into the same stage as V5 and V6, as shown in Figure 5.4 

by the dotted line between the positions W4 and W5. This means the 

probabilities of the different BMI categories are the same for white European 

with a family history as for individuals of other ethnicity. However they are not in 

the same position, because white Europeans with family history of diabetes and 

average BMI have a different probability of having diabetes to individuals of 

other ethnicity with average BMI (as shown on Figure 5.4 by the former going to 

W7 and the latter to W8).    

5.2.2 How can CEGs be utilised to develop risk assessment tools? 

A CEG for the relationship between the risk factors and outcome of interest can 

be developed. By putting the outcome of interest as the final variable in the 

event tree (probability tree) from which the CEG is derived, the chosen CEG will 

contain a number of stages which give the probability of having or developing 

the outcome of interest given the risk factors of an individual. As a result the 

chosen CEG model can be used as a RAT, in a similar way to a decision tree 

(chosen by a classification and regression tree (CART) algorithm for example), 

by taking the probability of the outcome of interest for an individual as their risk 

score. However, CEGs account for all interactions of exploratory variables 

meaning they could find more effective combinations which methods like CART 

may miss. Continuous risk factors have to be categorised to allow them to be 

entered into the model. 

How a CEG-based RAT could be used in practice depends on the CEG model 

chosen; though it is likely that the method may produce RATs which are not 

suitable to be paper based, instead needing to be web/app based because of 

the different options for different groups. On the other hand a CEG-based RAT 

may mean that not every individual will need to answer a question on every risk 

factor a risk score is based on, thereby reducing participants’ burden.    
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5.3 Methods and results of implementing CEG to develop a 

risk assessment tool    

The ADDITION-Leicester dataset was used to develop a RAT based on a CEG. 

As this was a novel work, the method was altered a couple of times based on 

shortcomings of the methodology found in this internal dataset. Once these 

issues had been overcome, the external validity of the technique was assessed 

using the Screening Those at Risk (STAR) dataset. The outcome was NDH 

(impaired glucose regulation (IGR)) or undiagnosed T2DM, the same outcome 

used to develop the LSA score. Additionally, the final RAT developed used the 

same risk factors as the LSA enabling this method to be compared with the 

other methods included in the comparison in the previous chapter, since the 

same internal and external datasets were also used. R studio was used to carry 

out the work in this chapter, as no package was available for choosing CEGs by 

the AHC algorithm at the time this work was carried out.  

5.3.1 Initial method and results in white Europeans with no family history 

of diabetes 

As this was a novel application of the technique I envisaged that using it on real 

data would raise methodology issues about how to implement the method in a 

real world context. I therefore decided to initially build CEG models for a subset 

of the data, white Europeans with no family history of diabetes, using only four 

of the risk factors included in the LSA score before dealing with any 

methodological issues. I then went on to apply the method to develop a RAT on 

the whole dataset using all seven risk factors included in the LSA score. The 

3,368 individuals aged 40- 75 years old in the ADDITION-Leicester dataset with 

values for all four risk factors and the outcome variable were used for this 

analysis. 14.7% of these individuals had the outcome of NDH or undiagnosed 

T2DM. 

The order of the variables in the event tree, from which CEGs were derived, and 

the categories used to split the tree into situations were as follows:   

 X1 : Age category (40-49yrs, 50-59 yrs, 60-69 yrs, 70+ yrs) 

 X2: Waist category (<90 cm, 90-99 cm, 100-109 cm, 110 cm+) 

 X3: BMI category (<25, 25-29, 30-34, 35+) 

 X4: Hypertension status (yes or no) 
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 X5: Abnormal glucose (yes or no) 

All possible situations were accounted for in this tree. Each conditional 

probability vector was given a non-informative (uniform) Dirichlet prior 

distribution. The prior Dirichlet distributions were given an equivalent sample 

size of 4.The MAP model found using the AHC search algorithm was selected 

as the CEG to calculate the risk scores from. 

The CEG model chosen had 21 stages, seven of which were probability vectors 

for the diabetes status of interest. This means the method grouped the 128 

possible combinations of categories of the four risk factors into seven groups. 

The probability of having the diabetes status of interest given the stage 

(determined by the values of the four risk factors) is shown for each of the 

seven stages in Table 5.2. For example, as Table 5.3 shows individuals aged 

over 70 years old with a waist of 100-109 cm, BMI of 30-34 Kg/m2 and no 

hypertension are in the W17 and therefore, as displayed in Table 5.2, their 

chance of having the diabetes status of interest is 0.434.  

Table 5.2 Conditional probability of NDH or undiagnosed T2DM given stage in 
initial CEG for white European individuals with no family history of diabetes from 
ADDITION-Leicester dataset (n=3,368) 

Stage Probability of NDH or 

undiagnosed T2DM given stage 

in CEG 

Proportion of internal 

dataset (%) 

W14 0.037 16.18 

W15 0.002 2.94 

W16 0.226 21.94 

W17 0.434 6.29 

W18 0.091 25.42 

W19 0.147 27.11 

W20 0.992 0.12 

 

Taking the probability of having the diabetes status of interest, from the 

conditional probability vectors produced by the CEG, as the risk score for 

individuals gives a score with good discrimination. The area under the receiver 

operator curve (AUROC) of this score is 0.712 (95% confidence interval (CI): 
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0.689-0.735). However, despite this good performance in terms of 

discrimination, Table 5.3 demonstrates the problem encountered with sparse 

data for several pathways (combinations of variable categories). There were 

numerous pathways in which there were less than 10 individuals; these 

pathways have been given a risk score under this model based on very little 

data and, in several cases, no data at all. Clearly this was a big methodological 

flaw that needed to be addressed. Looking at the pathways which had no 

individuals at all, it is apparent this was to be expected in some instances, for 

example all pathways which had the combination of the smallest waist grouping, 

less than 90 cm, and the largest BMI grouping, greater than 35 Kg/m2, had no 

observations. 
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Table 5.3 Number of cases and non-cases for each situation in W17 in the initial 

CEG for white Europeans with no family history in ADDITION-Leicester  

Age Waist BMI Hypertension Cases Non-cases 

40-49 <90 35+ No 0 0 

40-49 <90 35+ Yes 0 0 

40-49 100-109 <25 No 0 0 

40-49 100-109 <25 Yes 0 0 

40-49 110+ <25 No 0 0 

40-49 110+ <25 Yes 0 0 

40-49 110+ 25-29 Yes 0 0 

40-49 110+ 35+ Yes 6 13 

50-59 <90 30-34 Yes 0 0 

50-59 <90 35+ No 0 0 

50-59 <90 35+ Yes 0 0 

50-59 100-109 <25 Yes 0 0 

50-59 110+ 25-29 Yes 0 0 

60-69 <90 35+ No 0 0 

60-69 100-109 30-34 Yes 20 34 

60-69 100-109 35+ No 3 5 

60-69 110+ <25 Yes 0 0 

60-69 110+ 35+ Yes 23 19 

70+ <90 35+ Yes 0 0 

70+ 90-99 35+ Yes 0 0 

70+ 100-109 30-34 No 5 9 

70+ 100-109 30-34 Yes 11 11 

70+ 100-109 35+ No 2 3 

70+ 110+ <25 Yes 0 0 

70+ 110+ 25-29 No 0 0 

70+ 110+ 25-29 Yes 3 2 

70+ 110+ 30-34 No 4 6 

70+ 110+ 30-34 Yes 8 11 

70+ 110+ 35+ Yes 7 7 

 

5.3.2 Updated method and results in white Europeans with no family 

history of diabetes 

Two changes were made to the technique to deal with the issues of sparse data 

identified in the initial analysis. Firstly waist-group specific cut-points were used 

to define BMI groups instead of the cut-points originally used; meaning that the 

BMI group an individual was categorised into depended on which waist group 

an individual was in as well as their BMI measurement. These cut-points used 
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values which roughly split the individuals in the four waist groups into thirds 

based on their BMI, in order to allow the BMI variable to add additional 

information to the correlated waist variable, the variable thus became ‘for their 

waist group does this individual have a low, average or high BMI?’. The cut-

points used are showed in the Table 5.4.  

Table 5.4 Waist-specific BMI cut-points for groupings BMI as low, average or 
high 

Waist (cm) 
BMI cut-points for different waist groups 

Low Average High 

< 90 <23 ≥23 & <26 ≥26 

>89 & <100 <26 ≥26 & <29 ≥29 

>99 & <110 <29 ≥29 & <32 ≥32 

>109 <33 ≥33 & <37 ≥37 

 

The second change to the method was to implement a stopping rule which 

meant the original probability tree did not allow any nodes to split into a group of 

nodes that contained a node with less than 10 individuals in it. The stopping rule 

implemented will be referred to as Stopping rule 1 in this chapter. Stopping rule 

1 was as follows (detailed in italics): The situations with less than 10 individuals 

are to be merged conservatively, meaning if for example at one situation 

splitting for age resulted in the 50-59yr old category having less than 10 

individuals this would be merged with the category above (the higher risk 

category, in this case 60-69yr old) as it would overestimate the risk for those in 

the 50-59yr old category rather than underestimate. This was not done in the 

case where the top risk category had sparse data; in this case it had to be 

merged with the category below. If there was more than one category within a 

variable with less than 10 individuals the one with the lowest number would be 

merged first.  

Again, the 3,368 individuals aged 40- 75 years old in the ADDITION-Leicester 

dataset with values for all four risk factors and the outcome variable were used 

for this analysis. 
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The order of the variables in the event tree, from which CEGs were derived, and 

the categories used to split the tree into situations were as follows:   

 X1 : Age category (40-49 years, 50-59 years, 60-69 years, 70+ years) 

 X2: Waist category (<90 cm, 90-99 cm, 100-109 cm, 110 cm+) 

 X3: BMI category (low, average, high) 

 X4: Hypertension status (yes or no) 

 X5: Abnormal glucose (yes or no) 

Each conditional probability vector was given a non-informative (uniform) 

Dirichlet prior distribution. The prior Dirichlet distributions were given an 

equivalent sample size of 4. These priors along with the data were merged 

according to Stopping rule 1 to give the event tree on which the AHC search 

algorithm was carried out to find the MAP model. 

These solutions were reasonably successful with only eight pathways having 

less than 10 cases and controls showing that the approach with the BMI groups 

depending on waist group is sensible. All pathways which required the stopping 

rule occurred when splitting for the last risk factor, hypertension, and thus were 

merged/not split at this stage. A similar level of discrimination was seen to the 

initial CEG-based RAT with an AUROC of 0.7085 (95% CI: 0.685-0.732). The 

CEG model chosen had 15 stages, five of which were probability vectors for the 

diabetes status of interest. The probability of having the diabetes status of 

interest given the stage (determined by the values of the four risk factors) is 

shown for each of the five stages in Table 5.5. The chosen CEG was very 

complex and therefore it is difficult to depict the model or portray the individuals 

who were put into each of the five stages giving the risk for the outcome of 

interest.    
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Table 5.5 Conditional Probability of NDH or undiagnosed diabetes given stage 
in updated CEG for white European individuals with no family history of 
diabetes from ADDITION-Leicester dataset (n=3,368) 

Stage Probability of  

NDH or undiagnosed diabetes 

given stage in CEG 

Proportion of internal 

dataset (%) 

W10 0.027 13.42 

W11 0.079 29.63 

W12 0.149 32.93 

W13 0.423 7.66 

W14 0.236 16.36 

 

5.3.3 Issues with implementing updated method with seven risk factors 

in all 40- 75 year olds 

The updated approach with waist-specific BMI groups and Stopping rule 1 was 

implemented on the 6,101 individuals aged 40- 75 years old in the ADDITION-

Leicester dataset with values of the seven risk factors from the LSA score and 

of the outcome recorded. 17.6% of these individuals had the outcome of NDH 

or undiagnosed diabetes. 

The order of the variables in the event tree and the categories used to split the 

tree into situations were as follows:   

 X1: Ethnicity (White European or other)  

 X2: Sex (male or female) 

 X3: Family history of diabetes (yes or no) 

 X4: Age category (40-49 years, 50-59 years, 60-69 years, 70+ years) 

 X5: Waist category (<90 cm, 90-99 cm, 100-109 cm, 110 cm+) 

 X6: Waist-specific BMI category (low, average, high) 

 X7: Hypertension status (yes or no) 

 X8: Abnormal glucose (yes or no) 

Each conditional probability vector was given a non-informative (uniform) 

Dirichlet prior distribution. The prior Dirichlet distributions were given an 

equivalent sample size of 4. These priors along with the data were merged 
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according to Stopping rule 1 to give the event tree on which the AHC search 

algorithm was carried out on. 

However, implementing stopping rule 1 on this dataset with the model being 

extended to include seven risk factors proved to be very complex. As was the 

case with applying this technique to the subset of white Europeans with no 

family history using only four risk factors, merging was required from the fourth 

variable splits. Though the increase in the number of risk factors used meant 

that the number of merges required in this case was very high. Table 5.6 shows 

there were 267 different situations being the first point at which a pathway had 

less than 10 individuals. Stopping rule 1 leading to the 768 possible situations 

individuals may be split into using the seven risk factors being collapsed into 

222 (28.9%) situations. This meant risk factors later in the event tree did not 

add any information for many individuals.  

Table 5.6 Number of collapses required when implementing Stopping rule 1 on 
event tree with seven risk factors in 40- 75 year olds from ADDITION-Leicester 
(n=6,101) 

Variable used to 
split 

Original number of 
resulting nodes 

Nodes NAs due to 
<10 on this split 

Nodes NAs due 
to <10 on 
previous split 

Age 32 3 0 
Waist 128 20 12 
BMI 384 110 96 
Hypertension 768 134 412 

More problematic was the fact that the merges resulting from Stopping rule 1 

lead to situations having florets emerging from them with several different 

topographies, either in terms of the number of categories stemming from the 

situation or in terms of the groupings of the categories. This was an issue as it 

made the AHC algorithm very complex and time-consuming to code and the 

resulting CEG complex to understand. For example implementing Stopping rule 

1 meant that the florets for the waist situations could have one of 11 

topographies.    

5.3.4 Final method and results in all 40- 75 year olds 

The final method was developed using the 6,101 individuals aged 40- 75 years 

old in the ADDITION-Leicester dataset with values of the seven risk factors from 

the LSA score and of the outcome recorded.  
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As implementing Stopping rule 1 on the full dataset lead to the technique 

becoming very complex and time-consuming, the stopping rule for creating the 

event tree on which the AHC algorithm was implemented was modified. This 

stopping rule will be referred to as Stopping rule 2. Stopping rule 2 was as 

follows (detailed in italics): If splitting a situation into a group of situations using 

one of the risk factors results in any of the situations having less than 10 

individuals then this variable will not be used to split this situation at all. The 

situation may still be split for later risk factors in the model if this does not result 

in situations with less than 10 individuals in. 

Clearly this stopping rule would result in the data for the later variables in the 

model not being utilised to determine many of the individuals’ risk of having the 

outcome of interest. Therefore, as the risk factors are from a cross-sectional 

dataset they were added into the model in order of their p-value with the 

outcome of interest, with the variable with the smallest p-value being added 

first. The order of the variables in the event tree and the categories used to split 

the tree into situations were as follows:   

 X1: Waist category (<90 cm, 90-99 cm, 100-109 cm, 110 cm+)  

 X2: Age category (40-49 years, 50-59 years, 60-69 years, 70+ years) 

 X3: Hypertension status (yes or no) 

 X4: Waist-specific BMI category (low, average, high) 

  X5: Ethnicity (White European or other)  

 X6: Family history of diabetes (yes or no) 

 X7: Sex (male or female) 

  X8: Abnormal glucose (yes or no) 

Each conditional probability vector was given a non-informative (uniform) 

Dirichlet prior distribution. The prior Dirichlet distributions were given an 

equivalent sample size of 4. These priors along with the data were merged 

according to Stopping rule 2 to give the event tree on which the AHC search 

algorithm was carried out on. 

The CEG model chosen had 52 stages, seven of which were probability vectors 

for the diabetes status of interest. The probability of having the diabetes status 
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of interest given the stage is shown for each of the seven stages in Table 5.7, 

along with the proportion of individuals from the internal dataset that were in 

each stage. The internal discrimination of the RAT produced was good, with an 

AUROC of 0.720 (95% CI: 0.705-0.736). The Brier score in the internal data 

was 0.131, with the outcome index variance being 0.145 showing unsurprisingly 

the predicted probabilities are more accurate than non-informative prediction of 

the outcome prevalence. As with the earlier CEGs, the model is too complex to 

display pictorially and thus it is hard to summarise the characteristics of 

individuals placed into each of the stages for risk of the outcome.  

Table 5.7 Conditional Probability of NDH or undiagnosed diabetes given stage 
in initial CEG for 40- 75 year olds from ADDITION-Leicester dataset (n= 6,101) 

Stage Probability of NDH or undiagnosed 

diabetes given stage in CEG 

Proportion of internal 

dataset (%) 

W45 0.073 19.93 

W46 0.024 6.83 

W47 <0.001 2.49 

W48 0.136 31.13 

W49 0.199 11.46 

W50 0.283 20.23 

W51 0.475 7.93 

The RAT produced using this method was assessed externally in the STAR 

dataset. The dataset contained 3,105 individuals aged 40- 75 years old with 

complete data for the seven risk factors and outcome variable. 19.6% of 

individuals had the outcome of NDH or undiagnosed diabetes. The AUROC of 

the RAT in this external dataset was 0.639 (95% CI: 0.615- 0.663). The Brier 

score was 0.153, with the outcome index variance being 0.158. This shows the 

predictions have accuracy and calibration worse than seen in the internal 

dataset but a little better than the non-informative prediction of the outcome 

prevalence. Figure 5.5 displays the predicted probability of the outcome for 

each stage against the observed proportion with the outcome in that stage in 

the external dataset. It can be seen that the four stages with the lowest 

probability predictions observed higher proportions than predicted in the 
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external dataset, while the three stages with the highest probability predictions 

observed lower proportions than predicted. 

 

Figure 5.5 Plot of predicted probabilities of outcome (NDH or undiagnosed 
diabetes) by CEG risk assessment tool’s stages against observed proportions 
of outcome in CEG risk assessment tool's stages in STAR dataset (n=3,105) 

  

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

O
b

se
rv

ed
 p

ro
p

o
rt

io
n

 o
f 

in
d

iv
id

u
al

s 
in

 s
ta

ge
 w

it
h

 
o

u
tc

o
m

e 
in

 e
xt

er
n

al
 d

at
as

et
 

Predicted probability of stages in CEG risk assessment tool



 

173 
 

5.4 Discussion 

This chapter implemented a novel application of the CEG model, using the 

technique to develop a RAT. The method established performed well in the 

internal dataset on which it was developed with good levels of discrimination for 

the outcome of interest, similar to those seen for the LSA score (51). However, 

the discrimination dropped noticeably in the external dataset and this would 

need to be addressed before the technique could be recommended for 

developing RATs to be employed in practice. 

The RATs developed using logistic regression and linear SVM in the previous 

chapter discriminated the outcome comfortably better in the external dataset 

than the RAT produced using the method established in this chapter. In addition 

to being statistically outperformed, the CEG model produced was very complex 

unlike the one produced in the illustrative example in Figure 5.4, with it proving 

impossible to depict the graph in an eligible form. This means the resulting RAT 

produced would not give an easy to understand educational message. Such 

RATs, would also require individuals to calculate their risk using an electronic 

device.  

This analysis was carried out using ADDITION-Leicester as the internal dataset 

and STAR as the external dataset, this was a strength as it allows the 

performance of the final RAT established to be compared to the performance of 

the methods included in the comparison in the previous chapter. The seven risk 

factors included in the LSA score were used in the final RAT developed using 

the CEG method in this chapter. The reason for this was that using all the 

candidate variables that were considered when comparing methods in the 

previous chapter was not viable due to the high number of them, and thus some 

preselection of the candidate variables was required. This may have resulted in 

a variable that may have improved the performance being omitted. On the other 

hand, using all seven risk factors included in the LSA score may been over 

complicated the CEG RAT developed. As it may have been possible to achieve 

a similar performance using fewer risk factors and thus from a simpler RAT 

developed using the CEG method. A complete-case analysis was used as using 

multiply imputed data was not computationally viable. This may have led to bias 
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in the resulting model selected; though, reassuringly the seven risk factors used 

had low levels of missing data.   

The CEG method requires continuous variables, such as age, to be 

categorised. Categorising variables leads to loss of information given by a 

variable, with information loss being increased as the number of categories 

used is reduced (187). The categories selected for continuous risk factors were 

originally chosen to be the same as those used for the LSA score. However to 

overcome the issue of sparse data due to the high correlation between BMI and 

waist circumference, the cut-points for the BMI groups were changed to be 

waist-group specific. This meant the BMI group was more informative about the 

difference between individuals given their waist group was already known.  

A stopping rule was introduced to ensure situations which had no or little data 

were not included in the event tree from which the CEG model was developed. 

The stopping rule had to be simplified to allow the coding of the event tree from 

which the CEG model was developed to be viable in a reasonable time-frame 

when the model was extended to use all seven risk factors included in the LSA 

score. The use of a larger dataset or fewer risk factors could overcome the 

need for a stopping rule when applying this technique.  

The technique established put the risk factors into the model in ascending order 

of their p-value with the outcome. This was due to the need for a stopping rule 

meaning later risk factors were less likely to effect the stage which gave the 

probability of the outcome (the risk score) an individual was allocated by the 

selected CEG model. Although it is advocated that variables are entered into 

CEG models in the order which reflects how they would be observed in practice 

(183). As the RAT developed here uses cross-sectional risk factors it is unclear 

which order several of the risk factors occur in practice. For this reason the 

analysis would benefit from various techniques for determining the order of the 

risk factors being compared. This was not possible at the time the analysis was 

carried out due to the time-consuming nature of coding the technique, however 

some software is being developed for CEGs currently which would reduce the 

burden of building the models required. 
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Finally, the analysis was limited to the use of non-informative priors. This was in 

order to allow the method to be established and compared to the other 

methods, without burdening experts with the time-consuming nature of this task. 

If the issues with the external validity were resolved, the Bayesian structure of 

this method would allow expert opinion to be incorporated into RATs developed 

(188).  
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5.5 Conclusion and implications 

The method of CEGs can be used to develop RATs for cross-sectional 

outcomes. The method established produced a RAT for the outcome of NDH or 

undiagnosed diabetes with good internal discrimination, yet this was not 

observed in the external dataset and therefore does not offer any improvement 

on the methods currently used to develop RATs. Current advances in the field 

of CEGs, such as software being developed to reduce the need for coding, will 

facilitate further exploration of possible adaptions to improve the technique’s 

external performance. Future work could examine the effect of the number of 

risk factors in the model, the cut-points used to group continuous variables and 

the order the variables are entered into the model.  
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Chapter 6:  Assessing the impact of HbA1c diagnostic criteria 

on Leicester Self-Assessment risk score 

6.1 Chapter Outline 

Since the development of the widely used Leicester Self-Assessment (LSA) risk 

score, glycated haemoglobin A1c (HbA1c) has been added to the diagnostic 

criteria for Type 2 diabetes mellitus (T2DM) and many also now use HbA1c to 

define non-diabetic hyperglycaemia (NDH). Therefore this chapter considers 

whether the LSA needs to be updated in light of the increased use of HbA1c as 

the blood test for assessing diabetes status. Two self-assessment risk 

assessment tools (RATs) for the outcome of abnormal HbA1c are developed; 

one using the exact values of the continuous variables and giving the probability 

of the outcome, the other grouping continuous variables and giving a risk score 

as a whole number. The performance of these RATs in differentiating between 

individuals with normal and abnormal levels of HbA1c are then assessed and 

compared to the performance of the existing LSA risk score in an external 

dataset.  
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6.2 Introduction 

The LSA risk score identifies individuals with a high risk of currently having NDH 

or undiagnosed T2DM. It is widely used in practice, having been completed 

over one million times on the Diabetes UK website as well as being in all Boots 

and Tesco stores across the country. The LSA risk score was developed and 

externally validated for the outcome of impaired glucose regulation (IGR) or 

undiagnosed T2DM (51). IGR was defined using either of the two blood glucose 

measurements taken during an oral glucose tolerance test (OGTT), as detailed 

in Chapter 1. At the time the LSA was developed and validated an OGTT was 

the only advocated blood test for diagnosing individuals as having NDH or 

T2DM (13). In the years since the LSA was developed, HbA1c has been 

recommended as another blood test which can be used to diagnose diabetes by 

the World Health Organisation (WHO) (12). Additionally, HbA1c has been 

widely supported as a measure to determine NDH, although organisations 

recommend different ranges to define NDH (14,28,29). HbA1c has the 

advantage of not requiring individuals to fast prior to the test and thus can be 

scheduled at any time over the day, unlike OGTT (39). This has led to many 

general practices opting to use HbA1c as their preferred test for classifying 

glucose intolerance. Although, changing from OGTT to HbA1c testing will result 

in different individuals being identified as having NDH and undiagnosed T2DM. 

Studies have found that the two tests classify different but overlapping groups 

as having undiagnosed T2DM, as displayed in Figure 6.1, with the same being 

true for NDH (39).  
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Figure 6.1 Venn diagram of individuals from the Leicester Ethnic 
Atherosclerosis and Diabetes Risk (LEADER) cohort classified as having 
undiagnosed T2DM using OGTT and HbA1c, adapted from Mostafa et al. (32) 

In light of the increased use of HbA1c in practice, this chapter considers 

whether a RAT developed for the outcome of abnormal HbA1c performs better 

in identifying individuals with that outcome in an external dataset than the 

existing LSA risk score. This chapter reports the development and performance 

of two self-assessment RATs for the outcome of abnormal HbA1c. The first 

RAT developed uses exact values of the continuous variables and gives the 

probability of having an abnormal HbA1c measurement. Keeping the exact 

values of continuous variables is considered best practice, as categorising such 

variables results in a loss of information and power (187,189). However, the 

majority of use of the LSA in practice is using its written version in roadshows or 

opportunistically. Due to the more complex calculations, this RAT with exact 

values of continuous variables would have to be implemented using an 

electronic device, such as an app or website. The need for an electronic device, 

which may limit its use in clinical practice and for opportunistic screening 

compared to the existing LSA, will be taken into account when comparing this 

RAT with the LSA. This RAT is referred to as the electronic RAT throughout this 

chapter.  

The second RAT developed, groups the continuous variables in the same way 

as the LSA did, leading to a risk score which is a whole number that can be 

calculated easily without the need for an electronic device. This RAT would be 
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able to be completed using pen and paper by lay people, meaning it can be 

compared directly to the LSA risk score since it could be implemented in the 

same way. This RAT is referred to as the pen and paper RAT throughout this 

chapter.  

The two RATs were developed using the same dataset, ADDITION-Leicester, 

which was used to develop the LSA risk score. Both the RATs were then 

compared to the LSA and one another in an external dataset to assess if either 

should replace the LSA risk score in practice. The two RATs were also 

compared to one another to determine which RAT should be chosen if it was 

deemed they both could replace the LSA risk score.   
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6.3 Methods     

The data of 40- 75 year olds in the ADDITION-Leicester dataset was used to 

develop two RATs, a pen and paper RAT and an electronic RAT, for the 

outcome of HbA1c ≥6.0%. Logistic regression was used to build both RATs. 

The following variables were considered for both the RATs: age, sex, ethnicity, 

body mass index (BMI), waist circumference, first degree family history of 

T2DM, history of high blood pressure or antihypertensive use, steroid use, 

smoking status and previous diagnosis of each of the following conditions: high 

cholesterol, angina, stroke, gestational diabetes and polycystic ovary syndrome. 

Only 68.0% of individuals aged 40-75 years old in dataset had complete data on 

all candidate variables as well as the outcome variable, therefore multiple 

imputation of missing candidate variables was performed using fully conditional 

specification (FCS) in Stata 13 (146) using the ice program.  

6.3.1 Multiple imputation 

Multiple imputation using ice has been explained in detail in Chapter 4. The 

multiple imputation carried out on the internal data for this chapter used 50 

imputations. The FCS specified each variable with missing values a conditional 

distribution. These used the candidate variables and the following variables: 

HbA1c, systolic blood pressure, diastolic blood pressure, statins use, alcohol 

consumption, fruit and vegetable consumption (daily or not), exercise (30 

minutes daily or not), surgery for coronary arteriosclerosis, cardiac arrhythmia 

and history of high blood glucose. Continuous variables which did not follow a 

normal distribution were log transformed before imputation was carried out and 

then back transformed along with the imputed values afterwards. Continuous 

variables which still did not follow a normal distribution after log-transformation 

were imputed using bootstrapping to overcome this issue. 

6.3.2 Development of electronic risk assessment tool 

Firstly, backward elimination was carried out starting with the full logistic 

regression model containing all candidate variables and removing variables until 

all remaining variables had p<0.05. After the automatically selected model had 

been produced, it was then considered whether any eliminated variables should 

be added to or replace any of the variables automatically selected due to either 

previous evidence or the health message resulting from their inclusion. The 
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internal area under the receiver operator curve (AUROC) of the models 

considered was calculated to help inform the model selection. Once the linear 

terms to be included in the electronic RAT were selected, interactions and 

quadratic terms were considered. Forward selection was used to add 

interactions and quadratic terms to the linear terms. Due to the large number of 

interactions tested, the interactions and quadratic terms were added to the 

linear terms if their p-value was lower than 0.01 and 0.05 respectively. The 

electronic RAT was simply the logistic regression model of the final model once 

interactions and quadratic terms had been added. 

6.3.3 Development of pen and paper risk assessment tool  

Again backward elimination was carried out starting with the full logistic 

regression model containing all candidate variables and removing variables until 

all remaining variables had p<0.05, the continuous variables were kept 

continuous for this procedure. Once the variables had been selected using this 

automated approach, the continuous variables were then grouped and a logistic 

regression model containing the automatically selected variables but with 

continuous variables grouped was built. The continuous variables were grouped 

as follows: age: 40-49 years old, 50-59 years old, 60-69 years old and 70-75 

years old; BMI: <25 kg/m2, 25 kg/m2 ≤ to <30 kg/m2, 30 kg/m2 ≤ to <35 kg/m2 

and ≥35 kg/m2; waist circumference: less than 90 cm, 90-99 cm, 100-109 cm 

and 110 cm or more. After the automatically selected variables had been fitted 

with continuous variables grouped it was then considered whether any of the 

eliminated variables should be added to or replace any of the variables 

automatically selected due to either previous evidence or the health message 

resulting from their inclusion. The internal AUROC of the models considered 

was calculated to help inform the model selection. Finally the chosen logistic 

regression model was used to produce a simplified RAT that can be completed 

using only pen and paper. The RAT allocates a score to an individual by giving 

them a score for each category they fall into, which is the coefficient of the 

logistic regression model for that category multiplied by 10 and rounded to the 

nearest whole number, the sum of the scores for each category is the 

individual’s total risk score.  
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6.3.4 Comparison of two HbA1C risk assessment tools and LSA risk 

score  

Data of 40- 75 year olds from the Screening Those at Risk (STAR) dataset, 

which has been detailed in Chapter 2, were used for external validation of the 

two RATs developed in this chapter and comparison with the LSA risk score. 

Since the levels of missing data in the STAR dataset were low, 1.9% of 

individuals had a missing value for at least one candidate variable or the 

outcome, and to avoid the need for possibly incorrect assumptions, a complete-

case analysis was used for the external validation. The internal and external 

AUROC, along with 95% confidence interval (CI), was calculated for the two 

HbA1c RATs developed in this chapter as well as for the LSA risk score. The 

internal and external Brier scores were calculated for the three RATs, along with 

the outcome index variance for each dataset.  

Cut-points were chosen to create four risk groupings for both of the HbA1c 

RATs, these cut-points were based on the sensitivity and specificity of the RATs 

for the outcome in the internal data. This allowed the Net Reclassification 

Improvement (NRI) of the potential new RATs’ groups compared to the existing 

LSA risk groups to be calculated in the external data, along with 95% CIs. 

Additionally, the NRI of the electronic RAT’s risk groups compared to the pen 

and paper RAT’s risk groups was calculated, along with 95% CI. The NRI 

shows the difference implementing one RAT in place of another would make to 

the risk group, and thus the advice given to individuals. It should be noted that 

the middle cut-point is the most important as this determines whether 

individuals receive a blood screening test or not.     
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6.4 Results 

There were 6,390 individuals aged 40- 75 years old in the ADDITION-Leicester 

dataset, Table 6.1 displays the amount of missing data for each candidate 

variable and for the outcome variable. The 85 individuals without the outcome 

variable were excluded after the multiple imputation had been carried out, 

leaving 6,305 individuals to develop the two RATs with. Table 6.1 shows the 

imputed data is similar to the observed data, however there are slightly higher 

levels of several of the risk factors in the imputed data than the observed data. 

Table 6.1 Summary statistics of outcome and candidate variables in 
ADDITION-Leicester dataset 

Variable Observed 
data only  

Observed and 
imputed data  

Number of 
Missing values 
(%) 

NDH/undiagnosed T2DM by HbA1c 
(%) 

23.2 N/A 85 (1.3) 

Age, years 57.3 (9.60) 57.4 (9.59) 1 (0.0) 
Sex, Male (%) 49.9 47.7 0 (0.0) 
Ethnicity, White European (%) 75.8 76.1 103 (1.6) 
BMI (kg/m2) 28.1 (4.99) 28.1 (4.97) 221 (3.5) 
Waist (cm) 94.2 (13.1) 94.2 (13.1) 225 (3.5) 
Current smoker (%) 14.5 14.5 237 (3.7) 
*Used high blood pressure drugs (%) 23.4 24.8 1,232 (19.3) 
Previous stroke (%) 2.1 2.8 1,646 (25.8) 
History of high cholesterol (%) 17.4 19.0 1,530 (23.9) 
*History of high blood pressure (%) 27.8 29.4 1,438 (22.5) 
History of Angina (%) 4.8 5.7 1,657 (25.9) 
1st Degree Relative with diabetes (%) 25.2 26.0 1,204 (18.8) 
Females with history of gestational 
diabetes (%) 

1.3 1.3 0 (0) 

Females with PCOS (%) 0.5 0.5 0 (0) 
On steroids (%) 5.1 5.1 0 (0) 

Values given as: mean (sd), unless stated 

*These two high blood pressure variables were combined after imputation to make the 
combined hypertension candidate variable: history of high blood pressure or antihypertensive 
use. 
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6.4.1 Electronic risk assessment tool development 

Table 6.2 displays the logistic regression model selected by backward 

elimination for the outcome of HbA1c ≥6.0%.  

Table 6.2 Logistic regression model for outcome of HbA1c ≥6.0% selected 
using backward elimination starting with all candidate variable (n=6,305) 

Variable Coefficient 95% CI P Value 

Age (years)  0.0477 0.040, 0.055 <0.001 

Angina No Reference group   

 Yes 0.510 0.22, 0.80 0.001 

BMI (kg/m2)  0.0564 0.037, 0.076 <0.001 

Current smoker No Reference group   

Yes 0.458 0.28, 0.64 <0.001 

Ethnicity White Reference group   

Other 1.28 1.1, 1.4 <0.001 

First degree family history of 

T2DM 

No Reference group   

Yes 0.344 0.19, 0.50 <0.001 

Waist circumference (cm)  0.0398 0.0050, 0.021 0.001 
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Table 6.3, displays the logistic regression model with linear terms only chosen 

once the previous evidence and health message of variables had been taken 

into account, in addition to the automated procedure. Angina, which was 

selected by the automatic procedure, was replaced by hypertension in the 

model. Hypertension has frequently been included in RATs for binary glucose 

outcomes, whereas angina very rarely has (55-59,99). The internal AUROC 

only dropped slightly as a result and thus hypertension replaced angina due to 

the strong support for the inclusion of the hypertension variable from previous 

evidence.   

Table 6.3 Logistic regression model for outcome of HbA1c ≥6.0% selected after 
considering the previous evidence and health message (n=6,305) 

Variable Coefficient 95% CI P Value 

Age (years)  0.0483 0.041, 0.056 <0.001 

BMI (kg/m2)  0.0540 0.034, 0.074 <0.001 

Current smoker No Reference group   

 Yes 0.463 0.28, 0.65 <0.001 

Ethnicity White Reference group   

Other 1.28 1.1, 1.4 <0.001 

First degree family history of 

T2DM 

No Reference group   

Yes 0.35 0.20, 0.50 <0.001 

Hypertension (history of high 

blood pressure or 

antihypertensive use)  

No Reference group   

Yes 0.169 0.016, 0.32 0.030 

Waist circumference (cm)  0.0133 0.0055, 0.021 0.001 
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Table 6.4 displays the logistic regression model selected for the electronic RAT. 

This model used a forward stepwise procedure to add interaction and quadratic 

terms to the linear terms selected for inclusion in the model displayed in Table 

6.3. A quadratic term for age has been added, as well as an interaction between 

current smoker and ethnicity. The electronic RAT would give individuals 

completing it their probability of having HbA1c ≥6.0% based on their values of 

the seven variables included in this logistic regression model. 

Table 6.4 Logistic regression model of electronic risk assessment tool for 
outcome of HbA1c ≥6.0% (n=6,305) 

Terms Coefficient 95% CI P Value 

Constant  -10.3 -12.7,-7.8 <0.001 

Age (years)  0.147 0.065, 0.23 <0.001 

Age*Age (years2)  -0.000850 -0.0016, -

0.00014 

0.018 

BMI (kg/m2)  0.0523 0.033, 0.072 <0.001 

Current smoker No Reference group   

 Yes 0.590 0.39, 0.79 <0.001 

Ethnicity White Reference group   

Other 1.35 1.2, 1.5 <0.001 

Current Smoker*Ethnicity   Reference group   

 Smoker & 

Other  

-0.598 -1.0,-0.16 0.008 

First degree family history 

of T2DM 

No Reference group   

Yes 0.357 0.20, 0.51 <0.001 

Hypertension (history of 

high blood pressure or 

antihypertensive use)  

No Reference group   

Yes 0.170 0.017, 0.32 0.029 

Waist circumference (cm)  0.0139 0.0065, 0.23 <0.001 
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Table 6.5 shows the predictive diagnostics of the cut-points chosen to create 

the electronic score risk groups (low, moderate, high and very high) in the 

internal dataset. The cut-points were chosen to give a sensible balance of 

sensitivity and specificity given the risk groups they are thresholds for. The 

predictive diagnostics of these cut-points for the HbA1c based outcome are 

similar to those observed for their LSA counterparts for the original outcome the 

LSA was developed using (51).The middle cut-point, ≥0.2 in this case, is the 

most important as it is the cut-point which would be used for the decision of 

whether to offer a blood screening test or not.  

Table 6.5 Proportion high risk, sensitivity, specificity, PPV and NPV of cut-
points selected for electronic risk assessment tool in the internal dataset 
(n=6,305)   

Cut-

points 

Proportion 

high risk 

Sensitivity Specificity PPV NPV 

≥0.1 85.2  

(84.3, 86.1) 

95.9  

(94.8, 96.9) 

18.0  

(16.9, 19.1) 

26.1  

(24.9, 27.3) 

93.5  

(91.9, 95.2) 

≥0.2 51.2  

(49.9, 52.5) 

73.6  

(71.2, 76.0) 

55.5  

(54.1, 57.0) 

33.4  

(31.7, 35.0) 

87.4  

(86.2, 88.6) 

≥0.4 12.0  

(11.1, 12.8) 

25.3  

(23.0, 27.6) 

92.1  

(91.3, 92.8) 

49.1  

(45.4, 52.7) 

80.3  

(79.2, 81.3) 

Data given as: % (95% CI)   
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6.4.2 Pen and paper risk assessment tool development 

Table 6.6 displays the logistic regression model yielded from using the same 

variables selected by backward elimination earlier but with the continuous 

variables grouped.  

Table 6.6 Logistic regression model for outcome of HbA1c ≥6.0% using the 
same variables as in Table 6.1 but with continuous variables grouped (n=6,305) 

Variable                                  Grouping Coefficient 95% CI P Value 

Age (years) 40-49 Reference group   

 50-59 0.514 0.33, 0.70 <0.001 

 60-69 1.01 0.81, 1.2 <0.001 

 70-75 1.22 0.99, 1.4 <0.001 

Angina No Reference group   

 Yes 0.550 0.26, 0.84 <0.001 

BMI (kg/m2) <25 Reference group   

 25-29 0.194 0.0038, 0.38 0.046 

 30-34 0.505 0.26, 0.74 <0.001 

 ≥35 0.765 0.46, 1.1 <0.001 

Current smoker No Reference group  <0.001 

Yes 0.408 0.23, 0.59 <0.001 

Ethnicity White Reference group   

Other 1.25 1.1, 1.4 <0.001 

First degree family history of T2DM No Reference group   

Yes 0.339 0.18, 0.49 <0.001 

Waist circumference (cm) <90 Reference group   

 90-99 0.239 0.056, 0.42 0.010 

 100-109 0.278 0.054, 0.50 0.015 

 >109 0.733 0.45, 1.0 <0.001 
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Table 6.7 displays the logistic regression model and scoring system of the pen 

and paper RAT selected. The variables included differed slightly to those 

selected automatically, with angina being replaced by hypertension, as was the 

case for the electronic RAT. The internal AUROC of the risk score only dropped 

very slightly as a result of replacing angina with hypertension and thus due to 

the existing evidence supporting hypertension as a risk factor it replaced angina 

in the pen and paper RAT.   

Table 6.7 Logistic regression model and associated scoring system for outcome 
of HbA1c ≥6.0% grouped continuous variables and taking previous evidence 
and health message into account when selecting variables (n=6,305) 

Variable                                  

Grouping 

Coefficient 95% CI P 

Value 

Scoring 

Age (years) 40-49 Reference 

group 

  0 

 50-59 0.503 0.31, 0.69 <0.001 5 

 60-69 1.00 0.81, 1.2 <0.001 10 

 70-75 1.23 1.0, 1.4 <0.001 12 

BMI (kg/m2) <25 Reference group    

 25-29 0.181 -0.0094, 0.37 0.062 2 

 30-34 0.484 0.24, 0.72 <0.001 5 

 ≥35 0.720 0.41, 1.0 <0.001 7 

Current smoker No Reference group    

Yes 0.416 0.23, 0.60 <0.001 4 

Ethnicity White Reference group    

Other 1.24 1.1, 1.4 <0.001 12 

First degree family history 

of T2DM 

No Reference 

group 

   

Yes 0.345 0.19, 0.50 <0.001 3 

Hypertension (history of 

high blood pressure or 

antihypertensive use)  

No Reference group    

 Yes 0.195 0.043, 0.35 0.012 2 

Waist circumference (cm) <90 Reference group    

 90-99 0.239 0.057, 0.42 0.010 2 

 100-109 0.284 0.060, 0.51 0.013 3 

 >109 0.744 0.46, 1.0 <0.001 7 
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Table 6.8 displays the predictive diagnostics of the cut-points chosen to create 

the pen and paper RAT’s risk groups (low, moderate, high and very high) in the 

internal dataset. The cut-points were chosen to give a sensible balance of 

sensitivity and specificity given the risk groups they are thresholds for, although 

these happened to be the same as the LSA cut-points currently used in 

practice. The predictive diagnostics are comparable to those yielded by their 

LSA counterparts for the original outcome the LSA was developed using (51). 

Table 6.8 Proportion high risk, sensitivity, specificity, PPV and NPV of cut-
points selected for the pen and paper risk assessment tool in internal dataset 
(n=6,305)   

Cut-

points 

Proportion 

high risk 

Sensitivity Specificity PPV NPV 

≥7 10.3  

(9.5, 11.0) 

97.4  

(96.6, 98.3) 

12.6 

(11.7, 13.6) 

25.2 

(24.1, 26.3) 

94.2 

(92.3, 96.1) 

≥16 52.1  

(50.8, 53.3) 

74.2 

(71.8, 76.6)  

54.6 

(53.2, 56.0) 

33.1 

(31.5, 34.7) 

87.5 

(86.3, 88.7) 

≥25 13.0  

(12.1, 13.8) 

26.6 

(24.2, 29.0) 

91.2 

(90.3, 92.0) 

47.7 

(44.1, 51.2) 

80.4 

(79.4, 81.5) 

Data given as: % (95% CI)  
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6.4.3 Comparison of HbA1c risk assessment tools and LSA risk score  

Table 6.9 displays the internal and external AUROCs of the two RATs 

developed in this chapter as well as those of the LSA risk score for the outcome 

of HbA1c ≥6.0%. The AUROCs, show good levels of discrimination by all three 

RATs for the outcome of abnormal glucose. The external AUROC of the 

electronic RAT is slightly but significantly higher than both the LSA’s AUROC 

and the pen and paper RAT’s AUROC. This indicates the electronic RAT 

discriminates between individuals with and without abnormal HbA1c marginally 

better than the other two RATs. The external AUROC of the pen and paper RAT 

is not significantly different to the LSA’s (p=0.39). The internal and external 

Brier scores of the three RATs associated probabilities are shown in Table 6.9. 

All are below the outcome index variance of each dataset, showing their 

predictions outperform assigning each individual a prediction of the prevalence 

of the dataset. The LSA’s Brier scores are the highest which is to be expected 

as it was not developed for the outcome being assessed.       

Table 6.9 Internal (n=6,305) and external (n=3,165) AUROCs and Brier scores 
of the LSA risk score, the pen and paper risk assessment tool and the electronic 
risk assessment tool  

Risk 

assessment 

tool 

Internal AUROC  

(95% confidence 

Interval) 

External AUROC 

(95% confidence 

Interval) 

Internal 

Brier score 

(outcome 

index 

variance) 

External Brier 

score (outcome 

index variance) 

LSA 0.675 (0.66, 0.69)  0.671 (0.65, 0.69) 0.167 (0.178) 0.196 (0.207) 

Electronic 0.708 (0.69, 0.72) 0.690 (0.67, 0.71) 0.161 (0.178) 0.191 (0.207) 

Pen and paper 0.702 (0.69, 0.72) 0.677 (0.66, 0.70) 0.162 (0.178) 0.192 (0.207) 
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Figures 6.2-6.4 show that the RATs have similar calibration in the external 

dataset. They all underestimate the risk of the outcome slightly since the 

prevalence of the outcome is higher in the external dataset than the internal 

dataset. 

 

Figure 6.2 Predicted against observed risk of outcome by decile for LSA risk 
assessment tool in external dataset 
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Figure 6.3 Predicted against observed risk of outcome by decile for electronic 
risk assessment tool in external dataset 

 

Figure 6.4 Predicted against observed risk of outcome by decile for pen and 
paper risk assessment tool in external dataset 
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Table 6.10 compares the risk groups given to individuals in the external dataset 

by the pen and paper RAT to those given by the LSA risk score. The NRI of           

-3.24% indicates the pen and paper risk groups on average were slightly worse 

at categorising individuals than the LSA risk groups, although it was not 

significant at the 5% level.  

Table 6.10 Risk Classification of individuals in the external dataset under pen 
and paper risk assessment tool groups compared to LSA risk groups split by 
HbA1c status (n=3,165) 

 
Risk 
classification 
using LSA 
score 

Risk classification using new 
grouped score 

Reclassified  

Low Moderate High Very 
High 

Higher risk Lower 
risk 

Net 
correctly 
reclassified 

Cases (n=927) 
Low 14                     6 0   0  

88 
 

234 
 

Moderate 6  94  44 0 -15.7% 

High 0      95         278 38  

Very High 0       0 133 219   

Non cases (n=2,238) 
Low 117 50 0 0    
Moderate 39 527 165 0 258 538 12.5% 
High 0 281 613 43    
Very High 0 2 216 185    

NRI (95% CI)  -3.24% (-7.64, 1.38) 
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Table 6.11 compares the risk groups given to individuals in the external dataset 

by the electronic RAT to those given by the LSA risk score. The NRI of 2.09% 

indicates the electronic risk groups on average were marginally better at 

categorising individuals than the LSA risk groups, although it was not significant 

at the 5% level.  

 Table 6.11  Risk Classification of individuals in the external dataset under 
electronic risk assessment tool groups compared to LSA risk groups split by 
HbA1c status (n=3,165) 

 
Risk 
classification 
using LSA 
score 

Risk classification using new 
continuous score 

Reclassified  

Low Moderate High Very 
High 

Higher 
risk 

Lower 
risk 

Net 
correctly 
reclassified 

Cases (n=927) 
Low 13                     7 0  0  

91 
 

280 
 

Moderate 20  81  43 0 -20.4% 

High 4      100         266 41  

Very High 0       2 154 196   

Non cases (n=2,238) 
Low 118 55 0 0    
Moderate 170 437 118 0 232 735 22.5% 
High 16 317 545 59    
Very High 0 4 228 171    

NRI (95% CI)  2.09% (-2.42, 6.86) 
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Table 6.12 compares the risk groups given to individuals in the external dataset 

by the electronic RAT to those given by the pen and paper RAT. The NRI of 

4.60% indicates the electronic risk groups on average were better at 

categorising individuals than the pen and paper risk groups, this was significant 

at the 5% level.  

Table 6.12 Risk Classification of individuals in the external dataset under 
electronic risk assessment tool groups compared to pen and paper risk 
assessment tool groups split by HbA1c status (n=3,165) 

 
Risk 
classification 
using new 
grouped score 

Risk classification using new 
continuous score 

Reclassified  

Low Moderate High Very 
High 

Higher 
risk 

Lower 
risk 

Net 
correctly 
reclassified 

Cases (n=927) 
Low 16                     4 0   0  

67 
 

108 
 

Moderate 14  147  34 0 -4.42% 

High 7      38         381 29  

Very High 0       1 48 208   

Non cases (n=2,238) 
Low 139 17 0 0    
Moderate 121 635 104 0 173 375 9.03% 
High 44 160 738 52    
Very High 0 1 49 178    

NRI (95% CI)  4.60% (1.08, 8.19) 
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6.5 Discussion 

The LSA risk score is a widely used self-assessment RAT which identifies 

individuals at a high risk of currently having NDH or undiagnosed T2DM and 

therefore should be screened using a blood test. Since the LSA was developed 

and validated for abnormal glucose defined by an OGTT, this chapter 

considered whether it needs to be replaced with a RAT developed for the 

outcome of abnormal HbA1c in light of the increased use of HbA1c as the 

diagnostic for diabetes status. Two self-assessment RATs for the outcome of 

HbA1c ≥6.0% were developed, a pen and paper RAT and an electronic RAT. 

The comparison carried out in external data did not find either RAT 

outperformed the existing LSA risk score considerably, additionally neither of 

the RAT’s risk groups outperform the established LSA risk groups; therefore 

neither are recommended to replace the LSA risk score in practice. Although 

not selected in either the pen and paper RAT or the electronic RAT, Angina was 

included in the model chosen by backward elimination showing it is a potential 

risk factor for abnormal HbA1c.        

6.5.1 Comparison of risk assessment tools and LSA risk score 

The pen and paper RAT had similar discrimination to the existing LSA risk score 

in the external dataset, with a test of difference in the AUROCs being non-

significant (p=0.39). The NRI comparing the risk groups indicated the pen and 

paper risk groups on average reclassified more individuals incorrectly than 

correctly compared to the LSA risk groups, although this too was non-

significant. Based on the AUROCs and the NRI in the external dataset the pen 

and paper RAT developed in this chapter should not replace the existing LSA 

risk score. 

The electronic RAT had slightly better discrimination and calibration than the 

LSA risk score in the external dataset. Additionally, the NRI comparing the risk 

groups showed the electronic risk groups on average reclassified more 

individuals correctly than incorrectly compared to the LSA risk groups, although 

this was not significant and was only 2.1%. Since the electronic RAT is more 

difficult to calculate, fewer individuals completing it would understand the 

importance of the different risk factors on their overall risk than would when 

completing the LSA risk score. Due to this loss of an educational message 



 

199 
 

about risk factors and there not being a significant difference in the performance 

of the risk groups of the two RATs, which is likely to be an individuals’ main 

understanding of their risk upon completing a RAT, the LSA risk score should 

not be replaced by the electronic RAT.      

The electronic RAT had moderately better discrimination than the pen and 

paper RAT. The electronic risk groups outperformed the pen and paper risk 

groups with the NRI being significantly positive when considering reclassifying 

individuals from the pen and paper risk groups to the electronic risk groups. 

With both the AUROC and NRI being significant but modestly in favour of the 

electronic RAT, if both of the RATs had been suitable to replace the LSA risk 

score, careful consideration would be required to decide which one should be 

selected; as the pen and paper RAT has the advantage of disseminating an 

educational message more clearly than the electronic RAT. The electronic RAT 

outperforming the pen and paper RAT is to be expected, with a study of the 

impact of categorising risk factors in RATs for longitudinal outcomes showing it 

reduces the performance (187). Furthermore, the relatively small decreases in 

performance metrics are likely due to four categories being used for each 

continuous variable, the comparison study found that using more categories 

lessens the negative impact on performance. 

6.5.2 Strengths and weaknesses of analysis 

One advantage of this comparison was the use of the same dataset to develop 

the RATs as was used to develop the LSA risk score. Although not all the same 

candidate variables were considered, as the LSA considered a few variables 

which were not included in the external dataset used in this comparison. 

Notably, fruit and diet intake and physical activity were not considered for the 

new RATs developed. Chapter 3 found diet factors and physical activity were 

often included when considered for RATs developed using logistic regression, 

although the LSA did not include these variables. 

A strength of the RATs developed was the use of multiple imputation of missing 

candidate variables in the internal dataset, in which around a third of individuals 

had at least one candidate variable missing. Multiple imputation is 

recommended as it reduces the loss of information and reduces the bias 
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caused by the missing data (130,136,140). 50 imputations were used which 

simulation studies suggest is more than sufficient (145). Additionally as is best 

practice, all available variables believed to explain the missing variable being 

modelled were used in the multiple imputation even if they were not in the 

subsequent analysis (140). Another strength of the RATs developed was that 

variables were selected using statistical methods alongside previous evidence 

and the health message given by implementing the RAT in practice (66,69).  

Importantly, the comparison considered benefits of implementing the RATs in 

practice. In addition to the discrimination of the RATs for the outcome of 

interest, the health messages the RATs would provide to individuals completing 

them and the performance of the RATs’ risk groups were compared. The 

performance of the RATs’ risk groups were compared using an unweighted 

NRI, this has the disadvantage of only considering whether a reclassification is 

in the right direction and not the importance of moving from the first category to 

the second (190,191). This means moving from low to moderate is equally 

important to the measure as moving from moderate to high. Although this is not 

ideal for the comparison using NRI is important as the advice an individual 

receives when completing a self-assessment depends on the risk group they 

receive and thus the main impact in practice is determined by the risk group 

given. 
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6.6 Conclusion and implications     

The pen and paper RAT’s performance was very similar to the LSA score’s for 

identifying individuals with abnormal HbA1c; while the electronic RAT which has 

practical disadvantages saw only a modest improvement in performance, which 

was not significant in terms of risk groups. Therefore, neither RAT should 

replace the LSA score even if the second stage of screening is HbA1c testing, 

as the LSA was not meaningfully outperformed by either RAT. Most RATs 

developed for the outcome of current NDH or undiagnosed diabetes define 

NDH by OGTT (99). These findings give some reassurance that these RATs 

may perform similarly well in identifying HbA1c NDH or undiagnosed diabetes 

as ones developed specifically for this outcome. However as RATs performance 

is population specific the performance of other RATs for identifying abnormal 

HbA1c should be validated externally before using them to identify individuals to 

be given HbA1c tests. Chapter 8 will add to the evidence of whether the LSA 

risk score is appropriate for identifying individuals with abnormal HbA1c, by 

assessing the performance of the LSA for identifying abnormal HbA1c in a 

dataset of individuals from across England.  
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Chapter 7:  Establishing risk groups for the Leicester Practice 

Risk Score 

7.1 Chapter Outline 

This chapter establishes risk groupings for the Leicester Practice Risk Score 

(LPRS) in order to enable consistent advice to be given across different general 

practices when utilising the risk assessment tool (RAT). Four risk groupings 

(low, moderate, high and very high) are created and validated for the outcome 

of currently having an abnormal glucose level. In addition, as risk groupings 

have already been established for the Leicester Self-Assessment (LSA) risk 

score, high agreement between the risk groupings developed for the LPRS in 

this chapter and those already established for the LSA risk score was aimed for.  

The work in this chapter has been: 

 Orally presented: 

Barber SR, Davies MJ, Khunti K, Gray LJ. ‘Establishing risk groupings for 

the Leicester Practice Risk Score’. At: The Society for Academic Primary 

Care Trent Regional Spring Meeting. 15th March 2016. (P9) 
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7.2 Introduction 

As detailed in Chapter 1, the LPRS was developed in order for general 

practices to utilise data routinely stored in primary care to identity individuals 

most likely to have non-diabetic hyperglycaemia (NDH) or undiagnosed Type 2 

diabetes mellitus (T2DM), and therefore requiring a blood test. The LPRS was 

developed using a logistic regression model with six variables commonly stored 

in primary care databases. Although not original designed to calculate a 

probability for the outcome, the coefficients given for the LPRS can be used to 

calculate the probability of an individual currently having abnormal glucose. The 

equation for calculating the LPRS as a probability is detailed in (7.1) with the 

coefficients rounded to 3 significant figures.    

 

LPRS = 
1

1 + 𝑒−(−6.78 + (0.0401∗𝑎𝑔𝑒) + (0.0821∗𝐵𝑀𝐼) + (0.184∗𝑠𝑒𝑥) + (0.757∗𝐵𝑀𝐸)+(0.550∗𝐻𝐵𝑃)+(0.477∗𝐹𝐻𝐷))
 

Where 

Sex=0 if female and 1 if male 

BME=0 if White European and 1 if other ethnicity 

HBP=0 if not prescribed anti-hypertensives and 1 if prescribed anti-hypertensives 

FHD=0 if no 1st degree family history of diabetes or 1 if family history of diabetes 

(7.1) 

The LPRS has been externally validated with good discrimination found and its 

implementation in two prevention trials has shown its use greatly reduces the 

cost of detecting individuals who currently have abnormal glucose levels 

compared to population level screening (45,52). The LPRS was created to allow 

primary care practices, wishing to perform a mass invitation to screening, to 

rank individuals by their risk of abnormal glucose (45). To date, it has only been 

available as an add-on to software, meaning practices carrying out targeted 

screening programmes can use it to rank individuals and chose a threshold 

depending on the resources they have available for this screening programme. 

This has limited the use of the LPRS in practice. However, the LPRS is 

currently being incorporated by two providers into their database systems which 

are used by many general practices, namely Vision and SystmOne. Supplying a 

risk group for each individual alongside their LPRS would empower general 

practitioners to be able to easily use the LPRS for opportunistic screening in 

consultations which are already taking place, in addition to any target screening 
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invitations their general practice as a whole decides to carry out. The National 

Health Service (NHS) Diabetes Prevention Programme (DPP) highlights that 

such opportunistic screening should be carried out to help identify individuals 

with NDH or undiagnosed T2DM (36). Furthermore, providing risk groups 

ensures consistent advice and screening decisions will be given across different 

general practices when utilising the RAT; as the advice and screening decision 

individuals receive currently depends on their practice. Therefore this chapter 

aimed to propose four risk groupings (low, moderate, high and very high) of the 

LPRS to be used universally. Individuals within the low or moderate risk 

groupings should be considered to have screened negative using the LPRS and 

in practice should be given advice on how to stay healthy or lower their risk 

score. While individuals within the high or very high risk groupings should be 

considered to have screened positive using the LPRS and so in addition to 

being informed how to lower their risk they should be offered a blood screening 

test, glycated haemoglobin A1c (HbA1c) or fasting plasma glucose (FPG), as 

specified by the National Institute for Health and Care Excellence (NICE) (28).    

The LSA risk score is a widely available and used simple risk score that 

individuals can calculate themselves; it has been detailed in Chapter 1 (46). It 

uses seven risk factors, six of which are the same or very similar to the risk 

factors used to calculate the LPRS. Since the risk scores are heavily related 

ideally they should communicate the same or at least a similar message to 

individuals about their risk. As risk groupings have already been established for 

the LSA risk score, this work aimed to achieve high agreement between the risk 

groupings advocated for the LPRS in this chapter and those already established 

for the LSA risk score. Furthermore, high agreement in the screening decisions 

suggested in this chapter and those given by using the LSA with recommended 

cut-point were aimed for.    

  



 

205 
 

7.3 Methods     

The LPRS was calculated as a probability using equation (7.1). The ADDITION-

Leicester dataset was used to develop two sets of risk groupings which were 

considered for recommending for use across general practices. The most-up-to-

date version of the ADDITION-Leicester dataset contained 6,075 individuals 

aged 40- 75 years old with complete data for all the risk factors for the LPRS 

and LSA risk score as well as the outcome. The most up-to-date version of the 

Screening those at risk (STAR) dataset contained 2,872 with complete 

information required for the work in this chapter. The ADDITION-Leicester and 

STAR datasets are detailed in Chapter 2.  

The binary outcome of abnormal glucose used for the analysis in this chapter 

was HbA1c ≥6.0%. This is due to HbA1c being more commonly used by 

general practices as the test to define glucose status, and the NICE guidelines 

specifying this as the cut-point for defining abnormal glucose which requires an 

intervention to be offered (28). A sensitivity analysis was carried out with the 

outcome being defined using FPG, abnormal glucose was defined as FPG 

≥5.5mmol/l as stipulated in the two-stage screening programme advocated in 

the NICE guidelines (28).    

The first set of risk groups, which will be referred to as the Initial risk groups, 

were chosen so that the probabilities of their cut-points closely matched the 

probabilities associated with the LSA risk groups’ cut-points. Additionally, they 

were chosen so that individuals with the same rounded percentage probability 

of the outcome were grouped together, i.e. they were of the form 0. _ _ 5. This 

means individuals could be given their percentage to the nearest whole number 

if they ask for it in a consultation without needing to worry that they may speak 

to another individual who has been given the same percentage but different risk 

grouping leading to confusion. 

The second set of risk groups considered for the LPRS, which will be referred to 

as the Simplified risk groups, were chosen based on the predictive diagnostics 

in the internal dataset. Also the risk groups were chosen to be easy to 

remember, as the widely used body mass index (BMI) groups are, for example 

overweight has cut-points of ≥25 and ≤30. Again, the groups were chosen so 
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individuals with the same rounded percentage probability of the outcome were 

grouped together.  

Sensitivity, specificity, Positive Predictive Value (PPV) and Negative Predictive 

Value (NPV) of the cut-points for both sets of risk groups in the ADDITION-

Leicester dataset were calculated, along with their 95% confidence intervals 

(CI), to assess their internal performance. The level of agreement, expected 

level of agreement and Cohen’s kappa coefficient (described in subsection 

7.3.1) with the LSA risk groups were calculated for both the Initial risk groups 

and the Simplified risk groups in the ADDITION-Leicester dataset. Additionally, 

the level of agreement, expected level of agreement and Cohen’s kappa 

coefficient with the LSA screening decisions were calculated for both the 

screening decisions of the Initial risk groups and the screening decisions of the 

Simplified risk groups. 95% CIs were also calculated for the kappa coefficients.     

The STAR dataset was used to assess the external performance of the cut-

points of both the Initial risk groups and the Simplified risk groups. The 

sensitivity, specificity, PPV and NPV of each cut-point of the Initial and 

Simplified risk groups were calculated, along with their 95% CIs. The level of 

agreement, expected level of agreement and Cohen’s kappa coefficient of the 

LSA risk groups with both the Initial risk groups and the Simplified risk groups in 

the STAR dataset were calculated. Finally, the level of agreement, expected 

level of agreement and Cohen’s kappa coefficient of the LSA screening 

decisions with both the Initial risk groups’ screening decisions and the Simplified 

risk groups’ screening decisions were evaluated. 95% CIs were also calculated 

for the kappa coefficients.         

7.3.1 Cohen’s kappa coefficient 
Cohen’s Kappa coefficient , 𝜅, is a statistical metric for inter-rater reliability; it 

details the levels of agreement in classifications given by two different raters 

(192). In the context of this chapter, 𝜅 measures how often categorisations of 

individuals’ risk determined by two different risk scores’ agree.    

Equation (7.2) shows that 𝜅 reports how the observed level of agreement , 𝑃𝑂 , 

compares to the expected level of agreement by chance, 𝑃𝐸 (192). As (7.2) 

states, 𝑃𝑂 is calculated by summing the number of individuals given a matching 
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categorisation for each of the categories, 𝑀𝑖 , and dividing by the total number of 

individuals rated, 𝑇. While 𝑃𝐸 is calculated by summing the products of the 

proportion of individuals classified into a category by rater A,
𝐴𝑖

𝑇
, with the 

proportion of individuals classified into that category by rater B,
𝐵𝑖

𝑇
. Where 𝐴𝑖 and 

𝐵𝑖 are the number of individuals placed into category 𝑖 by rater A and rater B 

respectively. 

 𝜅 =
𝑃𝑂−𝑃𝐸

1−𝑃𝐸
    

where 𝑃𝐸 = ∑
𝐴𝑖

𝑇

𝐵𝑖

𝑇
    &  

𝑛

𝑖=1
 𝑃𝑂 = 

∑ 𝑀𝑛
𝑖=1 𝑖

𝑇
 

(7.2) 

A 𝜅 of one is yielded when there is perfect agreement between the two groups 

of categorisations; while a 𝜅 of below zero shows the agreement is worse than 

expected by chance. Table 7.1 displays the strength of agreement different 𝜅 

values indicate according to Landis and Koch (193).   

Table 7.1 Strength of agreement shown by different values of Kappa according 
to Landis and Koch 

Kappa Statistic Strength of Agreement 

<0.00 Poor 

0.00 – 0.20 Slight 

0.21 – 0.40 Fair 

0.41 – 0.60 Moderate 

0.61 – 0.80  Substantial  

0.81 – 1.00 Almost Perfect 
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7.4 Results     

In the internal dataset 22.6% of the 6,075 individuals had HbA1c ≥6.0%. While 

in the external dataset 29.0% of the 2,872 individuals had the outcome.  

7.4.1 Initial risk groups 

Table 7.2 details the cut-points for the Initial risk groups considered for the 

LPRS, along with the probability of having the outcome associated with the LSA 

risk groups’ cut-points which they were chosen to closely match. These cut-

points lead to the following LPRS risk groups when displaying the probabilities 

as percentages: 

 Low risk: 0- 7% 

 Moderate risk: 8-16% 

 High risk: 17- 32% 

 Very high risk: 33% or more 

Table 7.2 Cut-points for Initial LPRS risk groups which closely match the 
probability associated with LSA risk groups' cut-points 

LSA cut-

points 

Probability associated with LSA 

score 

Initial cut-point proposed for 

LPRS 

≥7 0.0722 ≥0.075 

≥16 0.1608 ≥0.165 

≥25 0.3204 ≥0.325 
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The sensitivity, specificity, PPV and NPV of the Initial risk groups’ cut-points in 

the internal and external datasets are displayed in Table 7.3. The sensitivities 

and specificities of the cut-points were comparable in the internal and external 

data. The PPVs were higher in the external dataset compared to the internal 

dataset; while the NPVs decreased in the external dataset. The cut-point of 

≥0.075 had extremely high sensitivity and very low specificity in both the internal 

and external data. The cut-point of ≥0.165, which is the most important as it is 

the cut-point for the decision of whether individuals are offered a blood 

screening test, had good sensitivity but modest specificity in both datasets. The 

cut-point of ≥0.325 had good specificity and low sensitivity in both datasets.  

Similar values of sensitivity, specificity, PPV and NPV were found in the 

sensitivity analysis, were the outcome was FPG ≥5.5mmol/l, displayed in the 

Appendix B.   
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Table 7.3  Sensitivity, specificity, PPV and NPV of the Initial risk groups’ cut-points in the internal and external datasets 

Cut-point ADDITION-Leicester STAR 

Sensitivity  Specificity PPV NPV Sensitivity  Specificity PPV NPV 

≥0.075 97.5  

(96.6, 98.3) 

12.3  

(11.3, 13.2) 

24.5  

(23.4, 25.7) 

94.4  

(92.3, 96.1) 

97.5  

(96.2, 98.4) 

9.8  

(8.6, 11.1) 

30.7  

(28.9, 32.5) 

90.5  

(85.8, 94.0) 

≥0.165 73.7  

(71.3, 76.0) 

53.3  

(51.8, 54.7) 

31.6  

(30.0, 33.2) 

87.4  

(86.1, 88.6) 

72.9  

(69.7, 75.9) 

51.7  

(49.5, 53.9) 

38.2  

(35.8, 40.6) 

82.3  

(80.1, 84.4) 

≥0.325 27.9  

(25.5, 30.3) 

89.9  

(89.0, 90.7) 

44.6  

(41.2, 48.0) 

81.0  

(79.9, 82.1) 

21.7  

(18.9, 24.7) 

90.3  

(89.0, 91.6) 

47.9  

(42.7, 53.1) 

73.8  

(72.0, 75.5) 

Values given as % (95% CI). 
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Table 7.4 and Table 7.5 display the proportion of individuals that were 

categorised into each combination of the LSA risk groups and Initial LPRS risk 

groups in the internal and external datasets respectively. A higher proportion of 

individuals were classified by the LSA risk groups as high and very high in the 

external dataset compared to the internal dataset. The internal and external 

datasets had a similar proportion of individuals in each of the Initial LPRS risk 

group. The Initial LPRS risk groups were the same as the LSA risk groups for 

65.6% of individuals in the external dataset, a slight decrease from the internal 

dataset were this was the case for 68.6% of individuals. Table 7.4 indicates only 

0.4% of individuals in the internal dataset had an Initial LPRS risk group that 

differ by two or more categories compared to their LSA risk group. While Table 

7.5 displays only 0.3% of individuals in the external dataset had an Initial LPRS 

risk group that differ by two or more categories compared to their LSA risk 

group.   

Table 7.4 Frequency of LSA risk groups compared to Initial LPRS risk groups in 
the internal dataset 

  Initial LPRS risk group 

 
LSA 
risk 
group 

 Low Moderate High Very High Total 

Low 7.2 3.2 0.0 0.0 10.5 

Moderate 2.8 24.7 6.2 0.2 33.9 

High 0.0 9.1 26.5 3.8 39.4 

Very High 0.0 0.2 5.9 10.2 16.3 

Total 10.1 37.1 38.7 14.1 100 

Values displayed as %. 

Table 7.5 Frequency of LSA risk groups compared to Initial LPRS risk groups in 
the external dataset  

  Initial LPRS risk group 

 
LSA 
risk 
group 

 Low Moderate High Very High Total 

Low 5.6 1.1 0.0 0.0 6.7 

Moderate 2.1 21.0 2.5 0.0 25.6 

High 0.0 14.4 27.2 1.3 42.9 

Very High 0.0 0.3 12.6 11.9 24.8 

Total 7.7 36.8 42.3 13.2 100 

Values displayed as %. 
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Table 7.6 reports a kappa of 0.544 (95% CI: 0.528- 0.560) in the internal data 

and a kappa of 0.499 (95% CI: 0.476- 0.522) in the external data, this indicates 

moderate agreement in both datasets.  

Table 7.6 Agreement of Initial LPRS risk groups with the LSA risk groups  

Dataset Kappa (95% CI) Agreement  Expected Agreement (by chance) 

Internal  0.544 (0.528, 0.560) 68.6%  31.2% 

External 0.499 (0.476, 0.522) 65.6%  31.4% 
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Table 7.7 and Table 7.8 give the proportion of individuals that were classified as 

screening negative and positive by the Initial LPRS screening decision 

compared to the LSA screening decision in the internal and external datasets 

respectively. Lower proportions of individuals received a negative screening 

decision in the external dataset compared to the internal dataset using the LSA 

screening decision; however the proportions in the two datasets were similar 

using the Initial LPRS screening decision. The Initial LPRS screening decisions 

are the same as the LSA screening decisions for 82.7% of individuals in the 

external dataset, a slight decrease from the internal dataset where the two 

matched for 84.3% of individuals.  

Table 7.7 Frequency of LSA screening decisions compared to Initial LPRS 
screening decisions in the internal dataset  

  Initial LPRS screening decision 

 
LSA 
screening 
decision 

 Negative Positive Total 

Negative 37.9    6.4       44.3      

Positive  9.3      46.4     55.7      

Total 47.2    52.8     100       

Values displayed as %. 

Table 7.8 Frequency of LSA screening decisions compared to Initial LPRS 
screening decisions in the external dataset  

  Initial LPRS screening decision 

 
LSA 
screening 
decision 

 Negative Positive Total 

Negative 29.8 2.5 32.3 

Positive  14.8 53.0 67.7 

Total 44.5 55.5 100 

Values displayed as %. 

Table 7.9 reports kappa coefficients of 0.685 (95% CI: 0.660- 0.710) in the 

internal data and 0.641 (95% CI: 0.605- 0.678) in the external data, this shows 

substantial agreement between the two sets of screening decisions.  

Table 7.9 Agreement of Initial LPRS screening decisions with the LSA 
screening decisions 

Dataset Kappa (95% CI) Agreement  Expected Agreement (by chance) 

Internal   0.685 (0.660, 0.710) 84.3%  50.3% 

External  0.641 (0.605 , 0.678) 82.7%  51.9% 
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7.4.2 Simplified risk groups 

Table 7.10 displays the cut-points chosen for the Simplified risk groups 

considered for the LPRS. These cut-points lead to the following LPRS risk 

groups when displaying the probabilities as percentages: 

 Low risk: 0- 10% 

 Moderate risk: 11-15% 

 High risk: 16- 30% 

 Very high risk: 31% or more 

The predictive diagnostics of Simplified risk groups’ cut-points in the internal 

and external datasets are displayed in Table 7.10. The cut-points gave similar 

predictive diagnostics to those yielded by the Initial risk groups’ cut-points. The 

predictive diagnostics yielded for each cut-points were sensible for the two risk 

groups they separated. The low/moderate cut-point being increased to ≥0.105 

gave slightly lower sensitivities and increased, but still low, specificities. The 

moderate/high cut-point being decreased to ≥0.155 resulted in a small reduction 

in the high sensitivities seen and a slight increase in the moderate specificities. 

The high/very high cut-point being decreased to ≥0.305 increased the specificity 

and decreased sensitivity observed in both datasets.  

Similar values of sensitivity, specificity, PPV and NPV were found in the 

sensitivity analysis, where the outcome was FPG ≥5.5mmol/l; displayed in 

Appendix B.   
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Table 7.10 Sensitivity, specificity, PPV and NPV of the Simplified risk groups’ cut-points for HbA1c ≥6.0% in the internal and 
external datasets 

Cut-point ADDITION-Leicester STAR 

Sensitivity  Specificity PPV NPV Sensitivity  Specificity PPV NPV 

≥0.105 92.4 (90.9, 93.8) 26.0 (24.8, 27.3) 26.8 (25.5, 

28.0) 

92.2 (90.6, 

93.6) 

92.6 (90.6, 94.3) 23.3 (21.5, 25.2) 33.1 (31.2, 

35.0) 

88.5 (85.4, 

91.0) 

≥0.155 76.6 (74.2, 78.8) 49.4 (48.0, 50.9) 30.7 (29.1, 

32.2) 

87.8 (86.5, 

89.0) 

77.1 (74.1, 79.9) 47.3 (45.1, 49.5) 37.4 (35.2, 

39.8) 

83.5 (81.2, 

85.6) 

≥0.305 32.2 (29.8, 34.8) 87.6 (86.7, 88.6) 43.3 (40.2, 

46.4) 

81.6 (80.5, 

82.6) 

25.4 (22.5, 28.5) 88.1 (86.6, 89.5) 46.6 (41.9, 

51.3) 

74.3 (72.5, 

76.0) 

Values given as % (95% CI) 
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Table 7.11 reports the levels of agreement between the Simplified LPRS risk 

groups. The Kappa coefficients show the agreement is moderate when 

accounting for the expected agreement by chance. The Simplified LPRS risk 

groups agreement with the LSA risk groups was a little less than the agreement 

seen for the Initial LPRS risk groups in external dataset, 60.8% vs 65.6%.   

Table 7.11 Agreement of Simplified LPRS risk groupings with the LSA risk 
groupings 

Dataset Kappa (95% CI) Agreement  Expected Agreement (by 
chance) 

Internal  0.478 (0.463, 0.493) 62.4% 28.0% 

External 0.444 (0.423, 0.466) 60.8% 29.5% 

 

The Simplified LPRS screening decisions matched the LSA screening decisions 

for 85.1% of individuals in the external dataset and 84.8% of individuals in the 

internal dataset. The kappa coefficients shown in Table 7.12 indicate substantial 

agreement between the two sets of screening decisions. The levels of 

agreement between the LSA and Simplified LPRS screening decisions in the 

external dataset were a little higher than those seen for the LSA and Initial 

LPRS screening decisions. 

Table 7.12 Agreement of Simplified LPRS screening decisions with the LSA 
screening decisions 

Dataset Kappa (95% CI) Agreement  Expected Agreement (by 
chance) 

Internal  0.692 (0.666, 0.717) 84.8% 50.7% 

External 0.680 (0.644, 0.716) 85.1% 53.5% 

 

The two-way frequency tables comparing the Simplified LPRS risk groups to the 

LSA risk groups as well as the Simplified screening decision to the LSA 

screening decisions for the internal and external datasets are given in Appendix 

B.    
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7.5 Discussion     

The use of a computer-based RAT by general practices for patients between 40 

and 75 years old is recommended by NICE (28). The LPRS, unlike the LSA, is 

made up entirely of risk factors stored in primary care databases. The LPRS is 

being incorporated into some general practice database systems, namely Vision 

and SystmOne. Establishing risk groups for the LPRS enables general 

practitioners to use the LPRS easily for opportunistic screening in consultations. 

Furthermore, if adopted nationally the risk groups ensure the same advice and 

screening decision are given to an individual regardless of the general practice 

they are registered to, whether screening be opportunistic or using strategic 

invitations. Ideally the LPRS risk groups should be consistent with the LSA risk 

groups which are widely available for individuals to calculate themselves. 

7.5.1 Performance of proposed risk groups and their agreement with LSA 

risk groups   

Both the Initial and Simplified risk groups for the LPRS perform acceptably in 

terms of statistical performance. With the cut-points of both producing 

acceptable sensitivities and specificities for the two risk groups they separated. 

The Simplified risk groups’ lowest cut-point had considerably higher specificity 

and slightly higher PPV than the Initial risk groups’ lowest cut-point at the 

expense of a small decrease in sensitivity. The sensitivity, specificity, PPV and 

NPV of the other two corresponding cut-points were similar. Due to the 

comparable performance of the Initial and Simplified risk groups in 

distinguishing between individuals with normal and those with abnormal glucose 

levels, as well as in matching the LSA risk groups and screening decisions the 

Simplified risk groups are advocated. The Simplified risk groups have the 

benefit over the Initial risk groups of being easier to remember for both those 

receiving their risk group and healthcare professionals explaining the meaning 

of each risk group to patients.  

The lowest cut-point of the Simplified risk groups, ≥0.105, had very high 

sensitivity showing only a small proportion people with abnormal glucose would 

be classified as low risk under the Simplified risk groups. The highest cut-point 

of Simplified risk groups, ≥0.305, had high specificity meaning only a small 

proportion of individuals with normal glucose would be classified as very high 
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risk. The cut-point of ≥0.155 which decides the screening decision had high 

sensitivity indicating most individuals with abnormal glucose would be offered a 

blood test. The modest specificities, 49.4% in ADDITION-Leicester and 47.5% 

in STAR show that around half of individuals with normal HbA1c measurements 

would be invited to have a blood test. In this context, having a high sensitivity 

and modest specificity is acceptable as reducing false negatives is more 

important than reducing false positives (108). The PPVs and NPVs show that 

slightly more than three of ten individuals offered blood test would have 

abnormal HbA1c measurements and a little less than nine in ten not offered 

would have normal HbA1c measurements.                

In addition to performing well in distinguishing between individuals with normal 

and those with abnormal glucose levels, it is desirable that the chosen LPRS 

categories have high agreement with the existing LSA categories. This is 

because the LSA risk score is widely used (194), thus if the LPRS categories 

are implemented nationally a proportion of individuals will receive two 

communications about their risk from the two different risk scores. In order for 

individuals to receive a consistent message from the two RATs, the risk groups 

for the two have to match, where this is not the case it is best if they are similar 

to one another. Both the Initial and Simplified risk groups had moderate levels 

of agreement with the LSA risk groups, with agreement in the external dataset 

being 65.6% for the Initial risk groups and 60.8% for the Simplified risk groups. 

Reassuringly, in the cases of both the Initial and Simplified risk groups only a 

handful of individuals were classified as a risk group which differed by two 

categories from their LSA risk groups. This indicates that the vast majority of 

individuals not given the same risk groups as for LSA had a risk group only one 

category different using either the Initial or Simplified LPRS risk groups, and 

thus would receive a similar message about their risk from the two scores. 

Furthermore, both the Initial and Simplified LPRS screening decisions had 

substantial agreement with LSA screening decisions, with 82.7% and 85.1% 

agreement respectively. The screening decision matching that of the LSA’s in 

most cases is of importance. In addition to determining whether a blood test is 

offered, the screening decision is likely to be the most influential part of risk 

communication in terms of how an individual understands their risk. 
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The STAR dataset had a higher prevalence of the outcome, 29.0%, than the 

ADDITION-Leicester dataset, 22.6%. The higher prevalence may be due to the 

inclusion criterion of the STAR study of individuals having a risk factor for 

diabetes. Due to this inclusion criterion the proportion of individuals classified as 

low or moderate risk by the Initial LPRS and the Simplified LPRS risk groups 

was slightly lower in the external data than the internal data; while there was a 

marked drop in these proportions for the LSA risk groups. 

7.5.2 Strengths and weaknesses of analysis 

One strength of this analysis was the use of two multi-ethnic datasets 

comprising of individuals living in both urban and rural locations. This meant 

one dataset could be used to develop the two sets of risk groups, while the 

second dataset was used to assess their external performance. A further 

strength is that the datasets contained the whole age in which screening for 

abnormal glucose is advocated, since they were both collected with screening 

for abnormal glucose in mind. Finally, the sensitivity analysis carried out 

ensured the findings were consistent whether HbA1c or FPG was used to 

define abnormal glucose. This means the results are relevant to general 

practices whether they currently use HbA1c or FPG as the second stage of 

screening advised by NICE.   

The datasets had the weakness that they were only comprised of individuals 

from Leicestershire, to help overcome this limitation the Simplified screening 

decision cut-point of ≥0.155 will be assessed in a nationally representative 

dataset in the next chapter of this thesis. Another weakness is STAR required 

individuals to have at least one risk factor for diabetes. This means that the 

proportion of individuals in different risk groups will be slightly skewed 

compared to the general population, with a little less being in the low and 

moderate risk groups and a few more in the high and very high risk groups. The 

proportions observed in the different risk groups for the ADDITION-Leicester 

dataset are likely to give a better estimation of the proportions yielded nationally 

if implemented in practice. Although the proportion of individuals classified as 

high and very high may be slightly increased due to a higher proportion of 

individuals identifying as being BME in this dataset than nationally. For this 

reason, the proportion screened as positive using the cut-point of ≥0.155 will be 
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calculated in the next chapter to give a reliable indication of the proportion that 

would require to be offered a blood test if implemented nationally.     

 

7.6 Conclusion and implications for this thesis 

The results from this chapter support the use of the Simplified LPRS risk groups 

across general practices. The use of the Simplified risk groups would lead to 

approximately 56.5% of 40- 75 year olds being classified as high or very high 

risk nationally. Screening all these individuals at once may be unfeasible for 

general practices, particularly those with a disproportionately large number of 

individuals at high or very high risk. An achievable screening strategy for 

practices may be to invite individuals identified as very high risk, roughly 17% 

nationally, to targeted blood test appointments; and opportunistically offer blood 

tests to individuals identified as high risk when they visit the practice for another 

consultation, as this will require less resources to implement. Although it should 

be noted to identify around 75% of the individuals with abnormal glucose it is 

necessary to screen all individuals deemed to be high or very high risk by the 

Simplified LPRS risk groups. 
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Chapter 8:  External national validation of the Leicester Self-

Assessment and Leicester Practice Risk Scores 

using data from the English Longitudinal Study of 

Ageing  

8.1 Chapter Outline 

This chapter assesses the validity of the Leicester Self-Assessment (LSA) and 

Leicester Practice Risk Score (LPRS) to identify individuals who develop 

diabetes prospectively using a nationally representative dataset. Evaluating the 

risk assessment tools (RATs) when used alone, as well as the performance of 

using each of the RATs as the first stage in a two-staged screening approach, 

with the second stage being a blood test for those categorised as high or very 

high risk by the RAT being used. Additionally, the validity of the RATs for the 

outcome of prevalent non-diabetic hyperglycaemia (NDH) or undiagnosed Type 

2 diabetes mellitus (T2DM) in the nationally representative dataset is assessed.    

The work in this chapter has been:  

 Orally presented: 

Barber SR, Dhalwani NN, Davies MJ, Khunti K, Gray LJ.. ‘Prospective 

validation of The Leicester/Diabetes UK Risk Assessment for diagnosis 

of Type 2 diabetes.’ Diabetes UK Professional Conference 2016. 

Glasgow, UK. 2nd-4th March 2016. (A71, P254)  
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8.2 Introduction 

The LSA and LPRS are non-invasive RATs which have been detailed in section 

1.4.2. To summarise, the RATs were developed using a cross-sectional multi-

ethnic Leicestershire dataset to identify individuals who currently have abnormal 

glucose levels, either NDH or undiagnosed diabetes (46). The LSA has been 

developed so that it can be calculated by the individual themselves or by a lay 

person with the individual present; while the LPRS was designed to be 

calculated by a computer using routine information stored in general practices’ 

databases. A cut-point of ≥16 for the LSA score is recommended, and used in 

clinical practice, for identifying individuals who are at high risk and require a 

blood test (51). While the work in Chapter 7 led to the recommendation that 

individuals with LPRS ≥0.155 be offered a blood test.  

To date both RATs have only been validated for cross-sectional outcomes, 

predominately using Leicester based data (25,45,51). This chapter uses data 

from the English Longitudinal Study of Aging (ELSA) (91), a nationally 

representative dataset of individuals 50 years and over to externally validate the 

RATs. Firstly, this chapter evaluates the cross-sectional performance of the 

RATs in identifying individuals who currently have abnormal glucose levels, 

either those with undiagnosed diabetes or those with NDH or undiagnosed 

diabetes. The discrimination and calibration of the two RATs for these outcomes 

are calculated; as well as predictive diagnostics of the cut-points recommended 

for deciding whether individuals should be offered a blood test by each RAT.   

The concept of identifying individuals who currently have an abnormal glucose 

level is that individuals will be identified earlier along the diabetes pathway and 

thus be given interventions to prevent or delay their progression to diabetes. 

However, no validation for the outcome of developing diabetes in the years 

following the RATs’ calculation using longitudinal data has been carried out to 

date for either of the RATs. Therefore, the discrimination and calibration of the 

two RATs in detecting the incidence of T2DM within four and eight years are 

calculated. Predictive diagnostics of the cut-points recommended for deciding 

whether individuals should be offered a blood test by each RAT are also 

calculated for these binary longitudinal outcomes.   
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The National Institute for Health and Care Excellence (NICE) recommend 

identifying individuals between the age of 40 and 75 years with NDH or 

undiagnosed T2DM using a two-stage screening approach involving a non-

invasive RAT followed by a blood test for individuals with a high risk score (28). 

Figure 8.1 shows the screening programme recommended in the NICE Public 

Health Guidelines 38 (28). Individuals with a high risk score followed by an 

abnormal glucose measurement are either entered into the diabetes pathway, if 

further investigation confirms diabetes, or are invited to take part in an intensive 

lifestyle-change programme. Thus individuals with a high risk score followed by 

an abnormal glucose measurement are defined as screening positive by the 

two-stage screening programme. This chapter evaluates the performance of the 

two staged screening programme with the LSA and LPRS as the first stage of 

screening in identifying the individuals who prospectively develop T2DM. Thus 

assessing the utility of implementing these RATs in practice, as part of the two-

stage screening approach in identifying the individuals who without intervention 

would go onto develop diabetes in the years that follow. 
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Figure 8.1 NICE guidelines on identifying and managing risk of T2DM (28) 

  

http://www.google.co.uk/url?sa=i&source=imgres&cd=&cad=rja&uact=8&ved=0CAkQjRwwAGoVChMI-pOMvNC_yAIVglAaCh2M0Qup&url=http://www.guidelinesinpractice.co.uk/sep_12_holt_diabetes_sep12&psig=AFQjCNEXjGnBW-qcjwNKkDb9b34hvfVYSg&ust=1444831920119046
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8.3 Methods 

8.3.1 Dataset 

Data were taken from ELSA, a nationally representative dataset of people aged 

50 years and older which has been detailed in Chapter 2. ELSA collects data 

from participants every two years, each round of data collection is known as a 

wave. Participants are asked to complete a questionnaire every wave, with 

nurse visits being conducted every other wave (every four years) to collect 

further information, such as blood test measurements. The work in this chapter 

uses Wave 2 (conducted in 2004 and 2005) as the baseline, as this is the first 

wave which included nurse visits and therefore blood test measurements. The 

most recent data available from ELSA at the time of carrying out this work is 

from Wave 6 (conducted in 2012 and 2013) meaning a follow-up period of eight 

years was available for the longitudinal analyses in this chapter.  

Due to high levels of missing data the main analyses presented in this chapter 

were carried out on multiply imputed data. Sensitivity analyses using complete-

case data were also carried out, results of which are reported in Appendix C. 

The multiple imputation used fully conditional specification (FCS) to give each 

missing value 50 imputations. The FCS specified each variable with missing 

values a conditional distribution using the risk factors of both RATs and the 

following variables: glycated haemoglobin A1c (HbA1c) at baseline, HbA1c at 

four year follow-up, HbA1c at eight year follow-up, fasting plasma glucose 

(FPG) at baseline, FPG at four year follow-up, FPG at eight years, weight, 

height, systolic blood pressure, diastolic blood pressure, current smoker 

(yes/no) and cholesterol. Continuous variables which did not follow a normal 

distribution were log transformed before imputation was carried out and then 

back transformed along with the imputed values afterwards. Continuous 

variables which still did not follow a normal distribution after log-transformation 

were imputed using bootstrapping to overcome this issue. 
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8.3.2 Score calculation 

The two RATs were calculated for individuals aged between 50–75 years old (in 

Wave 2), who did not have diagnosed diabetes by Wave 2. Table 8.1 shows the 

ELSA variables used to calculate the LSA and LPRS. Due to the absence of 

any information on family history of diabetes in Wave 2, the family history 

variable was imputed from Wave 6 (2012/13) using whether an individual 

has/had a parent who has/had diabetes at this point instead of whether an 

individual has/had a first degree family member who has/had diabetes at 

baseline.  All other risk factors of the two RATs were all variables recorded in 

Wave 2.   

Table 8.1 ELSA variables used to calculate LSA and LPRS 

Risk factor ELSA variable used for LSA ELSA variable used for LPRS 

Age Age at Wave 2 Age at Wave 2 
Sex Sex at Wave 2 Sex at Wave 2 
Ethnicity Ethnicity at Wave 2 Ethnicity at Wave 2 
Family history of T2DM Parents’ history of diabetes at 

Wave 6 
Parents’ history of diabetes 
at Wave 6 

Waist circumference (cm) Waist circumference at Wave 2 N/A 
Body mass index (kg/m2) BMI at Wave 2 BMI at Wave 2 
High blood pressure Reported been diagnosed with 

high blood pressure before 
Wave 2 

Reported antihypertensive 
medication use at Wave 2 
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8.3.3 Analyses 

Stata 13 (146) was used to carry out the analyses. For reasons which were 

outlined in the introduction, the performance of the following has been analysed: 

 Each of the RATs for binary diabetes-related outcomes at baseline.  

 Each of the RATs for the development of diabetes within the follow-up 

period for those free from diabetes at baseline. 

 The two-staged screening programme (LSA or LPRS followed by a 

blood test at baseline for those above the cut-point of the RAT being 

used) for the development of diabetes within the follow-up period for 

those free from diabetes at baseline.  

The definitions of the various baseline outcomes, for which the performance of 

the two RATs to detect has been assessed, are shown in Table 8.2. FPG and 

HbA1c were used to define the binary outcomes of both undiagnosed diabetes 

alone and NDH or undiagnosed diabetes. Two different cut-points are used to 

define abnormal glucose by FPG, firstly ≥5.5mmol/l which is the cut-point used 

in NICE PH38 to defined high risk by FPG; and secondly ≥6.1mmol/l which is 

the cut-point above which an individual has either impaired fasting glucose 

(IFG) or T2DM.      

Table 8.2 Definition of the various baseline outcomes which the risk 
assessment tools were assessed for detecting  

 Definition of outcome  

Undiagnosed diabetes FPG ≥ 7.0mmol/l  

HbA1c ≥ 6.5%  

NDH or undiagnosed diabetes FPG ≥ 5.5mmol/l 

FPG ≥ 6.1mmol/l 

HbA1c ≥ 6.0% 
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The longitudinal outcomes which were used to assess the ability of the RATs, 

alone and followed by a baseline blood test, to detect those individuals who go 

on to develop diabetes in the years following their risk assessment were: 

 Self-reported doctor diagnosed diabetes within eight years  

 FPG ≥ 7.0mmol/l at four year follow-up (Wave 4: 2008/2009) or self-

reported doctor diagnosed diabetes within four years  

 HbA1c ≥ 6.5% at four year follow-up (Wave 4:2008/2009) or self-reported 

doctor diagnosed diabetes within four years 

 FPG ≥ 7.0mmol/l at eight year follow-up (Wave 6: 2012/2013) or self-

reported doctor diagnosed diabetes within eight years 

 HbA1c ≥ 6.5% at eight year follow-up (Wave 6:2012/2013) or self-

reported doctor diagnosed diabetes within eight years 

For the longitudinal analyses doctor diagnosed diabetes was considered the 

primary outcome, since the other outcomes do not confirm diabetes on their 

own; instead requiring a confirmatory blood test. 

For each of the outcomes evaluated in this chapter, the area under the receiver 

operator curve (AUROC) of the RATs or the two-stage screening process was 

calculated, along with its 95% confidence interval (CI), to assess the 

discrimination of the score in each case. Each RAT has an associated 

probability of having the outcome of interest. The calibration of the RATs was 

assessed for the various outcomes by calculating the Brier score using these 

associated probabilities. The outcome index variance, the Brier score yielded by 

predicting the prevalence of the outcome for each individual is displayed to 

allow a comparison to the non-informative model to be made. For the two-stage 

screening process, calculating the Brier score was not possible since there are 

not any associated probabilities for the different groupings.  
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The prevalence of the both the cross-sectional and longitudinal outcomes were 

calculated across the risk groupings of each RAT. The following predictive 

diagnostics were calculated for the RATs’ recommended cut-points (LSA ≥16, 

LPRS≥0.155) for both the cross-sectional and longitudinal outcomes:   

 Specificity 

 Sensitivity 

 Positive Predictive Value (PPV) 

 Negative Predictive Value (NPV) 

 Percentage correctly classified 

 Percentage classified as high risk 

These predictive diagnostics for the longitudinal outcomes were also calculated 

for the two-stage screening programme, with individuals being defined as 

having screened positive if their RAT was greater than or equal to the cut point 

(LSA ≥16/ LPRS≥0.155) and their resulting blood test was abnormal (FPG 

≥5.5mmol/l, HbA1c ≥6.0%). Separate analyses were carried out to assess the 

impact of the blood test used with both FPG and HbA1c used to define blood 

glucose status at baseline. For ease of reading in this Chapter, the term blood 

glucose will be used to refer to both FPG and HbA1c measurements. Finally, 

the proportion of individuals diagnosed with diabetes within eight years was 

calculated for the following three groups: individuals with a low or moderate risk 

score; individuals with a high risk score and normal baseline glucose 

measurement; individuals with a high risk score and abnormal baseline glucose 

measurement.   

  



 

230 
 

8.4 Results 

Of the 9,432 individuals that took part in ELSA Wave 2 there were 6,778 

individuals in the population of interest for the analyses carried out. The main 

analyses reported in this chapter included all 6,778 individuals in the population 

of interest since multiple imputation was used for missing values of risk factors 

and outcomes.  

Table 8.3 gives the summary statistics of the observed data compared to the full 

dataset used in the main analyses with missing values multiply imputed. The 

proportion with each risk factor and outcome is also given. Three thousand nine 

hundred and two (57.6%) had complete data for all the risk factors in the LSA; 

while 3,935 (58.1%) had complete data for all the risk factors in the LPRS. The 

number with complete data for each analysis is given in Appendix C where 

results of the sensitivity analyses are displayed.  
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Table 8.3 Summary statistics of the risk factors and outcomes observed 
compared to data multiple imputed in population of interest (n=6,778) 

 Observed 

data 

Proportion 

with 

missing 

Data with 

missing 

values 

multiply 

imputed 

Age (years) 62.3 (6.84) 0% 62.3 (6.84) 

50-59 41.0% - 41.0% 

60-69 39.7% - 39.7% 

70-75 19.3% - 19.3% 

BMI (Kg/m2) 27.9 (4.79) 18.6% 27.9 (4.76) 

<25 27.4% - 23.2% 

≥25 & <30 44.0% - 44.8% 

≥30 & <35 20.9% - 23.4% 

≥35 7.6% - 8.7% 

Ethnicity (White European) 97.6% 0% 97.6% 

Family History of diabetes*  14.6% 31.9% 14.4% 

High blood pressure or antihypertensive 

medication use 

38.5% 0% 38.5% 

Antihypertensive medication use 12.5% 0% 12.5% 

Waist circumference (cm) 95.2(13.1) 17.8% 95.1 (12.7) 

<90 28.3% - 34.2% 

90-99 24.2% - 30.4% 

100-109 18.2% - 22.6% 

≥110 11.3% - 12.8% 

Sex (Male) 44.5% 0% 44.5% 

Baseline FPG (mmol/l) 4.96 (0.776) 53.3% 4.97 (0.740) 

Baseline HbA1c (%) 5.47 (0.490) 34.4% 5.47 (0.480) 

FPG at four year follow-up (mmol/l) 4.87 (0.731) 65.5% 4.93 (0.731) 

HbA1c at four year follow-up (%) 5.80 (0.515) 50.9% 5.82 (0.519) 

FPG at eight year follow-up (mmol/l) 5.38 (0.833) 74.6% 5.50 (0.903) 

HbA1c at eight year follow-up (%) 6.08 (0.613) 56.3% 5.89 (0.631) 

Diagnosed diabetes at eight year follow-up 8.41% 31.3% 8.03% 

Values shown as mean (SD), unless stated 
*(Mother or Father who had diabetes by Wave 6) 
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8.4.1 LSA risk score for cross-sectional outcomes 

Table 8.4 shows the LSA had higher AUROCs for detecting baseline diabetes 

range outcomes than baseline NDH or diabetes range outcomes. The Brier 

scores were markedly higher than their associated outcome index variances for 

the diabetes range outcomes. For both the diabetes range outcomes and NDH 

or diabetes range outcomes the AUROCs were highest for the HbA1c defined 

outcome.      

Table 8.4 Discrimination and calibration of LSA risk score for various binary 
cross-sectional outcomes in ELSA dataset 

Outcome Prevalence AUROC 
(95% confidence 

Interval) 

Brier score 
(outcome index 

variance) 

Diabetes: FPG ≥ 
7.0mmol/l  

1.32% (0.877, 1.76) 0.710 (0.646, 0.774) 0.0657 (0.0130) 

Diabetes: HbA1c ≥ 6.5% 2.30% (1.86, 2.75) 0.732 (0.686, 0.780) 0.0689 (0.0225) 

NDH or diabetes: FPG ≥ 
5.5mmol/l  

17.7% (16.2, 19.1) 0.627 (0.604, 0.649) 0.146 (0.146) 

NDH or diabetes: FPG ≥ 
6.1mmol/l  

5.91% (4.90, 6.92) 0.669 (0.635, 0.704) 0.0860 (0.0556) 

NDH or diabetes: HbA1c 
≥ 6.0% 

9.57% (8.73, 10.4) 0.680 (0.654, 0.707) 0.101 (0.0865) 

 

63.3% (95% CI: 62.1, 64.5) of the individuals included in the analysis were 

classified as high risk using the LSA with a cut-point of ≥16. Table 8.5 displays 

using LSA ≥16 for detecting individuals with a blood test measure in the 

diabetes range at baseline had a high sensitivity but low specificity. The NPVs 

were very high, however the PPVs were low. Using the same cut-point for 

detecting individuals with a blood test measure in the NDH or diabetes range at 

baseline led to a drop in sensitivity, marginally increased specificity, higher PPV 

and slightly lower NPV for various definitions of the outcome.   
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Table 8.5 Predictive diagnostics of LSA, with cut-point ≥16, for various binary cross-sectional outcomes in ELSA dataset 

Outcome Sensitivity  Specificity  PPV  NPV  Correctly 
Classified  

Diabetes: FPG ≥ 7.0mmol/l  91.5 (82.7, 100) 37.1 (35.9, 38.3) 1.9 (1.2, 2.6) 99.7 (99.4, 100.0) 37.8 (36.6, 39.1) 
Diabetes: HbA1c ≥ 6.5% 89.7 (83.9, 95.5) 37.4 (36.1, 38.6) 3.3 (2.6, 3.9) 99.4 (99.0, 99.7) 38.6 (37.3, 39.8) 
NDH or diabetes: FPG ≥ 5.5mmol/l 77.0 (74.1, 79.9) 39.7 (38.3, 41.1) 21.5 (19.7, 23.4) 88.9 (87.3, 90.6) 46.3 (44.8, 47.7) 
NDH or diabetes: FPG ≥ 6.1mmol/l 83.2 (78.5, 87.9) 38.0 (36.7, 39.3) 7.8 (6.4, 9.1) 97.3 (96.4, 98.2) 40.7 (39.3, 42.0) 
NDH or diabetes: HbA1c ≥ 6.0% 83.3  (79.8, 86.8) 38.9 (37.6, 40.2) 12.6 (11.4, 13.8) 95.7 (94.7, 96.6) 43.1 (41.8, 44.4) 

Values given as % (95% CI) 
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Figure 8.2 and Figure 8.3 show the prevalence of all the baseline outcomes 

increased in each LSA risk group. 

 

Figure 8.2 Percentage of individuals in each LSA risk group with FPG 
≥7.0mmol/l and HbA1c ≥6.5% at baseline  

Data displayed as % (95% CI) 
 

 
Figure 8.3 Percentage of individuals in each LSA risk group with FPG 
≥5.5mmol/l, FPG ≥6.1mmol/l and HbA1c ≥6.0% at baseline 

Data displayed as % (95% CI) 
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8.4.2 LSA risk score for longitudinal outcomes 

Table 8.6 shows that 8.03% of individuals reported being diagnosed with 

diabetes by a doctor within eight years of baseline. The prevalence of 

individuals that had a measurement in the diabetes range was between 5.56% 

and 13.3% for the two different blood tests at four and eight years after 

baseline. The AUROC ranged from 0.699 to 0.726, with the AUROCs for the 

HbA1c outcomes being marginally lower than the AUROCs for the FPG 

outcomes. All Brier scores were higher than their associated outcome index 

variances. 

Table 8.6 Discrimination and calibration of LSA for various binary longitudinal 
diabetes outcomes in ELSA dataset 

 

Table 8.7 shows using the LSA, with cut-point ≥16, produced high sensitivity 

and very high NPV, though it yielded low specificity and low PPV for the various 

binary longitudinal outcomes. The extremely high NPVs indicate the LSA with 

this cut-point is good for ruling out individuals who are unlikely to develop T2DM 

in the following eight years.  

  

Outcome Prevalence AUROC 
(95% confidence 

interval) 

Brier score  
(Outcome index 

variance) 

Diabetes: FPG≥ 7.0mmol/l 
at Wave 4 or doctor 
diagnosed diabetes within 
four years 
 

5.56% (4.86, 6.26) 0.726 (0.696, 0.755) 0.0812 (0.0525) 

Diabetes: HbA1c ≥ 6.5% at 
Wave 4 or doctor 
diagnosed diabetes within 
four years 
 

9.41% (8.52, 10.3) 0.718 (0.693, 0.742) 0.0979 (0.0852) 

Diabetes: FPG≥ 7.0mmol/l 
at Wave 6 or doctor 
diagnosed diabetes within 
eight years 
 

10.3% (9.02, 11.6) 0.702 (0.678, 0.726) 0.103 (0.0923) 

Diabetes: HbA1c ≥ 6.5% at 
Wave 6 or doctor 
diagnosed diabetes within 
eight years 
 

13.3% (12.1, 14.6) 0.699 (0.674, 0.723) 0.117 (0.115) 

Doctor Diagnosed within 
eight years 

8.03% (7.25, 8.82) 0.717 (0.691, 0.742) 0.0926 (0.0739) 
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Table 8.7 Predictive diagnostic of LSA, with cut-point ≥16, for various binary longitudinal outcomes in ELSA dataset 

Values given as % (95% CI) 

Outcome Sensitivity Specificity  PPV  NPV  Correctly 
Classified (%) 

 

Diabetes: FPG≥ 7.0mmol/l at Wave 4 or 
doctor diagnosed diabetes within four years 

88.3 (84.1, 92.4) 38.7 (37.4, 40.0) 7.8 (6.7, 8.9) 98.3 (97.6, 98.9) 40.3 (39.0, 41.7)  

Diabetes: HbA1c ≥ 6.5% at Wave 4 or doctor 
diagnosed diabetes within four years 

87.3 (83.8, 90.8) 39.4 (38.1, 40.7) 13.0 (11.8, 14.3) 96.8 (95.8, 97.7) 43.5 (42.2, 44.8)  

Diabetes: FPG≥ 7.0mmol/l at Wave 6 or 
doctor diagnosed diabetes within eight years 

85.4 (82.1, 88.6)  39.3 (37.9, 40.6) 13.9 (12.2, 15.6) 95.9 (94.8, 97.0) 44.0 (42.6, 45.5)  

Diabetes: HbA1c ≥ 6.5% at Wave 6 or doctor 
diagnosed diabetes within eight years 

84.9 (81.9, 87.9) 39.4 (38.1, 40.7) 17.9 (16.2, 19.5) 94.5 (93.3, 95.8) 46.0 (44.6, 47.4)  

Doctor Diagnosed within eight years 87.9 (84.6, 91.1) 38.9 (37.6, 40.2) 11.2 (10.0, 12.3) 97.3 (96.6, 98.1) 42.8 (41.5, 44.1)  
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Figure 8.4 and Figure 8.5 show proportion of individuals with each longitudinal 

outcomes increases in each LSA risk group. 

 

Figure 8.4 Percentage of individuals in each LSA risk group with FPG 
≥7.0mmol/l and HbA1c ≥6.5% at four year follow-up 

Data displayed as % (95% CI) 

 

 

Figure 8.5 Percentage of individuals in each LSA risk group with FPG 
≥7.0mmol/l, HbA1c ≥6.5% and diagnosed diabetes at eight year follow-up  

Data displayed as % (95% CI) 
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8.4.3 Two-staged approach with LSA as first stage for longitudinal 

outcomes 

Table 8.8 shows the two-stage screening programme with the LSA as the first 

stage gave AUROCs ranging from 0.721 to 0.761. Using HbA1c in the second 

stage resulted in the best discrimination for outcome. 

Table 8.8 Discrimination of two-stage screening programme, with LSA as first 
stage and various blood tests as second stage, for binary longitudinal outcome 
of doctor diagnosed diabetes within eight years in ELSA dataset 

 

Table 8.9 shows the specificity and NPV of the two-stage screening 

programme’s decision were both high for different blood tests and cut-points 

analysed for stage two. Between 4.9% and 13.6% of individuals were classified 

as high risk depending on the blood test and cut-point used. Using HbA1c 

≥6.0% as the cut-point in the second stage yielded the best combination of 

predictive diagnostics with sensitivity and PPV both being a little under 50%. 

Blood screening test used AUROC 

FPG (with NDH defined as FPG≥5.5mmol/l) 0.755 (0.725, 0.786) 

FPG (with NDH defined as  FPG≥6.1mmol/l) 0.721 (0.693, 0.750) 

HbA1c 0.761 (0.734, 0.787) 
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Table 8.9 Predictive diagnostics of screening decision of the two-stage screening programme, with LSA as first stage and various 
blood tests as second stage, for binary longitudinal outcome of doctor diagnosed diabetes within 8-years in ELSA dataset 

Values given as % (95% CI) 

 

 

 

Blood test used Sensitivity  Specificity PPV  NPV Correctly 
Classified 

Classified as 
high risk 

FPG (with  NDH defined 
as FPG≥5.5mmol/l) 

52.5 (45.8, 59.2) 89.8 (88.7, 90.9) 31.0 (26.7, 35.4) 95.6 (94.8, 96.3) 86.8 (85.6, 88.0) 13.6 (12.4, 14.8) 

FPG (with NDH defined 
as FPG≥6.1mmol/l) 

32.0 (25.5, 38.4) 97.4 (96.8, 98.1) 52.3 (43.7, 60.9) 94.3 (93.5, 95.0) 92.2 (91.3, 93.1) 4.9 (4.0, 5.8) 

HbA1c 47.0 (41.7, 52.2) 95.4 (94.8, 96.1) 47.3 (41.9, 52.8) 95.4 (94.7, 96.0) 91.5 (90.7, 92.4) 8.0 (7.2, 8.8) 
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Figure 8.6 displays the prevalence of doctor diagnosed diabetes within eight 

years for the different risk groupings of two-staged baseline screening with LSA 

as the first stage. It shows that the groupings which are below the cut-off for 

receiving an intensive lifestyle intervention (LSA<16 and LSA≥16 & blood 

glucose in the normal range) had a low prevalence of the outcome; lower than 

seen for the whole dataset. These two groups contain between 86.5% and 

95.1% of individuals depending on the blood test and cut-point used for the 

second stage of screening.  

The group of individuals with LSA ≥16 and NDH has been combined with the 

group with LSA ≥16 and a glucose measurement in the diabetes range, 

meaning the prevalence is shown for individuals with a positive screening 

decision from the full screening programme. Almost half the individuals 

screening positive using either HbA1c ≥6.0% or FPG ≥6.1mmol/l as the cut-

point in the second stage were diagnosed with diabetes within eight years; this 

dropped to around a third when FPG ≥5.5mmol/l was used as the cut-point in 

the second stage.  

 

Figure 8.6 Percentage of individuals from different groupings of two-stage (with 
LSA risk score used at stage one) baseline screening being diagnosed with 
diabetes by a doctor within eight years for various baseline blood tests  

Data displayed as % (95% CI) 
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8.4.4 LPRS for cross-sectional outcomes 

Table 8.10 shows the AUROC of the LPRS for detecting individuals with blood 

glucose in the diabetes range at baseline was higher than the AUROC of the 

LPRS for detecting those with blood glucose in the abnormal range. The Brier 

scores were noticeably higher than their associated outcome index variances 

for the diabetes range outcomes. For both the diabetes range outcomes and 

NDH or diabetes range outcomes the AUROC was highest for the HbA1c 

defined outcome.      

Table 8.10 Discrimination and calibration of LPRS score for various binary 
cross-sectional outcomes in ELSA dataset 

Outcome Prevalence AUROC  
(95% confidence 

interval) 

Brier score  
(Outcome index 

variance) 

Diabetes: FPG 
≥7.0mmol/l  
 

1.32% (0.877, 1.76) 0.678 (0.613, 0.743) 0.0428 (0.0130) 

Diabetes: HbA1c ≥6.5% 
 

2.30% (1.86, 2.75) 0.723 (0.674, 0.771) 0.0474 (0.0225) 

NDH or diabetes: FPG 
≥5.5mmol/l  
 

17.7% (16.2, 19.1) 0.613 (0.590, 0.637) 0.143 (0.146) 

NDH or diabetes: FPG 
≥6.1mmol/l  
 

5.91% (4.90, 6.92) 0.650 (0.615, 0.684) 0.0697 (0.0556) 

NDH or diabetes: HbA1c 
≥6.0% 

9.57% (8.73, 10.4) 0.665 (0.639, 0.0.691) 0.0901 (0.0865) 

 

46.0% (95% CI: 44.8, 47.3) of the individuals included in the analysis were 

classified as high risk using the LPRS with a cut-point of ≥0.155. Using 

LPRS≥0.155 for detecting individuals with a blood glucose measure in the 

diabetes range at baseline had fairly high sensitivity and reasonable specificity 

for the various blood tests. The NPVs were very high, however the PPVs were 

low. Using the same cut-point for detecting individuals with a blood glucose 

measure in the NDH or diabetes range at baseline led to a drop in sensitivity, 

very marginally greater specificity, higher PPV and slightly lower NPV for 

various blood tests and cut-points. 
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Table 8.11 Sensitivity, specificity, PPV, NPV, proportion correctly classified and proportion classified as high risk of LPRS, with cut-
point ≥0.155, for various binary cross-sectional outcomes in ELSA dataset 

Outcome Sensitivity  Specificity  PPV  NPV Correctly Classified  

Diabetes: FPG ≥7.0mmol/l  70.0 (56.9, 83.1) 54.3 (53.0, 55.6) 2.0 (1.2, 2.8) 99.3 (98.9, 99.6) 54.5 (53.2, 55.8) 
Diabetes: HbA1c ≥6.5% 77.4 (69.0, 85.7) 54.7 (53.4, 56.0) 3.9 (3.0, 4.7) 99.0 (98.6, 99.4) 55.2 (53.9, 56.5) 
NDH or diabetes: FPG ≥5.5mmol/l  59.6 (56.1, 63.0) 56.9 (55.4, 58.3) 22.9 (20.7, 25.1) 86.7 (85.2, 88.3) 57.3 (55.9, 58.8) 
NDH or diabetes: FPG ≥6.1mmol/l  66.1 (60.1, 72.1) 55.2 (53.9, 56.6) 8.5 (6.9, 10.0) 96.3 (95.3, 97.2) 55.9 (54.5, 57.2) 
NDH or diabetes: HbA1c ≥6.0% 68.3 (64.1, 72.5) 56.3 (55.0, 57.7) 14.2 (12.7, 15.7) 94.4 (93.5, 95.3) 57.5 (56.1, 58.8) 

Values given as % (95% CI) 
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Figure 8.7 and Figure 8.8 show that the prevalence of every baseline outcome 

increased in each LPRS risk group. 

 

Figure 8.7 Percentage of individuals in each LPRS risk group with FPG 
≥7.0mmol/l and HbA1c ≥6.5% at baseline 

Data displayed as % (95% CI) 
 

 

Figure 8.8 Percentage of individuals in each LPRS risk group with FPG 
≥5.5mmol/l, FPG ≥6.1mmol/l and HbA1c ≥6.0% at baseline 

Data displayed as % (95% CI) 
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8.4.5 LPRS for longitudinal outcomes 

The AUROCs of the longitudinal outcomes ranged from 0.683 to 0.757, with the 

AUROCs for the HbA1c outcomes being higher than the AUROCs for the FPG 

outcomes. Most Brier scores were higher than their associated outcome index 

variances, with the exception of the HbA1c outcome at Wave 6 which had a 

Brier score marginally lower than its associated outcome index variance. 

Table 8.12 Discrimination and calibration of LPRS risk score for various binary 
longitudinal diabetes outcomes in ELSA dataset 

 

Table 8.13 displays using the LPRS, with cut-point ≥0.155, gave very high NPV 

though it yielded low PPV for the various binary longitudinal outcomes. The cut-

point produced a reasonable balance of sensitivity and specificity for the various 

outcomes.      

Outcome Prevalence AUROC  
(95% confidence 

interval) 

Brier score 
(Outcome index 

variance) 

Diabetes: FPG≥ 7.0mmol/l 
at Wave 4 or doctor 
diagnosed diabetes within 
four years 
 

5.56% (4.86, 6.26) 0.706 (0.676, 0.737) 0.0650 (0.0525) 

Diabetes: HbA1c ≥ 6.5% at 
Wave 4 or doctor diagnosed 
diabetes within four years 
 

9.41% (8.52, 10.3) 0.704 (0.679, 0.730) 0.0869 (0.0852) 

Diabetes: FPG≥ 7.0mmol/l 
at Wave 6 or doctor 
diagnosed diabetes within 
eight years 
 

10.3% (9.02, 11.6) 0.683 (0.657, 0.709) 0.0931 (0.0923) 

Diabetes: HbA1c ≥ 6.5% at 
Wave 6 or doctor diagnosed 
diabetes within eight years 
 

13.3% (12.1, 14.6) 0.757 (0.727, 0.788) 0.0804 (0.0831) 

Doctor Diagnosed within 
eight years 
 

8.03% (7.25, 8.82) 0.701 (0.6735, 0.728) 0.0795 (0.0739) 
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Table 8.13 Sensitivity, specificity, PPV, NPV, proportion correctly classified and proportion classified as high risk of LPRS, with cut-
point ≥0.155, for various binary longitudinal outcomes in ELSA dataset 

Values given as % (95% CI) 

 

 

 

 

 

 

Outcome Sensitivity  Specificity  PPV  NPV  Correctly Classified  

Diabetes: FPG≥ 7.0mmol/l at Wave 4 or doctor 
diagnosed diabetes within four years 

74.0 (68.6, 79.3) 56.1 (54.7, 57.4) 9.0 (7.7, 
10.3) 

97.3 (96.7, 
98.0) 

55.5 (54.1, 56.9) 

Diabetes: HbA1c ≥ 6.5% at Wave 4 or doctor 
diagnosed diabetes within four years 

73.2 (69.0, 77.4) 57.0 (55.6, 58.4) 15.0 (13.4, 
16.6) 

95.3 (94.5, 
96.2) 

57.9 (56.6, 59.3) 

Diabetes: FPG≥ 7.0mmol/l at Wave 6 or doctor 
diagnosed diabetes within eight years 

69.9 (65.5, 74.2) 56.7 (55.3, 58.1) 15.6 (13.7, 
17.5) 

94.3 (93.0, 
95.5) 

58.1 (56.7, 59.4) 

Diabetes: HbA1c ≥ 6.5% at Wave 6 or doctor 
diagnosed diabetes within eight years 

69.8 (65.9, 73.6) 57.6 (56.2, 59.0) 20.2 (18.2, 
22.2) 

92.5 (91.3, 
93.8) 

59.2 (57.8, 60.6) 

Doctor Diagnosed within eight years 
 

73.0 (68.4, 77.6) 56.3 (55.0, 57.7) 12.7 (11.3, 
14.2) 

96.0 (95.2, 
96.8) 

57.7 (56.3, 59.0) 
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Figure 8.9 and Figure 8.10 display that the prevalence of every longitudinal 

outcome increased in each LPRS risk group. 

 

Figure 8.9 Percentage of individuals in each LPRS risk group with FPG 
≥7.0mmol/l and HbA1c ≥6.5% at four year follow-up 

Data displayed as % (95% CI) 
 

 

Figure 8.10 Percentage of individuals in each LPRS risk group with FPG 

≥7.0mmol/l, HbA1c ≥6.5% and diagnosed diabetes at eight year follow-up  

Data displayed as % (95% CI)  
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8.4.6 Two-staged approach with LPRS as first stage for longitudinal 

outcomes 

Table 8.14 shows the two-stage screening programme with the LPRS as the 

first stage produced AUROCs ranging between 0.699 and 0.722 for the various 

blood tests and cut-points used in the second stage.  

Table 8.14 Discrimination of two-stage screening programme, with LPRS as 
first stage and various blood tests as second stage, for binary longitudinal 
outcome of doctor diagnosed diabetes within 8-years in ELSA dataset 

 

Table 8.15 shows that the specificity and NPV of the two-stage screening 

programme’s decision were both high for the various blood tests and cut-point 

used in the second stage. Between 3.9% and 10.5% of individuals were 

classified as high risk depending on the blood test and cut-point used. Using 

HbA1c ≥6.0% as the cut-point in the second stage yielded the best combination 

of predictive diagnostics with sensitivity and PPV both being a little less than the 

highest produced.  

Blood screening test used AUROC 

FPG (with  NDH defined as FPG≥5.5mmol/l) 0.718 (0.686, 0.787) 
FPG (with NDH defined as FPG≥6.1mmol/l) 0.699 (0.668, 0.729) 
HbA1c 0.722 (0.692, 0.752) 
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Table 8.15 Predictive diagnostics of two-stage screening programme, with LPRS as first stage and various blood tests as second 
stage, for binary longitudinal outcome of doctor diagnosed diabetes within eight years in ELSA dataset 

Values given as % (95% CI) 

  

Blood test used Sensitivity (%) Specificity (%) PPV (%) NPV (%) Correctly 
Classified (%) 

Classified as 
high risk 

(%) 

FPG  
(with NDH defined as FPG≥5.5mmol/l) 
 

44.0 (37.6, 50.4) 92.4 (91.5, 93.3) 33.6 (28.7, 38.5) 95.0 (94.2, 95.7) 88.5 (87.5, 89.5) 10.5 (9.5, 11.6) 

FPG  
(with  NDH defined as FPG≥6.1mmol/l) 
 

26.7 (20.9, 32.6) 98.1 (97.6, 98.6) 55.1 (46.1, 64.0) 93.9 (93.1, 94.7) 92.4 (91.5, 93.2) 3.9 (3.2, 4.6) 

HbA1c 39.7 (34.6, 44.8) 96.4 (95.8, 97.0) 48.7 (42.9, 54.5) 94.8 (94.1,95.5) 91.8 (91.0, 92.6) 6.5 (5.8, 7.2) 
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Figure 8.11 presents the prevalence of doctor diagnosed diabetes within eight 

years for the different risk groupings of two-staged baseline screening with 

LPRS as the first stage. The groupings which are below the cut-off for receiving 

an intensive lifestyle intervention (LPRS<0.155 and LPRS≥0.155 & blood 

glucose in the normal range) contained between 89.5% and 96.1% of 

individuals depending on the blood glucose test and cut-point used for the 

second stage of screening. These groupings had a low prevalence of the 

outcome, lower than observed for the whole dataset, with the exception of 

individuals with LPRS≥0.155 and FPG<6.1mmol/l which was marginally above 

the prevalence in the whole dataset.  

The group of individuals with LPRS ≥0.155 and NDH has been combined with 

the group with LPRS ≥0.155 and a glucose measurement in the diabetes range, 

meaning the prevalence is shown for individuals with a positive screening as a 

whole. Around half the individuals screening positive using either HbA1c ≥6.0% 

or FPG ≥6.1mmol/l as the cut-point in the second stage were diagnosed with 

diabetes within eight years; this dropped to around a quarter when FPG 

≥5.5mmol/l was used as the cut-point in the second stage.   

 
Figure 8.11 Percentage of individuals from different groupings of two-stage 
(with LPRS used at stage one) baseline screening being diagnosed with 
diabetes by a doctor within eight years shown for various baseline blood tests 

Data displayed as % (95% CI) 
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8.5 Discussion  

This chapter reports the first prospective external validation of both the LSA and 

LPRS using a nationally representative dataset. The LSA and LPRS 

discriminated well in this population for longitudinal diabetes outcomes, as well 

as for binary blood glucose outcomes at baseline. The recommended cut-points 

of the LSA, ≥16, and LPRS, ≥0.155, identified most individuals who were 

diagnosed with diabetes within eight years as being high risk; however many 

individuals who were not diagnosed with diabetes within eight years were also 

identified as high risk. This is acceptable though since the RATs are intended to 

be the first stage of a two-stage screening programme, thus they should be 

viewed as reducing the number of individuals requiring a blood test. Two-stage 

screening with either the LSA or LPRS as the first stage and a blood test as the 

second identified a small proportion of the population with a substantially 

increased risk of developing diabetes in the eight years which followed.  

8.5.1 Dataset and variables 

The dataset used was developed with the purpose of being nationally 

representative of individuals over the age of 50 years old. Although the 

proportion of women was higher than in England as a whole (195). However the 

underrepresentation of men was not pronounced enough to cause concern, with 

44.5% of individuals included being male compared to estimated 48.9% of the 

population aged 50- 75 years old. 

This dataset for the analyses was limited to 50-75 year olds as the RATs were 

designed for 40-75 year olds, and the dataset was developed to be a 

representative sample of people over 50 years old. Applying the RATs either 

alone or as part as a two-stage screening programme to 40-75 year olds, as 

recommended by the NICE guidelines, is likely to yield a lower proportion of the 

population categorised as being high risk, since age is a well-known T2DM risk 

factor and is included in both RATs (46,52). Furthermore, before being applied 

in age groups outside those of the range of this validation, an assessment of the 

performance of the RATs should be carried out using a dataset which includes 

the age group of interest.     
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One weakness of the data used was that individuals’ family history of diabetes 

was not available at baseline, in Wave 2, and therefore parents’ diabetes at final 

(eight year) follow-up was imputed for this variable. While this may not be 

perfect, given the age range of the participants, it was assumed that parents’ 

history would be relatively stable over time (196). Yet the variable probably 

underestimated first degree family history of diabetes as it did not include 

siblings with diabetes, this may have caused the RATs to underperform slightly. 

This imputation is better than not using family history to calculate the score as 

was the case with the only existing geographical external validation for 

prevalent outcomes, since this will lead to the risk being underestimated for 

those with a family history of diabetes (25). That validation also had the 

weakness of including 16- 39 year olds, for whom the RATs were not developed 

and population wide use of RATs are not recommended.  

Another issue was the missing data in three of the risk factors (body mass index 

(BMI), family history of diabetes and waist circumference) as well as all the 

outcome variables. The main analyses used multiple imputation to help 

overcome any bias caused by the missing data as well as the reduction in the 

sample size. Due to the high levels of the missing data, 50 imputations were 

used; as well as sensitivity analyses using complete data only for each analysis. 

The missing at random assumption is impossible to test using observed data 

and thus sensitivity analyses are a sensible check of the performance in the 

main analyses. Reassuringly, the RATs both performed better in the complete-

case analyses than the analyses with multiple imputed data meaning the main 

analyses are more conservative.    

Interestingly the proportion of individuals reporting antihypertensive use was 

lower in the ELSA dataset than in the Leicestershire based dataset, 12.5% 

compared to 23.8% and 22.6%. This may be because the variable was self-

reported in ELSA rather than taken from medical records as should ideally be 

done but could also be reflective of the individuals in Leicestershire based 

datasets being at increased risk compared to the country as a whole. If the 

reason is the former this is likely to have caused underperformance of the LPRS 

in these analyses. 
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8.5.2 Analyses 

The AUROC was chosen as the metric to assess discrimination since it is the 

commonly used measure in this field (55,57,59,99).  As highlighted in Chapter 

3, the discrimination is often of greatest concern to those developing or 

selecting a RAT or screening programme for use in practice; since the AUROC 

indicates the ability to correctly discern between individuals with and without the 

outcome of interest.  

The Brier score was chosen to measure calibration. Though it should be noted 

that the Brier score measures overall fit of a model, of which calibration is a 

component rather than calibration alone (100,101). The Brier score was chosen 

since it is more consistent than tests of perfect calibration, such as the Hosmer-

Lemeshow test (73). The Brier score is affected by the prevalence of the 

outcome, with a decrease in the prevalence leading to a decrease in the 

outcome index variance, which is the Brier score yielded from assigning each 

individual the prevalence as their prediction of the outcome (102). As the 

differently defined outcomes had differing prevalences of the outcome, the 

outcome index variance was displayed next to the Brier score in the tables to 

allow comparisons to be made to the non-informative model in each case. 

A limitation of the analyses in this chapter was they did not include two of the 

RATs that are available in the United Kingdom (UK), namely the Cambridge 

Risk Score (CRS) and QDrisk (47,48). This was due to ELSA not containing 

variables of the RATs, in particular prescribed steroids for the CRS and the 

Townsend score or information to calculate it for QDrisk. A comparison of the 

performance of all the available RATs in the UK for both prevalent NDH or 

undiagnosed T2DM and incident T2DM would be helpful to those trying to 

select between them; especially since a study carried out by Gray et al. found 

differing proportions of the population being placed into the highest risk group 

for the different RATs (197).  

8.5.3 LSA Results 

Using the LSA alone to discriminate the cross-sectional binary outcomes 

yielded good levels of discrimination for identifying individuals currently in the 

diabetes range of the blood test measurements. The AUROCs were lower for 

identifying individuals in the abnormal range; this drop is similar to the one seen 
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for an adult population in the United States of America (USA) used to assess 

the performance of Heikes et al.’s Diabetes Risk Calculator (62,118). The 

AUROC of detecting abnormal FPG, the outcome which the RAT was 

developed using, was a little lower than the AUROC yielded on the population in 

which the LSA was developed, 0.67 compared to 0.69. This slight reduction 

may be due to the age range of dataset being smaller, 50- 75 year old 

compared to 40- 75 year olds. Interestingly the HbA1c defined outcomes had 

the highest AUROC for both the diabetes range outcomes and the abnormal 

range outcomes, being 0.73 and 0.68 respectively. These AUROCS are 

noticeably lower than the AUROC of 0.78 found for the outcome of prevalent 

NDH defined by HbA1c for individuals aged 16 years and older in the HSE 

dataset (25). This increased discrimination is likely due to the vastly wider age 

of that analysis.  

The Brier scores were higher than their associated outcome index variances for 

the diabetes range outcomes indicating poor calibration. This is not surprising 

as the LSA was developed for the outcome of abnormal blood glucose hence 

the associated probabilities greatly overestimate the risk of having a blood 

glucose measurement in the diabetes range. Yet, disappointingly the Brier 

scores were a little higher than their corresponding outcome index variances for 

the abnormal blood glucose outcomes suggesting the calibration was worse 

than that of the non-informative model.  

Using a cut-point of LSA ≥16 identified 63.3% of individuals as high risk and 

thus requiring a blood test. It missed only a few individuals with blood glucose in 

the diabetes range. The cut-point resulted in a large number of individuals 

requiring a blood test to identify one with blood glucose in the diabetes range, 

53 individuals to yield one with FPG ≥7.0mmol/l and 31 to find one with HbA1c 

≥6.5%. The recommended cut-point had satisfactory levels of sensitivity, around 

80%, for all the NDH or undiagnosed T2DM outcomes. Furthermore, the 

extension of the blood glucose range of interest resulted in a significant drop in 

the number of individuals needing a blood test to identify one with the outcome 

of interest, with the numbers decreasing to between five and 13 depending on 

the blood test and cut-point used. Gray et al. found just under a quarter of 

individuals in their study to have a LSA ≥16 (197). One possible cause of this 
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lower proportion is due to the population being younger than the one included in 

this analysis, with an interquartile range of 44- 54 years. Hence if the score was 

applied to 40- 75 year olds the proportion of individuals identified as high risk 

and requiring a blood test would reduce from the 63.3% observed here.        

The LSA had good levels of discrimination for the longitudinal binary diabetes 

outcome, with AUROC ranging from 0.70 to 0.73 for the various outcomes. On 

the other hand the Brier scores show the calibration was poor, though this is to 

be expected as the LSA was not developed for this outcome. Still the 

recommended cut-point of LSA ≥16 produced satisfactory levels of sensitivity 

for the various longitudinal diabetes outcomes. As expected, lower PPVs were 

seen for lower outcome prevalences (95). The PPV for the primary outcome is 

reasonable; it illustrates that one in ten individuals classified as high risk were 

diagnosed with diabetes by a doctor within eight years.  

Good levels of discrimination for diagnosed diabetes by eight year follow-up 

were yielded from using the LSA as the first stage of a two-stage screening 

programme. Using HbA1c ≥6.0% as the cut-point in the second stage gave the 

best combination of predictive diagnostics with sensitivity being 47.0% and PPV 

being 47.3%. The PPV indicates around half of individuals with LSA ≥16 

followed by HbA1c ≥6.0% were diagnosed with diabetes within eight years.  

Although high PPVs are seen for the two-stage baseline screening programme 

with the LSA as the first stage, the sensitivity levels highlight the importance of 

the reassessment of individuals’ risk in three or five years time as 

recommended in NICE Public Health Guidelines 38 (28). One limitation of the 

analysis carried out in this chapter is that, due to the data available, assessing 

the use of the RATs and blood tests iterative, as suggested by NICE guidelines, 

was not feasible.   
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8.5.4 LPRS results 

Using the LPRS alone for discriminating the cross-sectional binary outcomes 

produced good levels of discrimination for detecting individuals that were 

currently in the diabetes range of the blood test measurements, though the 

AUROC dropped for recognising individuals with abnormal blood glucose 

measurements. The AUROCS were lower for the FPG outcomes than those 

observed in the original external validation of the LPRS, 0.68 compared to 0.71 

for undiagnosed T2DM and 0.65 rather than 0.69 for NDH or undiagnosed 

T2DM. However, the AUROC was higher for the outcome of HbA1c ≥6.5%, 0.72 

compared to 0.69; and the same for HbA1c ≥6.0%, both 0.67. As with the LSA, 

the HbA1c defined outcomes had the highest AUROC for both the diabetes 

range outcomes and the NDH or undiagnosed T2DM outcomes. Once again the 

AUROCS were noticeably lower than the AUROC of 0.80 yielded for the 

outcome of prevalent NDH defined by HbA1c for individuals in the HSE dataset 

(25). Although, as stated earlier this increased discrimination is to be expected 

due to the significantly increased age range in that analysis. As expected, poor 

calibration was seen for the diabetes range outcomes. More significantly, the 

calibration of the LPRS was similar to that of the non-informative model for the 

abnormal blood glucose outcomes. 

Selecting a cut-point of LPRS ≥0.155 identifies 46.0% of individuals as high risk 

and thus requiring a blood test. This cut-point has satisfactory levels of 

sensitivity, around 75% for the two diabetes range outcomes. However it led to 

vast numbers of individuals requiring a blood test to identify one with blood 

glucose in the diabetes range, 50 individuals to yield one with FPG ≥7.0mmol/l 

and 26 to find one with HbA1c ≥6.5%. The sensitivity dropped slightly when 

using this cut-point to identify individuals in the abnormal range outcomes. 

However, the numbers of individuals needing a blood test to identify one with 

the outcome of interest were considerably lower for the abnormal range 

outcomes, between four and 12 depending on the blood test and cut-point used.  

The LPRS produced AUROCs ranging between 0.68 and 0.76 for the different 

longitudinal binary diabetes outcome which indicates good levels of 

discrimination. Though, as expected the Brier scores show the calibration was 

poor since the LPRS was not developed for these outcomes. The 
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recommended cut-point of LPRS ≥0.155 yielded reasonable levels of sensitivity 

for the various longitudinal diabetes outcomes. As was the case for the LSA, 

PPVs were positively correlated with outcome prevalences. The PPV for the 

primary outcome indicates that one in eight individuals classified as high risk 

were diagnosed with diabetes by a doctor within eight years.  

Using the LPRS as the first stage of a two-stage screening programme gave 

good levels of discrimination. As was the case when using the LSA as the first 

stage, using HbA1c ≥6.0% as the cut-point in the second stage produced the 

best combination of predictive diagnostics. PPV indicates around half of 

individuals with LPRS ≥0.155 followed by HbA1c≥6.0% were diagnosed with 

diabetes within eight years. The sensitivity levels of the two-stage baseline 

screening programme with LPRS as the first stage, underline the need for 

reassessment of individuals’ risk in future for those currently deemed not to 

require an intensive lifestyle intervention.  
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8.6 Conclusion and implications  

Firstly, the LSA and LPRS have produced comparable performance in 

discriminating cross-sectional outcomes in the nationally representative dataset 

used in this chapter as they did for the Leicestershire based datasets in which 

they were originally developed and externally validated. Therefore they can be 

used across England for the purpose of identifying individuals who currently 

have NDH or undiagnosed T2DM. 

Both RATs produced good levels of discrimination for identifying individuals who 

will progress to diabetes in the years that follow. Furthermore, implementing 

either RATs as the first stage of the two-stage baseline screening 

recommended by the NICE results in good discrimination and the identification 

of a small proportion of individuals with a markedly high risk of progressing to 

doctor diagnosed diabetes in the years that follow. Either RAT could be utilised 

as a useful tool to identify high risk people in the National Health Service (NHS) 

Diabetes Prevention Programme (DPP), which recently launched, since they 

have both been shown to be validated in identifying individuals who will develop 

diabetes unless they receive interventions.  
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Chapter 9:  Discussion 

9.1 Chapter outline 

This chapter concludes the thesis with a general discussion of the work 

presented and of potential further research in the area. Strengths and limitations 

of the work in this thesis are also highlighted.  
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9.2 Summary of findings 

Risk assessment tools (RATs) are advocated as one method for tackling the 

rise in prevalence of Type 2 diabetes mellitus (T2DM) (28,38). RATs help to 

optimise the resources required to detect individuals with non-diabetic 

hyperglycaemia (NDH) or undiagnosed T2DM. Additionally, they can make 

blood tests more acceptable to individuals than under population level 

screening, since they have been identified as being at an increased risk of the 

outcome compared to the population as a whole. This thesis includes work on 

the identification, development and validation of RATs for NDH and T2DM 

outcomes; informing those selecting or developing a RAT with such an outcome 

in particular. Additionally, work on methodological issues around RAT 

development is presented in this thesis, adding to the knowledge in the field of 

RATs as a whole. 

Chapter 3 presented a systematic review of RATs which detect those at high 

risk of NDH in the general population. This was the first systematic review with 

a search strategy that focuses on finding RATs that screen for individuals with 

NDH, with existing systematic reviews in the field having found only three RATs 

for the outcome of prevalent NDH or undiagnosed T2DM (54-59). Eighteen 

RATs which detect individuals with prevalent NDH or with prevalent NDH or 

undiagnosed T2DM were summarised and critiqued, aiding those wishing to 

use such a RAT in their selection or development of an appropriate RAT. 

Additionally, the chapter emphasised the methodological issues highlighted by 

the previous systematic reviews in the area. Treatment of missing and 

continuous data were often not justified in papers detailing the development of 

RATs. Furthermore, external validations were often overlooked and impact 

studies were rare.  

Chapter 4 detailed an empirical comparison of logistic regression, decision trees 

and SVMs for developing RATs for the outcome of prevalent impaired glucose 

regulation (IGR) or undiagnosed T2DM in a cross-sectional dataset. This was 

the first empirical comparison of methods for developing RATs for a medical 

outcome to include an external validation dataset (124-128). Despite the 

inclusion of extensions of the decision tree method such as bagging and 
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boosting, logistic regression and linear SVMs perform the best statistically in the 

external dataset. As linear SVMs do not provide a simple educational message 

in the way logistic regression can, this thesis suggests the use of logistic 

regression for developing RATs for prevalent NDH or undiagnosed T2DM. In 

addition, Chapter 4 assessed the effects of differing the sample size of the 

development dataset on the performance of each of the methods included in the 

empirical comparison through a resampling study. The results highlight the 

improvement in reliability and performance yielded by increasing the number of 

events per variable (EPV). A minimum of 20 EPV are recommended, with 

careful consideration of the evidence for including each candidate variable 

when the number of EPV is between 20 and 50. 

Chapter 5 described the novel application of the chain event graph (CEG) 

method to develop a RAT for the outcome of prevalent NDH or undiagnosed 

T2DM. Issues with implementing CEGs for this novel application were 

overcome to allow the technique to be utilised to produce a RAT for the 

outcome of IGR or undiagnosed T2DM with good internal discrimination. 

However, the discrimination dropped noticeably in the external dataset and 

therefore the method should not be used over logistic regression or linear 

SVMs, which performed better externally.  

Chapter 6 assessed whether the Leicester Self-Assessment (LSA) needed to 

be updated in light of the increased use of glycated haemoglobin A1c (HbA1c) 

as the blood test in practice. A RAT, which could be calculated using pen and 

paper, and a RAT which would require an electronic device to calculate were 

developed using logistic regression with an outcome of HbA1c ≥6.0%. The pen 

and paper RAT had similar discrimination to the LSA for detecting the outcome 

of HbA1c ≥6.0% in an external dataset. While the electronic RAT, which has 

practical disadvantages, performed only marginally better than the LSA for 

detecting HbA1c ≥6.0% in the external dataset. Consequently, neither RAT 

should replace the LSA in practice, as the LSA was not meaningfully 

outperformed by either updated RAT.  

Chapter 7 established risk groups for the Leicester Practice Risk Score (LPRS) 

allowing consistent advice to be given across different general practices when 
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utilising the RAT. These risk groups are currently being incorporated by two 

providers into their database systems which are used by many general 

practices, namely Vision and SystmOne. Giving all individuals in the high or 

very high risk groups a blood test would identify around 75% of individuals with 

HbA1c ≥6.0%. However, this is likely to be unachievable for most general 

practices given the current resources available, even though it should be cost 

saving in the long term. A potentially viable screening strategy which will require 

less resources to implement is suggested. The strategy is to invite all individuals 

identified as very high risk, roughly 17% nationally, to targeted blood test 

appointments, then opportunistically offer blood tests to individuals identified as 

high risk when they visit the practice for another consultation.  

Chapter 8 presented an external national validation of the LSA and LPRS using 

a nationally representative longitudinal dataset. The validation found the LSA 

and LPRS had comparable discrimination for prevalent NDH and prevalent 

NDH or undiagnosed T2DM in the nationally representative dataset as they did 

in the Leicestershire based datasets in which they were developed and 

validated. Consequently they can be used across England to identify individuals 

who currently have NDH or undiagnosed T2DM. In addition both RATs 

discriminated well the individuals who will progress to diabetes within eight 

years from those who will not, despite poor calibration. Importantly, 

implementing either risk score as the first stage of a two-stage baseline 

screening recommended by the National Institute for Health and Care 

Excellence (NICE) resulted in the identification of a small proportion of 

individuals with a decidedly increased risk of progressing to doctor diagnosed 

diabetes in the years that follow. Therefore the use of either RATs in practice 

across England is advocated, since both identify individuals who will develop 

diabetes unless they receive interventions when utilised in the recommended 

two-stage screening programme. The results in Chapter 8 also support the use 

of HbA1c as the screening test for individuals identified as high risk by a RAT 

rather than fasting plasma glucose (FPG).  
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9.3 Strengths and limitations 

A key strength of the work carried out in this thesis is the consideration of the 

use in clinical practice of RATs throughout, alongside the statistical 

performance. This is of great importance as previous systematic reviews of 

RATs for detecting individuals at high risk of diabetes and the one carried out in 

the thesis have reported that although numerous RATs have been developed, 

very few are used in practice (54-59,99). One issue that arises when 

considering both the use in practice and statistical performance of self-

assessment RATs is whether to categorise continuous variables. Doing so 

allows the RATs to be calculated by hand rather than requiring an electronic 

device, however studies have demonstrated that the practice damages the 

statistical performance (187). For these reasons, when developing RATs 

intended to be used for self-assessment logistic regression was utilised to 

create two RATs one with the continuous variables kept continuous and the 

other with categories for the continuous variables. In addition, when developing 

the RAT with categories, advice was followed on keeping the variables 

continuous during risk factor selection. 

Chapters 4-6 in which RATs were developed and Chapter 7 in which risk 

groups were selected for the LPRS used an external dataset, Screening Those 

at Risk (STAR), to assess the validity of the RATs and groups developed. This 

was a strength to the empirical comparison as no previous empirical 

comparison of binary medical outcomes in cross-sectional data has included an 

external validation (124-128). A limitation of this work is the dataset used for 

external validation, although from a different study, was only a temporal 

validation rather than a geographical validation as is best practice (75,87). 

STAR had the same standard operating procedures as ADDITION-Leicester, it 

recruited individuals between 2002 and 2004 while ADDITION-Leicester 

recruited individuals between 2004 and 2009. Both recruited individuals from 

the same group of the population, 40- 75 years old or 25- 75 years old for 

individuals not of white European ethnicity, although STAR required individuals 

to have at least one recognised risk factor for T2DM while ADDITION-Leicester 

did not (46,88).    
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The external national validation of the LSA and LPRS for prevalent NDH and 

prevalent NDH or undiagnosed T2DM, overcame issues of previous external 

validation of the RATs. Namely, the STAR dataset being from the same 

geographical area as the development dataset; while the validation published 

by another group using the Health Survey for England dataset did not use 

family history, an important risk factor, in its calculations of the risk scores as 

well as including 16- 39 year olds for who the RATs were not developed and 

risk scores are not recommended for at a population level (25,28). Another 

strength of this validation was that it also assessed the performance of using 

the risk scores followed by blood tests at baseline in detecting those who 

prospectively develop diabetes. This is of upmost importance since this is the 

way in which RATs are intended to be used in practice.  

The sample size of datasets used for external validation of RATs affects the 

reliability of the results, with studies suggesting datasets need to contain a 

minimum of 100 events and should preferably have more than 200 events 

(198,199). The STAR and English Longitudinal Study of Aging (ELSA) datasets 

used in the external validations in this thesis comfortably meet this benchmark 

for every outcome except for the outcome of undiagnosed T2DM in the ELSA 

dataset. Only around 100 individuals had this outcome when defining it by either 

FPG or HbA1c; however this was not the main outcome of interest with 

prevalent NDH or undiagnosed T2DM and incidence T2DM being of greater 

concern. 

The decision to use an empirical comparison when evaluating the methods for 

developing RATs for the outcome of prevalent NDH or undiagnosed T2DM in 

Chapters 4 and 5 was taken due to the complexity of the causes of abnormal 

glucose. With the intricate nature of the condition meaning the assumptions 

required for a simulation study would be difficult to sensibly choose in order to 

reflect the real-world and may have unfairly favoured one of the methods 

assessed. 

One major limitation of the work carried out in this thesis is the focus on 

developing RATs using a single dataset. Since RATs for NDH and undiagnosed 

T2DM have been shown to often be limited to populations very similar to those 
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in which they were developed, RATs developed using a single dataset may only 

be validated for a limited population (200,201). One solution to this issue that 

has been proposed is the use of meta-analysis of individual patient data (202). 

However, combining individual patient data using meta-analysis is a particularly 

challenging task; substantial barriers are faced even prior to the commencing of 

analysis, with considerable resources and willing collaborators both being 

required (203). The International Diabetes Federation’s (IDF’s) PREDICT-2 

project is currently collecting appropriate datasets with the aim of developing a 

global RAT to predict future diabetes which can be adapted to specific countries 

(201). Fourteen of the 22 datasets obtained so far for this collaboration are 

cross-sectional and thus may contain the outcome of interest of this thesis, 

although the majority of individuals are Caucasian (204). 

The treatment of missing data is a particularly complex issue, with the 

mechanism of missing being difficult to identify (136). When using the 

ADDITION-Leicester dataset for development in Chapters 4 and 6 multiple 

imputation of the candidate variables was carried out to avoid possible bias 

cause by the missing data. Fortunately, the levels of missing in the STAR 

dataset were low so the complete-case data was used to analyse the results in 

Chapters 4- 6, thus providing a check to the multiple imputation data also. Also 

the levels of missing for the variables required for Chapter 7 were low, 3.6%, so 

a complete case analysis was used. The resampling study in Chapter 4 used a 

complete case analysis only, due to computational intensity nature of the work 

carried out. Multiple imputation was also not possible in when developing radial 

SVMs in the empirical comparison in Chapter 4 or CEGs in Chapter 5, due to 

the computational complexity of the methods. A sensitivity analysis was 

included in Chapter 4 with a complete-case analysis using a reduced number of 

candidate variables, to check that none of the methods were detrimentally 

affected by the use of multiple imputation. High levels of missing data for the 

risk factors and outcomes included in the English Longitudinal Study of Aging 

(ELSA) analyses in Chapter 8 are of concern, however, with repeated blood 

tests in a longitudinal study this is unsurprising. The risk factors and outcomes 

were imputed using multiple imputation in an attempt to avoid bias in the 

analyses. However, whichever analysis is used it is likely some bias will have 
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resulted. A complete-case analysis was carried out as a sensitivity analysis, this 

reassuringly showed that the multiple imputation gave the most conservative 

estimates of performance. 

Another limitation of the external prospective validation carried out in Chapter 8 

was it did not include the Cambridge Risk Score (CRS) (48) or the QDrisk (47), 

which is also widely used in practice; due to some of the risk factors required 

not being included in the dataset.  
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9.4 Further research 

The systematic review in Chapter 3 highlighted that many of the RATs for 

prevalent NDH or undiagnosed T2DM lack the external validations and impact 

studies which should be performed before they are implemented in practice. 

Therefore further research in the field should focus on addressing these 

shortcomings to make the RATs fit for purpose rather than development of even 

more RATs, particularly when studying populations for which RATs already 

exist.  

As discussed in Section 9.3 there are methodological issues in applying the 

CEG method to develop RATs for cross-sectional outcomes which this thesis 

was unable to investigate sufficiently due to the time-consuming nature of the 

work, such as the order the risk factors are entered into the model or the way in 

which cut-points to group continuous variables are chosen. However, software 

is currently being developed to reduce the need for coding in developing CEGs 

which may make the investigation of these methodological issues viable in the 

next few years. 

The field would benefit from an analysis of the impact of implementing the full 

two-stage screening programme recommended by NICE in 40- 75 year olds in 

the United Kingdom (UK) being carried out, rather than just the performance of 

baseline screening reported in Chapter 8. With individuals having their risk 

reassessed at the maximum time suggested by the programme for the category 

they are screened into, in addition to baseline two-stage screening. Calculating 

the total number of years of intervention offered and the number of years of 

intervention offered to those who go on to develop diabetes without 

interventions would be extremely informative to decision makers. Furthermore, 

this information could inform a cost effective analysis or impact study of using 

the two-stage screening programme followed by offering interventions where 

recommended in preventing and delaying T2DM. Ideally such an analysis would 

compare all RATs used in practice in the UK to assess diabetes risk (24,45-47). 

This analysis would require a dataset with each of the risk factors of RATs 

included and blood test measurements recorded every year, as well as the 

dates of any diagnosis of T2DM. 



 

267 
 

Finally, advancements in the area of joint modelling of longitudinal and survival 

data provide an opportunity for models of incident T2DM which take into 

account the dynamic risk change over time as a result in the change in different 

risk factors to be established (205,206). Such models would be helpful to inform 

and motivate those wishing to change their or other individuals’ risk of 

developing the condition. 
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9.5 Final conclusions   

RATs for identifying individuals at high risk of T2DM are recommended to tackle 

the rise of the disease. Increasing numbers of RATs have been developed to 

meet this demand, although how they will be applied in practice is often 

overlooked. Many RATs lack the external validations and impact studies 

required to support implementation in practice. It is hoped that the work carried 

out in this thesis informs those wishing to use or develop such a RAT, as well 

as having overcome some issues with implementing the LSA and LPRS in 

practice across England.     
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Appendices. Supplementary material 

Appendix A: Supplementary material relating to systematic review 

Appendix B: Supplementary material relating to Leicester Practice Risk Score 

groups 

Appendix C: Supplementary material relating to English Longitudinal Study of 

Aging sensitivity analyses   
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Appendix A: Supplementary material relating to systematic 

review 

 

Figure 10.1 Search strategy of systematic review 
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Figure 10.2 Systematic review data extraction form 
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Figure 10.3 Risk factors in each risk assessment tool identified in the systematic review 
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 Appendix B: Supplementary materials relating to Leicester 

Practice Risk Score groups  

Table 10.1  Sensitivity, specificity, PPV and NPV of the Initial risk groups’ cut-
points for outcome of FPG ≥5.5mmol/l in the internal and external datasets 

Cut-
point 

ADDITION-Leicester STAR 

Sensitivity  Specificity PPV NPV Sensitivity  Specificity PPV NPV 

≥0.075 96.4  

(95.3, 

97.3) 

12.1  

(11.2, 

13.1) 

26.2  

(25.1, 

27.4) 

91.2  

(88.7, 

93.3) 

97.6  

(96.4, 

98.5) 

5.0  

(4.1, 5.9) 

29.6  

(28.0, 

31.3) 

83.6  

(76.2, 

89.4) 

≥0.165 69.2  

(66.8, 

71.6) 

52.5  

(51.0, 

54.0) 

32.1  

(30.5, 

33.7) 

84.0  

(82.7, 

85.4) 

81.3  

(78.6, 

83.8) 

37.2  

(35.2, 

39.2) 

34.6  

(32.6, 

36.7) 

82.9  

(80.5, 

85.2) 

≥0.325 25.4  

(23.2, 

27.7) 

89.4  

(88.5, 

90.3) 

43.7  

(40.4, 

47.1) 

78.7  

(77.6, 

79.8) 

35.2  

(32.2, 

38.4) 

81.2  

(79.4, 

82.7) 

43.4  

(39.8, 

47.0) 

75.4  

(73.6, 

77.1) 

Values given are % (95% CI). 

 

 

Table 10.2  Sensitivity, specificity, PPV and NPV of the Simplified risk groups’ 
cut-points for outcome of FPG ≥5.5mmol/l in the internal and external datasets 

Cut-
point 

ADDITION-Leicester STAR 

Sensitivity  Specificity PPV NPV Sensitivity  Specificity PPV NPV 

≥0.105 89.9  

(88.2, 

91.3) 

25.6  

(24.4, 

26.9) 

28.1  

(24.4, 

26.9) 

88.6  

(86.8, 

90.3) 

94.8  

(93.2, 

96.1) 

13.6  

(12.2, 

15.1) 

31.0  

(29.3, 

32.7) 

86.5  

(82.5, 

89.9) 

≥0.155 72.4  

(70.1, 

74.7) 

48.7  

(47.2, 

50.1) 

31.4  

(29.8, 

33.0) 

84.5  

(83.1, 

85.9) 

84.2  

(81.7, 

86.5) 

33.5  

(31.6, 

35.5) 

34.1  

(32.2, 

36.1) 

83.8  

(81.3, 

86.2) 

≥0.305 28.9  

(26.6, 

31.3) 

86.9  

(85.9, 

87.9) 

41.7  

(38.7, 

44.7) 

79.0  

(77.9, 

80.2) 

41.2  

(38.0, 

44.4) 

77.8  

(76.0, 

79.5) 

43.1  

(39.9, 

46.5) 

76.4  

(74.6, 

78.1) 

Values given are % (95% CI). 
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Appendix C: Supplementary materials relating to English 

Longitudinal Study of Aging sensitivity analyses   

Table 10.3 Number of individuals with complete data for each analysis  

 LSA  LPRS  LSA 

followed 

by 

HbA1c 

LPRS 

followed 

by 

HbA1c 

LSA 

followed 

by FPG 

LPRS 

followed 

by FPG 

Baseline HbA1c ≥6.0% 3,148  3,168 N/A N/A N/A N/A 

Baseline HbA1c ≥6.5% 3,148 3,168 N/A N/A N/A N/A 

Baseline FPG ≥5.5mol/L 2,272 2,282 N/A N/A N/A N/A 

Baseline FPG ≥6.1mol/L 2,272 2,282 N/A N/A N/A N/A 

Baseline FPG ≥7.0mol/L 2,272 2,282 N/A N/A N/A N/A 

HbA1c ≥6.5% at four 

year follow-up 

2,680 2,680 N/A N/A N/A N/A 

FPG ≥7.0mol/L at four 

year follow-up 

1,807 1,807 N/A N/A N/A N/A 

HbA1c ≥6.5% at eight 

year follow-up 

2,677 2,700 N/A N/A N/A N/A 

FPG ≥7.0mol/L at eight 

year follow-up 

1,577 1,585 N/A N/A N/A N/A 

Doctor diagnosed 

diabetes within eight 

years 

3,883 3,916 3,135 3,155 2,263 2,273 

 

Table 10.4 Discrimination and calibration of LSA risk score for various binary 
cross-sectional outcomes in ELSA dataset using complete-case analysis 

Outcome Prevalence AUROC 
(95% confidence interval) 

Brier score 
(outcome variance index) 

Diabetes: FPG ≥ 
7.0mmol/l  
(n= 2272) 

1.14% 0.716 (0.640, 0.793) 0.0605 (0.0113) 

Diabetes: HbA1c ≥ 
6.5% 
(n=3148) 

1.81% 0.762 (0.703, 0.821) 0.0614 (0.0178) 

NDH or diabetes: 
FPG ≥ 5.5mmol/l  
(n= 2272) 

15.0% 0.632 (0.601, 0.663) 0.130 (0.127) 

NDH or diabetes: 
FPG ≥ 6.1mmol/l  
(n= 2272) 

4.40% 0.688 (0.637, 0.739) 0.0746 (0.0421) 

NDH or diabetes: 
HbA1c ≥ 6.0% 
(n=3148) 

7.72% 0.696 (0.661, 0.730) 0.0886 (0.0712) 
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Table 10.5 Discrimination and calibration of LSA for various binary longitudinal 
diabetes outcomes in ELSA dataset using complete-case analysis 

 

Table 10.6 Discrimination of two-stage screening programme, with LSA as first 

stage and various blood tests as second stage, for binary longitudinal outcome 

of doctor diagnosed diabetes within eight years in ELSA dataset using 

complete-case analysis 

 

  

Outcome Prevalence AUROC 
(95% confidence 

interval) 

Brier score  
(Outcome variance 

index) 

Diabetes: FPG≥ 7.0mmol/l at 
Wave 4 or doctor diagnosed 
diabetes within four years 
(n=1807) 

2.66% 0.734 (0.670, 0.797) 0.0629 (0.0259) 

Diabetes: HbA1c ≥ 6.5% at 
Wave 4 or doctor diagnosed 
diabetes within four years 
(n=2680) 

6.90% 0.742 (0.708, 0.775) 0.0821 (0.0643) 

Diabetes: FPG≥ 7.0mmol/l at 
Wave 6 or doctor diagnosed 
diabetes within eight years 
(n=1577) 

5.20% 0.701 (0.642, 0.761) 0.0712 (0.0493) 

Diabetes: HbA1c ≥ 6.5% at 
Wave 6 or doctor diagnosed 
diabetes within eight years 
(n=2677) 

8.97% 0.754 (0.724, 0.783) 0.0893 (0.0816) 

Doctor Diagnosed within 
eight years 
(n=3883) 

6.80% 0.740 (0.711, 0.768) 0.0839 (0.0634) 

Blood screening test used Prevalence AUROC 
(95% confidence interval) 

FPG (with NDH defined as 
FPG≥5.5mmol/l) 
(n=2263) 

5.61% 0.750 (0.705, 0.794) 

FPG (with NDH defined as  
FPG≥6.1mmol/l) 
(n=2263) 

5.61% 0.731 (0.689, 0.774) 

HbA1c 
(n=3135) 

6.19% 0.774 (0.738, 0.810) 
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Table 10.7 Discrimination and calibration of LPRS score for various binary 
cross-sectional outcomes in ELSA dataset using complete-case analysis 

Outcome Prevalence AUROC  
(95% confidence 

interval) 

Brier score  
(Outcome 

variance index) 

Diabetes: FPG ≥ 7.0mmol/l  
(n= 2282) 

1.14% 0.706 (0.627, 
0.785) 

0.0392 (0.0113) 

Diabetes: HbA1c ≥ 6.5% 
(n=3168) 

1.80% 0.762 (0.699, 
0.824) 

0.0415 (0.0177) 

NDH or diabetes: FPG ≥ 5.5mmol/l  
(n= 2282) 

15.0% 0.623 (0.591, 
0.654) 

0.125 (0.127) 

NDH or diabetes: FPG ≥ 6.1mmol/l  
(n= 2282) 

4.38% 0.675 (0.624, 
0.727) 

0.0578 (0.0419) 

NDH or diabetes: HbA1c ≥ 6.0% 
(n=3168) 
 

7.77% 0.681 (0.647, 
0.715) 

0.0773 (0.0716) 

 

Table 10.8 Discrimination and calibration of LPRS risk score for various binary 
longitudinal diabetes outcomes in ELSA dataset using complete-case analysis 

  

  

Outcome Prevalence AUROC  
(95% confidence 

interval) 

Brier score 
(Outcome variance 

index) 

Diabetes: FPG≥ 7.0mmol/l at 
Wave 4 or doctor diagnosed 
diabetes within four years 
(n=1807) 

2.69% 0.693 (0.620, 0.766) 0.0460 (0.0262) 

Diabetes: HbA1c ≥ 6.5% at 
Wave 4 or doctor diagnosed 
diabetes within four years 
(n=2699) 

7.00% 0.728 (0.693, 0.763) 0.0708 (0.0651) 

Diabetes: FPG≥ 7.0mmol/l at 
Wave 6 or doctor diagnosed 
diabetes within eight years 
(n=1585) 

5.24% 0.699 (0.641, 0.757) 0.0588 (0.496) 

Diabetes: HbA1c ≥ 6.5% at 
Wave 6 or doctor diagnosed 
diabetes within eight years 
(n=2700) 

9.15% 0.757 (0.727, 0.788) 0.0804 (0.0831) 

Doctor Diagnosed within eight 
years 
(n=3916) 

6.95% 0.737 (0.708, 0.765) 0.0709 (0.0646) 
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Table 10.9 Discrimination of two-stage screening programme, with LPRS as 
first stage and various blood tests as second stage, for binary longitudinal 
outcome of doctor diagnosed diabetes within 8-years in ELSA dataset using 
complete-case analysis 

  

Blood screening test 
used 

Prevalence AUROC 
(95% confidence interval) 

FPG (with  NDH defined 
as FPG≥5.5mmol/l) 
(n=2273) 

5.63% 0.739 (0.692, 0.787) 

FPG (with NDH defined as 
FPG≥6.1mmol/l) 
(n=2273) 

5.63% 0.728 (0.682, 0.774) 

HbA1c 
(n=3155) 

6.31% 0.738 (0.698, 0.777) 
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