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Fluid Dynamics of Rotor-Stator Cavities
Bothalage Desanga Rajika Fernando

Abstract

This investigation is of mass, momentum and heat transfer applications of the idealised
rotor-stator cavities using Computational Fluid Dynamics (CFD). This approach is based on
previous literature that provides a fundamental view of the subject. However, this research is
more focused on the development and simulation of high-fidelity computational models to
refine the understanding of rotor-stator flow problems in engineering.

An open source CFD toolbox, OpenFOAM, is used to solve Navier-Stokes equations and
turbulence is modelled using Large eddy simulation (LES) approaches.

The rotor boundary layer roughness is modelled by the parametric force approach, which
is an ideal method to represent real-world roughness. Different types of rough wall conditions
are imposed on the rotor. The roughness of the rotor wall affected the mean velocity profiles
and turbulence intensity at the rotor. Increasing the roughness height transmits these effects
to the stator wall. The outer wall of the rotor-stator cavity provides a passage to transport the
roughness induced disturbances to the stator side, which tends to an unsteady flow even at
minor roughness levels.

The nanofluid heat transfer in the rotor-stator cavities is investigated using single-phase
and two-phase transport models. Both models result in enhanced heat transfer rate by using
different volume fractions of nanoparticles. The two-phase models provide additional infor-
mation on the relative slip in the nanoparticle phase due to the Brownian and thermophoresis
effects. Near the hot stator, particles are displaced away from the surface, which results in a
mild reduction of heat transfer rates.

The final section studies the Lagrangian particle dynamics and deposition in a Rotating
Disk Chemical Vapour Deposition (RCVD) chamber. Here, the rotating effects of the disk
highly agitate the particle phase, which enhances the deposition efficiencies on the rotor.
Apart from that, carrier phase turbulence and thermophoretic forces are important factors in
particle dynamics.
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ũuu filtered instantanious velocity

A1 Townsend’s structure parameter

ix



Nomenclature

AH Hamaker constant

Ap surface area of a particle

ap radius of a particle

Adisk total surface area of the disk

B intersection of the turbulent velocity profile

Bthermal thermal Rossby number

Cc Cunningham correction factor

CD drag coefficent

CL lift coefficent

Cl,Cd model constants of dynamic Smagorinsky model

Cw WALE constant

cp, f constant pressure specific heat capacity of the fluid

Co Courant number

DB Brownian diffusion constant

dp diameter of a particle

DT thermophoresis diffusion constant

e internal energy

Ea adhesive energy

Em mechanical potential energy

Es surface energy

fB simulations with only the Brownian force

fT simulations with the thermophoretic and the Brownian forces

Fbi Brownian force component in the ith direction

G aspect ratio of the caity

x



Nomenclature

GC contact geometry constant

Gi zero mean unit standard deviation Gaussian random number

Gr Grashof number

H shape factor of a boundary layer

h height of the cavity

he specific enthalphy

hr roughness height of the roughness model

hT convective heat transfer coefficent

K entrainment coefficent

k turbulent kinetic energy

kc thermal conductivity of the carrier phase

Ke kinetic energy of the fluid

kp thermal conductivity of the particle

kr height of a roughness element

ks sand grain roughness

kT thermal conductivity of material

Ky a mechanical constant

kB Boltzmann constant [1.38×10−23m2kgs−2K−1]

k f thermal conductivity of the fluid/water

kn f thermal conductivity of the nanofluid

knp thermal conductivity of the nanoparticles

ksgs subgrid-scale kinetic energy

Kn Knudsen number

le finite length of an eddy

xi



Nomenclature

mp mass of the particle

ns shape factor of the nanoparticles

Nur local Nusselt number

p∗ normlised probability density at t=40s

Pr Prandtl number

Prsgs subgrid-scale Prandtl number

Prtur turbulent Prandtl number

Qm ratio of resolved kinetic energy to total kinetic energy

R gas constant for air [287.06 J/kgK]

r local radius of the disk

r1 inner radius of the annular cavity

R2 radius of the inlet pipe of the CVD chamber

r2 outer radius of the annular cavity

Rm curvature of an annular rotating disk cavity

Rr local radial location of the pipe plane of the CVD chamber

Rδ Reynolds number based on the local radius of the rotating disk

Rθθ resolved Reynolds stress components in tangential direction

Rrr resolved Reynolds stress components in radial direction

Ra Rayleigh number

Reh Reynolds number based on the height of the cavity

Rep particle Reynolds number

Reδ ,c critial transition Reynolds number based on the local radial value of the disk

Reδ ,edge Reynolds number based on the local radial value of the disk at the edge of the disk

Reω,local local Reynolds number based on rotation rate of the disk

xii



Nomenclature

ReΩc Reynolds number based on the vorticity magnitude of the carrier phase

Reτ Reynolds number based on the friction velocity

Reh,ω Reynolds number based on the cavity height and the rotation rate of the disk

Ro Rossby number

SP single-phase simulation model

T temparature of the fluid/water

t time

T1 tempatrure of the rotor

T2 tempatrure of the stator

TC temparture of the carrier phase

te finite lifespan of an eddy

TP two-phase simulation model

Tcold cold boundary of the CVD chamber

Thot hot boundary of the CVD chamber

Tu flow disturbance level

up velocity of the particle

Ur time-averaged resolved velocity component in the radial direction

u′x,u
′
y,u

′
z velocity fluctuation components of uuu

uτ friction velocity

Uθ ,max maximum tangential speed of the disk [r2ω]

uθ ,r time-averaged resolved relative tangential velocity

Uθ time-averaged resolved velocity component in the tangential direction

U∗
θ

time-averaged resolved dimensionless velocity component in the tangential direction

u+
θ

time-averaged resolved relative tangential velocity normalised by friction velocity

xiii



Nomenclature

U∗
r time-averaged resolved dimensionless velocity component in the radial direction

Uz time-averaged resolved velocity component in the wall-normal direction

U∗
z time-averaged resolved dimensionless velocity component in the wall-normal direc-

tion

VP volume of a particle

VPM cell volume

YM,1 modulus of elasticity of the particle

YM,2 modulus of elasticity of the surface

z wall-normal direction to the rotating disk/plane

z+ dimensionless wall units

N neighbouring cell centre

P current cell centre

Greek Symbols

ααα roughness factor of the roughness model

αe f f effective thermal diffusivity

δ2 momentum thickness of the boundary layer

αn normalised volume fractions for two-phase simulation model

αp volume fraction of Lagrangian particle phase

βthermal thermal expansion coefficient

δ boundary layer thickness of the rotating disk =
√

ω/ν

δ1 displacment thickness of a boundary layer

δH clearence between rotating components and stationary components in the rotor-stator
cavity

∆sgs subgrid-scale filter width

xiv



Nomenclature

∆w WALE model filter width

ε rate of dissipation of turbulence energy

εd Adhesion distance

εP eddy diffusivity of the particle

ηT thermophoretic coefficent

η f a scalar property of the fluid/water

ηn f a scalar property of the nanofluid

ηnp a scalar property of the nanofluid

ηr an auxilary roughness function

γ2 rotation rate of the second disk in a rotor disk system or two-parameter family disk
systems

γ1 rotation rate of the second disk in the one-parameter family disk system

∆γa sufrace adhesive energy per unit area

γg mean gradient angle

Γ generic diffusion coefficent

γm mean velocity angles

γτ turbulent shear stress angles

κ von Kármán constant of the turbulent veocity profile

λ f mean free path of a fluid particle

λT thermal conductivity

µ f dynamic visocity of the fluid/water

µn f dynamic visocity of the nanofluid

µsgs subgrid-scale dynamic viscosity

µsgs subgrid-scale dynamic visocity

xv



Nomenclature

µt turbulent dynamic viscosity

ν kinematic viscosity of the fluid

νsgs subgrid-scale kinamatic visocity

δ99 boundary layer thickness

ω rotation rate of the first disk

τw wall shear stresses

ωcωcωc carrier phase vorticity vector

ΩCΩCΩC rotation tensor

φ volume fraction of the nanoparticles

φm maximum particle packing density

ψ arbitary vector or scalar field

ψ̃ filtered flow variable

̂̃ψ filtered flow variable at secondary filter

ψS sphericity of the nanoparticles

φt0 inceptive volume fraction/ volume fraction at t = 0

ρ density of the fluid

ρc density of the carrier phase

ρp particle density

θ tangential direction of the rotor disk

τk Kolmogorov time scale

τl eddy turnover time

τp particle relaxation time

τreyτreyτrey Reynolds tensor

τsgsτsgsτsgs subgrid-scale stresses

xvi



Nomenclature

τe f fτe f fτe f f the effective shear stresses on the fluid

Acronyms / Abbreviations

BBO Basset–Boussinesq–Oseen

BEK Bödewadt-Ekman- Kármán

C-F Cross-Flow

CFD Computational Fluid Dynamics

CVD Chemical Vapour Deposition

DNS Direct Numerical Simulations

LES Large Eddy Simulations

EIM Eddy Interaction Model

FDM Finite Difference Method

FEM Finite Element Method

FVM Finite Volume Method

IBM Immersed boundary method

IS Inertial Sublayer

LDV Laser Doppler Velocimetry

LPT Lagrangian particle tracking

MSD Mean Square Distance

OpenFOAM Open Source Field Operation and Manipulation

PISO Pressure Implicit with Splitting of Operators

RANS Reynolds Averaged Navier-Stokes

RCVD Rotating Disk Chemical Vapour Deposition

R.M.S Root Mean Square

RS Roughness Sublayer

xvii



Nomenclature

S-C Streamline-Curvature

SIMPLE Semi-Implicit Method for Pressure Linked Equation

S-I particle-surface interactions

VANS Volume-Averaged Navier-Stokes

WALE Wall Adapting Local Eddy-viscosity

xviii



Chapter 1

Introduction

1.1 Context

The rotor-stator disk cavities are an exciting topic among the scientific community, not only
because of rich and complicated flow structures in boundary layers but their strong influence
on many engineering and real-world applications. Figure 1.1 shows some of the typical
rotor-stator cavity configurations available in the literature. The most common application
areas, such as turbomachinery, the internal aerodynamics of combustion engines, mixing
devices, computer storages, electronic devices, crystal growth processes, spread throughout
the multiple engineering disciplines. It is important to get a collective approach to understand
the relations and links between the mass, momentum and heat transfer processes of the
rotor-stator boundary layers. Computational Fluid Dynamics (CFD) provides the means for
addressing this aim. The current investigation develops CFD models to capture the behaviour
of mass, momentum and heat transfer aspects in of the cylindrical gap between a rotating
disk and a stationary disk above it, at requires that have not been thoroughly investigated
in previous investigations. In rotor-stator disk systems, the rotating disk is the rotor and the
stationary disk lid referred to as the stator.

The structures of the rotor and stator boundary layers resemble Ekman and Bödewadt
boundary layers of Bödewadt-Ekman- Kármán (BEK) family. However, the finite extent of
the rotor-stator disk cavity does not lead to the same behaviour of Ekman and Bödewadt
boundary layers, but much of the rotor and stator system exhibits of BEK type boundary
layers.

There is a considerable number of investigations devoted to studying the fundamental
mass, momentum and heat transfer aspects of the rotor-stator disk systems. Following the
early experimental investigations, the first notable numerical investigation on the rotor-stator
disk system is reported by Serre et al. (2001). Later, Séverac et al. (2007) and Makino et al.

1



1.1 Context

Fig. 1.1 The geometric representations of the typical rotor-stator configurations available in
literature, (a) cylindrical rotor-stator cavity, (b) annular rotor-stator cavity, (c) open rotor-
stator, (d) rotor-stator cavity with throughflow.

(2015) studied the transition to turbulent flow in rotor-stator cavities. Similarly, a series
of investigations, including (Serre et al., 2002; Poncet and Serre, 2008; Tuliszka-Sznitko
et al., 2009a; Tuliszka-Sznitko and Majchrowski, 2010; Tuliszka-Sznitko et al., 2011, 2012),
studied the heat transfer characteristics of rotor-stator disk systems.

These investigations provide an understanding of the core aspects of rotor-stator disk
boundary layers. The current study is based upon the groundwork of these previous inves-
tigations, but this tries to combine the previous understanding of rotor-stator disk systems
with more engineering and real-world oriented aspects, which might be useful now or in the
future. This thesis can be divided into three main parts based on the transport phenomena of
interest and the following sections describe the current progress of these respective areas.

First part mostly concerns the momentum transport in rotor-stator cavities and on the
influence of surface roughness on the behaviour of the cavity. The surface roughness is an
important factor in many engineering applications. Polishing surfaces to a smooth finish
can be uneconomical and sometimes surface roughness can be used to enhance specific flow
features. Nikuradse (1950) did a notable study on rough wall tubes and this investigation
introduced the concept of sand grain roughness, which based on the height of the roughness
elements. Later, it was found that the roughness height is not the only parameter that
governs the characteristics of the rough walls and Schlichting et al. (1955) introduced the
concept of effective sand grain roughness, which can interpret any rough wall surface using
an equivalent sand-grain roughness. After that, many investigations (Antonia and Luxton,

2



1.1 Context

1971, 1972; Mulhearn, 1978; Pendergrass and Arya, 1984; Raupach et al., 1991) devoted
to studying the properties of rough walls. However, most of the investigations appeared
before 1990 considered the roughness as a universal aspect (Jiménez, 2004), but more recent
investigations (Choi et al., 1993; De Angelis et al., 1997; Bhaganagar et al., 2004; Leonardi
and Castro, 2010; Alveroglu et al., 2016) emphasis more on the type of roughness elements
with the underlying external flow conditions. Further, the properties at the rough walls could
be modified by the presence of turbulence at the near wall areas, and the levels of turbulence
could influence the outcomes.

Roughness-related flow investigations are not a new concept for rotating boundary layers.
The theoretical approaches on BEK boundary layers (Harris et al., 2013; Alveroglu et al.,
2016), experimental investigations (Zoueshtiagh et al., 2003) and numerical investigations
of the rotor-stator flows (Özkan et al., 2017) are some of the previous investigations on
surface roughness effects on rotating disks. However, according to author’s knowledge,
currently, there is no any approach that is capable of conducting high fidelity simulation,
such as Direct Numerical Simulations (DNS), Large Eddy Simulations (LES), on generalised
surface roughness for rotating disk boundary layers. This could be partly due to difficulties in
representing the physical roughness elements in three-dimensional computational domains.

The second part investigates the heat transfer capabilities of rotor-stator cavities. The
conventional fluids, such as air, water, have weak thermal conductivities that impose a
bottleneck on engineering heat transfer applications. Maxwell (1881) proposed a remedy to
this problem by mixing micro-sized metallic and metal oxide particles into the working fluid.
Even though the thermal conductivities are improved as expected, many practical applications
of microparticle dispersions have suffered undesirable side effects (see Das et al. (2006)).
The microparticles were too large to use in many industrial and engineering applications.
The emergence of nanotechnology now allows the mass production of nanoscale particles,
which are more resistant to the drawbacks experienced in microparticle dispersions. Choi and
Eastman (1995) proposed metallic nanoparticle suspensions in fluid and this section addresses
the enhancement of heat transfer by adding a relatively small fraction of nanoparticles to the
conventional fluid. This mixture is collectively known as the nanofluids.

The work on nanofluids has progressed rapidly over the last couple of decades and many
of the previous investigations, such as Khanafer et al. (2003); Xuan and Li (2003); Heris
et al. (2007); Nguyen et al. (2007), have been based on the study of the potential heat transfer
enhancement of nanofluids within different application areas. Their use has been found
to be very successful in practice. Alinia et al. (2011) and Goodarzi et al. (2014) used a
two-phase mixture model to study the effects of the nanoparticle slip-velocities that result
in inhomogeneous volume faction distributions across the computational domain. Ghasemi
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and Aminossadati (2010) studied the effects of Brownian motion on the nanoparticles in a
triangular cavity using the Koo–Kleinstreuer’s thermo-physical model (Koo and Kleinstreuer,
2005), and observed improvements in heat transfer rates due to Brownian slip motion.

The investigations of Bachok et al. (2011) and Turkyilmazoglu (2014) have conducted
theoretical evaluations on rotating disks in a nanofluid medium, but these studies mainly
concerned the effects of the nanoparticles on velocity fields rather than on the heat transfer.
Later, Mustafa et al. (2015) investigated a Bödewadt boundary layer over a stationary
stretching disk. More recently, Mushtaq and Mustafa (2017) studied a nanofluid flow over a
stretching rotating disk with axial magnetic field using the Buongirno model (Buongiorno,
2006) for the Brownian diffusion and thermophoresis forces.

The recent investigations of nanofluid on rotating disk boundary layers motivate further
investigations on this matter. However, these investigations analysed the single rotating
disk boundary layers using the theoretical von Kármán transformation of steady Navier-
Stokes equations, which does not give the three-dimensional time-dependent behaviours
of the momentum and thermal fields. Further, unsteady simulation models can predict an
instantaneous nanoparticle distribution in the computational domain, which is helpful to
understand the underlying particle physics. These approaches are more suitable for getting a
generalised overview of the system, and the outcomes might be useful for designing heat
exchangers.

The final section considers the mass transfer aspect of rotor-stator cavities. Unlike the
momentum and heat transfer cases, mass transfer related investigations are tightly coupled
with a particular application area. Specifically, the particle dynamics in a Rotating Disk
Chemical Vapour Deposition (RCVD) is considered. The RCVDs are technically a rotor-
stator cavity with inflow and outflow streams. The process of chemical vapour deposition
involves forming thin films of specific substance on a substrate, and the film formation is
usually happened by allowing complex chemical reactions on the surface of the substrate.
Generally, the concept is used for many industrial applications such as semiconductor
manufacturing, optical devices, high-performance cutting and grinding (Jensen et al., 1991).
However, purity of the film formation is essential in some applications such as semiconductor
manufacturing, and contamination and their deposition on the substrate (or wafer) pose
many difficulties in the manufacturing process. Hence, understanding the dynamics of these
contamination particles and their deposition are very important to control the level of the
purity of the substrate.

Liu and Ahn (1987) conducted a theoretical investigation to understand the micron and
submicron particle deposition velocities on a semiconductor wafer. Otani et al. (1989),
Pui et al. (1990) and Bae et al. (1994) did experimental investigations to supplement the
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previous theoretical outcomes. Later, Ye et al. (1991) and Bae et al. (1995) investigated
thermophoresis effects on particle deposition by using the heated substrate. Davis et al.
(1993) and Chein and Su (2004) investigated contamination depositions inside the Rotating
Chemical Vapour Deposition (RCVD) chambers using a Eulerian-Lagrangian approach and
these investigations more focused on particle dynamics inside the chamber under different
operational conditions. More recently, many investigations (Yook et al., 2010; Lee and Yook,
2014; Gakis et al., 2015; Lee and Yook, 2015) studied different use cases of microparticle
deposition and their deposition velocity on a substrate under different operational conditions.

Currently, there are only a few investigations consider the particle dynamics near the
rotating geometric configurations, and the investigation of Chein and Su (2004) limited to the
axisymmetric configuration in a laminar flow field. However, the rotation effects could result
in three-dimensional features of the flow field and that may eventually affect the particle
dynamics. The different thermal conditions and the turbulent carrier phase can also influence
the particle dynamics and these factors may significantly modify the particle deposition
behaviour on a surface.

1.2 Aims and objectives of the current study

The primary motivation of this study is to investigate the mass, momentum, and heat transfer
characteristics of rotor-stator cavities with the aid of high-fidelity numerical models, which
are based on a second-order Finite Volume Method (FVM). These characteristics are rela-
tively undocumented in previous literature. This research goal is pursued by the following
objectives:

• Simulate the flow behaviour inside elongated rotor-stator cavities operating at the
selected Reynolds numbers of 1×105 and 4×105 using second-order accurate FVM
based LES methods, and then, validate and compare the capabilities of this second-
order model with high-order models such as Séverac et al. (2007).

• Adept and implement the roughness model of Busse and Sandham (2012) on the
validated test cases to study the effects of rough rotor surface in the rotor-stator cavity
flow. Then, use this roughness model to understand the influence of roughness on the
local and global flow behaviours inside the rotor-stator cavity using the time-averaged
and instantaneous flow variable profiles and detailed flow visualisations.

• Implement the single-phase and the two-phase transport models coupled with an LES
method to study a rotor-stator cavity, which is filled with different volume fractions of
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Al2O3 nanoparticles, operating at Reω = 1×105. Then, use these models to understand
the effects on underlying momentum and thermal fields due to nanofluid using detailed
flow visualisation and different flow variable profiles.

• Use the two-phase transport model of Buongiorno (2006) to study the displacement
of Al2O3 nanoparticles inside the rotor-stator cavity due to the thermophoresis and
Brownian diffusion and determine the dominant diffusion mechanism for nanoparticle
under the current conditions.

• Calculate the heat transfer rates of the Al2O3 based nanofluid in different volume
fractions and compare them to heat transfer rate of a conventional fluid such as water.
Finally, asses the suitability of nanofluid on engineering applications, based on these
results.

• Conduct one-way coupled Lagrangian-Eulerian simulations to understand the particle
dynamics of submicron particle phase inside a CVD Chamber operating at inlet
Reynolds number of Rein ≈ 1550. Extend the study to analyse the behaviour of
particles due to a rotating surface, which operates at Reω ≈ 6×104, inside the chamber.
Then, use these computational models to understand the particle depositions on a
surface.

• Understand the influence of thermophoretic forces, Brownian forces on the particle
dynamics and their deposition behaviour on a heated surface, and adept the Eddy
Interaction Model (EIM) of Gosman and Loannides (1983) to study the effects of
carrier phase turbulence on the particle phase.

• Extend the one-way coupled Lagrangian-Eulerian model to study the influence of
particle-surface interactions at the surfaces in the CVD by using the particle-surface
energy model of Xu and Willeke (1993).

These primary objectives of this study result in novel numerical models that have not
been implemented in the context of the rotor-stator cavity. The outcomes of the research help
to identify the various physical flow aspects that extend the current understanding of flow
physics inside rotor-stator cavities. The following section describes the novel contributions
and improvements of this investigation over the previous literature:

• The implemented roughness model of Busse and Sandham (2012) is a modified model
that caters the rotating wall conditions in the rotating disk boundary layer and this is a
first generation high-fidelity roughness model available to study the rough wall surfaces

6



1.3 Structure of thesis

of rotating disk boundary layers. The model is used to visualise the instantaneous flow
behaviours inside the rough rotor-stator cavities, which can resolve the disturbance
transport of rotor-stator cavities due to the roughness of the rotor. These outcomes
were not possible using previous theoretical and numerical approaches. The current
study only considers the relative effects of roughness, but this model can predict the
flows conditions due to the real-world rough surfaces once calibrated model constants
are available.

• The single-phase and two-phase transport models are alternatives to the theoretical
approaches that were previously described. However, the current models coupled with
an LES method can produce detailed flow visualisations inside the cavity and they can
predict the time-dependent flow profiles inside the cavity. The two-phase model is
capable of visualising the relative displacements of the nanoparticle phase, which can
explain more realistic characteristics of the momentum and the thermal distributions
that cannot be predicted by using the steady-state velocity and temperature profiles.

• The previous investigation of Chein and Su (2004) has been extended to represent
more realistic real-world conditions by assuming the fully three-dimensional turbulent
conditions of the flow field. The Lagrangian-Eulerian simulations are conducted
under different particle forces, and the current investigation considers the carrier phase
turbulence effects on the particles. These modifications show significant effects on
the particle dynamics that were not documented by previous investigations. The three-
dimensional particle tracks are combined with probability density plots, which can
describe the bulk particle behaviour, to understand the particle dynamics and their
deposition properties.

• The surface energy model of Xu and Willeke (1993) enhances the current Lagrangian-
Eulerian modelling framework as this new simulation model can predict the particle-
surface interactions inside the chamber. This energy model was used in many investi-
gations to study particle-surface interactions but it has never been used on applications
that involve rotating disk elements, in which the rotary motion of the disk adds extra
complexity to this application. Similar to the previous section, the particle dynam-
ics are studied, and then, the effects of particle deposition are investigated due to
particle-surface interactions.

1.3 Structure of thesis

This thesis consists of nine chapters, and the subsequent chapters are organised as below.

7



1.3 Structure of thesis

Chapter 2 devoted to literature review. Here, early theoretical and experimental develop-
ments of the infinite rotating boundary layers (BEK family) have been discussed, followed by
discussing the similar trends and development of the rotor-stator disk systems. The chapter
covers plausible modelling approaches for rough wall simulations, nanofluid simulations,
and the justifications are made for selecting suitable models for this investigation. The final
section of the chapter discusses the theory and models in the Lagrangian Particle Tracking
(LPT) framework in the context of submicron particle suspensions in a low-density fluid such
as air.

Chapter 3 outlines the underlying computational methods, and turbulent models use in
this investigation. The chapter starts by discussing relevant spatial and temporal discretisation
methods; then the Reynolds Average Navier-Stokes (RANS), Large Eddy Simulation (LES)
methods, which are used in this research, are outlined. The chapter concludes by introducing
suitable transport models that can be used to study the heat transfer enhancements in rotor-
stator cavities due to nanofluids.

Chapter 4 propose the suitable computational model for the rotor-stator cavities operate
under two widely validated Reynolds number of Reω = 1× 105 and 4× 105. The time-
averaged and instantaneous velocity profiles and turbulence intensity profiles of the second-
order accurate FVM computational models are validated with previous literature. Then,
the flow visualisations are conducted to demonstrate instantaneous flow patterns inside the
cavities. Finally, a plausible mechanism of laminar-turbulent transition on the rotor boundary
layer has been predicted for the higher Reynolds number test case.

Chapter 5 extends computational models of the previous chapter to evaluate the effects of
rotor surface roughness on the rotor-stator cavities. The different roughness conditions on the
rotor surface are simulated using a roughness model. Then the effects of the roughness on
time-averaged and instantaneous velocity profiles of the rotor and the stator boundary layer
profiles have been observed. Non-localised effects of the roughness on the rotor surfaces
of the rotor-stator cavity are shown by the aid of instantaneous and time-averaged flow
visualisations inside the cavity.

Chapter 6 uses the previously validated computational model to develop and implement
transport models that are capable of studying the changes in momentum and heat transfer
properties due to nanofluid. In particular, single-phase and two-phase models are used with
different volume fractions of Al2O3 nanoparticles suspended in water. Both of these models
can predict momentum and heat transfer properties of the cavity, but the latter model is
capable of studying the effect of nanoparticle slip velocities relative to the carrier phase
(i.e.water). Similar to the previous chapters, the analysis is carried out using time-averaged
and instantaneous velocity profiles and instantaneous flow visualisations inside the cavity.
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Chapter 7 describes a one-way coupled LPT framework to study the particle dynamics
inside an RCVD with a heat rotor surface. The LPT model considers the different forces on
the hard-spherical submicron particles (here, the Silicon particles will be considered), and
the direct simulation of particle tracks can reveal the effect on the submicron particles due
to the rotor motion and the thermal gradients inside the chamber. Further, this section pays
particular attention to the effects of the carrier phase turbulence on the submicron particles.

Chapter 8 adepts an energy-based model to extend the capabilities of the standard LPT
model by introducing particle-surface interactions near a solid surface. The selected energy
model considers van der Waals energy in the particle-surface interface at which the kinetic
energy of the inbound particle should be sufficient to overcome this interaction energy for a
possible rebound of the particle. The consideration of these effects may affect the deposition
efficiency of the particles at the rotor surface.

Chapter 9 summarises the entire throughput of the research and highlights the significance
of this investigation on broader scientific and engineering context. The chapter also suggests
plausible enhancements and further use cases of this research.

1.4 Publications

The contents of this thesis are published in the following journal articles.

1. Fernando, D., Gao, S. & Garrett, S.J. The effect of surface roughness on rotor-stator
cavity flows, Phys. Fluids., 30, 064103.

2. Fernando, D., Gao, S. & Garrett, S.J. On the heat transfer effects of nanofluids within
rotor-stator cavities, Phys. Fluids., 30, 082007.
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Chapter 2

Literature Review

2.1 Introduction

This chapter discusses the relevant literature and groundwork for this investigation. The
outcomes of this chapter are used at different stages of the investigation. The following
synopsis describes the main focus of each subsection of this chapter.

Sections 2.2 & 2.3 discuss the rotating disk boundary layers and their instability patterns
relevant to the rotor-stator flows. The outcome of this review is used to simulate and evaluate
rotor-stator disk cavities in Chapter 4.

Section 2.4 describes the relevant background on the surface roughness of wall-bounded
shear flows. A brief discussion is given on the general concepts of surface roughness and
then the discussion is focused on previous numerical approaches to model surface roughness.
The motivation for the section is to implement a roughness model in the rotor-stator cavity
simulations.

Section 2.5 are on non-isothermal flows and their heat transfer. This section is more
focused on heat transfer predictions in rotor-stator flows and their available Nusselt number
correlations are also outlined. The following section discusses the benefits and properties
of nanofluids. The correlations for determining the nanofluid thermal conductivity and
viscosity are discussed. The described models in these sections are used to develop, simulate
and validate the nanofluids transport models on rotor-stator cavities, which is the primary
objective of Chapter 6.

Section 2.6 introduces the Lagrangian framework. The governing equations of the
Lagrangian framework first stated, and then the submodels for the particles forces are outlined.
The Lagrangian framework is then used to simulate particle dynamics and depositions on a
rotating chemical vapour deposition chamber, which is a real-world engineering application
of the rotor-stator disk setup.
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2.2 Rotating disk boundary layers

2.2 Rotating disk boundary layers

The flow over a rotating disk has received extensive attention from the scientific community
for over 100 years. Much of its popularity stems from early theoretical and experimental
investigations of single rotating disks, such as Ekman (1905), von Kármán (1921) and
Bödewadt (1940) boundary layers. The disk develops three boundary layer types that are
collectively called the BEK boundary layer family. Usually, parametrisation is carried out
using the Rossby number (Ro), which is the ratio of the inertial force to Coriolis force. This
produces an infinite number of members to BEK family. Ro =−1,0,1 give respectively a
von Kármán, an Ekman and a Bödewadt layer.

Since von Kármán (1921) derived the similarity solution for laminar flow over a single
rotating disk of the infinite radius in a quiescent fluid, rotating disk boundary layers have at-
tracted much attention, and the availability of an analytical solution for this three-dimensional
boundary layer provided a standard validation approach to later numerical investigations.
The similarity solution consists of three independent profiles of the stream-wise, cross-wise
and wall-normal velocity components. The cross-wise velocity profile features an inflectional
point that enables laminar flow instabilities to develop. The rotating disk boundary layer has
become a prototype model for studying three-dimensional boundary layers. The relatively
simple geometry, the absence of stream-wise pressure gradients and ease of repeatability
are some of the advantages of rotating disk boundary layers over other three-dimensional
boundary layers, such as backwards swept wings, which can feature a similar inflection point
in the cross-wise velocity profile.

At a later stage, Smith (1947) conducted an experimental investigation with a rotating
disk in laminar flow and he observed travelling sinusoidal waves, which had approximately a
14◦ inclination to the outward-drawn radius vector, in a narrow band just below the transition
Reynolds number. However, the travelling nature of these vortices was later determined to be
a measuring error, and the observed wave pattern is stationary, with zero phase velocity. In
subsequent theoretical and experimental investigations Gregory et al. (1955) and Kobayashi
et al. (1980) observed a similar set of 26–33 stationary vortices around the disk (see Fig. 2.1)
and Kohama (1984) concluded that this stationary vortex pattern plays a significant role in the
transition to turbulence. Wilkinson and Malik (1985) reconfirmed that the stationary vortices
initiate as a result of localised surface imperfections of the disk, which was initially suggested
by Gregory et al. (1955). Further, this instability pattern is an inviscid convective instability
mode, which is commonly known as Cross-Flow (C-F) instability, hereafter denoted as Type
I instability.

Apart from the C-F instability, Fedorov et al. (1976) observed another set of instability
pattern, which consisted of 14–16 vortices with a 20◦ wave angle. This pattern denoted as the

11



2.2 Rotating disk boundary layers

Fig. 2.1 Type I instability of the rotating disk boundary layers, where the disk rotates in a
counter-clockwise sense at a rate of 1800 rpm (Kobayashi et al., 1980).

Type II instability, which is a stationary mode that was also found independently by Faller
and Kaylor (1966) and Lilly (1966) in the Ekman layer. The Type II pattern is a viscous
instability mode and Lilly (1966) found that the Coriolis force is the driving force of this
instability in Ekman layers. Unlike Type I instabilities, Type II instabilities are sensitive to
external disturbances, and by having much higher disturbance levels in the flow configuration,
Type II modes can dominate Type I instability modes (MacKerrell, 1987). However, earlier
investigations of Gregory et al. (1955) did not feature any Type II patterns, as they maintained
the experiments at a very low disturbance level, at which Type I patterns usually dominate.

In a later investigation, Faller (1991) has further elaborated the importance of the Type
II travelling mode in transition to turbulence by experiment and numerical investigation
in Ekman layers. These instability patterns are similar to Type I modes, but they have
characteristic negative angles compared to positive angles in the Type I mode. In this
investigation, he suggested a set of plausible transition mechanisms, which involve Type I,
Type II and their respective secondary instability patterns. The exact mechanism of transition
is based on the level of excitation of disturbances in the external flow. Concisely, these
mechanisms can be categorized in order of decreasing amplitudes of the disturbance, as (A)
interaction of multiple modes of dominant Type II, (B) interaction of Type II mode with base
flow to produce secondary instabilities, (C) interaction of Type I and Type II modes, (D)
interaction of the Type I mode with the base flow to produce secondary instability patterns,
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which was the most popular mechanism among previous investigations on the von Kármán
single rotating disk.

Despite the different transition mechanisms purposed in literature, no possible explanation
could be proposed for the very consistent and sudden transition Reynolds numbers Reδ ,c

showed in von Kármán boundary layers. Malik et al. (1981) summarised and tabulated Reδ ,c

values from previous investigations and they obtained a mean Reδ ,c = 513 with less than
3% variance, regardless of the state of the external disturbances levels of the flow. This
critical Reynolds number is very consistent compared to other three-dimensional boundary
layers, like a flat plate or a channel flows boundary layer. Lingwood (1995, 1996) provided
an explanation for the consistency of Reδ ,c by theory and experiment. She showed that
the rotating disk boundary layers are absolutely unstable at Reδ ,c = 507, at which impulse
responses grow around the source rather than being convected away from the source. Due to
the limitations of linear stability theory, her predictions are confined to the local characteristics
of the flow field, but she postulated that the local absolute instability might trigger self-excited
global modes in rotating disk boundary layers. More recently, Appelquist et al. (2015) have
conducted linearised DNS to study the global stability behaviour of rotating disk boundary
layers. They concluded that if the edge of the disk is far from the point where the absolute
instability occurs (here, if absolutely instabilities initiate at Reδ ,c = 507, then the edge of the
disk should be at least Rδ ,edge = 594), rotating disk boundary layers can be globally unstable.
They explained that inward disturbances generated at the edge of the disk across a pocket of
an absolutely unstable region before that edge. These are the necessary conditions to achieve
a global instability in rotating disk boundary layers. As suggested by Davies and Carpenter
(2003), this means a hypothetical infinite rotating disk is unconditionally globally stable due
to the lack of inward disturbances at the outer edge of the disk.

Lingwood (1997) studied further absolutely unstable behaviour in the BEK family of
boundary layers using linear stability theory. She determined that the Ekman layer is
absolutely unstable at Reδ ,c = 198, which is an agreement with Faller and Kaylor (1966)’s
prediction of turbulence transition at Reδ ,c ≈ 180–200. As Ro → 1, both convective and
absolute modes become more unstable. Unlike with a von Kármán boundary layer, in the
Bödewadt boundary layers, even Type I stationary modes become absolutely unstable, at
Ro ≈ 0.5. This shows that the Bödewadt boundary layers are much more unstable than the
von Kármán and Ekman boundary layers.

Many further investigations have been conducted to address different aspects of rotating
boundary layers. These include a rotating sphere (Garrett and Peake, 2002), rotating cone
(Garrett and Peake, 2007), fully turbulent boundary layers of rotating disk (Elkins and Eaton,
2000), global stability of rotating disks (Davies and Carpenter, 2003; Appelquist et al., 2015).
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2.3 Rotor-stator cavities

As described before, in rotor-stator cavities, rotor and stator elements are similar to Ekman
and Bödewadt boundary layers of the BEK family. Hence, some characteristics of these
boundary layers also feature in the rotor-stator boundary layers. Nevertheless, rotor-stator
cavities are more common examples of BEK boundary layers, since rotor-stator cavities
have a finite outer radius at the casing and a rotor hub (for annular cavities). These radial
boundaries alter the behaviour of classic BEK boundary layers. Hence, their behaviours and
characterises may not match. Rather than having separate Ekman and Bödewadt boundary
layers, the flow in a rotor-stator cavity is one cohesive unit, and the rotor-stator boundary
layers can interact with each other by exchanging mass, momentum and heat.

For the ease of discussion, several geometrical and global parameters can be defined to
identify the rotor-stator cavity. The rotor-stator cavity is a special case of a rotating disk
system, which is illustrated in Fig. 2.2. The aspect ratio of a cylindrical cavity G = h/r2 is
based on the height of the cavity h and outer radius of the disk r2. The aspect ratio of an
annular cavity is defined as G = h/(r2 − r1), where r1 is the inner radius of the cavity, and
the radius of curvature is another characteristic feature of the annular cavity that is defined
as Rm = (r2 + r1)/(r2 − r1). The Reynolds number based on the cavity height is defined as
Reh = (ωh2)/ν , and the local Reynolds number Reδ = r/δ is based on the local radial value
r and the characteristic length scale δ =

√
ν/ω . For finite cavities, alternate definitions of

the Reynolds number Reω = (ωr2)/ν can be used. In general, the parameter γ2/ω can be
used to categorise two disk problems into three distinct groups, the rotor-stator (γ2/ω = 0),
the co-rotating (γ2/ω > 0) and the counter-rotating (γ2/ω < 0) groups, where ω and γ2 are
rotating rates of first and second disks respectively (see Fig. 2.2). Often, the term “rotor disk
system” will be used to identify all three groups collectively. The following descriptions
mostly cover on rotor-stator cavities, but some properties of open cavities and cavities with
throughflow (see Fig. 1.1) are explained, where necessary.

Following von Kármán (1921)’s similarity solution approach, Batchelor (1951) consid-
ered a more generalised method to obtain exact solutions for steady axisymmetric viscous
rotating flows. As a result, he obtained one and two-parameter families of solutions. The
one-parameter family consists of single infinite disks; an entire solution space is defined
using the parameter, γ1/ω1 = (−∞,+∞), where γ1,ω1 are the angular velocities of the fluid
at z → ∞ and on the rotating plane, respectively. The von Kármán (1921) solution is a
member of the one-parameter family and it is when γ1/ω = 0. The two-parameter family
solutions represent the flow between two coaxially mounted infinite disks, with different
rotation rates. Here, the governing parameters are γ2/ω and Reh, where γ2 is the angular
velocity of the second disk. At a given γ2/ω and sufficiently large Reh values, the motion

14



2.3 Rotor-stator cavities

Fig. 2.2 Annular rotating disk system.

can be described as the solid body rotation at the core region (a location away from boundary
layers, also known as the main body of the fluid) with zero radial and axial velocity gradient
components. The boundary layer on the disks develops as the Reynolds number increases.
This generalised approach covers the cases of a single rotating disk, co-rotating disks, and
counter-rotating disks, in which the rotor-stator system is a member of the two-parameter
family solutions with γ2/ω = 0.

Stewartson (1953) proposed a different concept to Batchelor (1951)’s explanation of
a solid body rotation at the core region. He suggested that the rotation of the core region
(or the main fluids body) was valid for co-rotating disks but not for counter-rotating disks.
He also presented the experimental evidence to back his theoretical findings. At a later
stage, Mellor et al. (1968) and Kreiss and Parter (1983) solved this difference by suggesting
the non-uniqueness of boundary layer solutions at a given Reh value, which validate the
admissibility of solutions of both Batchelor (1951) and Stewartson (1953). In practice, the
finite cavities with a closed geometry can be described by Batchelor solutions, whereas
Stewartson solutions resemble cavities without an outer casing (open cavities) or cavities
with either a centripetal or a centrifugal throughflow (see Fig.1.1(d)). Later, Poncet et al.
(2005) conducted an experimental investigation to compare the flow structures of Batchelor
and Stewartson rotor-stator cavities with throughflow.

Nevertheless, it is important to mention that finite cavities are not fully compatible with
the boundary conditions of the similarity solutions due to the rotor hub and casing walls.
For this reason, Dijkstra and Van Heijst (1983) conducted a numerical investigation on an
enclosed rotating disk, by solving the Navier–Stokes equations using a finite difference
method, which avoids the use of any similarity solution assumption. In the case of the
rotor-stator flow, they obtained the stream-function of the flow field inside the cylindrical
cavity and observed a radial outflow on the bottom rotor is due to the centrifugal flow. On the
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other end, a radial inflow was observed along the top stator layer, and a wall jet was observed
on the sidewall, which transports fluid in the upward direction to the stator. They noticed
that the measured velocity profiles are self-similar up to r/r2 = 0.87, regardless of the finite
nature of the cavity. Finally, they concluded that a substantial part of the fluid outside the
boundary layers is rotating, which agrees with Batchelor (1951). Even though the boundary
conditions of the finite geometries are incompatible with similarity solutions, these solutions
can still predict the qualitative behaviour of the finite rotor disk systems.

For elongated cavities (G ≪ 1), Daily and Nece (1960) identified four regimes based on G
and Reω as shown in Fig. 2.3. The regions I and III represent merge boundary layers, whereas
region II, IV are unmerged boundary layers. As explained in Launder et al. (2010), transitions
in between regions are possible and the typical transition paths can include I → IV → III,
II → I → III and IV → III. This is usually a result of thickening of the boundary layers
when increasing the local Reynolds number Reω,local . For the current study, the regions of
interest are II and IV , which can be collectively called as the Batchelor regime. Therefore,
further discussions mostly focus on these two regions.

Fig. 2.3 The four regimes of elongated cylindrical cavities purposed by Daily and Nece
(1960).

Later advancements in turbulence and transition predictions on single disk problems
encouraged the use of similarity approaches in two disk systems to study the transition
mechanisms of these systems. It is claimed that the instability patterns in Batchelor regime
are similar to instability patterns in single disk investigations (Séverac et al., 2007).

Sirivat (1991) conducted an experiment to study the stability of rotor-stator cavities at
different G and 1/Reh values. Sirivat (1991) adds a transparent rotor located at the top, and a
bottom stator disk, which was made of clear-anodised aluminium. As results, he observed
three instability types at different aspect ratios. A stationary circular pattern, mode I, was
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observed for G = 0.0225–0.0475. When the aspect ratio reduced to G = 0.014, another
pattern, mode II appeared, which featured spiral patterns with negative wave angles. Both
of these modes correspond to stationary and travelling modes of Type II instability. Then
another pattern, mode III, was detected at higher rotation speeds, and this also consists
of spiral patterns, but they have positive wave angles, which can be described as Type I
instabilities. Further, he identified a transitional behaviour of the mode I and mode II patterns.
In the mode I pattern at the higher Reh values, turbulence at the side walls acts as the primary
cause for the transition to the turbulence. For the mode II, different transitional paths have
been observed, and as Reh → 11.36, clear evidence of spiral collapse was identified, which
was deemed to be the plausible path to the onset of turbulence for mode II.

After Lingwood (1995, 1996), the perception of turbulent transition on rotating disk has
changed significantly. The investigations of rotating disk systems were no exception, and
many investigations have urged to ascertain absolute unstable behaviour of these systems,
which is intuitive, as their single disk counterparts are proven to be absolutely unstable.
Even though the two disk problems consist the elements of the single rotating disk setup, an
absolutely unstable behaviour is not guaranteed on the two disk problems.

Gauthier et al. (1999) conducted experimental investigations on a rotor-stator cavity
Their experimental arrangement is similar to the one by Sirivat (1991), which was mainly
run at G = 0.048. In this experiment, the development of two boundary layers has been
observed using a laser sheet visualisation technique. The boundary layers tend to separate
after Reh > 56. This technique also allowed to measure the thickness of both boundary layers.
It was shown that the thickness of the Bödewadt layer gradually increases at reducing radius
values, but the Ekman layer has nearly constant boundary layer thickness throughout the
rotor disk. Circular instability patterns were observed over the range of 70 < Reh < 140, and
approximately about 30 Type II spiral patterns emerged at 140 < Reh < 200. Eventually,
beyond the Reynolds numbers of Reh > 200 turbulence structures appeared. Then a similar
set of experiments was conducted with periodic forcing by introducing modulation on the
rotation rate of the disk, which introduces the wide spectrum of frequencies to the flow. A new
set of spatiotemporal light intensity images was obtained for the propagating circular patterns
and the power spectral density of the varying light intensity was captured. This revealed that
the flow system acts as a large-band amplifier, at which the most unstable (or most amplified)
frequency is nearly four times the rotation rate of the disk. This behaviour was observed
regardless of the external disturbances on the disk. The most unstable wave-number was
determined to be kcδB = 0.5, which is close to Lingwood (1997)’s value of kcδB = 0.33
for convective/absolute unstable circular waves in a Bödewadt layer. The critical Reynolds
number is about Reδ ,c = 76. This value tends to decrease as the aspect ratio increases. In
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general, all the instability patterns are deemed to be convectively unstable, except some of
the self-sustained patterns observed at higher radial positions.

Serre et al. (2001) investigated by DNS cylindrical rotor-stator cavities (G =0.2 and
0.33) and rotor-stator annular cavities (G = 0.2, Rm = 4 and 5). Similar to the experiment of
Gauthier et al. (1999) and Sirivat (1991), this numerical study also noticed the circular and
spiral instabilities (Type I, and for Type II both stationary and travelling modes) at sufficiently
high Reynolds numbers. This simulation was run at a Reynolds number high enough to
initiate eight Type II travelling waves in the rotor boundary layer, which are similar to Type
II spiral patterns that were observed in Ekman layers by Faller (1991). The importance
of curvature (Rm) of the cavity is elaborated for axisymmetric structures, and a strong
dependency on local curvature for the onset of turbulence has been observed. For annular
cavities, the disturbances, which are initiated at the stator due to supercritical bifurcation
(Morozov and van Saarloos, 2007), are transported through the rotor hub to the rotor disk
at which these disturbances can lead to the subcritical bifurcation in the Ekman boundary
layer. Conversely, in the cylindrical cavities, disturbances were attuned near the axis, which
implies that the cylindrical cavities are more stable than their annular counterparts. Another
experimental study was conducted by Schouveiler et al. (2001). They constructed detailed
transition diagrams, which summarise possible instability patterns, such as circular waves,
spiral waves, solitary waves and turbulent spots, at the different Reynolds numbers and disk
aspect ratios.

Lygren and Andersson (2001) studied fully turbulent rotor and stator boundary layers
using DNS on an annular segment. The simulations run at Reω = 4×105 with a cavity aspect
ratio G = 0.02. The radial and tangential boundary conditions were set using quasi-periodic
boundary conditions. Because of these boundary conditions, any effects from the hub and the
sidewall were discounted and the boundary layers behaved as an infinite radius rotor-stator
cavity. The mean velocity, turbulence intensity and wall shear stresses were extracted from
DNS. It was observed that the turbulence intensity and shear stresses near the rotor are much
higher than the turbulence intensity near the stator. Apart from that, a detailed analysis was
carried out to identify any coherent structure near the two boundary layers. It was confirmed
that the ensemble-averaged coherent structures near the rotor and stator are similar to each
other. Séverac et al. (2007) investigated a finite rotor-stator cavity with LES and Laser
Doppler Velocimetry (LDV) experiments. All the simulations and experiments used a cavity
with aspect ratio G = 0.2, tested at Reynolds numbers, Reω = 1×105–1×106 and Rm = 1.8.
By comparing the two cases of Reω = 1× 105 and 4× 105 they confirmed that the stator
boundary layer becomes turbulent at a much lower Reω value than the rotor boundary layer.
In the rotor boundary layer of the Reω = 1×106 case, there are about 19 spiral arms with
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an approximately 16◦ wave angle in the region 0.14 < r/r2 < 0.61. By this, those were
identified as a Type I instability pattern. Beyond this region, flow structures become more
thin and axisymmetric, indicating an incipient transition to turbulence.

More recently, Makino et al. (2015) conducted a very similar LES and experimental
study to Séverac et al. (2007) ’s investigation. This investigation considered the same two
Reynolds numbers, Reω = 1×105 and 4×105, with a cylindrical cavity and an annular cavity
Rm = 1.8. Both cavities had the same aspect ratio G= 0.2. As Séverac et al. (2007), the lower
Reynolds number simulation showed a turbulent stator and a laminar rotor boundary layers,
but at the higher Reynolds number of Reω = 4×105, a fully turbulent stator boundary layer
was predicted, with rotor boundary layer in the transition-turbulent state. Unlike Séverac
et al. (2007) ’s simulations, here, Makino et al. (2015)’s rotor boundary layer only featured
about 16 Type II modes, which was deemed to result from the Streamline-Curvature (S-C)
Itoh (1996). Further, they proposed that the Type II instabilities are the main reason for the
transition to turbulent flow that the exact transition mechanism is probably the interaction of
these Type II with secondary instabilities, which was explained as mechanism B in Faller
(1991).

These studies explain that in the rotor-stator cavities, circular and spiral waves are com-
mon in the stator boundary layer and that the stator boundary layer is relatively more unstable
compared to the rotor boundary layer. The presence of a rotor hub promotes instabilities
in the rotor boundary layer. In contrast to the single disk Ekman layers, instabilities in the
rotor-stator cavities are mostly convectively unstable.

2.4 Surface roughness

Surface roughness is an important property for many wall bounded industrial, engineering
and geophysical flows. The manufacturing processes of hydraulically smooth surfaces add
significant cost to their production cycle. Else, in some applications, surfaces are deliberately
rough to enhance the heat transfer rate. For example, in the case of atmospheric boundary
layers, surface roughness elements of different heights are unavoidable, as plant canopies,
human made structures and ocean waves are integral parts of typical atmospheric boundary
layers.

The earliest investigations of surface roughness in hydrodynamics date back to the mid-
nineteenth century, when Darcy (1857) studied the pressure loss in liquid conduits. Then, the
most notable investigation was conducted by Nikuradse (1950), who studied the turbulent
flows in rough tubes. In this study, pipes were roughened by cementing sand grains in
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the walls of the pipes. He identified three key regimes, based on the average height of the
roughness elements (or the elongations of the sand grains toward the flow field).

• A smooth regime: Roughness elements are entirely confined inside the viscous sublayer
and the friction factor is the same as the smooth pipes.

• A transitionally rough regime: This is an intermediate region, in which the heights of
the roughness elements are of the same order as the viscous sublayer thickness. The
friction factor increases with the Reynolds number of the flow and both viscous and
pressure drag contribute toward the friction factor.

• A fully rough regime: The friction factor is independent of the Reynolds number of the
flow. The viscous drag is negligible compared to the pressure drag due to the roughness
elements, which are the primary contributor to the friction factor.

It was soon realised that the height of the roughness element is not the only parameter
which defines the properties of the roughness, but the shape and density of the roughness
elements also play a crucial role. To address this point, Schlichting et al. (1955) suggested the
concept of effective sand grain roughness (ks), which is the roughness height that produces
an equivalent drag penalty to the sand grain drag penalty in the fully rough regime in
Nikuradse (1950)’s experiment. Further, the non-dimensioned roughness height defined as
k+s = (ksuτ)/ν , where uτ =

√
τw
ρ

. The transition regime in Nikuradse (1950)’s experiment

falls between 3.5 < k+s < 68. Any value outside is range belongs to either the smooth or
the fully rough regime. However, this interval is not universally constant, as later, some
investigations have found different roughness height ranges depending on the nature of the
surface and of the roughness.

If the roughness element height (kr) is marginally taller than the viscous sublayer, there
is a good chance that the system is in the transition roughness regime. At smooth laminar
flow conditions, the viscosity is the dominant source of wall shear stresses near the viscous
sublayer, but with the presence of the roughness elements, the drag forces, due to these
roughness elements, become the dominant contributor to the wall shear stress. In the vicinity
of the roughness elements, horizontal shear stresses are inhomogeneous and this behaviour
does not vanish immediately above the roughness element, but the effect could extend up to
2 to 5 times the roughness element height above the roughness elements. This entire region
is called the Roughness Sublayer (RS). The Inertial Sublayer (IS), in which the horizontal
shear stresses are homogeneous, is at the top of the RS region. Figure 2.4 illustrates these
two regions concerning the kr.
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Townsend (1976) proposed a Reynolds number similarity hypothesis. This hypothesis
can be best explained in the context of a turbulent rough wall, as this could be one of the
most useful applications of the hypothesis. Townsend (1976) proposed to assume that, if the
height of roughness element kr is sufficiently small enough compared to the boundary layer
thickness (δ99), then the effects of the roughness, such as mean velocity changes and changes
to statistical moments of the turbulent fluctuations, do not propagate to the outer layer. It is
suggested that the threshold ratio, kr/δ99, should be higher than 40 to achieve this, but on
some occasions, the threshold ratio may go up to 80 (Jiménez, 2004).

Fig. 2.4 Possible regimes of a rough boundary layer.

Early investigations of rough surface boundary layers are predominantly experimental
investigations, but on some occasions, physical experiments are difficult to conduct as the
roughness length scales are very small compared to the boundary layer length scales. With
the advancement of computational resources, numerical investigations have become a good
supplement to experimental investigations.

However, the numerical simulations of rough walls impose a significantly high compu-
tational burden over their smooth wall counterparts, as it is always cumbersome to resolve
small roughness elements near the wall surface. Hence, early numerical studies on wall
resolved surface roughness are mostly confined to simple geometrical configurations, such as
flat plate boundary layers and channel flows.

2.4.1 Rough rotating disk boundary layers

The investigations of surface roughness on a rotating disk is not a new topic, as many authors
have previously investigated this topic through different approaches. Zoueshtiagh et al. (2003)
conducted an experimental investigation to study the boundary layer transition over a rough
wall rotating disk spinning under water. They reported the transition Reynolds numbers (Rec)
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and boundary layer velocity profiles for the different roughness levels. It was found that
the boundary layer roughness has a minor influence on transition and that transition occurs
similarly to the smooth boundary layers, by which rough boundary layers are also absolutely
unstable. However, after a certain threshold roughness level, Rec tends to decrease sharply.
Finally, they determined that the absolute instability may continue to play a significant role
even for the transition over the large roughness elements.

Harris et al. (2013) conducted a theoretical and experimental investigation of the stability
of rotating disk boundary layers. A smooth surface was replaced by a surface function that
modelled a rough surface. The corresponding stability curves of these configurations show a
decrease in the number of spiral vortices, which was interpreted as a switch in the dominant
transition mechanism to Cross-Flow instability to Streamline-Curvature instability. As a
result, the slight increase in Reδ ,c results in a small increase in roughness effects, but a further
increase in roughness effects start to reduce the Reδ ,c. The subsequent experiments also
confirm this fact.

Alveroglu et al. (2016) conducted a theoretical investigation, and here, they studied the
influence of different types of roughness on the convective instability in the BEK family
boundary layers. They found that all types of roughness have a stabilising effect on the Type
I instability on all the BEK boundary layers, except the radial groove type roughness in the
Bödewadt layers. The Type II instabilities are unstable to concentric grooves for all types of
boundary layers, whereas radial grooves and isotropic roughness types stabilise the Type II
structures on Ekman and von Kármán boundary layers.

Özkan et al. (2017) conducted an experimental and numerical study on rotor-stator
cavities. Here, more attention was paid to comparing roughness induced effects and geometric
induced effects. It was determined that the geometric and roughness effects impose similar
effects on the rotor-stator flow.

These investigations provide a profound understanding of the behaviour of rough rotating
disk boundary layers. However, most of these investigations are based on the effects of
roughness on the rotating boundary layer stability and their approaches were fine tuned to
tackle this purpose. None of these methods are suitable for adept as a roughness model for
high-fidelity simulations models, which is one of the aims of the current study.

The following sections discuss some of the roughness models used in high fidelity
simulation models. However, the discussion is more focused on the selection of a suitable
roughness model for rotor-stator cavities by considering their relative computational cost,
accuracy, and their ability to represent generalised rough wall surfaces available in the real
world.
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2.4.2 Fully resolved rough wall simulations

As mentioned earlier, fully resolved rough wall simulations are computationally expensive
simulations, but they can mimic the actual conditions present in rough walls. There are two
principal techniques available for such simulations, which are body-fitted grids and immersed
boundary methods. The following sections review their approach with relevant examples.
The body-fitted methods use a body-fitted mesh (or grid), in which the mesh conforms to
the surface of the geometry. In the context of rough walls, the irregular wall boundaries
are covered by the mesh that tends to be unstructured. Figure 2.5 shows an example of the
body-fitted mesh over a wavy and a smooth wall. The body-fitted methods are suitable for
simple geometries, like flat plate boundary layers, channel flows. Even for these simplified
geometries, if the roughness elements are too small, the number of mesh elements in the near
wall regions can increase significantly, which may make the computation not affordable.

Fig. 2.5 An illustration of body-fitted mesh on, (a) a wavy wall, (b) a flat wall.

Choi et al. (1993) studied drag reduction mechanisms in turbulent flow over a riblet
mounted surface using a body-fitted mesh. They observed increments and decrements in
mean velocity in the log law region for drag decreasing and drag increasing scenarios,
respectively. The reductions in velocity, in vorticity fluctuation components, and in Reynolds
shear stresses above the riblets were predicted for the case of drag reduction.

Later, De Angelis et al. (1997) used a body-fitted mesh to simulate a pressure driven flow
between a no-slip wavy wall and a slip flat wall (a wall without wall shear stresses). The
mean velocity fields and turbulent statistics near the wavy wall showed significant changes
when they compared to the flat wall case. The buffer zone was the most affected area. Further,
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they observed a thin layer closer to the boundary where most of the energy in the stream-wise
direction eventually convert into the span-wise and wall-normal directions.

The immersed boundary method (IBM) is an alternative to the body-fitted method. It
uses a force field to mimic the effects of a rough wall instead of following the rough wall
contours with the computational mesh boundary. This method is used by Peskin (1977), who
investigated blood flow patterns in the human heart.

For the simulations that are performed in a Eulerian mesh, the immersed boundary is
treated by a Lagrangian approach. The immersed boundary is independent of the underlying
mesh, and it can freely move relative to it. Figure 2.6 shows an example of an immersed
boundary in the fluid. At the intersection between the Eulerian mesh and the immersed
boundary, a force term is added to the discretised governing equations. To model the effects
of the boundary various models have been purposed for calculating the force field, but those
details are beyond the scope of this study, and interested readers are referred to the reviews
of Silva et al. (2003) and Mittal and Iaccarino (2005) for more details.

Fig. 2.6 An illustration of an immersed boundary mesh.

Bhaganagar et al. (2004) performed immersed boundary DNS simulations the flow
between a smooth wall and a rough wall covered by regular three-dimensional roughness
elements. The simulations were performed for various roughness element heights, k+r =5.4,
10.8, 21.6 at Reτ = 400. The simulations revealed that the roughness tends to increase the
velocity and the vorticity fluctuations in the inner layer, but in the outer layer effects can only
be observed in velocity fluctuations fields. The roughness effects on high-order moments and
on the energy budget were also considered. They concluded that the size of the roughness
elements has a significant impact on the inner and outer layer interactions with the boundary.
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Breugem and Boersma (2005) performed DNS simulations on a permeable turbulent
channel flow. The permeability was achieved through a grid of cubes, which were modelled
by an immersed boundary. In parallel to these immersed boundary simulations, Breugem
and Boersma (2005) performed a second set of simulations using Volume-Averaged Navier-
Stokes equations (VANS) (Whitaker, 1996). VANS are more computationally affordable
than the DNS, but they require the use of a turbulence closure model. Both approaches were
implemented with similar flow and boundary conditions for comparison purposes. Breugem
and Boersma (2005) found that these two approaches produce similar predictions, and in
general, elevated levels of R.M.S (Root Mean Square) values of velocity are observed in
the wall permeable regions. Further, the study provided indirect evidence that permeability
effects have more intense effects than surface roughness effects.

Leonardi and Castro (2010) performed DNS simulations of rough channel flow, in which
the wall had a staggered array of cubes with various plane area densities. These cubes were
modelled by the immersed boundary approach. It was determined that the form drag be the
dominant component of the total surface drag. As the roughness of the surface increased, the
significant effects on the turbulent flow quantities near the wall have been observed, but there
were no significant effects observed in the outer part of the boundary layer. Increasing the
area density led to a monotonic decrease in normalised vertical shear stress around the top
of roughness elements. This is in contrast to observations by Orlandi et al. (2006) work on
two-dimensional roughness elements.

2.4.3 Modelled rough wall simulations

The previous section focused on high fidelity methods for simulating roughness effects on
wall-bounded flow. However, almost all the literature that was reviewed in the previous
section describes simple geometric arrangements such as channel flows. Modelling the
effect of roughness is a more viable option for simulating rough wall-bounded flows in
more complex geometries. Modelling the roughness requires no modification to the com-
putational mesh of the equivalent smooth wall simulation, but it may require modifications
to the boundary conditions or to the governing equations. None of these techniques are
recommended for studying the detailed flow features inside the roughness sublayer or near
the roughness elements. The following sections will explain some of the common surface
roughness modelling approaches used in the literature.

RANS simulations make use of rough wall functions, which are sufficiently accurate for
a good range of industrial and engineering simulations. Here the effects of roughness are
accounted for through the equivalent sand grain approach. The roughness height and the
shape of the rough wall are transformed into a Nikitenko (1963)’s roughness scale value.
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Then the effects of surface roughness are simulated by increasing the wall skin friction by
adjusting the turbulent eddy viscosity at the wall boundary.

Taylor et al. (1985) proposed a discrete element method approach that accounts for the
surface roughness of the wall region. Taylor et al. (1985) modelled the roughness effects
through a pressure drag term with the aid of a parameter, the blockage coefficients (βB), for
which a spatial distribution is determined by solving an additional transport equation for βB.
The original model was developed to handle identical roughness elements, but later a new
model was introduced that can cater for a mixture of different roughness elements. However,
the original model has the drawback of being only compatible with turbulent boundary layer
flows computed by a mixing length model, which prevents its direct use with sophisticated
turbulence closure methods. Recently, Aupoix (2016) addressed this issue by formulating
a revised discrete element method that is compatible with more sophisticated turbulence
closure RANS models, which are the primary methods of solving many engineering and
industrial related flows problems.

Another effective strategy that is common in DNS and LES simulations is modifying
the boundary conditions near the rough wall to model the roughness effects. Tuck and
Kouzoubov (1995) proposed steady laminar flow simulations on a flat wall. They imposed a
partial slip boundary condition on a wall to achieve roughness-like perturbations in the near
wall region. Later, Orlandi et al. (2003) simulated a series of slip conditions on turbulent
channel flows. The initial simulation is conducted using no-slip boundary conditions; then
slip boundary conditions are introduced in a the component-wise manner in the steam-wise
(u1), span-wise (u2) and wall-normal (u3) directions, respectively. The slip conditions on u2

result in similar outcomes to the unperturbed case (smooth wall), whereas the slip conditions
on u1 and u3 result in drag reductions and structural changes in velocity fields (both mean
and turbulent), respectively. Similar structural changes were previously observed in rough
wall DNS.

Flores and Jimenez (2006) investigated a turbulent channel flow under the perturbed wall
boundary conditions. Even though the investigation is not explicitly focused on modelling
wall roughness effects, the outcomes of near wall perturbations resemble rough wall effects.
In this investigation, the smooth wall conditions are removed from near wall regions, and
non-zero Reynolds stresses have introduced to perturb the velocity field. They observed
some effect in the first and second moments of velocity, which are similar in trend to the ones
observed in rough wall layer. The effects of the boundary conditions on the mean velocity
fields are described using equivalent sand grain roughness. Here, no structures and effects
of turbulent quantities penetrate to the outer layer and all the effects are confined to the
roughness sublayer.
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Miyake et al. (2000) proposed a concept of roughness elements. These are zero volume
wall-normal lines extending 15–30 wall units from the wall surface. The profile drag due
to these roughness elements are calculated and they are represented as an additional force
in the momentum equation. The model has been tested with a channel flow bounded with
rough and smooth walls and the mean velocity and turbulent quantities were calibrated with
experimental results.

Cui et al. (2003) investigated by LES turbulent flow over arbitrary rough surfaces. Surface
roughness was introduced by introducing a body force term in the momentum equation. The
roughness was split between resolved roughness and subgrid-scale roughness, which is the
similar concept to LES. Here, Verzicco et al. (2000)’s body force approach was used to
resolve the large-scale wavy elements. Roughness elements smaller than the grid scale
were modelled with Miyake et al. (2000)’s roughness element model. The outcomes of the
simulations were validated against a simulation, in which all roughness scales were resolved
by a body-fitted grid. The method is very robust and does not rely on any empirical input
from experiments, but a complex modification to the momentum equation is a drawback.

Scotti (2006) proposed a body force method to model the effects of roughness. The
method is simple to implement and requires no extra computational overheads to simulate.
The body force is steady and uniform and based on a single parameter, the roughness height,
which is a physical parameter rather than a modelling constant. The model was tested with
turbulent channel flow with a rough wall, over which the roughness heights were in the
transitional regime (based on the Nikuradse (1950)’s scale), and the outcomes were validated
with experimental results.

Busse and Sandham (2012) developed a parametric force model that accepts multiple
parameters, the roughness factor (α), the model roughness height (hr), and the roughness
shape

(
G(z,hr)

)
function. These multiple parameters may complicate the modelling process,

but the different combinations can give more flexibility and controllability for representing
many kinds of rough walls available in industrial and engineering applications. These
parameters have physical significance, but the values used in the model are not directly
linked with physical parameters, such as roughness height, and suitable values for these
model parameters can be determined with the aid of fully resolved DNS or experimental
investigations. As test cases, a set of turbulent channel flow simulations were conducted with
different parameter values. The roughness factor (α) and roughness height (hr), were found
to mostly affect the mean velocity profiles and the Reynolds stress profiles, whereas the
shape functions are more affected the Reynolds stress profiles more than the mean velocity
profiles.
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2.5 Non-isothermal flows in rotor-stator cavities

Heat transfer of rotating disks is relevant to many practical applications, such as rotating
machinery, combustion chambers and mixing vessels. Early investigation of the subject
dates back to the 1950s when important properties of isothermal rotating boundary layers
were investigated. By assuming von Kármán (1921)’s similarity solutions, Millsaps (1951)
investigated laminar heat transfer coefficients (or the Nusselt numbers) on the rotating disk.
Later, Cobb and Saunders (1956) obtained the previously determined laminar heat transfer
coefficients to turbulent flow by conducting a series of experimental investigations. They
found that the turbulent flow significantly increases heat transfer coefficients of the rotating
disk.

Early investigations on heat transfer of rotor-stator cavities were conducted by Nikitenko
(1963). He investigated a range of cavities with different aspect ratios, 0.018 < G < 0.085 at
Reω < 1×106, where both disks were maintained at isothermal conditions. The aim was
to obtain generalised correlations for local Nusselt number (Nur) distributions for laminar
and turbulent flows in the form of, Nur = hT r/k f , where hT and k f are the convective
heat transfer coefficient and the thermal conductivity of the fluid. The resulting local
Nusselt number correlations on the rotor have the form of Nur = 0.675Re0.5

ω for laminar flow,
Nur = 0.02175Re0.8

ω for the turbulent flow, but none of these correlations includes the effects
of the aspect ratio.

Owen et al. (1974) conducted a combined theoretical and experimental investigation of
heat transfer over rotating disks. This investigation consisted the cases of a free disk (case
equivalent to single disk), of a rotor-stator cavity and of a rotor-stator cavity with throughflow.
For the rotor-stator cases, the various aspect ratios within the range G = 0.0067–0.18 were
tested over Reynolds number range, 2×105 ≤ Reω ≤ 4×106. In the rotor-stator cavities
with throughflow, coolant fluid was introduced through a hole on an adiabatic stator. Here,
the rotor was the heat source of all the cases in this experiment. The results showed that
the dependency of the mean Nusselt numbers (Nur) on the aspect ratio of the cavity, with
G → ∞ giving the mean Nusselt number of the free disk (Nur,d = 0.017Re0.814

ω ). At aspect
ratios G < 0.01, the flow is Couette type (Regions I, III in Fig. 2.3) and (Nur > Nur,d). The
Batchelor regime (Regions III, IV in Fig. 2.3) is observed in the range of 0.01 ≤ G ≤ 0.06
and the core rotation of the cavity is observed. In this region, the mean Nusselt number is
less than the case of the free rotating disk (Nur < Nur,d). At any aspect ratio higher than
G = 0.06, the mean Nusselt number becomes independent of the aspect ratio of the cavity
and (Nur = Nur,d). These results imply that the mean Nusselt number decreases as the aspect
ratio increases. At G > 0.06, the convective heat transfer coefficient over the rotor becomes
decoupled from that over the stator, and the rotor heat transfer process essentially becomes
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that of a single disk. Further, they showed that the throughflow has a great influence on heat
transfer rates and that the average Nusselt number tends to increase with the throughflow.

Shchukin and Olimpiev (1975) performed heat transfer experiments on a rotor-stator
cavity of aspect ratio G = 0.0645. They imposed radial temperature distribution over the
rotor was found to vary in a fashion of rn, where usually n = 0.25. In the turbulent regime,
the average Nusselt number was Nur = 0.0168Re0.8

ω , which is approximately 11% higher
than the free disk value.

These early-stage investigations were more focused on determining the bulk heat transfer
properties under laminar and turbulent conditions and their geometrical dependency. Different
correlations of local and average Nusselt numbers were proposed to reflect these changes.
Many of the pre-1990 investigations are described in (Owen and Roger, 1989; Owen, 1994).
The advancements in rotating disk boundary layer models during the 1990s had a significant
influence on heat transfer studies in both single and two-disk systems. Henceforth, much of
the attention is paid to the more recent investigations.

Elkins and Eaton (2000) conducted a detailed experimental investigation on a heated
single rotating disk for Reynolds numbers up to Reω = 1×106. Due to the low temperature
difference maintained during the investigations, the thermal transport was treated as a mere
passive scalar and it had a less significant effect on the velocity fields of the flow. It was
found that the convective heat transfer coefficient (hT ) is fairly constant in the laminar
flow region, but it varies as hT ∝ r7 and hT ∝ r0.6 in the transition and turbulent regions
respectively. This investigation also compared the outcomes of momentum and thermal
transport properties with their respective two-dimensional boundary layer counterparts. At
the selected conditions, the boundary layer separated into two regions, the inner and the outer
regions, where the demarcation height was defined as z/δ ≈ 3. In inner region, Townsend’s
structure parameter (A1) and correlation coefficients, Ruθ , Rvθ are reduced compared to
their corresponding values in two-dimensional boundary layers. This suggests that the
three-dimensionality of the boundary layer affects both turbulent shear stresses and heat
flux. The outer region of the boundary layer, z/δ > 3, is also different from two-dimensional
boundary layers. In this region, the turbulent Prandtl number (Prtur) reduces below the
two-dimensional boundary layers (Subramanian and Antonia, 1981; Gibson et al., 1984) in
either side of the three-dimensional boundary layers of the rotor-stator cavity. The quadrant
analysis (Rajagopalan and Antonia, 1982; Wallace, 2016) was done on instantaneous turbulent
fluctuation components to understand the contribution of the sweeps and the ejections in the
rotating boundary layer and it revealed that there is a huge deficit in sweeps contributions on
turbulent shear stresses, whereas both ejections and sweeps contribute to vertical turbulent
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heat flux. This explains the reduction observed in the turbulent Prandtl numbers of rotating
boundary layers.

The first noticeable numerical investigation of the heat transfer of a rotor-stator cavity was
conducted by Serre et al. (2004) using a DNS for a rotor-stator cavity with an aspect ratio of
G = 0.426, Reω = 1.1×105. This study visualised instantaneous temperature distributions
inside the cavity. The hot large-scale structures were elongated toward the upper rotor layer,
which is a result of Ekman pumping. A region of hot flow also spreads from the rotor
hub to one third of the ∆r = (r2 − r1). The buoyancy effects on the flow were tested using
different Rayleigh numbers of Ra = 0, 2× 104, 2× 106. As described in the Elkins and
Eaton (2000), buoyancy effects were less sensitive to the velocity fields but more sensitive
to the mean temperature gradients. At the higher Rayleigh numbers of Ra = 2× 104 and
2×106 a significant decrease in temperature was noticed in both boundary layers and, in
both cases, the temperature distributions of the core region was also reasonably constant
compared to the Ra = 0 case. Later, Poncet and Serre (2008) extended this investigation
with a cavity of aspect ratio G = 0.2 over a range of Reynolds and Rayleigh numbers up to
Reω = 1×105 and Ra = 1×108.

Tuliszka-Sznitko et al. (2009b) investigated the heat transfer properties in rotor-stator
cavities using LES. For this numerical investigation, cavities of two different configurations
of G = 0.2, Reω = 3×105 and G = 0.11, Reω = 1.5×105, were used. The thermal Rossby
numbers of their simulations were Bthermal = βthermal(T2 −T1) = 0.01 and 0.4, where T2, T1,
and βthermal are the temperatures of the stator and of the rotor, and the thermal expansion
coefficient of fluid respectively. Local Nusselt number distributions were obtained for the
rotor and stator. It was observed that an increase in Reynolds number increases the local
Nusselt number, which implies a higher heat transfer rate. The influence on the thermal
Rossby number on the local Nusselt numbers is shown to be comparatively negligible. Later,
Tuliszka-Sznitko and Majchrowski (2010) conducted a similar investigation for co-and
counter-rotating cavities.

Tuliszka-Sznitko et al. (2012) proposed rotor-stator DNS and LES over the aspect ratio
range G ≈ 0.02–0.5 and Reynolds number range, Reω = 1.0× 105–2.9× 105. The axial
distributions of Reynolds stress components, and temperature fluctuations, turbulent heat flux
were validated against previous experiments by of Elkins and Eaton (2000). It was determined
that the structural parameters are less sensitive than the Reynolds stress components and
turbulent heat fluxes on the changes to the geometric parameters, such as G and Rm.
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2.5.1 Heat transfer and nanofluid flows

High performance devices are ubiquitous in modern society, because of the rapid development
of technological and industrial sectors. Effective heat management is a key to the operation
of these devices, failure to remove the excess heat may severely affect the lifespan and the
performance of these devices. As an example, Sulaiman (2011) investigated thermal throttling
of microprocessors, which is one of the major bottlenecks in today’s semiconductor industry.
The issue is not limited to the semiconductor industry but also affects the automobile, space,
defence, medical, and industrial sectors.

The thermo-physical properties of the coolant fluid are another vital factor that affects
the heat transfer of a process. The gases and liquids are the most common types of coolants
used in modern applications. Even though liquids have better heat transfer capabilities
than the gases, they also have a low thermal conductivity, which may be not ideal for high
performance applications. However, the liquid state enables to enhance the thermal properties
of a liquid by mixing it with another substance. As an example, in many applications, a small
increase in performance can be achieved by mixing water with ethylene-glycol. The specific
heat capacity of metallic substance and their oxides are far superior to liquids. Therefore,
a suspension of solid particles in a liquid may impose the heat transfer rate than the pure
liquid. However, producing suspensions to fit a wide variety of heat transfer applications is
challenging.

The first attempt to characterise a spherical particle suspension in a liquid was reported
back to Maxwell (1881). Following Maxwell’s investigation, Hamilton and Crosser (1962)
studied the effective thermal conductivity of heterogeneous two-component mixtures, which
consist of continuous and disperse phases. In these cases, the thermal conductivity of the
mixture is obtained as a function of the conductivity of the pure materials which are mixed
to compose the mixture.

These stage investigations that are described above considered a micro-sized particle
phase, which introduced additional complexities in fluid and heat transport processes. Das
et al. (2006) reviewed several reasons for the failure of the micro-sized particle suspensions
as a potential heat transfer enhancement solution.

• Micro-sized particles promote quick sedimentation. This might form an insulation
layer, which prevents further efficient heat transfer.

• High flow rates and fluid circulation may increase erosion of the internal parts of the
equipment.

• Microparticles may cause clogging in narrow channels or pipes.
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• The suspension can be subjected to considerable pressure drops, which increase
pumping power.

In micro-fluids, heat transfer capabilities are proportional to particle concentration in
the mixture, but increased concentrations may result in more significant exposure to the
above drawbacks. Despite the failure to deliver the expected results, there is no fundamental
misconception in the idea of liquid-solid hybrid solutions enhancing the heat transfer in a
system. If the microparticles are too bulky to achieve desired results, further reduction in the
size of the particles may mitigate some of the complications that may be experienced during
preliminary tests.

The emergence of nanotechnology allows the new suspension to be made. It is capable of
manipulating and modifying the nanoscale structures, which add an extra layer of versatility to
product design and to the manufacturing processes. Nanotechnology enables the production
of nanoscale particles that have different electrical, thermal, and mechanical properties
of their parent materials (Das et al., 2006). The first notable heat transfer application in
nanoparticles reported by Choi and Eastman (1995). They investigated the possibility of
enhancing the heat transfer rates by adding copper a nanoparticle phase to the liquid phase,
which showed a considerable improvement in heat transfer over using just pure liquid. At the
same time, they noticed that there is no significant increase in pressure loss through the heat
exchanger, which is significant progress over microparticle suspensions.

Eastman et al. (1999) studied copper nanoparticles with the volume fraction of 5%
suspended in water. They have confirmed excellent suspension properties of the particle
phase, which increased the heat transfer by 60% compared to pure water. The suspensions
of nanoparticles in a liquid are collectively termed as nanofluids. This has developed into a
highly regarded research topic during the past decades (Murshed and Estellé, 2017). The
success of nanofluids reflects their ability to overcome the issues that were encountered with
microparticle suspension.

Lee et al. (1999) conducted experiments about nanosized metal oxides suspended in
liquids unlike with micro-sized particles, the nanofluid heat transfer not only depends on
the nanoparticle concentration (or volume fraction), but also on the particle size. In general,
smaller particles tend to give a higher heat transfer, because of their specific surface area
contribution to the heat transfer is higher than the larger particles, at the same volume fraction.
Using low volume fractions of the dispersed phase enables to maintain the Newtonian
behaviour of the flow, which eases the analysis and the design process.

For conventional fluid flow problems, the conduction and convection are the prominent
heat transfer mechanisms and the nanofluids heat transfer is not an exception, but these
mechanisms are often complicated by the presence of multiple phases, multiple components,
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and the effects that are only significant to nanoscale structures. The following sections
present thermal conductivity and viscosity prediction models for nanofluids. Many of these
models have evolved from micro and macro scale particle dynamics.

2.5.1.1 Thermal conductivity of nanofluids

Maxwell (1881)’s original model, which was developed for macro scale particle, can be
adapted to estimate the thermal conductivity of the nanofluids. The effective thermal conduc-
tivity of the nanofluid is a function of the conductivities of each constituent of the mixture
and the corresponding expression reads as

kn f =
knp + k f −2φ(k f − kn f )

knp + k f +2φ(k f − kn f
k f , (2.1)

where
kn f = thermal conductivity of the nanofluid [W/mK].
knp = thermal conductivity of the nanoparticles [W/mK].
k f = thermal conductivity of the fluid [W/mK].
φ = volume fraction of the nanoparticles.

Bruggeman (1935) suggested a new model that accounts for the interactions among
randomly distributed particles. The model assumes a binary mixture of homogeneous
spherical particles from which the effective thermal conductivity of the nanofluids kn f is
determined by the solution of

φ

( knp − k f

knp +2k f

)
+(1.0−φ)

(k f − kn f

k f + kn f

)
= 0. (2.2)

Maxwell’s model is only applicable to spherical particles. Hamilton and Crosser (1962)
extended the model to non-spherical particles by adding an empirical parameter, the spherical
shape factor (n) by which

kn f =
(knp +(ns −1)k f − (ns −1)φ(k f − knp)

knp +(ns −1)k f +φ(k f − knp)

)
k f . (2.3)

The shape factor (ns) is defined as ns = 3/ψS and ψS is the sphericity of the nanoparticles,
which is defined as the ratio of the surface area of a sphere with the same volume of the
particle, to the surface area of the particle. Maxwell’s equation is a special case of Eq. (2.3),
where ns = 1.

Bhattacharya et al. (2004) suggested the idea of modelling the motion of small-scale
nanoparticles in a suspension as a Brownian motion (see Section 2.6.4 to Brownian motion in
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submicron Lagrangian particles). The Brownian motion is a random motion that may occur
in particles suspended in fluids, and the magnitude of the force exerted on the particles is
inversely proportional to the size of the particles (usually diameter of the particle). Hence,
the Brownian motion may be very much significant for nanoparticle suspensions in liquids.
Koo and Kleinstreuer (2004) proposed the effective thermal conductivity model as a linear
combination of static and Brownian portions of thermal conductivities:

kn f = kstatic + kBrownian. (2.4)

The static contribution of the thermal conductivity is the non-Brownian portion of the thermal
conductivity, which can be defined by Eqs. (2.1) & (2.3). The second term on the right-hand
side represents the addition of the thermal conductivity due to Brownian motion, which is
defined as

kBrownian = 5×104
β1φρ f cp, f

√
kBT

ρnpdnp
f (T,φ), (2.5)

where
kB =Boltzmann constant [1.38×10−23m2kg/s2K].
cp, f =constant pressure specific heat capacity of the fluid [J/kgK].
Here, β1 and f (T,φ) are determined from experiments and Koo and Kleinstreuer (2004)
specified the corresponding values for CuO nanoparticles as

β1 =

0.0137(100φ)−0.8229 if φ < 1%,

0.0011(100φ)−0.7272 if φ > 1%,
(2.6)

f (T,φ) = (−6.04φ +0.4705)T +(1722.3φ −134.63). (2.7)

Equation (2.7) is valid for the specific volume fraction and temperature ranges of 1%< φ <4%,
and 300 K< T <325 K.

2.5.1.2 Viscosity models for nanofluids

The viscosity models of nanofluids are as important as the thermal conductivity models.
The presence of a secondary phase increases the nanofluid viscosity and a proper estimate
of the effective viscosity of the mixture is very important to predict the outcomes of the
system. Viscosity is an important fluid property, and it describes the resistance to flow. The
pressure drop in a laminar pipe flow is directly proportional to viscosity and turbulent flow
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characteristics and transition to turbulence very much depend on the viscosity of the fluid.
Further, in most flows, the temperature has a significant influence on the viscosity of the
fluid.

Several theoretical models are available, but none of them is universally accepted, to
evaluate nanofluid viscosity, still, these models are often used in analytical and numerical
investigations. A most popular model was proposed by Einstein (1906) by which the effective
viscosity:

µn f = µ f (1+2.5φ). (2.8)

The model is acceptable for nanoparticles concentrations below 1%vol, and many investiga-
tors proposed different modifications to the original model.

Hatschek (1913) revised the model of Eq. (2.8) as

µn f = µ f (1+4.5φ), (2.9)

which extends its validity of particle concentrations up to 40%.
Brinkman (1952) modified Einstein (1906)’s model to improve its validity at moderate

concentrations (< 4 %vol) of particles and the expression reads as

µn f =
µ f

(1−φ)2.5 . (2.10)

Roscoe (1952) proposed Eq. (2.11), which is valid for a mixture of any concentration,
with rigid spherical particles. The model is capable of accepting different packing fractions
of particles to determine the effective viscosity of particle mixture:

µn f = µ f

(
1− φ

φm

)2.5
, (2.11)

where φm is the maximum particle packing density. For mono-sized particles, the maximum
packing density is φm = 0.74 and in mixtures with random loose packing, φm ≈ 0.6.

Krieger and Dougherty (1959) studied the non Newtonian behaviour of hard-spherical
particle suspensions. They proposed the semi-empirical Eq. (2.12) for estimating the effective
viscosity based on φm:

µn f = µ f

(
1− φ

φm

)−nφm
. (2.12)

Even though the dependency of viscosity on temperature is well known, none of above
models reflects that dependence of viscosity on the temperature of the nanofluid. Kulkarni
et al. (2006) studied the rheological properties of CuO nanoparticles suspensions, and
correlated the nanofluid viscosity to the fluid temperature T over the range of 5–50°C. They
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found that

ln(µn f ) =−(2.8751+53.538φ −107.12φ
2)+

(1078.3+15857φ +20587φ 2)

T
. (2.13)

As mentioned before, the Brownian motion of nanoparticles has a significant influence
on the nanofluid properties. Batchelor (1977) investigated the effects of Brownian motion on
a statistically homogeneous spherical particle suspension on liquids and modified Einstein’s
viscosity model to represent the Brownian motion as

µn f = µ f (1+2.5φ +6.5φ
2). (2.14)

Koo and Kleinstreuer (2004) followed the approach of Eq. (2.5), by which nanofluid
viscosity is written as a linear combination of the static nanofluid viscosity and the viscosity
contribution from Brownian motion as

µn f = µstatic +µBrownian. (2.15)

Here, µstatic can be estimated by any one equation from Eqs. (2.8) & (2.14) and µbrownian is
defined as

µBrownian = 5×104
β1φρ f cp, f

√
kBT

ρnpdnp
f (T,φ), (2.16)

where all the parameters have the same meaning as in Eq. (2.5).
This section outlined only a few of the viscosity models that are available in the literature

to evaluate the viscosity of nanofluids. However, a significant number of additional models
that have been reviewed in literature and the majority of them are extensions or modifications
of the models which have been presented here. Interested readers are referred to the detailed
review by Murshed and Estellé (2017).

2.5.1.3 Other properties of nanofluids

The thermal conductivity and viscosity are the main fluid properties that affect the nanofluid
heat transfer. The equivalent nanofluid mixture value of density, specific heat capacity,
thermal expansion coefficient, etc., can be obtained by the weighted average defined as

ηn f = (1−φ)η f +φηnp, (2.17)

where η represents a scalar fluid property and the subscripts f and np denote the fluid and
nanoparticles values respectively.
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2.5.2 Heat transfer in rotating disk boundary layers due to nanofluids

The conventional heat transfer of rotating disk boundary layers is a well researched topic, and
much of the previous literature was reviewed in Section 2.5. However, this section focuses
more on the available literature related to rotating disk boundary layer flows in nanofluid
context.

Nanofluid heat transfer is not a highly investigated topic in rotating disk boundary layer
flow domain, but there are a few investigations that concern the nanofluid heat transfer
enhancement in single rotating disk boundary layers, which closely resemble with rotor-
stator flow systems. Bachok et al. (2011) studied nanofluid heat transfer in a porous rotating
disk. They conducted a numerical simulation by solving the transformed boundary layer
equation using a finite difference method. In this study, nanofluid made of nanoparticles of
Al2O3, CuO, TiO2, and water was used as the base fluid. The mixture thermal conductivities
are calculated based on Maxwell’s model and Patel et al. (2006)’s model. As the nanoparticle
concentration increases (particle concentrations can increase up to 20% vol), the latter model
predicts increased heat transfer rates on both suction and injection (to simulate porosity) at
the rotor surface, whereas the former model only predicts increased heat transfer rates under
injection.

More recently, Turkyilmazoglu (2014) carried out an investigation to evaluate the flow
and heat transfer rates over a rotating disk with nanofluids, which consist with various
concentrations of nanoparticles of Al2O3,CuO,Cu,TiO2, suspended in water. This study
was more concerned with the variation in the momentum boundary layers under increased
nanoparticle concentrations. The boundary layer velocity plots evidenced that increasing the
concentration of nanoparticles, such as Al2O3,TiO2, increases the amount of fluid pumped
into the rotor boundary layer, but nanoparticles of CuO,Cu behaved oppositely. Regardless
of the type of the nanoparticle, an increase in particle concentration increases the Nusselt
number, which is an indication of enhancement in heat transfer rate at the same temperature
difference.

Bachok et al. (2011) and Turkyilmazoglu (2014) investigations are based on von Kármán
similarity solutions, which are very accurate, but their underlying assumptions are restrictive
compared to numerical solutions for applications to rotor-stator systems. Another drawback
is that the flow fields are assumed to be fully laminar, so these approaches are unusable
for the turbulent flow regime. The current study tries to mitigate these drawbacks, by
developing and simulating nanofluid based FVM computational models for the rotor-stator
flow, and turbulence in the flow is handled using LES. The operational Reynolds number
(Reω ) is 1.0×105, which is sufficient for obtaining a turbulent stator boundary layer, but a
considerable portion of the rotor boundary exhibits laminar behaviour.
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2.6 Lagrangian particle tracking framework

In mechanics, the motion of a system is described either by a Eulerian or a Lagrangian
approach. The Lagrangian approach tracks individual fluid particles in the system, and the
particle properties are defined in the frame of reference of the particles. The fluid particles
can be either individual molecules or fluid parcels, which are a collection of particles with
the same properties. In a Lagrangian simulation, these particles are initially injected at a
fixed position (x0) in computational space and are initialised with properties such as volume,
density, velocity, temperature, etc. As the time advances, the particles are free to change their
spatial locations and properties according to the laws of mechanics. At any particular ith time
frame (i∆t), one can observe and track the trajectories of the particles and the loci of these
particles are often called particle path lines or particle trajectories.

Since the volume fraction (or the concentration) of the carrier fluid is high, it is computa-
tionally expensive to use the pure Lagrangian approach to simulate fluid phase, because of
the high number of fluid particles. Hence, past investigations have used a hybrid approach
by which the Eulerian framework is used to solve the continuum phase (fluid phase), and
the Lagrangian method is used to solve diluted dispersed phase within it. This Eulerian-
Lagrangian hybrid approach has been used quite extensively in various engineering and
industrial applications, which include industrial piping (Ingham, 1975; Fan and Ahmadi,
1993; Li et al., 1994; Inthavong et al., 2016), outdoor air quality and ventilation (Zhao et al.,
2004; Zhao and Chen, 2006; Yan et al., 2016), the human respiration system (Nazridoust
and Asgharian, 2008; Inthavong, Tu and Ahmadi, 2009; Inthavong, Wen, Tu and Tian, 2009;
Inthavong et al., 2010, 2013) and Chemical Vapour Deposition (CVD) systems (Burns et al.,
1997; Chein and Su, 2004).

Dispersed solid particles in a fluid can be subjected to different forces, depending on the
application, external environmental factors, or particle properties themselves (e.g., shape,
size, density ratio, heat capacity, etc.). These factors can significantly influence the outcomes
of any particle tracking method, and it is essential to embed relevant information on the core
particle tracking framework. The following sections are devoted to outlining a basic particle
tracking framework and to introducing its corresponding submodel, which is of particular
importance in CVD systems.

The fundamental principle that governs the motion of the particles is Newton’s second
law of motion. Given a starting Lagrangian particle position vector (xpxpxp), the particle track
can be obtained by integrating the following equations of motion:

dmpupupup

dt
= ∑FpFpFp, (2.18)
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dxpxpxp

dt
= upupup, (2.19)

where
mp = particle mass.
upupup = particle velocity.
FpFpFp = the resultant force acting on particles.
The subscript p indicating the pth particle in the set.

The Basset–Boussinesq–Oseen (BBO) equation provides a general framework for esti-
mate the forces on small dispersed particles suspended in a fluid at low Reynolds numbers
(Fan and Zhu, 2005). The Reynolds number of a particle is based on the relative velocity
between particles and the size of the particles is assumed as comparable with the Kolmogorov
length scale of the continuous phase. According to Amiri et al. (2006), these forces on
particles can be categorised into four distinct groups:

• The forces due to the motion of the particles. E.g., Basset force, virtual mass, Magnus
force.

• The forces due to the motion of the surrounding fluid. E.g., drag and lift forces.

• The forces that arise due to external fields which are independent of the motion of
particles or fluid (e.g. gravitational forces, magnetic forces, electrical forces).

• The forces that result in objects which are immersed in a fluid. E.g., buoyancy force.

Even though the BBO equation provides a generic framework for estimating the forces
on the particles in fluids, all the terms in the BBO equation may not be significant under
specific conditions. For some hard-submicron particles suspended in a gas medium, the
Basset force, and the virtual mass can be neglected, due to the high-density ratio between
particles and fluid (Burry and Bergeles, 1993). The drag and gravitational forces are then the
most significant forces on the particles. For particles well beyond the Strokes regime, lift
force can take place due, to the uneven flow distributions around the particles (Amiri et al.,
2006).

Apart from the basic forces which are described above, other factors may influence the
motion of dispersed particles. These factors may be more significant when the particles are
subjected to more complicated flow conditions, such as the presence of thermal gradients,
particle diffusion and turbulence in the carrier phase. The development of the Lagrangian
framework is typically supplemented by various submodels of the behaviour under these
conditions. The next sections are devoted to understanding and formulate the basic forces
and submodels, which have been used in this investigation.
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2.6.1 Drag force

The drag force on a particle in a fluid medium is unavoidable when there is a relative motion
between the particle and the fluid. The early theoretical development was initiated by Stokes
(1851), who assumed that the convective effects are negligible compared to the diffusion
effects. This assumption limits the applicability of the Stokes theory creeping flows. Later,
Oseen (1927) improved the theory by adding linearised convective terms that relax some of
the restrictions in the Stokes model. As the velocity of the flow with respect to the particle
increases, the flow pattern near the particle becomes more coupled and an analytical estimate
of the drag is not possible. This requires reordering to a correlation-based approach in forced
by experiments. Achenbach (1974) and Clift and Gauvin (1971) studied drag forces on
spherical particles in turbulent flows. They, established that the drag force depends on the
particle Reynolds number (Rep = ρc|uuu−upupup|dp/µ ). For the sake of generality, the drag force
is presented in, drag coefficient (CD), which is

CD =
FDFDFD

0.5ρcAp|uuu−upupup|(uuu−upupup)
, (2.20)

where
FDFDFD =drag force .
uuu = velocity of the carrier phase.
upupup = velocity of the particle.
Ap = surface area of the fluid particle.
ρc = density of carrier phase.
The denominator is often referred to as the dynamic pressure. The term (uuu−upupup) is the
relative velocity between the continuum phase and particles.

Morsi and Alexander (1972) suggested the following empirical relation for the drag
coefficient for smooth spherical particles:

CD = a11 +
a22

Rep
+

a33

Re2
p
+a44. (2.21)

The model constants a11, a22, a33, a44 are specified in original literature of Morsi and
Alexander (1972) for a range of Rep values.

Clift and Gauvin (1971) used a different empirical correlation for the drag coefficients.
This model is capable of tracking liquid droplets that are susceptible to shape distortion at
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high Weber numbers (Liu et al., 1993). The expressions for the drag coefficient are given as

CD =

 24
Rep

+
(
1+ 1

6Re2/3
p

)
1 < Rep < 1000,

0.44 Rep > 1000.
(2.22)

Droplet distortion function is given as follows:

CDD =CD(1+2.632ydis). (2.23)

The distortion parameter is between (0 ≤ ydis ≤ 1), and for hard-spherical particles ydis = 0.
Alongside the development of spherical drag models, non-spherical drag force models gained
a much of attraction because of their relevance to many industrial and engineering applica-
tions. The details about non-spherical drag laws will not be discussed here but interested
readers are referred to Haider and Levenspiel (1989). Figure 2.7 shows a comparison of drag
models, which have discussed in this section.

Fig. 2.7 A comparison of drag models with particle Reynolds number (Rep).

2.6.2 Gravitational force

The gravitational force is a body force that affects mass in a gravitational field. The direction
of the force is in the same direction as the gravitational acceleration (ggg). In particle dynamics,
the gravitational force becomes significant in particles with diameters larger than 2 µm (Li
and Ahmadi, 1993), and the magnitude of the buoyancy effects are calculated according to the
Archimedes principle. The resulting net gravitational force per unit mass can be expressed as
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below:
FGFGFG = ggg

(
1− ρc

ρp

)
, (2.24)

where
ρc = density of the carrier phase.
ρp = density of the the particles.

2.6.3 Lift force

The lift force on a particle is defined as the lateral force, which is the in-plane components of
the total force acting on the particles, normal to the particle velocity. As such, lift is different
from the conventional aerodynamic lift force. Poiseuille (1841) observed a lateral force on
blood cells in capillary but the proper causes of these observations remained undiscovered
until the later discovery of Segré (1961) and Segré and Silberberg (1962). They observed that
particles drift away from the tube axis in a Poiseuille flow experiment. This confirmed the
existence of a lateral force on particles suspended in a fluid. Oliver (1962) investigated the
particle dynamics in a flow moving in the downward direction. If the particles moved in the
same direction as the fluid flow, they drifted away from central axis of the tube; otherwise,
particles tended to move toward the central axis of the tube.

The lateral lift force can be caused by shear and wake effects of the carrier phase, by the
rotation of particles, or by shape deformation of particles. These factors may not need to
contribute in equal magnitudes to the resulting lift force. For hard-spherical particles, the
lift due to the shape deformation can be neglected. The rotation of particles is a localised
effect and this component is often referred to as the Magnus force (Magnus, 1861). Particle
rotation can be initiated by collision with boundaries, inter particle collisions, or carrier phase
shear stresses (Rusche, 2003). Rubinow and Keller (1961) derived a low Rep model for the
Magnus force. Later, Crowe et al. (1998) extended this model to higher Rep numbers.

Apart from particle rotation, the carrier phase shear can impart a lift force on particles.
The shear of the carrier phase can generate an uneven pressure distribution over the particle,
due to the uneven relative velocity around the particle. As shown in Fig. 2.8, direction of this
shear induced lift force is determined by direction of the shear rate of the carrier phase

(
duuu
dy

)
and the slip velocity (uuu−upupup). The resulting lift force is identified as the shear induced lift
force FLFLFL.

Saffman (1965) produced a shear induced lift force model, which is often referred to as
the Saffman lift force (FLFLFL), which is

FLFLFL = 6.46ρca2
pν

1/2(uuu−upupup)|
duuu
dy

|1/2sgnsgnsgn
(duuu

dy

)
, (2.25)
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where uuu, ap and ν are the carrier phase velocity, particle radius and the kinematic viscosity
of the carrier phase fluid. The notation sgnsgnsgn

(duuu
dy

)
denotes the sign of the derivative.

Auton (1987) derived an alternative form of the above equation in terms of the lift
coefficient (CL ) and of the vorticity (ωcωcωc) of the carrier phase, and it reads as

Fig. 2.8 An illustration of carrier phase velocity profiles and the directions of the shear-
induced lift force on the particles.

FLFLFL =−ρcαpCL(uuu−upupup)×ωcωcωc, (2.26)

where ωcωcωc =∇∇∇×uuu.
The Saffman lift coefficient CL is defined as

CL =
3

2π
√

ReΩc
C′

L, (2.27)

where
C′

L= A constant value of 6.46.
ReΩc= Reynolds number based on the vorticity magnitude of the carrier phase (Ωc = |ωc|ωc|ωc|).

Equation (2.27) only valid for 0 ≤ Rep ≤ ReΩc ≤ 1. To mitigate this Mei and Klausner
(1994) proposed the following model that is valid over a broader Rep range:

C′
L,M =

C′
L(1−αL,Mβ 0.5

L,Me−0.1Rep +αL,Mβ 0.5
L,M) 1 < Rep < 40,

C′
L0.0524(βL,MRep)

0.5 40 < Rep < 100,
(2.28)
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αL,M = 0.3314, βL,M =
ReΩc

Rep
. (2.29)

The model is known as the Saffman-Mei lift force model and it can be used to Rep = 100.
Nevertheless, the Saffman (1965) model was developed for unbounded shear flows and the
presence of wall boundaries may deteriorate the accuracy of the model in near wall regions.
McLaughlin (1993) proposed a correction for near wall regions in the Saffman lift model, but
this correction was initially verified only for linear sheared flows and the model is unproven
for more complicated flow scenarios.

In this section, the main contributions to the lateral lift forces have been discussed.
For hard-spherical particles at a low rotation rate, deformation and Magnus effects can
be neglected. All models are one-way coupled, and no force feedback is assumed for the
dispersed phase to carrier phase. Hence, only the shear induced lift is considered, which
is evaluated using the Saffman-Mei lift model. Even though the wall effects may have a
significant impact on the near wall calculation, the implementation of wall corrections was
not considered, which could be a drawback in the current simulation work.

2.6.4 Brownian Force

A particle suspended in a fluid continuously collides with the surrounding gas or liquid
molecules of the carrier phase. These instantaneous collisions affect the momentum of the
particle and they can make the particle to move in a random path, which is known as the
Brownian motion. Brownian motion generates particle diffusion even in a stagnant fluid and
the Brownian diffusion constant DB by (Buongiorno, 2006)

DB =
kBTcCc

3πµdp
, (2.30)

where Tc is the absolute temperature of the carrier phase and the term Cc in Eq. (2.30) is the
Cunningham correction factor, which can be estimated as (Davies, 1945)

Cc = 1+2Kn(1.247+0.4e−1.1/Kn), (2.31)

where Kn = λ f /dp is the Knudsen number which is defined as the ratio of the mean free
path of the molecules forming the continuous phase (λ f ) to the diameter of dispersed phase
particles (dp). For λ f = 65nm, the variation of the Cunningham correction (Cc) factor with
Knudsen numbers is shown in Fig. 2.9.
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Fig. 2.9 Variation of Cunningham correction (Cc) factor with Knudsen number (Kn).

According to Eq. (2.31) and Fig. 2.9, particles with a smaller diameter (or higher Knudsen
numbers) are subjected to higher Brownian diffusion rates. An expression for the Brownian
force is reported in Guha (2008) and in Inthavong et al. (2010), and amplitude of the Brownian
force component states as

Fbi =
Gi

mp

√
2k2

bT 2
c

DB∆t
, (2.32)

where Gi is a zero mean, unit standard deviation Gaussian random number (standard normal
distribution) and the force amplitude is calculated in each time step ∆t. On submicron
particles suspended in a fluid, Brownian effects may be significant, but many investigations
suggest that the presence of turbulence may overshadow the Brownian effects. Ounis and
Ahmadi (1990) did an extensive review of this topic, and their conclusions suggest that the
Brownian effects may become substantial in near-wall areas, where laminar flow dominates.

2.6.5 Turbulent dispersion of submicron particles

The turbulent structures in the carrier phase could be highly influential on dispersed phase
dynamics. It is recommended to use the instantaneous carrier phase velocity (uuu) for dispersed
phase calculations to capture the carrier phase turbulence effects on the dispersed phase. The
Reynolds decomposition of instantaneous carrier phase velocity in terms of the mean velocity
(uuu) and of the velocity fluctuation (u′u′u′) is given by

uuu = uuu+u′u′u′. (2.33)

DNS or high fidelity LES are the most suitable methods to capture these instantaneous
velocities. However, their demand on the computing resources is too high to simulate
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the most flow of industrial interest. The RANS methods can simulate a complex flow
with less computing resources, but the resolved carrier phase velocity fields are limited to
time-averaged values (u), which are insufficient for determining uuu = uuu+u′u′u′. To estimate u′u′u′,
the Monte Carlo method could be adapted to the underlying RANS model. Gosman and
Loannides (1983) used the Eddy Interaction Model (EIM) alongside the RANS k-ε model
to study the turbulent dispersed liquid droplets during a combustion process. Later, many
investigators, including Wang and Stock (1992), MacInnes and Bracco (1992), and Stapleton
et al. (2000), adapted this method to simulate the effects of turbulence on the particle phase.
In these approaches, the velocity fluctuation of the carrier phase (u′u′u′) is made up with the
aid of stochastic methods. The unsteady flow of the carrier phase is modelled as a number
of eddies, each of which has a finite lifespan (te) and a length (le). During the motion of
a particle, it may interact with several of these eddies in the carrier phase. Once a particle
enters into an eddy, u′u′u′ is assumed constant over the te of the eddy and the particle path line is
calculated by solving the Eqs. (2.18) & (2.19) at the end of particle residence time (tr). Small
particles tend to attach to the eddies during the life of the eddy (te = tr), whereas particles
with large inertia may prematurely exit from the eddy (te < tr) (Guha, 2008). Whatever the
outcome, when the particle crosses into a new eddy, the particle path line is extended using
the information from the new eddy. The local eddy generation and its properties (te, le) can
be generated from the pre-calculated mean carrier phase velocity and k and ε fields as in

le =C0.5
µ

k3/2

ε
, (2.34)

te =
le
|u′u′u′|

. (2.35)

The EIM method assumes isentropic turbulence. Hence, the Root Mean Square (RMS)
velocity components attain the following form:

√
u′x =

√
u′y =

√
u′z =

√
2
3

k. (2.36)

The fluctuation velocity components of u′u′u′, can be obtained as follows:

u′x = G1dr,x

√
u′2x , (2.37a)

u′y = G2dr,y

√
u′2y , (2.37b)

u′z = G3dr,z

√
u′2z , (2.37c)
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where G1, G2 and G3 are the random numbers from a Gaussian distribution of zero mean
and unit standard deviation. This implementation uses a directional random vector drdrdr =

(dr,x,dr,y,dr,z), to generate additional spatial randomness in the fluctuation components.

2.6.6 Thermophoretic force

A Thermophoretic force is generated by the presence of a temperature gradient (∇∇∇Tc) in the
carrier phase, by which particles move in the direction of decreasing temperature (a direction
opposite to the ∇∇∇Tc. Talbot et al. (1980) derived an expression for the thermophoretic force
per unit mass as

FTFTFT =
−ηT

mpTc
∇∇∇Tc, (2.38)

where the thermophoretic coefficient, (ηT ) is defined as

ηT =
6πdpµ2Cs(Kther +CtKn)

ρc(1+3CmKn)(1+2Kther +2CtKn)
, (2.39)

where Kther is defined as kc
kp

, and kc, kp are thermal conductivities of carrier phase and particle
phase respectively. The values of the constants in Eq. (2.39) are taken as Cs = 1.17, Ct = 2.18,
Cm = 1.14.

2.6.7 Interphase coupling

In two-phase particle laden flows, the coupling, between the dispersed phase and the carrier
phase mostly depends on the volume fraction of the dispersed phase. The Lagrangian particle
volume fractions are denoted as αp = Vp/VF , where Vp, VF are volumes occupied by the
particle phase and fluid, respectively. Elghobashi (1994) reviewed the dependence of αp with
the degree of coupling. Figure 2.10 illustrates the dependency of the interphase coupling on
αp. In Fig. 2.10, τp is scaled by the Kolmogorov time scales (τk) and by the eddy turnover
time (τl ).
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Fig. 2.10 Interphase coupling with particle volume fractions (αp) (Elghobashi, 1994).

The one-way coupling is valid for highly diluted volume fractions of αp < 10−6. Hence,
the particle (disperse phase) dynamics is depended on the carrier phase, but the particle
feedback on the carrier phase is too weak to have a significant effect on the carrier phase. A
two-way coupling occurs at moderate diluted volume fractions, 10−6 < αp < 10−3, which
enable the feedback of individual particles on the carrier phase. In this regime, Elghobashi
(1994) introduced a secondary classification, which describes the variation of the modulation
of the carrier phase turbulence with different particle relaxation times (τp). For a given αp in
the two-way coupling region, a cluster of small particles (or particles with low values of τp)
could result in increased exposure of their surface area to the surrounding carrier phase fluid
than a similar cluster consisting of relatively larger particles. Hence, smaller particles tend
to enhance the turbulence dissipation of the carrier phase. Whereas, large particles (higher
values of τp) implies high Rep, which enhances the turbulent production of the carrier phase.
For much denser suspensions with αp > 10−3, particle-particle collisions become effective,
and the term four-way coupling is used to describe this region.

2.6.8 Particle-surface interactions

So far, the contents of Section 2.6 explained the dynamics of particles and their interactions
with surround fluid. However, particles behaviour near a solid surface could be an important
factor to consider as it could modify the particle deposition behaviour near that surface.
The following section discusses the progress on this topic and this study will adept some of
these methods in investigating the effects of particle-surface interactions inside a Rotating
Chemical Vapour Deposition (RCVD) chamber.
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The particle-surface interaction near a solid surface is not only relevant to particles
with solid mechanical properties, but it is very much observable in deformable particles,
such as liquid droplets. Early stage investigators have observed a reduction in particles
and filtration efficiencies on the particles with a certain velocity and inertia. Jordan (1954)
did the first notable study about near surface interactions. This investigation provides a
quantitative analysis to understand the adhesive energy on the surfaces, but it did not have
any experimental evidence to support the idea.

Gallily and La Mer (1958) conducted experiments to supplement Jordan (1954)’s idea
of particle-surface interactions, and a two-dimensional jet of glycerol aerosol impacting
on inclined Desicote-coated glass slides was observed for different jet stream velocities.
They observed a spread in the collection area of the particles as the jet velocity increases,
which can be described by possible bounce effects on the surface. In this case, they firmly
assumed no sliding effects due to the nature of the application. Further, they assumed
that the particle bounce off is affected by the drag force of the air (continuum phase), and
subsequently, particles move in a curved trajectory to re-impinge (either re-bounce or deposit)
on the surface. Fuchs (1964) provided a comprehensive review of the subject. Even though
these investigations have given a useful insight into particle-surface interactions, the results
are merely qualitative and lack quantitative descriptions, which require getting a further
understanding of the subject.

Rao and Whitby (1977, 1978) conducted a series of experiments to clarify the effects of
particle-surface interactions on the particle deposition efficiency. They observed the impact
of dry particles on dry surfaces and concluded that particle bounce effects have a substantial
influence on particle deposition. In this investigation, they not only determined the causes
but identified some remedies to improve the particles deposition. These techniques, such
as oil coating the particle surface and the collector surface, selecting different materials for
the collector surface (e.g. glass fibre), have improved the depositions efficiencies in their
investigations. At a later stage, Esmen et al. (1978) determined that particle flattening is an
essential element in improving the particle deposition efficiencies.

Dahneke (1971, 1975) did a thorough investigation of the particle-surface interactions. As
a result, he was able to present a particle rebound theory, which is based on particle-surface
energy (or adhesion energy) and particle restitution coefficients. This theory provides a
generalised approach to predicting the critical values of particle diameters, and of particle
velocities, in which particle deposition may occur. Later, Paw and Tha (1983) provided
further experimental validation of the rebound theory. With the understanding of the rebound
theory, Cheng and Yeh (1979) semi-empirical model using the particle equations of motion
and experimental results. They have deduced the critical values of the product of impact

49



2.6 Lagrangian particle tracking framework

velocity, particle diameter, the square root of specific gravity at which the inception of
bounce occurs of the particles. Empirical model using the particle equations of motion and
experiment results. They have deduced the critical values of the product of impact velocity,
particle diameter, the square root of specific gravity at which inception of particle bounce
occurs.

Rogers and Reed (1984) broadened the existing rebound theory by incorporating elastic-
plastic deformation properties in the particles, in which initial inbound energy should over-
come this extra plastic deformation energy to bounce off at the surface. Their study further
confirms that the particle deformation is more likely to take place in the particles rather than
in the contact surface. Tsai et al. (1990) proposed a new theoretical model by considering
contact deformation mechanics and contact surface energy (or adhesive energy on the sur-
face). The investigation pays emphasis on the extra energy needed for surface aspirations,
such as surface roughness.

The plastic deformation is an irreversible process, which causes permanent energy loss,
and the energy loss can be a significant portion of the initial kinetic energy. Apart from the
energy loss, the outer layer of the particles can undergo permanent deformation, in which this
plastically deformed layer can show different material properties from its original properties
before the impact. Xu and Willeke (1993) studied the right-angle impact and rebound of
particles. Consideration is paid on the secondary elastic deformation of previously deformed
particles under an impact. The study revealed that the 50% of the initial kinetic energy is
stored as secondary elastic deformation energy, while up to 40% is dissipated as the plastic
deformation energy, in which energy portions exclusive to secondary deformations phase
are significant to determine the subsequent rebound and deposition characteristics of the
particles. At a later stage, Xu et al. (1993) have extended this theory to model the impact
of incident angles less than 90◦. They concluded that the only the normal component is
viable for the plastic deformation, whereas the tangential component to the surface contribute
toward the particle rotation (or rolling) and rebound. Later, Fergus (2010) has developed a
numerical model to study the right-angle particle impact and resuspension of aerosol.
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Chapter 3

Computational methods

3.1 Introduction

This chapter describes the all the necessary numerical methods used in the current inves-
tigation. The discretisation of partial differential equations using Finite Volume Methods
(FVM) is described first. Followed by an introduction to turbulent models use throughout
this investigation. The chapter concludes by discussing the suitable transport models used to
study the heat transfer in rotor-stator cavities due to nanofluids.

3.2 Computational methods in fluid dynamics

Modern computational methods are capable of replicating a complex physical phenomenon
in a digital computer. They can refine knowledge obtained from experiments and theoretical
investigations, or produce new insights that are not accessible by classical experimental and
theoretical techniques. These gains have a computational cost, and even today’s supercom-
puters may not guarantee to represent the space and time-dependent physical processes under
certain conditions. Hence, a careful selection of the most efficient and suitable numerical
methods and algorithms is crucial in a successful numerical investigation.

The Navier-Stokes equations are a set of partial differential equations that govern the
fluid motion. For some simplified physical applications, exact solutions are available for
the Navier-Stokes equation (e.g. von Kármán (1921)), but, in general, it is difficult to
find exact solutions for the full Navier-Stokes equation. The numerical and computational
approximations are the only viable option in the most of the real-world engineering fluid
flows.
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3.3 Governing equations

Computational Fluid Dynamics (CFD) provides the algorithms, tools, and practices to
obtain approximate solutions for the Navier-Stokes equations. This framework can model
many engineering flows of practical interest. Still, the selection of appropriate algorithms
and tools can significantly improve the efficiency of the solution process.

The selection of a discretisation scheme is the practical first step for solving partial
differential equations. This scheme determines how the differential governing equations
are converted into a set of algebraic equations. For example, the Finite Difference Method
(FDM), the Finite Element Method (FEM), the Spectral Method and the Finite Volume
Methods (FVM) are the main discretisation schemes used in fluid flow problems. In each
one of these schemes, the discretised set of algebraic equations can be solved using a suitable
equations solver for linear systems. However, for this study, FVM is selected as the method
of discretisation.

3.3 Governing equations

As described in Chapter 1 & 2, this study investigates on different physical aspects of rotor-
stator cavities and the flow field inside these cavities are governed by the Navier-Stokes
equations. For an unsteady incompressible flow, the incompressible form of the governing
equations are

∇∇∇.uuu = 0, (3.1a)

∂uuu
∂ t

+∇.uuuuuu =−∇∇∇p+∇∇∇.τττ +FbFbFb, (3.1b)

where p is the specific pressure defined as p = P
ρ

and P is the static pressure. τττ and FbFbFb are
the shear stresses and the specific body forces respectively. Incompressibility condition of
the flow field assumes constant density (ρ = constant) throughout the entire domain and
Eq. (3.1) are normalised by the given ρ of the working fluid.

In general, local variations of the fluid density due to strong buoyancy effects or changes
in volume fractions of a disperse phase can be studied using the conservative form of the
governing equations which are given by

∂ρ

∂ t
+∇∇∇.ρuuu = 0, (3.2a)

∂ρuuu
∂ t

+∇∇∇.ρuuuuuu =−∇∇∇P+∇∇∇.τττ +ρggg+FbFbFb. (3.2b)
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3.3 Governing equations

The pressure distribution of the flow domain can be calculated by considering the equation
of state:

P = ρRT, (3.3)

where R is the gas constant and the particular value for air is 287.058 Jkg−1K−1.
These two forms of governing equations are suitable for studying all the application

aspects of the current study. Equations (3.1) & (3.2) solve the mass and momentum balance
of a flow domain, but a study that involves a heat transfer process should be supplemented
with a transport equation for the total energy (Et) balance of the flow domain. Total energy
balance in terms of mechanical energy and thermodynamic energy can be expressed as

ρ
De
Dt︸︷︷︸

T hermo

+ ρ
DKe

Dt︸ ︷︷ ︸
Mechnical

=−∇∇∇.qeqeqe︸ ︷︷ ︸
T hermo

+∇∇∇.(σσσ .uuu)+ρΦ+ρ(ggg.uuu)︸ ︷︷ ︸
Mechnical

, (3.4)

where e, Ke =
1
2uuu2 and qeqeqe are internal energy, kinetic energy and the heat flux vector defined

positive for the inward direction, respectively. D
Dt =

∂

∂ t +∇∇∇.uuu is the material derivative. σσσ is
the mechanical stress component that can be represented as σσσ = τττ −PIII. The heat generation
or absorption inside the domain can be represented by the specific heat source or the specific
heat sink Φ term.

According to Tu et al. (2007), specific enthalpy (he) can be defined as the sum of internal
energy and specific pressure, he = e+ P

ρ
. By combining this definition with Eq. (3.4), a

transport equation for he can be derived as

∂ρhe

∂ t
+∇∇∇.ρheuuu+

∂ρKe

∂ t
+∇∇∇ρuuuKe −

∂P
∂ t

=−∇∇∇.qeqeqe +∇∇∇.(τττ.uuu)+ρΦ+ρ(ggg.uuu). (3.5)

Equation (3.5) is usually combined with mass and momentum conservation equations
described in Eqs. (3.2), which are suitable for the flow problems with strong variations
in local fluid density. If the fluid is incompressible and the density variation throughout
the domain is negligible, specific enthalpy can be expressed as he = cpT where cp is the
specific heat at constant pressure (Tu et al., 2007). Further, by neglecting kinetic energy, and
assuming that the work done by the buoyancy forces and the shear stresses are negligible,
Eq. (3.5) can be reduced to

ρcp

[
∂T
∂ t

+uuu.∇∇∇T
]
=−∇∇∇.qeqeqe +ρΦ. (3.6)

Here, the value of cp is also assumed to be a constant value, and in most engineering flow
applications, ∂P

∂ t = 0 (Tu et al., 2007). If there is no heat generation or absorption inside the
domain of interest, then Φ = 0. By considering Fourier’s law of heat conduction, heat flux
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vector can be expressed as qeqeqe =−∇∇∇k f T and the simplified form of Eq. (3.6) is written as

ρcp

[
∂T
∂ t

+uuu.∇∇∇T
]
=∇∇∇.(∇∇∇k f T ), (3.7)

where k f is the thermal conductivity of the fluid.
Apart from the mass, momentum and energy transport equations, which described in this

section, a generic transport equation for a scalar field ψ can be expressed as follows:

∂ψ

∂ t
+uuu.∇∇∇ψ =∇∇∇.(Γψ), (3.8)

where Γ is the diffusion term in the transport equation. The next section describes the FVM
discretisation procedure for the spatial and the temporal terms in Eqs. (3.1)–(3.8).

3.4 Finite Volume Method

In this method, the computational domain is subdivided into a finite number of subdomains
that are often referred to as finite volumes or control volumes. The vector variables (e.g.
velocity) are either stored in the cell centre or on face centres, and scalar variables (e.g.
pressure) are always stored in the cell centre of the volume element. Any cell centre value
can be translated into cell faces using a suitable interpolation method. The interpolation
process ensures the conservation of mass, momentum and energy.

The FVM has certain advantages over other discretisation schemes for engineering
applications. The FVM supports unstructured meshes, which are suitable for modelling
complicated geometries. It can also handle a good range of physical boundary conditions.
For this reason, the majority of commercial and open source general-purpose CFD codes
are based on the FVM. The FVM is the discretisation approach used by the Open Source
Field Operation and Manipulation software (OpenFOAM®). OpenFOAM is an open source
general-purpose CFD library which is based on C++, and it is publicly available through the
GNU public licence.

For the sake of clarity, further discussions are divided into two sections, spatial dis-
cretisation and temporal discretisation, which are applied in space and time-dependent
applications. Initially, these discretisation methods are demonstrated in an unsteady scalar
transport equation with the convective and the diffusive terms (see Eq. (3.8)) and then, the
possible extension is discussed for the Navier-Stokes equations.
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3.4.1 Spatial discretization

The FVM can be regarded as a special case of the weighted residual method with a unit
weight function (Fallah et al., 2000). The inner product of a typical transport equation with
the unit function can be written as∫

Vd

(
∇u∇u∇u.ψ +∇∇∇Γ.∇∇∇ψ

)
dV = 0, (3.9)

where
ψ = an arbitrary vector or scaler field.
Vd =the volume of the computational domain.
uuu =the velocity field.
Γ =the diffusion term.

In CFD, Eq. (3.9) is a volume integral over the domain (Vd), and (.) denotes scalar
product. The domain can be subdivided into a collection of finite number subdomains, often
referred to as the unit control volumes (or cells). The typical structure of a cell arrangement
is shown in Fig. 3.1. Even though the cells are hexahedrons, OpenFOAM is capable of
handling unstructured meshes which consist of cells with an arbitrary number of faces. The
point P identifies the cell centre, and N is the neighbouring cell centre.

The continuous volume integrals in Eq. (3.9) can be transformed into surface integrals
using Gauss’s divergence theorem by∫

V
∇∇∇⋆ψ dV =

∫
S
nnn.ψ dS = 0, (3.10)

where (∇∇∇⋆), V , and S are an arbitrary vector or tensor operation such as the divergence
operator or the gradient operator, the surface area of a control volume, and the volume of
a control volume, respectively. The outward unit vector normal to the infinitesimal surface
area dS is denoted as nnn, and the directional distance (or the vector) between the cell centre P
and the directional distance to an adjacent face centre is denoted as ddd.

Equation (3.11) is the surface integral representation of the volume integrals in Eq. (3.9).
By averaging a piecewise linear discrete domain, the surface integrals can be replaced with
summations as shown in Eq. (3.12).
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Fig. 3.1 A Typical arrangement of P and N cells in computational mesh with hexahedral
cells.

∫
S

ψuuu.nnn dS+
∫

S
Γ∇∇∇ψ.nnn dS = 0, (3.11)

∑
c f

ψ fφ fφ fφ f +∑
c f

Γ f∇∇∇ψ f .S fS fS f = 0. (3.12)

The first and the second terms of the right-hand side of the Eq. (3.12) are the convective and
diffusion terms respectively. the symbol φ fφ fφ f represents the flux through the cell faces, and
face area vector is defined as S fS fS f = nnn ·S f . The second term on right-hand side of Eq. (3.12)
contains a gradient term and for non-orthogonal cells, this can be defined by (Jasak, 1996)

S fS fS f .(∇∇∇ψ) f =∆orth∆orth∆orth
(ψ)N − (ψ)P

|ddd|
+korthkorthkorth.(∇∇∇ψ) f . (3.13)

Equation (3.13) is a generalised expression for the gradient that considers non-orthogonal
computational cells, which arise as a result of non-parallel S fS fS f and ddd vectors in the cells of the
computational mesh. The orthogonal vector ∆orth =

ddd
ddd·S fS fS f

∆orth =
ddd

ddd·S fS fS f
∆orth =

ddd
ddd·S fS fS f

|S fS fS f |2 is parallel to the directional
vector ddd and the magnitude is estimated using the over-relaxed approach (Jasak, 1996). The
non-orthogonal correction vector korthkorthkorth is estimated from the relation S fS fS f =∆orth∆orth∆orth +korthkorthkorth.

3.4.2 Interpolation Schemes

Collocated solvers, such as OpenFOAM, store the vector variables at the cell centres. The
evaluation of Eq. (3.12) requires face-centred values, which require an interpolation method
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to transfer cell-centred information to the face centres. The upwind interpolation and linear
interpolations are the most frequent methods in FVM based investigations.

3.4.2.1 Upwind Interpolation

This is a bounded first-order accurate method, in which the interpolations are based on the
direction of the flow. Since this is a first-order method, solutions tend to more diffusive. The
upwind interpolation is formulated as

ψ f =

ψP (SSS.ψ)n > 0,

ψN (SSS.ψ)n < 0.
(3.14)

3.4.2.2 Linear Interpolation

This is an unbounded second-order accurate method and it is referred to as the Central
Difference Scheme (CDS). The method is insensitive to the flow directions, and this leads to
oscillations at high Peclet numbers (Pe). The linear interpolation is formulated as

ψ f = xPNψP +(1− xPNψN), (3.15)

where xPN = distance(f-N)
distance(P-N) .

3.4.3 Discretization of time derivatives

The time-dependent transport equations have time derivative term in their governing equations.
The discretisation of this term follows a different approach than the spatial discretisation.
The time derivative can be represented by a Taylor series expansion of the previous time step
values, and the accuracy of the scheme is related to the truncation error of this infinite series.

If the calculation of the current time step value is purely based on previous time step
values, these schemes are called explicit schemes, whereas implicit schemes involve the
current time step value in their calculations. OpenFOAM only accommodates fully im-
plicit temporal schemes, which are more stable but computationally expensive than explicit
schemes. Equations (3.16) & (3.17) represent the first-order Euler method and seconder
order backward difference methods that are used to integrate a time derivate over control
volumes.
First-order Euler method:

∂

∂ t

∫
V

ψ dV =
(ψP V )n − (ψP V )n−1

∆t
. (3.16)
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Second-order backward difference:

∂

∂ t

∫
V

ψ dV =
3(ψP V )n −4(ψP V )n−1 +(ψP V )n−2

2∆t
, (3.17)

where n, n−1 and n−2 are the current time step, the old time step, and the old-old time step,
respectively.

3.4.4 The Spatial and the temporal discretization of an unsteady generic
scalar transport equation with convective and diffusion terms

A unsteady transport equation (e.g. Eq. (3.8)) contains both spatial and temporal derivatives
which need to be solved using discretization methods described in Sections 3.4.1–3.4.3. The
integral form of a transport equation with a convective term and a diffusive term can be
described as ∫ t+∆t

t

[
∂

∂ t

∫
V

ψ dV +
∫

V
∇∇∇ · (uuuψ) dV +

∫
V

∇∇∇ · (Γ∇∇∇ψ) dV
]
dt = 0. (3.18)

By considering the spatial discretization procedure described in Eq. (3.12), the semi-discretized
form (Hirsch, 1990) of the Eq. (3.18) and the expression for a time independent control
volume can be written as∫ t+∆t

t

[(
∂ψ

∂ t

)
P
VPM +∑

c f
ψ fφ fφ fφ f −∑

c f
Γ f∇∇∇ψ f .S fS fS f

]
dt = 0, (3.19)

where VPM is the volume of the control volume, which was assumed to be a time independent.
In convective and diffusion terms, the relation between the face-centred values and their
cell-centred value can be estimated either implicitly or explicitly (Jasak, 1996; De Villiers,
2006). The explicit approach is easier to implement in parallel computer code but simulations
are restricted by the Courant–Friedrichs–Lewy (CFL) condition. The CFL condition limits
the size of the computational time steps by imposing the condition Comax = ∆t ∑

nd
i=1

ui
∆xi

where
Comax = 1.0 is the maximum Courant number for a typical CFD simulation and nd = 3 is
taken for a three-dimensional case. The ui and ∆xi are the velocity component and the length
interval in the respective i directions. While the implicit approach is suitable for simulations
that use a higher Co numbers but the approach is more computationally expensive.
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3.4 Finite Volume Method

Equations (3.20) presents first-order Euler implicit method used in the current implemen-
tation of OpenFOAM is given by

(ψP )n − (ψP )n−1

∆t
VPM +∑

c f
ψ

n
f φ fφ fφ f −∑

c f
Γ f (∇∇∇ψ f )

n.S fS fS f = 0. (3.20)

Here, the face values of the current time step ψn
f of the equation are estimated by interpolating

the current time step values of PPP and NNN control volumes, and they are given by

ψ
n
f = xPNψ

n
P +(1− xPN)ψ

n
N . (3.21)

Equation (3.22) shows the implementation of the second-order implicit backward difference
method. Unlike in the Euler implicit method described above, this method assumed that
there are no temporal variations in the face values:

3(ψP)
n −4(ψP)

n−1 +(ψP)
n−2

2∆t
VPM +∑

c f
ψ

n
f φ fφ fφ f −∑

c f
Γ f (∇∇∇ψ f )

n.S fS fS f = 0. (3.22)

3.4.5 Solutions to the Navier-Strokes Equations using FVM

The solutions to the Navier-Strokes equations, which described in Section 3.3, can be obtained
using the spatial and temporal discretisation process described in Sections 3.4.1 & 3.4.3.
However, substituting the velocity to Eq. (3.18) encounters nonlinearity in the momentum
equation.

This issue can be overcome by using a nonlinear system of solvers (Ferziger and Perić,
2002), but the drawback of this approach is the high computational overhead. Equa-
tions (3.23a) & (3.23b) show the velocity lagging method, which is a computationally
inexpensive approach, and it can linearise the nonlinear terms by lagging the face flux field
using the previous iteration or time step value and this can be represented as∫

S
dS.nnn uuuuuu = ∑S fS fS f .u fu fu f

n−1u fu fu f
n, (3.23a)

= ∑φ fφ fφ f
n−1.u fu fu f

n. (3.23b)

For the incompressible Navier-Strokes equations (see Eqs. (3.1a) & (3.1b)), the unavail-
ability of an explicit pressure equation poses another issue, as the calculation of velocity
requires the pressure gradients in the flow field. Patankar and Spalding" (1972) purposed
the Semi-Implicit Method for Pressure-Linked Equation (SIMPLE), which is an iterative
pressure-velocity coupling algorithm. Later, Issa (1986) introduced a non-iterative algorithm,
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the Pressure Implicit with Splitting of Operators (PISO), which is more suitable for time-
dependent flow problems. The conventional pressure-velocity coupling methods that used
in the incompressible Navier-Stokes equations are extended as "pressure-velocity-density
coupling" methods. These coupling methods can be used to solve the conservative form of
governing equations that are used to predict the local variation of the fluid density in a flow
field (Ferziger and Perić, 2002; Demirdžić et al., 1993).

3.5 Turbulence modelling

Turbulence in a fluid flow is a naturally occurring phenomenon that may initiate at high
Reynolds numbers, as the fluid particles deviate from mean flow path by random motion. The
turbulence characteristics in a flow are not properties of the fluid, but they are properties of the
flow. Hence, each turbulent flow is unique and dependent on external factors and boundary
conditions. This makes the investigation and evaluation of turbulent flow more complicated
than laminar flows. Instability mechanisms, such as the Tollmien-Schlichting waves in two-
dimensional boundary layers, and Type I, II, III instabilities in three-dimensional boundary
layers, can initiate a turbulent flow, but the transition from laminar to turbulent flow is
not an abrupt process but evolves through a transition region. This transition region may
have large-scale coherent structures, which are not entirely random. Further insights into
turbulence can be obtained from Pope (2000).

In the context of turbulent flow predictions, early-stage investigations used strong sim-
plifying assumptions calibrated by experiment, but the recent developments in computing
technology enable more advanced computational and numeral techniques in modelling tur-
bulent flows. The Reynolds Average Navier-Stokes Equations (RANS), the Large Eddy
Simulations (LES) and the Direct Numerical methods (DNS) are the prominent turbulent
flow modelling techniques available. All three techniques can blend with the numerical
methods that have been discussed in Section 3.4.

Each method has its pros and cons, and the selection of the most suitable method depends
on the purpose of the investigation and on the availability of computational resources. The
capabilities of RANS methods are good enough for the most industrial fluid flows. To
simulate and visualise turbulent transition or instantaneous turbulent structures, it is better to
use DNS or high fidelity LES.

The current study uses RANS and LES models at different stages. The momentum and
heat transfer of the rotor-stator cavities will be studied using LES. An extended version of
the dynamic Smagorinsky model is used to evaluate turbulent properties, and structures of
the rotor-stator cavities operating at Reω = 1×105 and 4×105. However, the heat transfer
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effects of the rotor-stator cavity due to nanofluid are simulated using Wall Adapting Local
Eddy-viscosity (WALE) subgrid-scale model. This model is more stable than the extended
dynamic subgrid-scale model for heat transfer simulations.

Finally, Lagrangian particle tracking (LPT) simulations in the Chemical Vapour Chamber
(CVD) are conducted with a RANS turbulent model. Poncet et al. (2010) studied the
suitability of RANS models in the context of rotating disk boundary layer flows. In general,
the simulations that used the Reynolds Stress Model (Elena and Schiestel, 1996) showed a
close agreement with experimental outcomes when they compared to two equation RANS
closure models, such as k-ε model and k-ω model. In rotor-stator cavity simulations (i.e.
test cases with or without an axial inward flow), all the turbulent models, which including
the two equation turbulent models, provided very satisfactory results. However, the the Eddy
Interaction model (EIM) of Gosman and Loannides (1983) strictly assumed k-ε model in
its formulations (see the description and the references within Section 2.6.5). Hence, the
k-ε model is selected to ensure compatibility with the EIM model that is used in this work.
The DNS or LES methods, which can simulate unsteady eddy structures in the flow, are the
alternatives to EIM and they can provide improved accuracy over standard EIM (Stapleton
et al., 2000). Nevertheless, the EIM is still used to impose carrier phase turbulence effects
on the disperse phase as DNS and LES methods are computationally expensive to use in
the current fully three-dimensional CVD configuration. The following sections describe the
underlying principles of all these turbulent models outlined above.

3.5.1 Reynolds Averaged Navier-Stokes equation (RANS)

The Reynolds Averaged Navier-Stokes (RANS) models are the most used types of turbulent
models, and it applies most industrial fluid flows at high Reynolds numbers. In the current
investigation, RANS methods are not suitable for resolving the flow inside rotor-stator cavities
but can be used to calculate time-averaged velocity fields in a rotating vapour deposition
chambers in Chapter 7.

These methods assume the Reynolds decomposition of Eq. (2.33) and substituting
Eq. (2.33) to the Navier-Strokes equations and time averaging the entire equations results in
a non-zero term, τreyτreyτrey =−∇∇∇.((u′u′u′u′u′u′), which is known as the Reynolds stress tensor. Various
models are available to estimate the Reynolds stress tensor, but for this investigation the
k-epsilon (k-ε) method is used.
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3.5 Turbulence modelling

3.5.1.1 k-ε method

The k-ε turbulence model is one of the most commonly used RANS methods. As the
name implies, this model considers the budgets of turbulent kinetic energy (k) and turbulent
dissipation rate (ε) to determine the turbulent viscosity (µt), which can be used to calculate
the Reynolds stress tensor by the Boussinesq approximation (Boussinesq, 1877; Schmitt,
2007) and assuming the eddy viscosity model. The spatial and time variations of k and ε can
be obtained using the transport equations describe in Eqs. (3.24) & (3.25) by Launder and
Spalding (1974) and El Tahry (1983):

∂

∂ t
(ρk)+∇∇∇.(ρkuuu) =∇∇∇

2
[
(µ +

µt

σk
)k
]
+Pk −

2
3

ρ(∇∇∇.uuu)k−ρε +Sk, (3.24)

∂

∂ t
(ρε)+∇∇∇.(ρεuuu) =∇∇∇

2
[
(µ +

µt

σε

)ε
]
+

C1εεPk

k
−(2

3
C1ε +C3,RDT

)
ρ(∇∇∇.uuu)ε −C2ερ

ε2

k
+Sε ,

(3.25)

where Pk models the generation of kinetic energy due to the mean velocity gradient. σk = 1.0
and σε = 1.3 are the values used as the turbulent Prandtl numbers of k and ε , and the
model constant have the values of C1ε = 1.44, C2ε = 1.92 and C3,RDT =−0.33, where RDT
stands for Rapid Distortion Theory (El Tahry, 1983). Finally, the turbulent viscosity can be
calculated by

µt = ρCµ

k2

ε
. (3.26)

The model constant Cµ = 0.09 is used for the majority of flow conditions.

3.5.2 Large eddy simulations (LES)

In a typical turbulent flow, the large eddies are the most energetic portion of the unsteady flow.
These large eddies are non homogeneous, anisotropic and susceptible to boundary effects,
while the small eddies can be considered to be more homogeneous and universal. LES use
a spatial filtering approach to separate the small eddies from large eddies (Leonard, 1975).
The large eddies are solved directly using the filtered Navier-Stokes equations whereas the
flow components corresponding to the small eddies are modelled. Because of this selective
scale filtering, the computational cost of LES is less than the equivalent DNS. Still, LES
are computationally more expensive than the equivalent RANS simulations. As defined in
Sagaut (2006) and Pope (2000), a typical spatial filtering operation on a total flow variable
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ψ(rprprp, t) is

ψ̃(rprprp, t) =
∫ +∞

−∞

∫ +∞

−∞

ψ(rrr′, t ′) G
(

rprprp −rrr′, t − t ′
)

drrr′dt ′. (3.27)

This represents total flow variable ψ(rprprp, t) as

ψ(rprprp, t) = ψ̃(rprprp, t)+ψ
′(rprprp, t), (3.28)

and the filter kernel in Eq. (3.27) satisfies the following property:∫ +∞

−∞

G(rrr′, t ′) drrr′dt ′ = 1, (3.29)

where
rprprp = spatial variable.
t = temporal variable.
ψ(rprprp, t) = total flow variable.
ψ̃(rprprp, t) = filtered flow variable.
ψ ′(rprprp, t) = small-scale spatial fluctuation about ψ̃(rprprp, t).
G(rrr′, t ′) = filter kernel.

The commonly used filter kernels are the top-hat (box filter), the Gaussian filter and
spectral cut-off filters. The filter kernel is defined utilising a filter length (∆sgs) which can
be of arbitrary size, but in LES, it is selected as the boundary scale between the large
eddies and small eddies. The filter length scale is usually set in the inertial subrange, and
in an FVM code, like OpenFOAM, the filter length is matched to the local cell size of the
mesh. According to Versteeg and Malalasekera (2007), the implicit filter length is defined as
∆sgs =

√
∆x∆y∆z.

As described previously, the filtering process divides the flow into two portions. The
flow field now consists of large eddies (grid-scale structures) and small eddies (subgrid-scale
structures). A more profound view can be obtained by filtering Navier-Stokes equations with
the filter operation in Eq. (3.27). The filtered incompressible Navier-Stokes equations can be
expressed as

∇∇∇.ũ̃ũu = 0, (3.30a)

∂ ũ̃ũu
∂ t

+∇∇∇.̃uũuũuu =−∇∇∇p̃+∇∇∇.τ̃̃τ̃τ + F̃b̃Fb̃Fb. (3.30b)
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The second term on the left-hand side of Eq. (3.30b) is non-commutable, which implies
ũũuũuu ̸= ũ̃ũuũ̃ũu. As a remedy, the subgrid-scale stresses (τsgsτsgsτsgs) are defined as

τsgsτsgsτsgs = ũuuuuu− ũuuũuu, (3.31a)

= (˜̃uuu+uuu′)(˜̃uuu+uuu′), (3.31b)

= ( ˜̃uuuũuu− ũuuũuu)︸ ︷︷ ︸
I

+(˜̃uuuuuu′)+(ũuu′ũuu)︸ ︷︷ ︸
II

+(ũuu′uuu′)︸ ︷︷ ︸
III

, (3.31c)

where
I = Lenord stresses (LstrLstrLstr).
II = cross stresses.
III =subgrid-scale (SGS) eddy interactions.

The Lenord term represents the stresses at resolved-scales (large scales), and the SGS
eddy interactions represent the stresses at the subgrid-scale level. The cross-stresses represent
the interaction between the resolved-scales and the subgrid-scale stresses. A successful
subgrid-scale model should be able to get an accurate estimate of these quantities, and the
next section will describe the subgrid-scale models that are used in the current investigation.

3.5.2.1 Dynamic Smagorinsky model

Smagorinsky (1963) provided the first subgrid-scale model for LES, based on Prandtl’s
mixing length theory. Deardorff (1970) used LES to investigate the turbulence in a channel
flow, which might be regarded as the first engineering application of LES. A successful
LES model should be able to mimic the energy transfer from the resolved-scales to the
subgrid-scales. The zero equations subgrid-scale models (equivalent to Prandtl mixing length
model in RANS) are the simplest models, yet they are very popular among the research
community, and the Smagorinsky model is an example for this category. The following
section outlines the particular implementation of Fureby et al. (1997). Following Prandtl’s
mixing length approach, the subgrid-scale viscosity can be estimated as

τsgsτsgsτsgs =−2νsgsS̃SS+
2
3

ksgsIII, (3.32)

where
νsgs = subgrid-scale viscosity.
S̃̃S̃S = 1

2(∇∇∇ũ̃ũu+∇∇∇ũ̃ũuT ) is the strain rate of the resolved-scale.

64



3.5 Turbulence modelling

ksgs = subgrid-scale kinetic energy.
III = unit tensor.

The corresponding values for ksgs and νsgs are given as below:

ksgs =Cl∆
2
sgs|S̃SS|2, νsgs =Cd∆

2
sgs|S̃SS|2, (3.33)

where Cl and Cd are the model constants, the values of which are user defined and flow
dependent. The typical values are Cl = 0.202 and Cd = 0.042, but these are not universal.

A better approach would be obtaining these values from the resolved-flow, dynamically.
Germano et al. (1991) proposed a dynamic version of the Smagorinsky model that calculates
the model constants as a part of the simulation process. The dynamic model uses information
from the smallest resolved-scales to achieve this. Specifically, an additional coarser spatial
filter "(̂.)" is used to identify the smallest resolved-scales in the LES. A scale similarity
between the largest eddies in the subgrid-scale and the smallest scales in the resolved-scales
is assumed (Meneveau and Katz, 2000). If the secondary filter (or the test filter) is applied to
filtered Navier-Stokes equations (see Eqs. (3.30a) & (3.30b)), the stresses at the test filter
level can be defined as

Ttest,strTtest,strTtest,str = ̂̃uuuuuu− ̂̃uuû̃uuu. (3.34)

The Leonard stresses (LstrLstrLstr) for the test filter level is

LstrLstrLstr = Ttest,strTtest,strTtest,str − τ̂sgsτsgsτsgs. (3.35)

The model constants Cl and Cd are computed as (Fureby et al., 1997)

Cl =
⟨1

2 tr(LstrLstrLstr)m⟩
⟨mm⟩

, Cd =
⟨LD

strLD
strLD
str.MMM⟩

⟨MMM.MMM⟩
, (3.36)

where LD
strLD
strLD
str is the deviatoric component of the LstrLstrLstr. The expressions for the MMM and m is defined

as follows:
MMM = ∆̂2

sgs|S̃SS|S̃SS− ∆̃2
sgs|

̂̃SSS|̂̃SSS, m = ∆̃2
sgs|

̂̃SSS|2 − ∆̂2
sgs|S̃SS|2. (3.37)

The angle brackets in Eqs. (3.36) represents averaging along a homogeneous direction. This
is used to avoid singularities in the model. However, this approach is not suitable for the
rotor-stator cavities, due to the unavailability of a homogeneous direction. Hence, for the
current investigation, averages over the local cells faces have been considered and this
method allows long simulation times without any numerical or physical anomalies. Further,
energy backscattering could be as important as energy forwardscattering for the wall bounded
flows (Mason and Thomson, 1992; Blackman et al., 2017), therefore, the backscattering was
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3.6 Single and two-phase transport models of nanofluid heat transfer

allowed by enabling negative values in Eq. (3.33) which permits energy propagation from
small scales to the large scales. Here, the minimum value of the effective viscosity of the
simulation is limited to zero.

3.5.2.2 Wall Adapting Local Eddy-viscosity model (WALE model)

This is an eddy viscosity model purposed by Nicoud and Ducros (1999). The subgrid-scale
viscosity is calculated by considering the traceless symmetric part of the square of the velocity
gradients tensor (SdSdSd ), and the expression for µt reads as follows:

µsgs = ρ∆̃w
(SdSdSdSdSdSd)3/2

(S̃SSS̃SS)5/2 +(SdSdSdSdSdSd)5/4
, (3.38)

where S̃SS and SdSdSd are the filtered and deviatoric parts of SSS respectively, and the ρ is the density
of the fluid. The quantity ∆w =CwV 1/3

PM is the filter width of the WALE model parametrised
by a constant Cw = 0.325, and the volume of cells (VPM = ∆x∆y∆z).

3.5.3 Direct Numerical Simulations (DNS)

Direct Numerical Simulations (DNS) are a simple but computationally expensive approach
that resolves every length and timescale in the flow without any aid of any turbulence model.
Due to high demand on computational resources, the DNS approach was unrealistic until the
early 1970s. Lilly (1971) conducted the first notable work in DNS. At that time the majority
of the investigations were limited to homogeneous low Reynolds number flows. Recent
advancement in computing resources allows DNS to inhomogeneous flow fields. However,
at high Reynolds numbers, DNS are susceptible to numerical instabilities, which can be
avoided by using a suitable stabilisation method (Tadmor, 1989).

3.6 Single and two-phase transport models of nanofluid
heat transfer

There are two main approaches to modelling nanofluid related flow problems, and Fig. 3.2
illustrates a hierarchical view of these approaches.

The current study adopts both single-phase and two-phase approaches, in which the
former is computationally less demanding, whereas the latter provides more information
about the behaviour of the nanofluid flows. The scope of this study is limited to Eulerian-
Eulerian approximations, and no attempts have been made to use Eulerian-Lagrangian
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Fig. 3.2 A summary of available numerical approaches to model nanofluid flows.

approaches, as the computation was estimated to be unaffordable even for moderate particle
concentrations (1–5% vol). Chapter 7 performs simulations by a Eulerian-Lagrangian method
and shows its application to rotor-stator flows for relatively large particles (i.e. micron and
submicron particles) at very low volume fractions (αp < 10−6).

3.6.1 Single-phase models

As the name implies, a single phase flow model assumes that any number of phases in the
real flow are thermally in equilibrium and have zero relative velocity between the phases.
In continuous phase case, water and solid phase nanoparticles are modelled as a continuous
liquid. The thermo-physical properties of the mixture can be calculated from correlation
models, which were described in Section 2.5.1.1. Then, these thermo-physical values feed
into the conservative form of the mass and momentum equations (see Eqs. (3.2)), and the
energy equation (see Eq. (3.7)) described in Section 3.3, and they read as

∂ρn f

∂ t
+∇∇∇.ρn fuuu = 0, (3.39)

∂ρn fuuu
∂ t

+∇∇∇.ρn f .uuuuuu =−∇∇∇P+∇∇∇.τe f fτe f fτe f f +ρn fgbgbgb, (3.40)
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(ρc)n f

[
∂T
∂ t

+uuu.∇∇∇T
]
=∇∇∇.(ke f f∇∇∇T ). (3.41)

Here, uuu is the resultant nanofluid velocity, and ρ and c are density and heat capacity at
constant pressure, and the subscript n f in each parameter represents the equivalent nanofluid
properties. gbgbgb =

[
1−βn f (T −Tre f )

]
ggg is the Boussinseq gravity calculated using the Boussi-

nesq approximation (Gray and Giorgini, 1976), and βn f , Tre f and ggg are thermal expansion
coefficient of the nanofluid, reference temperature and gravitational acceleration, respectively.
Since the volume fraction of nanoparticles is assumed homogeneous throughout the domain,
the single-phase model has the form of the standard incompressible Navier-Stokes equations,
but still, the density of nanofluid is coupled with the fixed volume fraction defined in the
problem. The effective shear stresses (µe f f ) and thermal conductivities (ke f f ) of the equation
read as follows:

µe f f = µn f +µsgs, (3.42)

ke f f = kn f +(ρc)n f
µsgs

Prsgs
, (3.43)

where µsgs and Prsgs are subgrid-scale viscosity and Prandtl number. As described in
Section 2.5.1.3, the equivalent nanofluid values for ρn f , (ρc)n f and βn f can be calculated as

ρn f = (1−φ)ρ f +φρnp, (3.44)

(ρc)n f = (1−φ)(ρc) f +φ(ρc)np, (3.45)

(β )n f = (1−φ)(β ) f +φ(β )np. (3.46)

For a nanofluid with φ % vol of nanoparticles.

3.6.2 Two-phase models

The Eulerian-Eulerian approach treats the dispersed phase as another continuous phase.
Hence, the computational load does not depend on the particle volume fraction, which
is a significant advantage of the fully Eulerian approach in two-phase flows compared to
the Eulerian-Lagrangian approach. Subsequent sections briefly explain the three Eulerian-
Eulerian methods,
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The Volume of fluid (VOF) method is ideal for modelling the behaviour of two or more
immiscible fluids with fluid interface tracking algorithms (van Sint Annaland et al., 2005;
Renardy et al., 2001). Usually, the mixture has common momentum and energy equations,
and the secondary phases have individual volume fraction equations. The typical problems
that are suitable for the VOF include the motion of gas bubbles inside a liquid and the motion
of liquid after breaking of a dam.

The mixture model is suitable for modelling a multiphase flow with non-zero slip veloci-
ties between each phase, which means that one phase may have relative motion respect to the
other phases, due to an external force, such as gravity, centrifugal forces, etc. As in the VOF
method, the mixture model has a common continuity, momentum and energy equations, but
secondary phases have individual volume fraction equations.

The Eulerian models are more general than the mixture model and VOF model and allow
to model any number of independent, yet interacting phases. Each phase has own continuity,
momentum, and energy and equations, but in practice, the number of phases can be quickly
constrained by computational memory available. This model is the least restrictive model
in Eulerian-Eulerian modelling approach, and it can handle problems involving interphase
mass, momentum and energy transfer through interphase exchange coefficients.

After discussing the advantageous and disadvantageous of each Eulerian-Eulerian mod-
elling approach, the mixture model and the Eulerian model are deemed to be more suitable
than the VOF method. Further, by considering the computational cost, the complexity of the
modelling, and higher adapting from of previous literature, the mixture model is chosen for
this study.

As described earlier, in the traditional mixture model, a slip velocity can arise due to the
imbalance in local forces of nanoparticles, such as gravity, centrifugal forces, etc. The slip
velocity can be presented as a function of the particle relaxation time, particle drag forces,
and advection due to the local mixture velocity (Rebay et al., 2016). The current investigation
adepts a different approach to calculating the slip velocities and the calculation of these slip
velocities are based on the slip mechanisms, described by Buongiorno (2006). This is an
alternative approach to the traditional mixture model.

According to Buongiorno (2006), inertia, Brownian diffusion, thermophoresis, diffusio-
phoresis, Magnus effects, fluid drainage, and gravity are the seven slip mechanism that might
be important in nanoparticle dispersion. Further, he explains that the Brownian diffusion
and thermophoresis are relatively important than the other slip mechanism in nanoparticle
dispersion. However, the presence of turbulence can significantly suppress the Brownian and
thermophoresis effect, but still, these effects may play a significant role in near-wall regions,
where laminar flow dominates. By considering Brownian and thermophoresis effects, the
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governing Eqs. (3.39) & (3.41) can be rewritten as

∂ρn f

∂ t
+∇∇∇.ρn fuuu = 0, (3.47)

∂ρn fuuu
∂ t

+∇∇∇.ρn fuuuuuu =−∇∇∇P+∇∇∇.τe f fτe f fτe f f +ρn fgbgbgb, (3.48)

(ρc)n f

[
∂T
∂ t

+uuu.∇∇∇.T
]
=∇∇∇.(ke f f∇∇∇T )+(ρpcp)

[
DB∇∇∇φ .∇∇∇T +DT

∇∇∇T.∇∇∇T
T

]
, (3.49)

[
∂φ

∂ t
+uuu∇∇∇.φ

]
=∇∇∇.

[
(DB + εP)∇∇∇φ +DT

∇∇∇T
T

]
, (3.50)

where φ is the volume fraction of the nanoparticles and DB, DT are Brownian and ther-
mophoresis diffusion respectively. Buongiorno (2006) made following assumptions for
nanofluid mixture (both base fluid and nanoparticles):

• No chemical reactions.

• Negligible external forces.

• The mixture is diluted φ ≪ 1.

• Viscous dissipations are negligible.

• Radiative heat transfer is negligible.

• Base fluid and nanoparticles are locally in thermal equilibrium.

The continuity and momentum equations (see Eqs. (3.47) & (3.48) are in the same form
as the single-phase equations but the energy equation (see Eq. (3.49) is modified with added
nanoparticle diffusion because of Brownian and thermophoresis effects, in which these
additional terms account for the nanoparticle slip velocity relative to the base fluid. The final
equation is the volume fraction equation (see Eq. (3.50), which models the homogeneous
portion (advection term in Eq. (3.50) and slip velocities (diffusion term in Eq. (3.50)) of the
nanoparticle transport. In the same investigation, Buongiorno (2006) provided the expression
for the diffusion constants of Brownian and thermophoresis effects that also used in this
study and they can be read as follows:

DB =
kBT

3πµdnp
, (3.51)
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DT = βp
µ

ρ
φ , (3.52)

where kB = 1.38−23m2/kgs2K is the Boltzmann constant, and βp = 0.26 k f
2k f+knp

is the
proportionality factor.

The effective shear stresses and thermal conductivity are calculated following a similar
procedure to Section 3.6.1. As suggested by Buongiorno (2006), the eddy diffusivity of
particles (εp) is set equal to the eddy diffusivity of momentum (µsgs) and the nanoparticles
are taken as homogeneously entertained by the turbulent eddies of the continues phase.

3.7 Summery

This chapter explained the numerical and computational methods relevant to the current
investigation. The FVM discretisation method was introduced, followed by a general intro-
duction to turbulence. The three main approaches to the turbulent modelling, RANS, LES,
and DNS, were discussed and a brief explanation was given on RANS and LES methods,
which are used at the different stages of this investigation. Finally, more details on three
turbulent models, the k-ε method, the dynamic Smagorinsky model, and the WALE model,
were given. Two transport models were discussed to simulate the rotor-stator cavities filled
with nanofluids, and the future considerations were paid on their the operational limitations,
relative advantages and disadvantages.
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Chapter 4

A computational validation for the
rotor-stator cavities

4.1 Introduction

This chapter is devoted to the implementation of an LES model to simulate rotor-stator
cavities. Previous numerical models of rotating disk boundary layers mainly used high-order
numerical methods with DNS or LES. The single rotating disk investigations by (Wu and
Squires, 2000; Davies and Carpenter, 2003; Appelquist et al., 2015, 2016), rotor-stator flows
investigations by (Serre et al., 2004; Lygren and Andersson, 2001; Séverac et al., 2007;
Tuliszka-Sznitko et al., 2009a) are some of the examples where these high-order methods
were used. The recent investigation of Makino et al. (2015) is the only second-order based
numerical investigation on rotor-stator flows. They used a collocated grid-based solver with
the Crank-Nicolson scheme to solve the flow governing equations. The large-scale turbulent
components were resolved with a mixed-timescale SGS model based LES method.

The current simulations were set up under the similar physical conditions to the ones in
Makino et al. (2015). Elongated annular cavities of G < 1 are simulated for two different
operational Reynolds numbers Reω =

ωr2
2

ν
= 1×105 and 4×105. The lower Reω case attains

only a turbulent stator flow, whereas the higher Reω case results in turbulence both at the
rotor and stator.

The objective of this chapter is to ascertain the suitability of FVM methods and gen-
eral purpose CFD tools, such as OpenFOAM, to simulate rotor-stator flows. For this, the
OpenFOAM results are compared with previous investigations of Séverac et al. (2007) and
Makino et al. (2015).
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4.2 Problem definition

4.2 Problem definition

4.2.1 Geometric modelling

The rotor-stator cavities, which are modelled in this section, consisting of the two concentric
disks. The inter-disk spacing (h) between these two disks is large enough to avoid merged
boundary layers. Figures 4.1 & 4.2 illustrate the top and side views of the rotor-stator cavity.
The geometry is defined in the cylindrical coordinate system (r,θ ,z). The inner radius (r1) is
the radius of the hub that this is directly connected to the rotating disk. The distance between
the origin and the periphery of the rotating disk is the outer radius (r2). For an annular cavity,
the radial extent is ∆r = r2 − r1 and, if r1 = 0, the cavity becomes a cylindrical cavity. The
operational Reynolds number based on the rotating disk periphery is Reω =

ωr2
2

ν
and the

local Reynolds number at any given point (p) is Reω,local =
ωr2

ν
where r is the radial distance

between the point and the origin.

Fig. 4.1 Top view of the rotor-stator cavity and the grey areas represent finite gaps (δH−rotor
and δH−stator) in the geometry.

The physical assembling and machining processes of a cavity require small clearances
between rotating components and stationary components (δH−rotor and δH−stator in Fig. 4.2),
whereas numerical models require capturing this information to avoid any potential numerical
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4.2 Problem definition

disorders. For Taylor-Couette flow problems, the clearances were maintained under a certain
threshold value δH/h < 0.2 at which these gaps have negligible effects on the flow field
away from the clearances (Tavener et al., 1991). Later, Séverac et al. (2007) have followed
this approach to model the clearances in their rotor-stator cavity simulations and they used
boundary vanishing functions to regularise the tangential velocity component near the
rotor and the stator boundary surfaces. The current investigation uses the clearance values
δH/h ≪ 0.2, and these clearances are implemented by geometrical modelling. The aspect
ratio G and the curvature Rm are two important geometric parameters of the cavity, which have
a significant influence on flow properties and characteristics. During this entire investigation,
the G and Rm are kept as constant values, and they are defined in Eq. (4.1):

G =
h

r2 − r1
= 0.2, Rm =

r2 − r1

r2 − r1
= 1.8. (4.1)

Fig. 4.2 The side view of the rotor-stator cavity cross section r′–r′ as shown in Fig. 4.1.

A commercial mesh generation software, ANSYS ICEM CFD®, is used to generate a
hexahedral computation mesh. The number of elements, which are used to construct high
and low Reynolds number cases, are shown in Table 4.1, and the final mesh configuration for
the case of Reω = 4×105 is shown in Fig. 4.3.
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4.2 Problem definition

Reω r1 r2 h r×θ × z

1×105 140 40 20 220×180×140
4×105 280 80 40 256×600×180

Table 4.1 The mesh configurations use in LES simulations.

Fig. 4.3 The computational mesh used in Reω = 4×105, (a) side view, (b) top view.

4.2.2 Numerical modelling

All simulations are conducted using OpenFOAM®, which uses a second-order accurate FVM
based segregated solver, and the non-iterative PISO algorithm provides the pressure-velocity
coupling solutions to the governing equations. All the simulations satisfy the conditions
z+max ≤ 1.0 and the maximum value of Courant number is maintained at Comax ≤ 0.325.

4.2.3 Governing equations and turbulence modelling

The governing equations for a Newtonian single-phase isothermal incompressible flow can
be described by three-dimensional Navier-Stokes equations as described in Eqs. (3.1), and
the current study uses the incompressible filtered Navier-Stokes equations (see Eqs. (3.30)),
which are a result of spatial filtering of Eqs. (3.1) due to the LES turbulent modelling.
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4.3 Results and discussion

A collocated FVM has been used to discretise the governing equations, and a second-
order accurate central difference scheme and the implicit backward difference method are
used to perform the spatial differentiation and the temporal integration of Navier-Stokes
equations. The dynamic Smagorinsky model (see Section 3.5.2.1) is used to calculate the
subgrid-scale turbulent stresses on the flow field.

All the walls are treated with no-slip boundary conditions. The rotating motion of the
rotating disk set is through the boundary condition on the disk surface and rotation rate (ω)
is adjusted to satisfy the required Reω conditions by

urotorurotorurotor = ωrprprp ×IdirIdirIdir, (4.2)

where rprprp is the position vectors to a given point (p) on the rotor surface and IdirIdirIdir = (0,0,1) is
the axial directional vector.

4.3 Results and discussion

This section discusses the validation of the computational model against rotor-stator cavities
with Reω = 1×105 and 4×105. All the simulations are initialised with the zero velocity
everywhere in the internal computational domain (except at the boundary surfaces). The
reference pressure of the flow field set to zero and the zero-gradient pressure conditions are
applied at all the boundaries of the computational domain.

As discussed in Section 3.5.2, resolution and the quality of the mesh is an important
factor for a successful LES approach. A finer mesh can directly resolve higher frequency
structures, and the finest mesh can resolve the smallest structures of the problem, i.e. the
Kolmogorov scales, in which LES is almost in line with DNS (Speziale, 1998). However, this
practice is not always possible, as the resolution of the mesh often limited by the available
computing resources. The configurations and resolutions of meshes are carefully selected to
simulate rotor-stator cavities, and a parameter, Qm = k/ktotal , has been defined to evaluate
the adequacy of the mesh resolution. Here, ktotal = k+ ksgs is the total turbulent kinetic
energy, where k and ksgs are the resolved kinetic energy and subgrid-scale kinetic energy,
respectively and they can be defined as

k =
1
2
(u′

ru
′
r +u′

θ
u′

θ
+u′

zu
′
z), (4.3a)

ksgs = 1/2tr(τsgsτsgsτsgs). (4.3b)
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The tr(.) operation gives the trace of a tensor, and the resolved-scale fluctuation velocity
field (uuu′) is usually calculated by

uuu′ = ũuu− ũuu, (4.4)

where ũuu, ũuu are time-averaged filtered and instantaneous filtered velocity, respectively.
Figures 4.4 (a) & (b) show contours of Qm in the midsection of r–z plane, for both

Reω = 1×105 and 4×105 cases, and the most of the regions in the cross-section occupy Qm

values very close to unity. Figure 4.4 (c) presents frequency histogram of Qm normalised
by the total number of cells in the computational domain so that the height of each bar
represents the percentage of cells belong to the corresponding bin of Qm. As this histogram
was constructed by considering the entire simulation domain, it shows a high percentage of
cells in the simulations are Qm > 0.95 for both the lower and higher Reω cases.

Fig. 4.4 Representation of Qm as (a) contours of Qm for Reω = 1×105, (b) contours of Qm
for Reω = 4×105, (c) normalised frequency histogram of Qm.
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4.3 Results and discussion

For the presentation of the results, the radial and axial distances are non-dimensionalised
as r∗ = (r−r1)

(r2−r1)
and z∗ = z/h respectively. The position r∗ = 0 and z∗ = 0 locates at the rotor

hub corner of the rotor surface. For the sake of brevity, the filter notation ((̃.)) is removed
from the filtered velocity notations and henceforth, the instantaneous and time-averaged
filtered velocity fields are denoted as uuu = (ur,uθ ,uz) and UUU = (Ur,Uθ ,Uz), respectively.
The time-averaged radial and tangential velocity components are non-dimensionalised as
Ur

∗,Uθ
∗ = Ur

rω
, Uθ

rω
. All the axial plots are extracted at the middle radial position r∗ = 0.65

of the cavity, and at this particular location, finite cavity effects are minimal for both test
cases. Further, all the axial profiles are averaged over the tangential direction (θ ). The results
present in this section are captured after several dozens of disk rotations, which is sufficient
to pass the initial transient state of the simulations, and the mean (time-averaged) quantities
are averaged over a couple of dozen of disk rotations.

4.3.1 The properties of the mean velocity profiles of the rotor-stator
cavity boundary layers

Figure 4.5 shows the vector plot based on the instantaneous velocity of a typical rotor-stator
cavity simulation in the r–z plane. Here, the near wall regions of the cavity tend to show their
three-dimensional behaviour (see Figs. 4.5 (a) & (b)). However, the velocity vectors in the
core region are mostly in the tangential direction. This core region separates the rotor and
stator boundary layers and the vector plot of Fig. 4.5 suggests that the cavity is in the regime
IV in the categorisation of Daily and Nece (1960). The fluid near the rotor boundary layer
is flushed away toward the periphery of the disk (U∗

r > 0), where it eventually rises along
the outer wall of the cylinder and the displaced fluid at the rotor is compensated with fluid
suction from stator side. The stator boundary layer usually results in U∗

r < 0, and this inward
radial flux is pushed toward the centre of the cavity, which leads the fluid to descend to the
rotor boundary along the rotor hub.
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4.3 Results and discussion

Fig. 4.5 The instantaneous velocity vector plot of the rotor-stator cavity in the r–z plane for
Reω = 4×105, (a) at the rotor boundary layer, (b) at stator boundary layer.

Figure 4.6 shows the axial distributions of the mean radial and tangential velocity profiles
for the Reynolds numbers, Reω = 1× 105,4× 105. The radial velocity profiles show an
inflection point at the rotor layer, and then the velocity profiles reach zero in the core region.
As described previously, radial velocity profiles are negative in the vicinity at the stator
boundary layers, where they attain another inflection point. The tangential velocity profiles
achieve their highest value at the rotor surface, and then the velocity profiles reduce toward
the core region of the cavity, but the velocity profiles do not reach to zero, like in the
von Kármán boundary layers.
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4.3 Results and discussion

Fig. 4.6 The axial distributions of mean velocity fields, (a) radial velocity profiles at Reω =
1× 105, (b) tangential velocity profiles at Reω = 1× 105, (c) radial velocity profiles at
Reω = 4×105, (d) tangential velocity profiles at Reω = 4×105.

The entrainment coefficient, K =
Uθ ,core
Uθ ,disk

, describes by the angular velocity (or tangential
velocity) and it is an indication of the strength of the solid body rotation in the core region
of the cavity. Figure 4.7 shows the radial distributions of K for the two Reynolds numbers
of Reω = 1×105 and 4×105. The higher values of K are observed near r∗ = 0, but these
values are merely due to the angular motion of the rotor hub. The higher Reynolds number
case achieves higher K values than the lower Reynolds number case, but in both cases, there
are no steep variations in K with the local Reynolds numbers at the mid radial positions of
the cavity. Usually, the value of K is below 0.5, which was obtained with a plain Couette
flow (Séverac et al., 2007), and the current values of K at r∗ = 0.65 are K ≈ 0.35 for 1×105

and K ≈ 0.37 for 4×105 and therefore follow this trend. When these values compared to the
previous investigations, Cheah et al. (1994) have obtained K ≈ 0.35 for a cavity with G = 8,
Reω = 2.6×105, and for different configurations, Andersson and Lygren (2006) reported
K ≈ 0.4 for G = 10, Reω = 6.4× 105 and K ≈ 0.47 for G = 15, Reω = 1.6× 106. Later,
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4.3 Results and discussion

Séverac et al. (2007) have obtained K ≈ 0.35, and 0.36 values for the low and high Reω

cases, which are identical configurations to the current investigation.

Fig. 4.7 A comparison of the radial distributions of the entrainment coefficients (K).

Figure 4.8 shows polar plots for the two test Reynolds numbers. The polar velocity plot
is an alternative method of viewing the mean velocity fields. Near the rotor boundary layer
(U∗

θ
→ 1), the present LES solutions are very much aligned with the von Kármán (1921)

similarity solution, at both test Reynolds numbers. The velocity profile of the high Reynolds
number case is more linear (flatter) near the U∗

r ≈ 0 region when it compared to the low
Reynolds number case and the similarity solution. This feature is more apparent in the
velocity profile of Lygren and Andersson (2001), as it was captured at Reω,local = 4×105,
and they called this as the characteristic "triangular form" of a three-dimensional turbulent
boundary layer, due to the shape of the polar velocity profile.

Fig. 4.8 The polar plots of time-averaged velocity components, (a) Reω = 1× 105, (b)
Reω = 4×105.
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4.3.2 Turbulent properties of the rotor-stator cavity boundary layers

This section discusses the turbulent behaviour in the rotor and stator boundary layers of the
cavity. Since the case Reω = 1×105 is limited to only to the stator boundary layer being
turbulent, much of the discussion of this section focuses on the higher Reynolds number case,
Reω = 4×105, in which the boundary layers are turbulent. Figure 4.9 shows the variation of
relative tangential velocity, uθ ,r = (rω −Uθ ), against axial wall coordinates at r∗ = 0.65 for
rotor and stator boundary layers. Here, the velocities and wall distances are normalized by
the friction velocity:

uτ =
(
(ν∂Uθ )/∂ z)2

wall +((ν∂Ur)/∂ z)2
wall

) 1
4 .

This inner scaling of the velocity profiles allows detailed comparisons of the laminar sublayer,
buffer region and logarithmic layer of the velocity profiles. The laminar sublayer is a linear
layer, and the rotor boundary follows this linearity up to z+ = 5.0. It further extends with
an approximate agreement to z+ ≈ 8.0, but after that, the agreement quickly deteriorates.
The logarithmic layer starts to emerge at z+ = 10.0, and the thin layer between the laminar
sublayer and the logarithmic layer (z+ ≈ 8.0–10.0) can be identified as the buffer layer. The
stator boundary layer shows the same trend, but the laminar sublayer is found only up to
z+ ≈ 5.0, with the logarithmic layer starting at about z+ = 10.0. The layer between these
two regions defines the buffer layer z+ ≈ 5.0–10.0, which is broader than observed in the
rotor boundary. A similar trend was observed by Séverac et al. (2007) except that they did
not observe a buffer region in either boundary layers. The previous experimental results
of Cheah et al. (1994) agree well within the laminar sublayers and the buffer regions, and
the velocity profiles of Makino et al. (2015) show good agreement throughout the laminar
sublayers and the buffer region of the boundary layers. To enable the quantitative comparison
of the boundary layer profiles with these experimental and numerical results, all profiles are
fitted to the well-known logarithmic velocity profile (Pope, 2000) by

u+
θ ,r =

1
κ

log10(z+)+B. (4.5)

Here, κ is the von Kármán constant and B is the intersection, and the reference values of
κ ≈ 0.4 and B = 5.5 can be taken for a smooth-wall circular turbulent pipe flow (Schlichting
et al., 1955). Table 4.2 shows a summary of configurations and a comparison of the gradient
κ−1 and intersection values of the present LES with previous investigations when their
respective velocity profiles are fitted to Eq. (4.5). The fitted values are within an acceptable
range of both previous numerical and experimental results. However, the peak values of the
velocity profiles do not agree well with either of the experimental investigations, which do
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not agree with each other. This may be due to subtly different configurations and operational
conditions between the two experiments and as compared to these simulations.

Fig. 4.9 The time-averaged tangential velocity profiles in the turbulent boundary layer at
Reω = 4×105, (a) rotor boundary layer, (b) stator boundary layer.

Investigation Method Reω,local G Rm rotor stator
κ−1 B κ−1 B

Present LES 2.2×105 0.2 1.8 14.9 -5.5 13.5 -5.6
Itoh et al. (1992) Hot-wire 3.6×105 0.08 1.0 12.7 -5.2 11.3 -3.7
Cheah et al. (1994) LDV 1.9×105 0.12 1.0 15.4 -6.5 9.4 -0.1
Makino et al. (2015) LES 2.3×105 0.2 1.8 12.4 -3.6 12.5 -4.8
Séverac et al. (2007) LES 4.1×105 0.2 1.8 14.0 -5.5 15.0 -10.8

Table 4.2 A comparison of different configurations of smooth rotor-stator cavities in previous
numerical and experimental investigations, and the fitted κ and B values from the model in
Eq. (4.5) for smooth turbulent rotor and stator boundary layers.

The resolved-scale Reynolds stress tensor components are calculated and normalised as

Rθθ =
u′

θ
u′

θ

(rω)2 , Rrr =
u′ru′r
(rω)2 and the velocity fluctuation components are defined by Eq. (4.4).

The axial distances are measured from their respective boundary surfaces (e.g. z∗ = 0 is the
rotor surface in rotor distributions, and it represents stator surface in stator distributions). Fig-
ure 4.10 shows the tangential turbulence intensity

√
Rθθ against normalised axial distances.

The axial locations of the peaks of the rotor and stator distributions are at z∗ = 0.013, and
z∗ = 0.018 respectively. These values are well within the respective boundary layers of thick-
ness δ = 2.5 and δ = 2.4 and the peak locations are well agreed with Makino et al. (2015)’s
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investigation. Despite well-agreed peak locations, the current LES overestimates peak values
by 13% in the rotor boundary layer and 14% in the stator boundary layer compared to Makino
et al. (2015).

Fig. 4.10 The variation of tangential turbulence intensity component distributions in the axial
direction at Reω = 4×105, (a) rotor boundary layer, (b) stator boundary layer.

Figure 4.11 shows radial turbulence intensity component
√

Rrr versus axial distance.
Similarly to the tangential turbulence intensity component, the peak locations of

√
Rrr

near the rotor and near the stator are inside the respective boundary layers, and they are
at z∗ = 0.019 and z∗ = 0.017 for the rotor and stator boundary layers respectively. It is
worth to mention that the peak value of

√
Rθθ at the rotor surface and the stator surface is

over twice
√

Rrr at the same locations. Séverac et al. (2007) also observed this tendency in
their numerical investigation, but their experimental investigation has fairly equal turbulence
intensity contributions

√
Rrr ≈

√
Rθθ . They have suggested that this discrepancy is due

to coarse meshing in the radial direction compared to the tangential direction and to the
wall-normal direction.
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Fig. 4.11 The variation of radial turbulence intensity component distributions in the axial
direction at Reω = 4×105, (a) rotor boundary layer, (b) stator boundary layer.

Even though the stator boundary layer transitions to turbulence at a lower Reynolds num-
bers than the rotor boundary layer, the peak values of the turbulence intensity contributions
in the rotor boundary layers are higher than the corresponding values at stator boundary layer
by 9% for the tangential component

√
Rθθ and by 6% for

√
Rrr.

4.3.3 The three-dimensional behaviour of rotor-stator boundary layers

The rotating disk boundary layers are one of the simplest examples of three-dimensional
boundary layers and the vector plot of Fig. 4.5 provides visual evidence of the three-
dimensionality of rotor and stator boundary layers. Apart from that, these boundary layers
have several features that differentiate them from two-dimensional boundary layers. The
following sections discuss these features.

In three-dimensional boundary layers, the direction of the mean velocity vector is not
constant along the wall-normal direction (Séverac et al., 2007). Figure 4.12 shows the
variation of the mean velocity angles

(
γm = tan−1(Ur

Uθ
)
)

for rotor and stator boundary layer
against the axial distance. Here, at axial distances up to z+ = 100, both rotor and stator
boundary layers show significant variations in mean velocity angles.
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Fig. 4.12 The variation of mean velocity angles γm in the axial direction at at Reω = 4×105,
(a) rotor boundary layer, (b) stator boundary layer.

Usually, the difference between the wall parallel turbulent shear stress angle
(

γτ =

tan−1( u′ru′z
u′

θ
u′z

))
and the mean gradient velocity angle

(
γg = tan−1( ∂Ur/∂ z

∂Uθ/∂ z)
)

is not zero for

three-dimensional boundary layers (Séverac et al., 2007). Figure 4.13 shows the variation of
the turbulent shear stress angle and of the mean gradient velocity angle in the axial direction
for the rotor and stator boundary layers. At the surface of the rotor, the difference between
the two angles is approximately 40◦, and the difference reduces to 28◦ at the stator boundary.

Fig. 4.13 The variation of turbulent shear stress angle (γτ ) and mean gradient velocity angle
in the axial direction at Reω = 4× 105 (γg), (a) rotor boundary layer, (b) stator boundary
layer.
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The Townsend structure parameter (A1) is an important parameter in turbulent boundary
layers and it is defined as

A1 =

√
(u′ru′z)2 +(u′

θ
u′z)2

2k
, (4.6)

where k is the resolved turbulent kinetic energy defined in Eq. (4.3a), and the resolved
fluctuation components can be obtained by Eq. (4.4). A1 describes the efficiency of the
process in turbulent kinetic energy extraction from the mean flow. For two-dimensional
boundary layers, specifically in two-dimensional Couette flows, the structure parameter is
usually around A1 = 0.15. The previous investigations suggest that the structure parameters
of the three-dimensional boundary layers are lower than this value, which indicates that the
three-dimensional boundary layers are less efficient than their two-dimensional counterparts
when extracting turbulent energy from the mean flow. Townsend structure parameter is
defined as

Figure 4.14 shows axial distributions of the structure parameter in both the rotor and the
stator boundary layers. The rotor boundary layer has its maximum value of A1,max = 0.068
at z+ = 48 and the stator boundary layer attains the value A1,max = 0.08 at z+ = 58, which is
much lower than the value A1 = 0.15 for the two-dimensional boundary layers. However,
these axial distributions are lower than the previous LES investigation of Makino et al. (2015),
but they are higher than the Séverac et al. (2007)’s LES investigation.

Fig. 4.14 The variation of Townsend structure parameter in the axial direction at Reω =
4×105, (a) rotor boundary layer, (b) stator boundary layer.
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4.3.4 Flow visualisation

Flow visualisation provides a good aid to understand the flow structures and patterns in rotor
and stator boundary regions. By well-resolved LES simulations, it is possible to visualise the
instantaneous structures of the flow in details. Here, all the velocity contours are normalised
by Uθ ,max = r2ω .

Figure 4.15 shows normalised instantaneous tangential velocity contours in the rotor
boundary layer at z∗ = 0.025. They are based on the instantaneous velocity of the last time
step of the simulations. By comparing two boundary layers, it is clear that the lower Reynolds
number case of Reω = 1×105 shows laminar behaviour compared to the higher Reynolds
number case, Reω = 4×105. Regardless of the Reynolds number, both of these boundary
layers show spiral arms near the rotor hub. It is thought that the occurrence of these spiral
arms at the rotor hub provides a destabilisation effect on the rotor-stator cavity. However,
even at the Reω = 4×105, the inner section of the rotor boundary layer is not fully turbulent,
whereas, at the high radial locations, there are axisymmetric elongated structures, which
is an indication of turbulent flow at high Reynolds numbers. In Séverac et al. (2007)’s
investigation, a fully turbulent rotor boundary was achieved at Reω = 1×106.

Fig. 4.15 Instantaneous normalised tangential velocity contours of the rotor boundary layer,
at z∗ = 0.025, (a) Reω = 1×105, (b) Reω = 4×105.

The stator boundary shows turbulent structures at a Reynolds number as low as Reω =

4.1×104 (Séverac et al., 2007). Figure 4.16 shows the instantaneous normalised tangential
velocity (U∗

θ
) in the stator boundary layer, at z∗ = 0.95. As suggested by previous investiga-

88



4.3 Results and discussion

tions, at the lower Reynolds number case of Reω = 1×105, the stator boundary layer shows
transition patterns with small-scale turbulent structures at high radial positions. In the higher
Reynolds number case Reω = 4×105, the stator boundary becomes turbulent, as evidenced
by structures of small wave-numbers forming at all radial locations.

Fig. 4.16 Instantaneous normalised tangential velocity contours of the stator boundary layer,
at z∗ = 0.95, (a) Reω = 1×105, (b) Reω = 4×105.

Figure 4.17 shows the normalised axial velocity (U∗
z ) distribution in the r–z plane of the

mid-section of the cavity. This further confirms that at Reω = 1×105 the rotor boundary
layer is free from vortices and, at Reω = 4×105, both boundary layers shows radial patterns
of tangential vortices. The most disturbed position in the cavity appears to be located at
the junction between the stator and outer wall of the cylinder. At both low and high Reω ,
the majority of upward mass transfer occurs along the outer wall, whereas downward mass
transfer occurs along the inner rotor hub of the cavity.

The velocity contours are powerful tools to visualise flow fields, but there are more
appealing methods to identify vortices in the flow field. The Q-criterion (Hunt et al., 1988)
and The λ2 criterion (Jeong and Hussain, 1995) are two such popular methods. This study
adopts the λ2 criterion to identify the vortices on the rotor-stator boundary layers of the
cavity.

According to Jeong and Hussain (1995), a vortex is considered as a connected region
with two negative eigenvalues of SSS2 +ΩΩΩ2 where SSS = 1

2(∇u∇u∇u+∇u∇u∇uT ) and, ΩΩΩ = 1
2(∇u∇u∇u−∇u∇u∇uT )

are the symmetric and antisymmetric parts of ∇u∇u∇u, respectively. Since the equation SSS2 +ΩΩΩ2

is symmetric, it has real eigenvalues (say λ1,λ2,λ3). If these eigenvalues are ordered in,
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Fig. 4.17 Instantaneous axial velocity contours at the r–z plane, (a) Reω = 1× 105, (b)
Reω = 4×105.

λ1 ≤ λ2 ≤ λ3 manner, then the condition for the vortex cores can be fulfilled by selecting the
λ2 < 0 in a connected flow region.

In practice, plotting the negative iso-surfaces of λ2 in the rotor and stator boundary layers
can identify vortex structures within them. Figure 4.18 is an iso-surface representation
of negative λ2 values that are extracted from the rotor boundary layers of Reω = 1× 105

and 4× 105. The colour scale of these figures does not correspond to the strength of the
vortex cores, but it represents the magnitude of the local tangential velocity, which used
in Fig. 4.16. At Reω = 1× 105, some spiral patterns that start to emerge in the boundary
layer, and unlike Reω = 4×105, there are no fine-scale structures toward the periphery of
the disk. At Reω = 4×105 elongated spiral structures appeared close to the hub, then, as
the local Reynolds number increases with increasing radius, the length of these structures
increases around the rotor disk. At a local Reynolds number close to Reω = 4×105, these
spiral patterns break down into fine-scale turbulent structures, which indicate the presence of
a turbulent region. In this investigation, there are approximately 14–15 spiral arms around
the disk boundary layer, and they incline ε ≈−18◦ to the tangential direction. This is a quite
good agreement with previous investigations, in which Makino et al. (2015) have reported
approximately 16 spiral arms around the disk boundary layer with ε ≈−16◦ and Serre et al.
(2001) have observed 18 spiral arms with −7.5◦ ≤ ε ≤−20◦ in their DNS investigation. The
characteristics of these spiral patterns are similar to Type II instability patterns, which is a
viscous instability pattern that described in Serre et al. (2004). These instability patterns
were previously observed in Ekman layers in the investigations by Faller and Kaylor (1966),
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and Lilly (1966). Serre et al. (2001) explained that these patterns emerge as a result of stator
layer instabilities, which propagate along the rotor hub to rotor boundary layer. Subsequently,
Makino et al. (2015) purposed that these Type II structures are characteristic of a Streamline-
Curvature instability (S-C instability), which is described in Itoh (1996).

The previous investigations of Séverac et al. (2007) demonstrated Type I instability, which
consists of 19 spiral arms around the disk with an inclination of ε ≈ 18◦ to the tangential
direction. Neither the current study nor Makino et al. (2015)’s investigation features an array
of spiral arms with positive angles to the tangential direction, which are the characteristics
of the Type I instability pattern. Hence, in this case, the transition to turbulence cannot be
explained as a result of the Cross-Flow instability (C-F instability).

4.3.5 Transition to turbulence

Unlike single rotating disk boundary layers, a generally valid transition mechanism to
turbulence for rotor-stator cavities is not available, due to the availability of many different
types of rotor-stator cavities depending on G and Rm. A theoretical approach, such as linear
stability theory, cannot be used readily because of the finite size of the rotor-stator cavities.

Fig. 4.18 Top view of λ2=-2675 iso-surfaces of vortex structures in the rotor boundary layer,
(a) Reω = 1×105, (b) Reω = 4×105.

Tuliszka-Sznitko et al. (2001) and Serre et al. (2004) have conducted a coupled theoretical
and numerical study on instabilities in rotor-stator cavities. Both of these studies feature
Type I and Type II instability patterns in DNS results, but absolutely unstable regions result
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in the linear stability analysis. The numerical investigation of Serre et al. (2002) identified
spiral structures in the turbulent Ekman layer, which they thought could relate to the absolute
instability in the Ekman layer. Later, Séverac et al. (2007) confirmed the existence of Type I
patterns in the Ekman layer.

Figure 4.18 suggests that the current study does not feature Type I patterns in the boundary
layer. However, the results show similar features to the transition path proposed by Makino
et al. (2015). The following sections discuss these features and the arguments presented by
Makino et al. (2015).

The disturbance levels near the rotor boundary can be calculated by

Tu =

√
u′

θ
u′

θ

Uθ ,max
, (4.7)

where u′
θ

is the zero time-mean fluctuation component of the tangential velocity resolved
by LES as defined by Eq. (4.4). Figure 4.19 presents the radial distribution of the flow
disturbances at a plane z∗ = 0.00875, and r∗ = 0 and r∗ = 1 correspond to the rotor hub and
the stator outer wall, respectively. The minimum of the radial distributions approximately
1.9%, which exceeds the range of Tu = 0.5–1% required for Tollmien-Schlichting waves
to dominate the transition process in the two-dimensional boundary layers (Makino et al.,
2015). Even though the S-C instability waves in the rotor boundary layers have a different
mechanism than the Tollmien-Schlichting waves, Makino et al. (2015) argues that inflow
disturbances from the stator could trigger S-C instability in the rotor boundary layer. As
described previously, Serre et al. (2001) also suggested that the disturbance from stator
boundary layer could be the reason for the Type II instability at the rotor boundary layers.
However, according to the Faller (1991), several dominant modes of Type II or secondary
instability should be present for the onset of turbulence.
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Fig. 4.19 The flow Tu levels based on, z∗ = 0.00875 from the rotor boundary layer.

Figure 4.20 shows the time trace of tangential fluctuation component of tangential velocity,
by Eq. (4.4), at three different monitoring positions (r∗,z∗)=(0.25,0.0125), (0.5,0.0125),
(0.75,0.0125) in the rotor boundary layer. The two points closest to the rotor hub (see
Figs. 4.20 (a) & (b)) display a lower frequency spectral context than (r∗,z∗) = (0.75,0.0125)
that could be related to Type II structures. The time trace of (r∗,z∗) = (0.75,0.0125) high
frequency spectral context that could be due to secondary instabilities.

Figure 4.21 shows the instantaneous wall-normal profiles of the resolved velocity compo-
nent from LES across the same monitoring points of Fig. 4.20. These velocity distributions
are shown in the form of instantaneous tangential velocity lag with respect to the rotating
disk uθ = (rω −uθ ). The instantaneous velocity profile in low-speed and high-speed regions
feature inflection points, where they are shown by the open circles in the figures, and Makino
et al. (2015) argued that this type of velocity profile could lead to secondary instabilities in
the boundary layer.

Figure 4.22 shows an iso-surface of the secondary instability pattern, which is captured
before the turbulence break-down at the high Reynolds numbers. This indicates that the tur-
bulent transition mechanism is similar to the mechanism (B) in Faller (1991)’s investigation,
which was explained in page 12 of Section 2.2.
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Fig. 4.20 The time trace of the resolved fluctuations of tangential velocity components at
z∗=0.0125 and radial locations, (a) r∗=0.25, (b)r∗= 0.5, (c) r∗= 0.75.

94



4.3 Results and discussion

Fig. 4.21 Wall-normal profiles of the resolved instantaneous tangential velocity lag with
respect to the rotating disk.
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Fig. 4.22 The λ2 iso-surfaces of secondary instability in the rotor boundary layer.

4.4 Summery and conclusions

This chapter provided the validation for the rotor-stator flow by LES based on the dynamic
subgrid-scale method and a second-order accurate FVM. Two well documented Reynolds
numbers, Reω = 1×105,4×105, were used for this purpose. At the Reω = 1×105, only the
stator boundary layer is in the transitional-turbulent state, and the rotor boundary is mostly in
the laminar region. At the Reynolds number Reω = 4×105, the stator boundary is turbulent,
and the rotor boundary is in the transitional-turbulent state.

The mean velocity profiles of both simulations were validated against similar LES
simulations by Séverac et al. (2007) and Makino et al. (2015). A similar approach has
been followed to validate turbulent intensity profiles at higher Reynolds numbers. In all the
cases, current simulations demonstrated a satisfactory agreement with previous investigations.
Three-dimensionality of the of the boundary layer was confirmed by observing the axial
variations in the Townsend structure parameter, turbulent shear angle and mean velocity
gradient angles.

The tangential velocity and λ2 contours visualised the vortex structures to evidence nature
of the rotor and stator boundary layers. It confirmed that the rotor boundary layer is populated
with 15 Type II instability patterns with ε ≈ −18◦ inclination to the tangential direction.
However, no Type I instability was observed on the rotor boundary layer. This suggests
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that transition could be initiated by the mechanism (B) in Faller (1991)’s investigation, as
previously reported by Makino et al. (2015).

By observing the outcomes of this chapter, it can be concluded that the FVM methods are
sufficient for conducting further simulations in rotor-stator flows, and the selected turbulent
models and boundary conditions can reproduce close results to the previous experimental
and numerical investigations. However, the current simulations do not produce any Type
I instability pattern, which was previously found on an identical test case in Séverac et al.
(2007).
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Chapter 5

A qualitative assessment of roughness
modelling on a rotor-stator cavity

5.1 Introduction

This chapter discusses the implementation and simulation of Busse and Sandham (2012)’s
parametric force model on rotor-stator cavities. This method is suitable for representing
various types of real-world rough surfaces, and the approach is adaptable in general-purpose
CFD packages like OpenFOAM. In the current context, the roughness effects are only con-
sidered on the rotor boundary surface, and the stator boundary is modelled as a hydraulically
smooth surface. The several test cases are simulated by adapting the parametric force model
on rotor-stator cavities, which operate at Reynolds numbers of Reω = 1×105 and 4×105.

5.2 Parametric force model

As described in earlier Section 2.4, Busse and Sandham (2012)’s parametric force model
accepts multiple parameters to represent the surface roughness in a wall. The force term is
included in the Navier-Stokes equation, and Eq. (5.1) shows the expression for this parametric
force:

Fi =−αiG(z,hr)(ui −ud,i)|ui −ud,i|. (5.1)

Here, the parameters, αi, G(z,hr),h,ui and ud are the roughness factor, the shape factor, the
roughness height, the local flow velocity and the local disk surface velocity, respectively.
The subscript i = 1,2,3 denotes the stream-wise, span-wise and the wall-normal directions,
respectively. The difference between the disk velocity and the local fluid velocity gives the
local relative velocity with respect to the disk surface. The quadratic term on the right-hand
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side of the Eq. (5.1), (ui −ud,i)|ui −ud,i|, is the roughness term, which emulates form drag
effects. The roughness factor and the roughness term have dimensions of [L−1] and [LT−1]

to achieve homogeneity in the Navier-Stoke Equations. The significance of the roughness
factor, roughness height, and shape factor are discussed in the following sections.

5.2.1 Roughness factor

Roughness factor (αi) can be interpreted as the density of the roughness elements, or frontal
area per unit volume, as it holds the dimensions of line density [L−1]. A sparse roughness has
a lower value of αi. Busse and Sandham (2012) have observed that the roughness function
(∆UUU+) increases as αi increase, but, after a certain threshold value of αi, there may be a
tendency to ∆UUU+ decrease, which may be due to the shielding effects of the high-density
roughness elements Jiménez (2004). Apart from this standard definition, αi can be interpreted
as the drag coefficient due to a roughness element, and this definition removes the requirement
of an upper limit for αi, as theoretical drag coefficients do not hold such a restriction.

ααα is a vector, and the model requires defining its values in the stream-wise, span-wise,
and wall-normal directions. For a rotor-stator flow configuration, it is more meaningful
to define stream-wise, span-wise and wall-normal directions in a cylindrical coordinate
system, therefore, ααα = (αr,αθ ,αz), with αr,αθ and αz the radial, tangential and wall-
normal components represent the corresponding span-wise, stream-wise and wall-normal
components of the roughness factor.

A suitable set of values of αi can be used to represent a real rough wall, but these values
are not intuitive, So DNS or experimental data of the equivalent surface is required to evaluate
them. However, this step is beyond the scope of the current investigation, as the investigation
focuses on the response from relative roughness effects on the rotor-stator boundary layers.
Therefore, the following assumption was made to determine the values for

αi = βk/kr, (5.2)

where kr and βk are the physical roughness height and a multiplicative constant, respectively.
βk is obtained using numerical adjustments, which require comparisons of the magnitude of
the roughness term with other dominant terms in the Navier-Stoke equations. Then, the βk

values were fine tuned to minimise any shielding and wall shifting effects (Jiménez, 2004).
The range of values βk = 0.5×10−3–5.0×10−3 have delivered satisfactory results in

the current investigation. At a constant physical roughness height of kr = 1×10−4 m, the
selected range of βk produces the range of dimensionless roughness factors α∗ = αh = 0.1–
1.0. The vector expression is selected as α∗

θ
= α∗(0,1,0), so that the roughness effects are
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only activated in the stream-wise direction (henceforth, the notation α∗ will be used to denote
the stream-wise component α∗

θ
of the rotor-stator cavity simulations).

5.2.2 Roughness height and shape factor

Even though the roughness height and the shape factor are separate parameters, they related
to each other. According to the Busse and Sandham (2012), the shape function determines
the extent of roughness function toward the wall-normal direction (z) and it is usually
associated with the roughness height parameter (hr). An auxiliary parameter, ηr(hr), defines
the relationship between the shape function and the roughness height.

The original study of Busse and Sandham (2012) defines six mathematical profiles as the
shape functions, and each function has different mathematical properties. Three of them are
polynomial based functions, and the rest of them are exponentially decaying functions.

1. Polynomial functions:

• Box profile,

G(z,hr)

1 z ≤ ηr(hr),

0 z > ηr(hr).
(5.3)

• Triangular profile,

G(z,hr)

1− z
η(hr)

z ≤ ηr(hr),

0 z > ηr(hr).
(5.4)

• Parabolic profile,

G(z,hr)


(
1− z

η(hr)

)2 z ≤ ηr(hr),

0 z > ηr(hr).
(5.5)

2. Exponential functions:

G(z,hr) = e−z/ηr(hr). (5.6)

3. Gaussian profile:
G(z,hr) = e−z2/ηr(hr)

2
. (5.7)
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The exponential functions have different smoothness properties than the polynomial func-
tions, since the exponential functions are infinitely differentiable (C∞), whereas polynomial
functions are smooth up to some extent, for example, the box profile is discontinuous itself
(C0), the triangular profile is discontinuous first derivative (C1), and the parabolic profile is
discontinuous at second derivative (C2). Another property is that the polynomial functions
become zero at finite z values, but negative exponential functions attain zero at z → ∞, which
is not compatible with physical roughness elements. Despite the asymptotic behaviour
of these exponential functions, they attain a machine zero value at a very short distance
in wall-normal direction, which is ideally equivalent to zero in the context of numerical
simulations.

The significance of the roughness height hr is explicit in the polynomial functions. In
that ηr(hr) is the point where the corresponding profile vanishes and, as such, ηr(hr) = hr

for polynomial functions. This definition is not valid for exponential functions. Therefore,
an expression for the ηr(hr) is obtained by the solution of

hr =

∫
∞

0 G(z,hr) z dz∫
∞

0 G(z,hr) dz
. (5.8)

According to Eq. (5.8), there is no explicit relationship between physical roughness
heights (kr) and hr. The kr represents the extent of the roughness element in the flow field,
but hr describes the extent of the roughness effected region in the flow field. Increasing in a
physical roughness height is typically expected to increase the roughness height parameter
(hr ∝ kr). Further, in the application considered this study, the threshold ratio δ99/kr > 40
(critical blockage ratio) is not limiting the explicit roughness height parameter, yet it is
important to maintain the roughness heights parameter in such a way that the effects of the
roughness should not spread into the outer layer of the boundary layer.

Firstly, several test cases have been simulated with the box profile, and both tangential
and radial velocity profiles of these test cases were affected by abrupt inflection points at the
top end of the shape function. These inflection points may be a result of the discontinuity
of the box profile. Hence, further tests were conducted with the Gaussian shape functions
which act as smearing-out box profiles (Busse and Sandham, 2012). The Gaussian profile
provides considerably smoother velocity profiles compared to box profiles, but determining
ηr(hr) is not as straightforward as with a box profile. Substituting Eq. (5.7) in to the integral
expression of Eq. (5.8) gives the following expression for

ηr(hr) = hr
√

π. (5.9)
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From Eqs. (5.8) & (5.9), the expression for the Gaussian profile is then given by

G(z,hr) = e−z2/h2
r π . (5.10)

Figure 5.1 shows the solutions of Eq. (5.9) for the two test cases of Reω = 1×105 and
4×105. The same hr value has different effects depending on the inter-disk spacing of the
cavity (h), therefore a dimensionless roughness height is defined as h∗r = hr/h.

Fig. 5.1 Wall-normal extent of the numerical roughness layers at different h∗r values.

5.3 Problem definition

The geometry and mesh are identical to the two Reω cases presented in Section 4.2.1. The
governing equations are also similar to Eqs. (3.30) in Section 3.5.2, but here, the force term
in Eq. (5.1) is added as a body force term to the momentum equation (F̃bFbFb ̸= 0).

In this case, only the rotor surface is assumed as a rough wall. Hence, a particular
numerical treatment only applies to the rotor boundary. All the other surfaces, including the
hub, the outer sleeve, and the stator are assumed to be hydraulically smooth.

The same second-order accurate FVM based segregate solver is used in these simulations,
and pressure-velocity coupling is achieved using the same non-iterative PISO algorithm.
Despite the roughness effects on the rotor boundary, the turbulence model, the boundary
conditions, and the operational conditions are the same as the respective smooth rotor cases,
which were described in Sections 4.2.2 & 4.2.3. Further, all simulations are performed at
z+max ≤ 1.0 and the time steps (∆t) have been chosen to satisfy Comax ≤ 0.325 condition.
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Near the rotor, the force term is non zero, and the resulting force is defined by the
Eq. (5.1). This selective forcing mechanism is enforced through a particular region called,
the numerical roughness layer, which is a thin layer next to the rough wall. In this case, the
numerical roughness layer is applied next to the rotor surface. This technique will subdivide
the internal fluid region into three regimes. As shown in Fig. 5.2, these regimes can be
described as follows:

1. The disk and hub: This is where the rotating boundary conditions are set according to
Eq. (4.2).

2. Numerical roughness layer (yellow region): Here, a non-zero force (F̃bFbFb ̸= 0) is applied
as shown in Eq. (5.10). The thickness of this layer depends on the h∗r .

3. Outside the roughness layer (blue region): In this region, the force term in Eq. (3.30b)
is zero (F̃bFbFb = 0), and the governing equations are equivalent to the smooth case.

Fig. 5.2 An illustration of different regions in the current rotor-stator numerical simulation
models with the parametric model to evaluate roughness effects.

5.4 Results and discussion

This section presents the flow predictions at Reω = 1× 105 and 4× 105 obtained with a
modelled rough rotor. In consideration of the nature of the flow and the computational cost,
the first part presents simulations at Reω = 1×105 that are used to describe the mean flow
properties of the rotor and stator boundary layers under various model constants of h∗r ,α

∗.
The second half consists of comparatively few Reω = 4×105 simulations that describe the
mean and turbulent flow properties of the rough rotor and smooth stator boundary layers.
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Further, the initialisation condition and the simulation time of these simulations are selected
similarly to the previous description in Section 4.3.

Table 5.1 summarises the parameters used in these two sections, and dimensionless terms,
α∗ = 0 and h∗r = 0 usually represent the corresponding smooth wall cases.

Reω α∗ h∗r Shape function h [mm]

1×105 0–1.0 0–0.025 Gaussian 20
4×105 0, 0.4 0, 0.00125, 0.00375 Gaussian 40

Table 5.1 The roughness modelling and geometric parameters use in the simulations.

All the test cases have a relatively low roughness level, ∆UUU+ < 4.0 (based on the shift in
the mean velocity field) (Jiménez, 2004). It is important to recall that the model constants, h∗r ,
and α∗ have not been calibrated to represent any physical roughness condition, but they are
assigned arbitrary values in these simulations. Still, these model constants enable to study the
relative effects of a rough rotor wall by observing the shifts in flow field distributions relative
to the previously validated flow fields of smooth rotor-stator simulations. In the future, these
model constants can be replaced with experimental or DNS calibrated values to represent
real-world rough surfaces.

As in Section 4.3, the radial and axial distances are normalised as r∗ = (r−r2)
(r2−r1)

,z∗ = z
h ,

and the velocity components are normalised as U∗
r ,U

∗
θ
= Ur

rω
, Uθ

rω
, where the parameters

r1,r2,r,h,Ur,Uθ are defined in Sections 4.2.1 & 4.3. Similar to Section 4.3, all the axial
plots are extracted at the middle radial position of the cavity of r∗ = 0.65. As described in
Section 4.3, all the axial profiles are averaged over the tangential direction (θ ), and the mean
quantities are obtained by averaging them over a couple of dozen of disk rotations.

5.4.1 Boundary layer properties of the rough rotor and smooth stator
at Reω = 1×105

Figure 5.3 shows the time-averaged axial profiles of the radial velocity components over the
rotor. Fig. 5.3 (a) covers the range of α∗ = 0.1–1.0 at a constant h∗r = 0.005, while Fig. 5.3(b)
covers the range h∗r = 0.0025–0.025 at a constant α∗ = 0.2.

By comparing Figs. 5.3 (a) & (b), they show that the h∗r has a higher impact on the mean
radial velocity profiles than α∗. Higher height parameter increases the peak value of the
time-averaged radial velocity profiles and the these show a thicker profile compared to the
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Fig. 5.3 A comparison of the time-averaged radial velocity profiles over the rotor for, (a)
different α∗ values, (b) different h∗r values.

Fig. 5.4 A comparison of the time-averaged tangential velocity profiles over the rotor for, (a)
different α∗ values, (b) different h∗r values.

smooth velocity profile (h∗r = 0,α∗ = 0). Increasing α∗ tends to reduce the profile thickness
with a marginal decrease in its peak value (except for the highest α∗ values).

Figure 5.4 shows the time-averaged tangential velocity profiles equivalent to the results
described in Fig. 5.3. Figures 5.4 (a) & (b) show that increasing h∗r and α∗ tend to thicken
the rotor boundary layers and increasing height parameter h∗r has a higher effect on tangential
velocity profiles.

Özkan et al. (2017) investigated the roughness effects on rotor-stator cavities using an
FVM based RANS model with the Transition Shear-Stress-Transport turbulence model
(TSST). They have imposed the roughness effects through the RANS rough wall function,
as described in Section 2.4.3, The tangential velocity profiles in their investigation show
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the same trend of a thickness profile with a higher modelled roughness. However, the
radial velocity profile thickness was reported to reduce with diminished peak values, which
contradicts with Fig. 5.3(b). Alveroglu et al. (2016) have investigated the effects of radially
and azimuthally-anisotropic or isotropic roughness on BEK boundary layers and they have
modelled the roughness using a partial slip method on the boundary. In this approach, radial
velocity profiles of azimuthally-anisotropic roughness (radial grooves) in the Ekman layer
show the same tendency as Fig. 5.3(b). This elucidates that the radial velocity profiles are
more sensitive to the type of the roughness. Hence the disagreement with Özkan et al. (2017)’s
radial profile could be due to a different type of roughness compare to the current model. The
combined effects of the h∗r , α∗ = (α∗

r ,α
∗
θ
,α∗

z ) and the shape function are important factors
to uniquely determine the type of the roughness so that the different combinations of these
the parameters can model many different roughness types.

Simulations with numerical roughness layers higher than the model constants α∗ =

0.4,h∗r = 0.005, can produce significant effects in the stator layer of the cavity. Figure 5.5
shows the wall-normal profiles of the time-averaged radial velocity for different α∗ and
h∗r values. The profiles show that increasing α∗ and h∗r values increases the near-wall U∗

r

minimum. The higher value of α∗ and h∗r tends to displace the U∗
r minimum toward the

stator wall which is more evident in the simulations with higher roughness height values of
Fig. 5.5(b).

Fig. 5.5 A comparison of the wall-normal profiles of the time averaged radial velocity profiles
over the stator for, (a) different α∗, (b) different h∗r values.

A similar trend is observed for the wall-normal profiles of time-averaged tangential
velocity, which are shown in Fig. 5.6. As the roughness effects increase, the near wall peak
velocity moves closer to the wall.
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Fig. 5.6 A comparison of the wall-normal profiles of the time-averaged tangential velocity
over the stator for (a) different α∗ values, (b) different height values h∗r values.

The changes in the velocity profiles across the boundary layers affect the integral proper-
ties in rotor-stator cavities, such as the displacement thickness (δ1), momentum thickness
(δ2), and the shape factor (H). Equations (5.11)–(5.13) define these three quantities on the
tangential velocity component of the rotor-stator boundary layers.
Displacement thickness :

δ1 =
∫

∞

0

(
1−U∗

θ (z)
)

dz. (5.11)

Momentum thickness :

δ2 =
∫

∞

0

(
1−U∗

θ (z)
)

U∗
θ (z) dz. (5.12)

Shape factor :

H =
δ1

δ2
. (5.13)

Figure 5.7 shows the variation of the azimuthal displacement thickness (δ1) in the radial
direction of the rotor boundary layer under different h∗r and α∗ values. In general, the
displacement thickness δ1 increases with the radius. For the simulated values of h∗r and α∗,
the average displacement thickness increases by up to 1.34% and 14.11% for the highest
values of α∗ and h∗r , respectively.

Figure 5.8 shows the effects of modelled roughness on the radial distributions of the
shape factor of the rotor boundary layer. The radial average of the shape factor increases
by up to 1.49% and 16.14% for the cases of highest α∗ and h∗r , respectively compared to
the h∗r = 0,α∗ = 0 case. As observed in the displacement thickness distributions, the shape
factor also depends on radial distances, and this is more noticeable in Fig. 5.8(b).
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Fig. 5.7 A comparison of radial distributions of the displacement thickness (δ1 ) on the rotor
boundary layer under, (a) different α∗ values, (b) different h∗r values.

Fig. 5.8 A comparison shape factor (H) at the rotor boundary layer under, (a) different α∗

values, (b) different h∗r values.

Figures 5.9 & 5.10 show the displacement thickness and shape factor of the stator
boundary layers and δ1 and H follow similar trends as for the rotor boundary layers. The
radial average of the displacement thickness δ1 increases by 1.71% and 22.52% at the highest
α∗ and h∗r values respectively, and the corresponding increments in the values of the shape
factor are 0.97% and 14.70% for highest values of α∗ and h∗r , respectively.

Figure 5.11 shows the variation in the entrainment coefficient K defined in Section 4.3.1
under different h∗r and α∗ values. Increasing either α∗ or h∗r shows an increase in K, which is
approximately K ≈ 0.35 for a hydraulically smooth wall.

For Figs. 5.7 & 5.11, it is clear that modelled roughness on the rotor walls in the rotor-
stator cavity gives higher displacement thickness and shape factors in the rotor boundary
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Fig. 5.9 A comparison of radial distributions of displacement thickness (δ1) on the stator
boundary layer under, (a) different α∗ values, (b) different h∗r values.

Fig. 5.10 A comparison of radial distributions of shape factor (H) on the stator boundary
layer under, (a) different α∗ values, (b) different h∗r values.

layers. This is similar to what was observed by Schultz and Flack (2005) in their experiments
in a flat plate boundary layer covered with uniform spheres and fine-scale grit roughness.
Further, for the model constant combinations higher than α∗ = 0.4,h∗r = 0.005, roughness
effects also affect the stator boundary layer.

5.4.2 Boundary layer properties of the rough rotor and smooth stator
at Reω = 4×105

In this section, the rotor-stator boundary layer properties are studied at Reω = 4×105. Two
test cases have been simulated for α∗ = 0.4, and h∗r = 0.00125 and 0.00375. The test cases
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Fig. 5.11 The variation of the entrainment coefficient within the rotor-stator cavity for, (a)
different α∗ values, (b) different h∗r values.

are labelled as Low (h∗r = 0.00125) and High (h∗r = 0.00375). The rough model parameters
are lower than the α∗ and h∗r values tried at Reω = 1× 105 in Section 5.4.1. This will
help to achieve outer-layer similarity (see the description in page 21 of Section 2.4, and
the explanations of Jiménez (2004)) and avoid distortion and abnormalities of the velocity
profiles that might occur at higher Reynolds numbers.

Figure 5.12 shows turbulent boundary layers in the wall units as defined in Section 4.3.2,
and as in Section 4.3.2, the velocity components and axial distances are normalized using the
friction velocity (uτ ). As mentioned before, all the axial distributions are plotted at r∗ = 0.65.
Figure 5.12 uses the relative velocity uθ ,r = (rω −Uθ ) for the rotor and the absolute velocity
Uθ for the stator and both of these quantities are labelled as u+

θ
in figures. This is consistent

with previous investigations including the investigation of Busse and Sandham (2012). The
effects of the modelled roughness are visible on the rotor in Fig. 5.12(a) but not so on the
stator, Fig. 5.12(b). This is not a surprise as the model constants, α∗ and h∗r have set to
meet the outer-layer similarity conditions, which collapse the velocity profiles at the outer
region in Fig. 5.12(a). A similar observation has been described in Ikeda and Durbin (2007)’s
channel flow simulations, in which the turbulent channels have ribs transversely mounted
on one side of the plane, while the surface of the other side of the channel is hydraulically
smooth.
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Fig. 5.12 Influence of rotor boundary roughness on time-averaged tangential velocity profiles,
(a) relative velocity on rotor boundary layer, (b) absolute velocity stator boundary layer.

Figure 5.13 shows the wall-normal distributions radial LES resolved turbulence intensity
component

√
Rrr across the rotor and stator boundary layers. Increasing the rotor surface

roughness result in a decrease in the near-wall peak values of
√

Rrr. This may be due to
the damping nature of the roughness term in the momentum equation. A similar trend was
observed in the previous experimental investigation of Krogstad et al. (2005), and in DNS
investigations of Orlandi et al. (2003), Flores and Jimenez (2006) and Busse and Sandham
(2012). Furthermore, Busse and Sandham (2012) reported the possibility of the peak

√
Rrr

moving closer to the wall with increasing wall roughness, but no evidence of this is found in
the current predictions.

Fig. 5.13 Influence of rotor boundary roughness on radial turbulent intensity profiles, (a)
rotor boundary layer, (b) stator boundary layer.
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Figure 5.14 shows the wall-normal distributions of the tangential turbulence intensity
component

√
Rθθ . There is no evidence of any substantial rotor wall roughness effects on

√
Rθθ in the stator boundary layer (see Fig. 5.14(b)). In the rotor boundary layer, increasing

the rotor wall roughness decreases the near-wall peaks, but these distributions evidence that
the damping effects are less intense on

√
Rθθ than on

√
Rrr. The tangential component of

the turbulent intensity near the rotor reduce over a much shorter axial distance than the radial
component.

Fig. 5.14 Influence of rotor wall roughness on the tangential component of turbulence
intensity, (a) rotor boundary layer, (b) stator boundary layer.

The above distributions of turbulence intensity components do not show the local
Reynolds number dependency and the finite nature of the rotor-stator cavities as they have
been constructed at the fixed radial location (or fixed Reynolds number) of the mid-section of
the cavity, where effect from rotor hub and outer walls are minimum. The radial distributions
of the turbulent quantities are used to understand the influence of the local Reynolds numbers
and finite dimensions of the cavity. In addition to the turbulence intensity components
discussed above, the turbulent kinetic energy is another important parameter, which gives a
quantitative understanding of the mean kinetic energy associated with eddies in the turbulent
flow and this analysis uses the resolved turbulent kinetic energy that is defined by Eq. (4.3a).
For the sake of comparison, radial distributions of the turbulent intensities are constructed
at two axial distances of z∗ = 0.0125 and 0.04. The shorter distance is inside the numerical
roughness layer (h∗r ), and the larger distance is just far enough from the rotor wall to be
outside of the numerical roughness layer. This arrangement will provide an understanding of
the behaviour of turbulent fluctuations inside and outside the numerical roughness layer.

Figure 5.15 illustrates turbulent kinetic energy distribution along the radial direction
and it is normalised by kdisk = 0.5U2

θ ,max. The kinetic energy radial distribution is lower
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at the larger axial distance z∗ = 0.04. At both z∗ = 0.0125 and z∗ = 0.04, the magnitude
of the kinetic energy is fairly constant from the hub up Reω,local = 1.1×105, after, which
there is a gradual increase in kinetic energy. The damping effects by the wall roughness
also are apparent in these plots. As the local Reynolds number increases, the disparity
between distributions marginally increases, which suggests that the roughness effects are
pronounced at higher local Reynolds numbers. However, in both distributions at about
Reω,local ≈ 2.6×105–3.0×105 region, there is a noticeable increase in kinetic energy due
to the rough walls.

Fig. 5.15 Influence of rotor boundary roughness on turbulent kinetic energy distributions on
radial direction, (a) at z∗ = 0.0125, (b) z∗ = 0.04.

Figures 5.16 & 5.17 illustrate the corresponding the radial and tangential turbulence
intensity contribution at the same two axial locations. The tangential turbulence intensity
component is considerably higher than its radial counterpart on both of these axial planes.
These intensity distributions also show the damping effect due to the rough walls. The radial
turbulence intensity component

√
Rrr show the damping effect throughout the entire radial

span, but the tangential intensities show
√

Rθθ values at high radial positions that are above
the

√
Rθθ predicted with the hydraulically smooth wall. This could be the main contribution

to the sudden increase in kinetic energy at the Reω,local > 2.6×105 in Fig. 5.15, and these
observations above the rotor wall could be due to the finite nature of the cavity.
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Fig. 5.16 Influence of rotor boundary roughness on the radial components of the turbulence
intensity distribution in the radial direction, (a) at z∗ = 0.0125, (b) z∗ = 0.04.

Fig. 5.17 Influence of rotor boundary roughness on the tangential components of the turbu-
lence intensity distribution in the radial direction, (a) at z∗ = 0.0125, (b) z∗ = 0.04.

5.4.3 Flow visualisation

This section provides comparisons between velocity contours over the rough wall and over the
hydraulically smooth rotor wall, in a rotor-stator cavity. The velocity contours are extracted
from the higher Reynolds number cases of Reω = 4×105 to get the full perspective of both
rotor and stator boundary layers. Here, all the velocity contours are normalised by the highest
tangential velocity component value of the rotor U∗

θ ,max = r2ω .
Figure 5.18 shows the axial velocity contours predicted from rough and smooth wall cases

on the r–z plane. There is no significant difference in the magnitude of the axial velocity
components among the three cases. However, the inner regions of the stator boundary layer
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of the test cases with a modelled rough rotor wall have more vortex structures compared to
the hydraulically smooth wall cavity case. With a rough rotor wall, the structures in the core
region and in the rotor boundary layer appear vertically elongated, and this is more apparent
in the structures near the mid-radial positions of the rough rotor boundary layers. Another
difference is that the upper junction between the stator layer and outer wall is more disturbed
with a rough rotor wall, which implies convective transport of roughness effects to the stator
even at the low roughness parameters α∗ = 0.4, h∗r = 0.00125. This could be the reason for
the high values of

√
Rθθ shown in Fig. 5.17(b). Further, for all the three cases shown in the

figure, a train of vortices appears on the stator boundary, and these vortex patterns of Low
and High rough cases spread more toward the lower Reynolds number regions of the stator
boundary when they compared to the vortex pattern on the smooth case.

Fig. 5.18 Instantaneous axial velocity contours on the r–z plane for Reω = 4× 105, (a)
Smooth, (b) Low, (c) High.

Figure 5.19 illustrates the LES resolved instantaneous and time-averaged tangential
velocity contours close to the rotor boundary layer. These contours have been extracted at the
axial distances of, z∗ = 0.04. The instantaneous velocity contours (see Figs. 5.19 (a),(b),(c))
predicted with a rough rotor wall show more energetic flow structures in the external portion
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of the disk. In this region, the size of the structures gradually increases with increasing
roughness. Close to the hub, a similar tread is present, but the effects are less significant.

Fig. 5.19 The tangential velocity contours near the rotor boundary layer, z∗ = 0.04, instanta-
neous velocity contours, (a) Smooth , (b) Low, (c) High ; time-averaged velocity contours,
(d) Smooth, (e) Low, (f) High.

Figures 5.19(d),(e),(f) show the corresponding time-averaged tangential velocity contours.
These contours show large-scale spiral arms at in the external portions of the disk, but the
velocity contours close to the hub are almost similar. This suggests that the structures in
higher Reynolds number regions are more persistent compared to the structures in the mid
and low Reynolds number regions.

Figure 5.20 shows the resulting instantaneous and time-averaged tangential velocity
contours in the stator boundary layer. These contours are obtained at z∗ = 0.975. The
instantaneous tangential velocity contours above the stator show the same tread that was
observed close to the rotor wall. In the outer disk region, the effects of roughness become
more visible as the rotor wall roughness is increased. These effects are also present in the
time-averaged velocity contours, but unlike in rotor boundary layer, these contours evidence
that the disturbances spread into the inner regions of the cavity which are close to the hub.
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This is no surprise as the stator boundary layer promotes radial flow toward the hub because
of the favourable pressure gradients in the negative radial direction. These effects in the
stator boundary layers could be the result of the disturbance propagation mechanism, which
has explained in Fig. 5.18.

Fig. 5.20 The tangential velocity contours near the stator boundary layer, z∗ = 0.975, instan-
taneous velocity contours, (a) Smooth, (b) Low, (c) High; time-averaged velocity contours,
(d) Smooth, (e) Low, (f) High.

As explained in Section 4.3.4, the velocity contours across the full disk are sometimes
unable to render the changes in fine structures. Hence, the λ2 criterion is used to capture the
fine-scale structures near the outer edge of the rotor boundary and Fig. 5.21 shows the λ2

iso-surface representation of these structures at z∗ = 0.04. These structures are captured at
the same locations as Fig 5.19, and the same λ2 colour scale is used for both hydraulically
smooth and rough wall boundary layers. By observing the structures in both boundary layers,
it is clear that the structures at the outer edge of the rough wall boundary are plumper than
the hydraulically smooth wall counterparts. A similar observation is given in Busse and
Sandham (2012).
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Fig. 5.21 The λ2 iso-surfaces of vortex structures near the rotor boundary layer at z∗ = 0.04,
(a) Smooth, (b) High.

5.5 Summary and conclusions

This chapter discusses the modifications and applications of a parametric wall roughness
model to represent rough rotor walls in rotor-stator cavities. Here, the roughness effects
only apply to the rotor boundary layer and, in all cases, the stator boundary is modelled as a
hydraulically smooth wall.

Busse and Sandham (2012)’s original work is based on standard channel flow calibration
results, which consist of a stationary wall. Hence, suitable modifications were introduced
to represent a rotating disk, which has a moving wall instead of a stationary wall. A set
of simulations were run with numerically simulated rough rotor wall over the modelled
roughness parameter space of α and hr and the results are presented by their normalised
values of α∗ = 0.1–1.0 and h∗r = 0.0025–0.025.

Initial simulations were conducted at the low Reynolds numbers of Reω = 1×105. The
mean velocity profiles at the rotor boundary showed an increase in the peak values at higher
model constant values. Increasing the roughness height model constant h∗r was found to be
more significant than increasing the roughness factor constants (α∗). The model constant
values higher than h∗r = 0.005 show effects in the hydraulically smooth stator boundary
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layer and these effects are more significance beyond h∗r = 0.01. Corresponding changes in
displacement thickness and shape factors were also predicted.

The second set of simulations ran at the higher Reynolds numbers of Reω = 4× 105,
and the wall roughness model constants were set over the narrow range of low values of
h∗r = 0.00125 and 0.00375 for α∗ = 0.4. The purpose of this was to study the turbulent
properties under the roughness effects and achieve outer layer similarity. The time-averaged
velocity profiles of turbulent boundary layers were obtained, and their tangential components
were plotted in wall units. The time-averaged tangential velocity profiles at the rotor boundary
show a reduction in the relative velocity profiles compared to the hydraulically smooth wall
cases, but under these model constant values, the time-averaged tangential components at
the stator boundary layer are unaffected. The peak values of both radial and tangential
turbulent intensities of the rotor boundary layer decrease probably due to damping effects of
the roughness terms, but the corresponding values at the stator boundary layer are relatively
unaffected. The radial dependency on turbulent kinetic energy and turbulent intensities was
also shown, and here tangential turbulent intensities are more disturbed at rough walls.

The flow visualisation was carried out to understand the changes in flow structures of the
cavity under the influence of wall roughness. The structures were visualised from different
viewpoints of the cavity. The side view shows that the upper junction between the stator wall
and outer wall is more disturbed in the cavity with a rough rotor wall. The tangential velocity
contours show the effects of modelled roughness near both rotor and stator boundary layers.
The iso-surface visualisation near the rotor boundary shows a more enlarged vortex structure
on rough wall layers.

These results show the general effects of rotor layer roughness on rotor-stator cavities.
As a conclusion, even small amounts of roughness on the rotor layer can influence other parts
of the cavity, and the bulk fluid transport through the outer wall enables this process.
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Chapter 6

Numerical modelling of a nanofluid and
its heat transfer in a rotor-stator cavity

6.1 Introduction

This chapter focuses on implementing numerical models to evaluate rotor-stator heat transfer
with nanofluids. The numerical model uses the transport models discussed in Section 2.5.1,
to evaluate nanofluid properties. These models are simulated with different volume fractions
of Al2O3 nanoparticles.

The first half of the chapter discusses the preparation of computational models to simulate
rotor-stator flows. The second half focuses more on discussing the outcomes of these
models. The new models are validated with previous investigation results, and the effects
of nanofluids on the flow and heat transfer aspects are elaborated and compared against the
validated outcomes.

6.2 Problem definition

6.2.1 Geometric and numerical modelling

An identical geometry and mesh are used to the Reω = 1×105 configuration described in
Table 4.1. For the sake of brevity, readers are referred to Section 4.2.1 for more details.
Unlike in the previous simulation, in the current simulations, the orientation of the cavity is
important, due to the buoyancy of the flow. The current configurations assume a top rotor
and a bottom stator as shown in Fig. 6.1. However, in the physical mesh, the rotor is on the
z = 0 plane and the required directional dependency is achieved by defining the gravitational
vector ggg = (0,0,9.81).

120



6.2 Problem definition

Fig. 6.1 The rotor-stator cavity use in the nanofluid heat transfer simulations.

For all the simulations conducted in this section, the subgrid-scale quantities are calculated
using the WALE model (see Section 3.5.2.2) and the value of the subgrid-scale Prandtl number
(Prsgs ) is taken as 0.4 (Antonopoulos-Domis, 1981).

Two sets of simulations have been performed, using respectively, the single-phase (SP)
approach and the two-phase (TP) approach (hereafter, SP and TP denote the single-phase and
the two-phase model, respectively). The governing equations for SP model were explained in
Eqs. (3.39)-(3.41). The TP model uses the mass, momentum and thermal transport equations
described in Eq. (3.47)–(3.49) and an additional transport equation, Eq. (3.50), used to solve
the volume fraction distributions of the nanoparticle phase. In both cases, the nanofluid
thermal conductivity (kn f ) and viscosity (µn f ) are calculated using the correlations given
in Sections 2.5.1.2 & 2.5.1.1. Specifically, In this study, Maxwell’s model in Eq. (2.1) and
Brinkman (1952)’s viscosity model in Eq. (2.10) are used to calculate the values for kn f and
µn f .

Like in the previous chapters, all simulations are conducted using OpenFOAM, and a
second-order accurate FVM based segregate solver is used for solving the system of equations.
The pressure-velocity coupling is achieved using the non-iterative PISO algorithm, and all
simulations are performed with z+max ≤ 1.0. The time steps (∆ t) have been chosen to satisfy
the condition Comax ≤ 0.3.

6.2.2 Boundary and operational conditions

In both SP and TP simulations, the same velocity and thermal boundary conditions are set. In
all the rotating walls, the no-slip boundary condition, which is based on the relative velocity
on the wall, is used. At the stator and outer walls, which are stationary walls, the velocity is
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set to zero. The rotor and hub velocities are set by

urotorurotorurotor = ωrprprp ×IdirIdirIdir, (6.1)

where IdirIdirIdir = (0,0,1) and ω are the axial directional unit vector, and the rprprp is the position
vector for respective cell faces. The value for ω is set by Reω = 1×105. Constant temperature
wall boundary conditions are used. The temperature values of the rotor and hub are 300 K,
and the stator and the outer wall temperatures are set to 325 K.

The thermal Rossby number is defined as Bthermal = βn f (T2−T1) (Tuliszka-Sznitko et al.,
2009b) where T2 and T1 are stator and rotor temperatures and βn f is the thermal expansion
coefficient of the nanofluid that can be obtained using a weighted average method as shown
in Eq. (3.46). The initial temperature and velocity values (i.e. temperature and velocity at
t = 0) of all the simulations are set with 300 K and zero velocity conditions at everywhere in
the computational domain.

Both SP and TP simulations require defining an initial nanoparticle volume fraction value
(φ ) to calculate nanofluid properties, and the set of initial values φ = 0,0.02,0.04,0.2 has
been considered to conduct SP and TP simulations. The previous investigations of Bachok
et al. (2011) and Turkyilmazoglu (2014) have used the volume fraction of φ = 0.2 in their
simulations and Turkyilmazoglu (2014) mentioned that the accumulation of nanoparticles is
acceptable up to φ = 0.2. In the case of the SP simulation, the initial values of the volume
fraction do not change with simulation time, and these values are a key factor in determining
the nanofluid thermo-physical properties.

The volume fraction Eq. (3.50) determines the evolution in space and time of the φ field
in TP simulations. Apart from the initial values, TP simulations require boundary conditions
for the volume fraction equation, similar to other governing equations. The relevant boundary
conditions at the walls are set as

jpjpjp = jBjBjB + jTjTjT , (6.2)

jpjpjp = DB∇∇∇φ +DT
∇∇∇T
T

. (6.3)

The parameter jpjpjp is the mass flux due to the Brownian and thermophoresis forces. By
considering zero mass fluxes in the wall-normal directions, Eq. (6.3) becomes

∇∇∇φ .nnn =−DT∇∇∇T
DBT

.nnn. (6.4)
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Equation 6.4 can be used as a boundary condition at the wall boundaries of the simulations
and the further simplification of the equation can be stated as(

∂φ

∂n

)
wall

=
DT

DBT

(
∂T
∂n

)
wall

, (6.5)

which is valid on the wall boundaries.
All the simulations are performed by the thermo-physical properties of pure Al2O3 and

water at ambient conditions and Table 6.1 shows thermo-physical properties of Al2O3 and
water.

Property Al2O3 Water

Density (ρ) [kgm−3] 3970 996
Viscosity (µ) [kgm−1s−1] N/A 8.93×10−7

Heat capacity at constant pressure (cp) [Jkg−1K−1] 880 4177
Thermal conductivity (k f /knp) [Wm−1K−1] 42 0.61

Diameter (dp) [nm] 30 0.385
Thermal expansion coefficient (βtherm) [K−1] 2.5×10−5 2.1×10−4

Table 6.1 Thermo-physical properties of the constituent materials.

6.3 Results and discussion

This section describes the momentum balance and heat transfer characteristics of rotor-stator
cavities filled with Al2O3 based nanofluid using the SP and the TP transport models. Despite
the model validation presents in previous chapters for Reω = 1×105 cases, a basic validation
is repeated here due to new transport models and turbulence model that are used for the first
time in this study. All lengths and velocities are shown normalised as Section 4.3.

The volume fraction of φ = 0.0 represents a simulation of pure water without any
nanoparticle constituents, but the value φ = 0.0 may cause singularities in current numerical
models. Hence, a small volume fraction value of, φ ≈ 2× 10−5 is used to represent pure
water. It is important to remember that the results from this simulation will be denoted as
φ = 0.0.

Figure 6.2 describes the time-averaged axial profiles of the tangential velocity components
for the case of φ = 0.0. For the current test cases, the radial position r∗ = 0.5 is selected
to plot the axial profiles and this radial position gives smoother velocity profiles than the
radial position r∗ = 0.65 for the Reω = 1×105 cases. All the axial plot are averaged over
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the tangential direction as described in Section 4.3, and a couple of dozen disk rotations
was sufficient to obtain the stationary time-averaged quantities. Both single-phase (SP) and
two-phase (TP) models have similar radial and tangential velocity profiles, which is explained
by the fact that as φ → 0 the TP model asymptotes to the SP model, and the models show
similar values for the entrainment coefficient K ≈ 0.36.

Fig. 6.2 The axial distributions of time-averaged velocity fields in pure water, r∗ = 0.50, (a)
radial velocity, (b) tangential velocity.

Figure 6.3 shows the time-averaged axial distributions of the radial and tangential tur-
bulence intensity components. All the models underpredict the turbulence intensity level
compared to the previous experiment results, but the locations of the peaks near the stator
agree well with the experiment results. The damping effects in the predicted turbulence
intensity components may be partially due to the small nanoparticles volume fractions present
in the current simulations. The SP and TP simulations have very similar radial and tangential
turbulence intensity profiles.

6.3.1 Momentum and heat transfer in a nanofluid filled rotor-stator
cavity

This section describes the momentum and heat transfer characteristics of rotor-stator cav-
ities filled with a nanofluid. Result are presented for the SP model over the nanoparticle
concentration range φ = 0,0.02,0.04,0.2.

Figure 6.4 shows time-averaged axial profiles of the radial velocity component through
the rotor and stator boundary layers. At lower volume fractions, no significant changes can
be observed in the boundary layers, but higher volume fractions, φ > 0.04, tend to increase
the radial velocity profile of the cavity.
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Fig. 6.3 A time-averaged axial profiles of the axial distributions of turbulence intensity fields
in pure water, r∗ = 0.50, (a) radial intensities, (b) tangential intensities.

Fig. 6.4 A wall-normal profiles of time-averaged radial velocity components for different
nanoparticle volume fractions, r∗ = 0.50, (a) rotor boundary layer, (b) stator boundary layer.

In Fig. 6.5, a similar trend can be observed in the wall-normal profiles of tangential
velocity through the rotor boundary layer, but the stator tangential velocity component is
slightly reduced as a result of increased nanoparticle volume fractions.

The axial velocity distributions across the rotor and stator boundary layers are shown in
Fig. 6.6. These distributions confirm higher U∗

z components (here, velocity components are
negative) across both stator and rotor boundaries, as the concentration of the nanoparticle
increases. These high values of negative U∗

z components can be explained as a result of
mass continuity of the flow, in which a higher rate of fluid displacement in the radial and
tangential directions often demands a higher rate of fluid from axial locations of the cavity
to fill the gap. Figure 6.6(b) shows a similar trend in the stator boundary layer at φ = 0.2
but this trend is less pronounced in the lower volume fraction cases. By intuition, a higher

125



6.3 Results and discussion

Fig. 6.5 A wall-normal profiles of time-averaged tangential velocity component for different
nanoparticle volume fractions, r∗ = 0.50, (a) rotor boundary layer, (b) stator boundary layer.

axial inflow velocity component toward the rotor boundary may result in a higher axial
outflow velocity component on the stator boundary and this is mostly the case for the infinite
rotor-stator disk systems (i.e. derivatives of BEK boundary layers without outer walls and
rotor hub). However, the rotor hub and the outer walls of a finite cavity often complicate
the mass transfer process in the rotor-stator cavity, in which the bulk fluid motion (i.e. mass
transfer) between the rotor and the stator boundary layers occurs through the rotor hub and
outer walls.

Fig. 6.6 A wall-normal profile of the time-averaged axial velocity components for different
nanoparticle volume fractions, r∗ = 0.50, (a) rotor boundary layer, (b) stator boundary layer.

The previous investigation of Turkyilmazoglu (2014) explained the behaviour of the
velocity components near a single rotating disk. His theoretical investigation confirms
these observations in the time-averaged velocity components for the nanofluid with Al2O3
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nanoparticles. Regardless of the volume fraction, the effects of nanoparticles on the time-
averaged radial and tangential distributions are highly localised in the near wall areas, and the
velocity distributions eventually collapse on each other, which results in identical behaviour
in the core region of the cavity at all nanoparticle volume fractions tested.

Figure 6.7 show axial profiles of radial and tangential turbulence intensity components for
different nanoparticle volume fractions at r∗= 0.50. Radial turbulence intensity distribution is
more affected by the changes in volume fractions of the nanofluid. The tangential turbulence
intensity distributions show some effects but to a less extent. At the highest volume faction
value of φ = 0.2, there is a visible reduction in the turbulence intensity

√
Rrr near the walls

and in the core region of the cavity in both radial and tangential distributions, but in the same
models, nanoparticle volume fractions of φ = 0.02,0.04, show a subtle increase compared
to pure water. In general, increasing the nanoparticle volume fractions is expected to result
in higher turbulence intensities in rotor-stator cavities up to some extent. For instance, Hu
et al. (2013) used an LES-Lagrangian based numerical investigation to study the transport
properties of a nanofluid based on Cu, SiO2 nanoparticles and they have observed that
nanoparticles produce higher turbulence intensities at φ = 0.01 compared to pure water
simulations. Ghaffari et al. (2010) reported a reduction in the turbulence intensities, as
the Grashof number (Gr) increases in their horizontal curved pipe simulations based on a
two-phase modelling approach with slip velocities. Both of these examples have the bulk
fluid flow in a streamline direction, but the rotor-stator flows have an induced type of fluid
motion due to the rotation of the rotor.

Fig. 6.7 A time-averaged axial profiles of turbulence intensity profiles for different nanoparti-
cle volume fractions, r∗ = 0.50, (a) radial turbulent intensities, (b) tangential intensities.

The time-averaged velocity and turbulence intensity distributions of the rotor-stator
cavities have given evidence of the changes due to variations in nanoparticle volume fractions,
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but in both cases, these changes are subtle (except Fig. 6.7(a)). Hence, they may not give
significant contributions to the convective heat transfer process. These results suggest that the
addition of nanoparticles to a base fluid has a less significant effect on momentum transport
for rotor-stator applications, which is the primary motivation for using nanofluid in heat
transfer applications instead of mixtures based on micro-sized particles. However, the current
investigation only concerns Al2O3 nanoparticles, and the investigation of Turkyilmazoglu
(2014) suggested that the other nanofluids based on nanoparticles, such as Cu,CuO,Ag, have
more intense effects on momentum transport than the Al2O3 nanoparticles.

After discussing the momentum transport properties of rotor-stator cavities filled with
Al2O3 based nanofluid, Fig. 6.8 describes the time-averaged axial profile of temperature at
r∗ = 0.50 under different volume fractions of nanoparticles. This shows that the test cases
with higher volume fractions produce elevated temperature distributions, especially in the
core region of the cavity. This initial result suggests that the rotor-stator cavities filled with
the nanofluid may have superior heat transfer capabilities compared to conventional cavities
filled with pure water.

Fig. 6.8 A comparison of time-averaged temperature distributions for different nanoparticle
volume fractions at r∗ = 0.50.

6.3.2 Flow visualisation of rotor-stator cavities with nanofluid

This section aims to visualise the velocity and temperature distributions across axial and
azimuthal planes through the rotor-stator cavities. Most of the contours presented in this
section are instantaneous snapshots, which were taken at the last time step of the simulation.
Usually, the velocity fields are normalised by the maximum disk velocity Uθ ,max = r2ω .
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Figure 6.9 describes the normalised instantaneous axial velocity distributions in the r–z
plane and they show a train of vortex structures initiated in the stator boundary. In rotor-stator
cavities, fluid transfer between the rotor and stator boundary layers occur over the outer walls
and the inner rotor hub of the cavity. The colder fluid flow in the rotor rises to higher z values,
near the outer wall and hotter fluid near the stator is transported over the inner hub. This flow
circulation process helps to accelerate the heat transfer between the two boundary layers of
the cavity. The mean axial velocity profiles (not shown here) evidence that the velocity of
the bulk fluid flows near the rotor hub and outer wall increases as the nanoparticle volume
fraction increases.

Fig. 6.9 Instantaneous normalised instantaneous axial velocity contours at the r–z plane, (a)
φ = 0.0, (b) φ = 0.04,(c) φ = 0.2.

For the sake of completeness, tangential velocity components at the rotor (z∗ = 0.025)
and stator (z∗ = 0.975) boundaries for different volume fractions are shown in Fig. 6.11. As
described in Section 6.3.1, higher volume fractions predicted to produce a marginal increase
in the velocity components in the rotor boundary layer and a decrease in velocity in the stator
boundary layer. Apart for nanofluid related effects, these boundary layers comply with the
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typical behaviour of rotor-stator boundary layers at Reω = 1×105, in which rotor boundary
layers are mostly laminar, while stator boundary layers show transient turbulent structures.

Fig. 6.10 Instantaneous tangential velocity contours at the rotor boundary, z∗ = 0.025, (a)
φ = 0.0, (b) φ = 0.04, (c) φ = 0.2; at stator boundary, z∗ = 0.975, (d) φ = 0.0, (e) φ = 0.04,
(f) φ = 0.2.

Figure 6.11 shows the temperature distributions at different volume fractions in the r–z
plane. The central core region of the cavity has higher temperature values than the outer
core region, in where heat distributes at a quicker rate due to the higher tangential velocity
component and entrainment coefficients at these regions. As shown in the figures, the inner
regions of the cavity consist the hot fluid streams that are flowing from the hot stator to the
rotor side of the cavity, and this could be the main heat transport path between the stator
and the rotor. The centrifugal motion of the rotating hub distributes hot fluid to the central
regions of the cavity. The instantaneous temperature contours show that the cavities with
higher nanoparticle volume fractions exhibit a greater spread in temperature distributions
that featuring large-scale temperature extrusions near the rotor hub and stator.
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Fig. 6.11 Instantaneous temperature contours of SP simulations at the r–z plane, (a) φ = 0.0,
(b) φ = 0.04, (c) φ = 0.2.

The axial plot temperature distributions over the rotor (leftmost column), mid-section
(middle column) and stator (rightmost column) are shown in Fig. 6.12. These temperature
contours show the role of rotor hub in funnelling of the temperature toward the outer regions
of the cavity. At the rotor hub of the cavity, the coherent heat structures are located in
the rotor and the mid-section contours, and the contours of the stator layer show more
turbulent structures. Even though these structures are described as heat structures, they are
indeed, the convective flow structures that were presented in Fig. 6.10. These structures
play an important role in rotor-stator heat transfer by moving the hot fluid through the
cavity. As explained before, increasing the volume fraction of nanoparticles has shown the
greater spread of temperature distributions toward the central region of the cavity. However,
increased nanoparticles concentrations cause a decrease in heat spread at the rotor (this is
more visible in Fig. 6.12(g)) and a higher rate of bulk fluid flow along the rotor hub and outer
walls could be the possible reason for this.
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Fig. 6.12 Instantaneous temperature contours near the rotor boundary layer, (a) φ = 0.0, (d)
φ = 0.04, (g) φ = 0.2; at the mid-section, (b) φ = 0.0, (e) φ = 0.04, (h) φ = 0.2; near the
stator boundary layer, (c) φ = 0.0, (f) φ = 0.04, (i) φ = 0.2.
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Even though the nanofluid does not impose significant effects on the mean and turbu-
lent structures of the rotor-stator cavities, their higher thermal conductivity may lead to a
significant improvement in heat transfer rates.

6.3.3 Nanofluid heat transfer in rotor-stator cavities studied by a two-
phase model

The main difference between SP models and TP models are that the latter may have a slip
velocity between the nanoparticles and the base fluid, which results in different volume
fractions inside the cavity, instead of time independent isotropic volume fraction. This may
give different momentum and heat transfer characteristics with a TP model that with a SP

model.
A set of TP simulations starting from the same volume fractions of the SP simulations

were run. As shown in Figs. 6.2 & 6.3, there are just minor differences in the time-averaged
velocity profiles and turbulence intensity profiles between the SP and TP simulations.

The time-averaged axial profiles of temperature at r∗ = 0.5 in Fig. 6.13 show minor
differences in the temperature distribution across the cavity, which indicates that the TP

modelling approach has slightly altered the underlying thermal transport mechanism of the
rotor-stator cavity. The temperature distributions suggest that the TP modelled flow has a
lower core temperature compared to the SP modelling approach, and at first glance, this
suggests that the relative straight of thermophoresis forces overshadow the Brownian effects
in heat transfer of rotor-stator cavities filled with a nanofluid. These facts motivate further
investigation on to this matter.

Figure 6.14 shows the instantaneous temperature distributions in the r–z plane, and
similarly to the SP model predicts, the radial spread of the temperature increases with higher
volume fractions.
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Fig. 6.13 A comparison of time-averaged temperature distributions in SP and TP simulation
at r∗ = 0.50.

The key difference between the SP model and TP models are that the latter allows
nanoparticle slip velocity based on Brownian diffusion and thermophoresis effects, which
results in non-uniform volume fraction distributions that are flow dependent. Figure 6.15
shows the instantaneous volume fraction distribution in the r–z plane for TP model initialised
by a uniform volume fraction of φt0 = 0.2 (this is denoted as inceptive volume fraction). The
volume fraction distributions, which are obtained from the TP model, are normalised by using
the respective inceptive volume fraction value of the simulation to represent the distributions
in terms of dimensionless volume fractions (αn = φlocal/φt0). These volume fraction contours
show that the nanoparticles tend to aggregate just above the stator boundary layer and beside
the rotor hub, where hot temperature occurs. The core region of the cavity is relatively
unaffected, but other areas, which are occupied hot fluid, also have lower concentrations of
nanoparticles. These observations suggest that the thermophoresis effects play a significant
role in the heat transfer of rotor-stator cavities.
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Fig. 6.14 Instantaneous temperature contours of TP simulations at the r–z plane, (a) φ = 0.0,
(b) φ = 0.04, (c) φ = 0.2.

Fig. 6.15 Instantaneous normalised volume fraction (αn) contours for a TP simulation with
φt0 = 0.2 at the r–z plane.
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Figure 6.16 shows the instantaneous normalised volume fraction contour in the rotor
and stator boundary layers. These contours are extracted from the laminar sublayer of the
respective boundary layers. For both of these boundary layers, the areas with volume fraction
below unity are marked by line contours. These contours evidence a higher concentration of
nanoparticles on the rotor boundary layer (except for a very small area near the rotor hub)
and a lower concentration of nanoparticles in the stator boundary layer. The axial outward
displacement of the nanoparticles from the stator boundary layer is significant at higher
radial positions, and the displaced nanoparticle fractions could result in the thick layer of
nanoparticles above the outer region of the stator surface as shown in Fig. 6.15.

Figure 6.17 shows the instantaneous radial and axial profile of normalised volume
fraction for the case of φt0 = 0.2 and all the profiles are averaged over the tangential direction.
Figure 6.17(a) shows the variation of normalised volume fraction at the different radial
positions. This suggests a higher nanoparticle concentration in the inner region of the rotor
boundary layer and relatively low particle concentrations (but still higher than the uniform
starting value of φt0 = 0.2) in the mid and outer region of the rotor boundary layer. The
volume fractions in the core region of the cavity are nearly constant, αn = 1, and the stator
boundary layer has lower nanoparticle concentrations of αn < 1 at the higher radial positions.
Figure 6.17(b) further confirms the variations which have described above, and this suggests
higher nanoparticle concentrations, αn > 1, in both rotor and stator boundary layers at radial
locations lower than r∗ < 0.47.

The above description suggests that the TP simulations reported a reduction in nanoparti-
cles volume fractions at the hot stator due to the thermophoresis effects and this could be a
plausible reason for slightly lower mean temperature profiles for TP models. The next section
will attempt to obtain dimensionless instantaneous and mean heat transfer coefficients for
both SP and TP model, which can provide a quantitative assessment on each case of SP and
TP models.
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Fig. 6.16 Instantaneous normalised volume fraction contours for the TP simulations at the
rotor boundary layer (a) φt0 = 0.04, (c) φt0 = 0.2; stator boundary layer, (b) φt0 = 0.04, (d)
φt0 = 0.2.

Fig. 6.17 Volume fraction distributions for φt0 = 0.2, (a) axial distributions at different radial
positions, (b) radial distributions at the rotor boundary layer.
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6.3.4 Nanofluid heat transfer coefficients in rotor-stator cavities

Nusselt numbers is a dimensionless parameter which is very important in heat transfer
applications. It is often considered as a performance parameter to describe the effectiveness
of the heat transfer process. In the current application, the local Nusselt number considers as
a function of the local radius of the disk, and this is an indication of the overall convective
heat transfer rate of a particular configuration. The previous investigations of Nikitenko
(1963), Pellé and Harmand (2007) and Tuliszka-Sznitko et al. (2009b) studied the behaviour
of the local Nusselt number in various rotor-stator flow configurations. In those investigations,
they experienced a high dependency of the local Nusselt numbers with the local Reynolds
numbers, which show that the local Nusselt number is sensitive to the local flow structures.
For the rotor-stator flows, the local Nusselt number can be evaluated as

Nur =
hT r
k f

, (6.6)

where, hT , r and k f represent the convective heat transfer coefficient, the local radius and
the thermal conductivity of the fluid, respectively. Figure 6.18 shows the local Nusselt
number distributions for both SP and TP simulations and they are evaluated at the stator
boundary layer, which is the heat source of the current simulations. As shown in the mean
temperature distributions of Fig. 6.13, the local Nusselt number increases as the volume
fraction increases. However, at a given radial position, the local Nusselt number of each
SP simulation is marginally higher than their TP counterparts, which can be explained by
considering the displacement of nanoparticles due to the thermophoresis effects near the hot
stator boundary layer. The correlation of local Nusselt number with the local radius of the
disk (or Reω ) can be described by the generalised model purposed by Nikitenko (1963) and
it reads as

Nur = aReb
ω,local, (6.7)

where a and b are multiplicative and exponential constants respectively, and for the turbulent
flow Nikitenko (1963) predicts the values a = 0.0178 and b = 0.8.

Table 6.2 shows the fitted values of a and b for the Nusselt number distributions shown
above. As the nanoparticle volume fraction increases, the multiplicative constant decreases
(for the TP model a constant monotonically decreases), whereas the exponential constant b
monotonically increases for both SP and TP models. Close observation of these constants
suggests that at small radial positions (or Reω,local) the Nur of pure water is greater than the
Nur of nanofluid, which means the heat transfer rate of the pure water is higher than the
nanofluid. Specifically, with nanofluid of volume fractions φ = 0.2, Nur of pure water greater
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Fig. 6.18 A comparison of local Nusselt number distributions for SP and TP simulations at
the stator boundary layer.

than the Nur of nanofluid at the local Reynolds numbers of Reω,local < 1000. Similarly,
the corresponding constant values for SP and TP models suggest that the heat transfer
coefficients of TP simulation should higher than its SP counterpart at higher radial values. By
considering the constant value initial volume fraction φt0 = 0.2, this occurs approximately
the local Reynolds number of Reω,local = 3× 106. According to the arguments made in
Section 6.3.3, at higher local Reynolds numbers, nanoparticle displacement may be more
significant, which results further decrease in heat transfer rates. Hence, the calculated values
for these constants are only admissible for the considered Reynolds numbers region of 8×104

< Reω,local < 1×105.
The fourth column of Table 6.2 represents the mean Nusselt numbers of the stator,

Nu =

∫ r2
r1

Nur2πr dr

π(r2
2 − r2

1)
,

calculated based on the local Nusselt number distributions. Here, r1 and r2 are the inner
radius and the outer radius of the cavity as shown in Fig. 6.1. The SP and TP simulations
with the nanoparticle (inceptive) volume fractions of φ = 0.2 show over 70% increase when
them compared to the base simulation of φt0 = 0. In this case, the mean Nusselt number of
the SP simulation is about 4% higher than the similar TP simulation. This observation agrees
with the previous explanation about the thermophoresis effects on the nanoparticles near
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φ a b Nu

0.0 0.0158 0.807 87.19
0.02 (SP) 0.0144 0.822 93.25
0.02 (TP) 0.0142 0.823 92.92
0.04 (SP) 0.0155 0.822 100.23
0.04 TP) 0.0132 0.834 98.54
0.2 (SP) 0.0071 0.932 152.49
0.2 (TP) 0.0063 0.940 148.57

Table 6.2 The fitted constant values of a and b for the model Eq. (6.7) and the mean Nusselt
numbers Nu.

a hot surface. However, the disparity between the SP and the TP simulations reduce as the
nanoparticle volume fraction decreases.

6.4 Summary and conclusions

This chapter focused on the development and implementation of numerical models to evaluate
rotor-stator cavities filled with a nanofluid. Two types of numerical models were used the
SP model and the TP model. The first model is a single-phase transport model, in which
the nanoparticle phase fraction is assumed constant throughout the simulation time. The
second model allows for a slip velocity between the nanoparticles and the carrier phase,
in which the Brownian diffusion and thermophoresis effects are considered to be the main
cause of these slip velocities. The two models used Al2O3 nanoparticles with t = 0 volume
fractions φt0 = 0.02,0.04,0.2, and in all the simulations, the operational Reynolds number is
Reω = 1×105. The outcomes were compared to a pilot simulation with pure water in which
a very small nanoparticle volume fraction of φ ≈ 2×10−5 was used for numerical stability
purpose.

The velocity fields are very similar between the SP and TP models and time-averaged
radial, tangential and axial velocity components of the rotor boundary layer tend to increase
with higher nanoparticle concentrations. Similar observations have been made for the
stator boundary layer, except the time-averaged tangential velocity components tend to
decrease with higher nanoparticle volume fractions. In the current simulations, both radial
and tangential turbulence intensities decreased under higher nanoparticle volume fractions.
However, results show that the effects of nanoparticles on momentum transport are subtle.
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Hence there would be no significant improvements in convective heat transport rates solely
because of nanoparticle volume fractions.

Nevertheless, there were elevations in instantaneous and mean temperature in the cases
with higher nanoparticle volume fractions. This is primarily because of the higher thermal
conductivities of nanofluids. However, close observation on both SP and TP simulations
showed that the SP simulations have slightly elevated temperature distributions compared
to their TP counterparts. This can be explained by the displacement of the nanoparticles at
the hot stator boundary, at which the thermophoresis forces are significant. This concludes
that the thermophoresis forces are dominant over the Brownian forces. The local Nusselt
number distributions have obtained for all the cases at the stator boundary, and they were
compared with Nikitenko (1963)’s Nusselt number model described in Eq. (6.7). Further, the
mean Nusselt numbers at the stator show up to 70% increase due to nanofluid.
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Chapter 7

Simulation of particle dynamics inside a
rotating chemical vapour deposition
chamber

7.1 Introduction

This chapter is devoted to the application of the Lagrangian particles methods to evaluate
the particle dynamics and deposition in a Rotating Chemical Vapour Deposition (RCVD)
chamber, which is an interesting method that facilitates the forming of uniform film layers
over a substrate. The method is widespread in the semiconductor manufacturing industry
but even a small trace of particle contaminations inside the chamber could impact the purity
of the film, which may cause a significant impact on the quality and usability of the end
products.

The Lagrangian methods are capable of tracking individual particles inside the chamber
but this may impose a high computational burden on a two-phase particle fluid simulation
model if the particle phase consists of small particles (i.e. micro and nanoscale particles) in
high volume fraction. Nevertheless, if the particle volume fractions are sufficiently small, the
Lagrangian methods have a distinct advantage over Eulerian methods as they can track the
path of each particle, which gives a profound understanding of particle dynamics in a fluid.

This section considers a trace of particles (αp < 10−6), and in previous literature, the
most of the contamination particles were found to be in micron and submicron scales (Otani
et al., 1989; Pui et al., 1990; Gakis et al., 2015; Lee and Yook, 2015). The current study
conducts a series of simulations to elaborate the dynamics and depositions of these particles
near the stationary and rotating disks in a CVD chamber. As described in Section 2.6, the
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Lagrangian particle tracking method (see Eqs. (2.18) & (2.19)) are combined with Lagrangian
submodels to impose different forces and effects, such as turbulence of the carrier phase,
the thermophoretic force, on the particles. The outcomes of this model are compared with
the previous investigation of Chein and Su (2004), who conducted laminar axisymmetric
simulations. The current investigation relaxes the laminar and axisymmetric flow assumptions
by conducting the simulations under the fully three-dimensional and turbulent flow conditions.
Further, the similarities and differences with previous literature are highlighted.

7.2 Problem definition

7.2.1 Geometric modelling

The geometrical model of the CVD chamber is shown in Fig. 7.1, and here, a simplified
geometrical model is assumed by neglecting the central supporting shaft of the disk. The
dimensions of the geometry are also proportional to Chein and Su (2004)’s investigation,
but the present model is fully three dimensional compared to the original axisymmetric
configuration. The inlet diameter is 2l and the outlet dimensions are identical to inlet
dimensions. The diameter and thickness of the disk are 6l and 0.5l respectively. The disk is
in the centre of the chamber. The height of the chamber section is 8l and its diameter is 10l,
to allow sufficient clearance between the disk and sidewall of the chamber.

7.2.2 Governing equations

Even though the flow is in a low Mach number region, a solver based on conservative form
of the governing equations (i.e. Eqs. 3.2 (a) & (b) defined in Section 3.3) has been used to
evaluate the carrier phase flow fields due to significantly high-temperature gradients, where
the buoyancy effects may cause additional complexities in the flow field. Equations (3.5) is
the energy equation, and all the governing equations are discretised using the FVM methods,
which were described in Section 3.4.

All turbulent contributions from momentum and energy are evaluated using the RANS
model, standard k-ε , which has described in Section 3.5.1.1. The size of the time step
(∆t) is selected according to the Comax ≤ 0.5. In the current simulation model, a one-way
coupling is assumed (see Section 2.6.7) between the continuum phase and the discrete
phase. This assumption is valid for suspensions of small particles in low volume fractions
(αp < 10−6) and the interphase momentum and energy coupling terms have not been added
to the momentum and energy equations.
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Fig. 7.1 Geometry of the CVD, (a) Isometric view of the geometry, (b) Side view of the
geometry.

Hexahedral elements were used to discretise the computational domain into a finite
number of volumes, and the finite distribution of volumes is shown in Fig. 7.2.

Fig. 7.2 Mesh of the CVD, (a) side view of the geometry, (b) top view of the mesh
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7.2.3 Boundary and operational conditions

The inlet velocity profile is assumed and it is taken as the one-seventh power law profile
(Prandtl, 1961, vol. II), which is a turbulent velocity profile assumed inside circular pipe
flows (White, 1991). The expression for the one-seventh velocity profile can be taken as

u(Rr) = umax

[
1−

(Rr

R2

) 1
7
]
, (7.1)

where Rr and R2 are local radial location of the pipe plane and the radius of the pipe. Here,
umax is the centre line velocity and in current case, it is set to 1.0 ms−1. The inlet Reynolds
number is defined as the Rein = (2ρuavgR2)/µ for a circular pipe and the uavg =

2n2umax
(n+1)(2n+1)

can be taken for the power law velocity profiles. The current case sets n = 7 to obtain the
average velocity of the one-seventh power velocity profile and this gives the inlet Reynolds
number Rein ≈ 1550. The no-slip boundary conditions are set to all the walls, and the rotating
disk is based on rotating Reynolds number (Reω = (ρωr2

2)/µ ≈ 6×104).
Thermal boundary conditions are required to solve the energy equations, and for sim-

plicity, the parameter ∆T = (Thot −Tcold) is defined to describe cases with different thermal
boundary conditions. The Tcold and Thot values are described in Table 7.1.

Tcold/[K] 300 300 300
Thot/[K] 500 800 1200

Table 7.1 Thermal boundary conditions.

The current investigation considers two scenarios, Tcold = inlet, Thot = disk and Tcold =

disk, Thot = inlet, where the former case defines positive ∆T values and latter defines the
negative ∆T values on the CVD problem.

Inlet boundary conditions for the k and ε are set based on the turbulence intensity
(I = urmsurmsurms

uuu ) at the inlet. Here, the turbulence intensity is taken as 4% from the average velocity
(uavg) and the fields, k and ε , are calculated as k = 3

2(uavguavguavgI)2 and ε = C3/4
µ k3/2/lt , where

Cµ = 0.09 and lt = 0.42 and k and ε set uniform across the inlet. Throughout this chapter, k
and ε denotes the total turbulent kinetic energy and turbulent dissipation of the flow field,
respectively and spatial and temporal variations of these fields can be obtained by solving
Eqs (3.24) & (3.25). All the walls are treated with standard wall functions, which damp the
turbulent components at the near wall areas.

The outlet pressure value set to atmospheric pressure (1×105 pa), which is also consid-
ered as the operating pressure of these simulations and all other outlet boundary conditions
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are set to zero-gradient conditions (∇∇∇ψ = 0). The air is considered as the working fluid of the
system, and the values cp = 1000 J/kgK and µ = 1.8×10−5 kg/ms are taken as the specific
heat capacity at constant pressure and the dynamics viscosity respectively. To calculate
effective thermal diffusivity (αe f f ), turbulent Prandtl number (Prtur) is assumed as 1.0.

The dispersed particles are Silicon particles and these particles are assumed to be hard-
spherical particles with density (ρd) 2330 kg/m3. Particle injections are mostly done at the
inlet boundary of the chamber using either patch injection or manual injections methods. The
initial injection velocity always set to the local fluid velocity at the inlet.

7.3 Results and discussion

Two simulations are conducted with a rotating and stationary chemical vapour deposition
chambers (hereafter, these denote as RCVD and SCVD), respectively. The following sections
describe the carrier phase velocity and temperature fields for SCVD and RCVD cases
followed by LPT simulation results.

7.3.1 Carrier phase flow and temperature patterns

Figure 7.3 shows axial and radial instantaneous velocity contours for stationary and rotating
disk scenarios. In both cases, the flow enters through a sudden expansion section and it
impinges on the disk, before leaving through a sudden contraction section at the bottom part
of the chamber.

In the stationary disk simulations, the two recirculation zones appeared at the outer
periphery and top of the disk. This observation agrees with the streamline patterns that were
presented in Chein and Su (2004). However, there is another recirculation zone appearing
below the disk, which may be a result of the relatively high inlet Reynolds number Rein used
in the current simulation. In the case with the rotating disk, the rotation severely affects
the recirculation zones. Both circulation zones, which are near the disk periphery and at
below the disk, elongate toward radial flow. Similar behaviours are shown in radial velocity
contours of stationary and rotating disks. Further, Fig. 7.4 presents the vector plots of the
instantaneous velocity fields in the stationary and rotating disks and these plots also confirm
the existence of the circulations zones. By looking at the vector plots, the recirculation zones
are more pronounced in the stationary disk case compared to the rotating disk, and the reason
could be the strong three-dimensional behaviour of velocity fields of the rotating disk CVD.
In von Kármán single rotation disk flows, there is an inward axial suction toward the disk
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surface due to the disk rotation and this could initiate a reverse flow at the outlet of the
chamber, but the current simulations do not show any sign of a reverse flow at the outlet.

Fig. 7.3 Contours of instantaneous velocity components, (a) SCVD, axial velocity, (b) RCVD,
axial velocity, (c) SCVD, radial velocity, (d) RCVD, radial velocity.
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Fig. 7.4 Instantaneous velocity vector plot at ∆T = 200 K, (a) SCVD, (b) RCVD.

Figure 7.5 shows the temperature distributions of the stationary and rotating disks for
two isothermal disk temperature values of T2 = 500 K, 1200 K, and in all the cases, the
inlet air temperature is kept constant to T1 = 300 K. In these cases, the corresponding ∆T
values are 200 K, 900 K, respectively. Heat transfer in the stationary disk takes place by the
diffusion and convection of the inlet gas flow, but the rotating disk adds an extra convective
pumping due to the rotation of the disk. Hence, the RCVD is predicted to have an improved
heat distribution across the top and the bottom portions of the disk, when it compares to the
SCVD.

Figure 7.6 shows the fluid particle streamlines, which originate from the inlet of the CVD
and these streamlines are generated using the carrier phase velocity fields. The streamline
patterns evidence that the SCVD flow field is axisymmetric, whereas the corresponding
streamlines for RCVD indicate a three-dimensional flow. This fact encourages to perform
three-dimensional Eulerian-Lagrangian simulations to observe the dynamics and deposition
of particles. The next section will discuss the results related to the particle tracking and
depositions over the previously described carrier phase flow field.

148



7.3 Results and discussion

Fig. 7.5 Instantaneous Temperature Contours, (a) SCVD, ∆T = 200 K, (b) RCVD, ∆T =
200 K, (c) SCVD, ∆T = 900 K, (d) RCVD, ∆T = 900 K.

7.3.2 Particle phase dynamics and deposition

Lagrangian particle tracking (LPT) simulations were conducted for the test cases described
in the Section 7.3.1. In each test case, 20,000 particles were injected within the first second
of the simulation, and their behaviours, trajectories and deposition were observed throughout
the entire simulation time, which is 40 seconds for the current study. By default, particle
size distributions are selected as uniform particles in micron and submicron sizes with the
diameters of 1 µm, 0.1 µm, 0.01 µm. In this section, the default forces, which are commonly
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induced by particle motion, are used in LPT, and they are

∑FFFde f ault =FFFD +FFFL +FFFB +FFFG, (7.2)

where FFFD,FFFL,FFFB and FFFG are the drag force, the lift force, the Brownian force, and the
gravitational force, respectively. The thermophoretic forces are deferred to the next section.
Apart from these forces, the particle turbulent dispersion effect, which was described in
Section 2.6.5, is also added to the simulations. The set of simulations assumes that the rotor
act as a perfect sink of particles. Unless otherwise mentioned, all the particle tracks, which
are shown in this section correspond to ∆T = 200 K.

Fig. 7.6 Instantaneous streamlines at ∆T = 200 K, (a) & (c) for SCVD, (b) & (d) for RCVD.

Figure 7.7 shows Lagrangian particle tracks for both SCVD and RCVD for different
particle sizes. For the small particles, the particle tracks in the SCVDs tend to be axisymmetric
(see Figs. 7.7(c) & (e)). Whereas, large particles are more likely to depart from the carrier
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streamlines (see Fig. 7.7(a)). Due to the low Stokes number, small particles follow mean
carrier flow more than the large particles. In both cases, either the particle is deposited, or it
is swept into the circulation zones. Unlike in axisymmetric simulations, the particles that
escape from top circulation zone are more likely to enter into the bottom circulation zone,
but some particles are directly escaping to the outlet through the walls of the chamber. The
particle tracks in the RCVD simulations are affected by the rotating motion of the disk and
particles are usually driven by the centrifugal outflow of the disk. In these cases, the particles
either deposit or circulate several times before escaping from the outlet.

Observing the particle track is a useful method to understand the behaviour of the particles
in the flow field but this may not give the bulk transport features of the particles. Increasing
the number of particles is a solution but in practise, this can quickly decline the readability
of the particle tracking plots. The cell interpolation of Lagrangian properties provides a
viable solution to this problem. The particle probability density (pt) at a given time t = t in a
computational cell can be estimated by

pt =
ci

VPi ∑
j=ND
j=0 w j

, (7.3)

where
ci = Number of interactions of particles with the cell i until t = t.
VPi = Volume of the cell i.
wi = Number of interactions of particles with the cell j until t = t.
ND = Number of total cells at the computational domain.

By combining the pt values of all the cells in the domain, the probability density contours
of pt can be constructed. For a typical LPT simulation, the pt values vary between 0 and 105.
Hence, the values of the contour plots were limited to the range 0 and 105, which are the
lower limit and the upper limit of pt . Then, normalisation is done by dividing the entire pt

field by 105, which can remove the volumetric dimension of Eq. (7.3). A better contrast of
contour plots can be obtained by using decadic logarithmic values of normalised probability
density p∗t values

(
log10(p∗t )

)
and the cells with zero p∗t values were removed from the

calculation as they cause singularities. The previous calculations confined the log10(p∗t )
values between −5 and 0 and these are the new lower and upper limits of the contours. These
limits are labelled as “Low” and “High”, which are more intuitive when reading the particle
probability density contours. All the results presented here are obtained for t = 40 s. For the
sake of brevity, p∗40 is simply represented as p∗. The mean disperse phase velocity vectors
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are obtained similar to Eq. (7.3), but here, instead of the number of interactions, the particle
velocity components are considered in the cell centres.

Figure 7.8 shows the probability density contours of particles with their mean dispersed
phase velocity vector, which is an approximate continuous representation of the dispersed
phase particle trajectories. The probability density is based on 20,000 particles inside the
CVD. In these plots, low probability represents the leftmost ("Low") colours of the legend
bar, and high probability density gets rightmost ("High") colours. The high probability
density of the particles in a planar surface indicates that the majority of particles are moving
in that plane or the particles have high resident time in that particular plane. For identical
particle injection conditions for the SCVD and RCVD cases, the SCVDs obtain higher values
for the probability density in a plane surface, as shown in Fig. 7.8(a). This indicates that the
particle tracks of the SCVDs are planar for both top and bottom portions of the disk. The
top part of the RCVDs are planar (see Fig. 7.8(b)) but the rotation motion of the disk more
influences the bottom part of the chamber, at which particles may tend to follow non-planar
tracks inside the chamber. Further, this observation has also appeared in the particle track
plots of Fig. 7.7.

A performance metric, deposition efficiency
(
DE%

)
, is defined as the percentage of

particles that are deposited on the rotor surface and it given by

DE% =
Number of particles deposited

Total particles injected
×100. (7.4)

Figure 7.9 shows deposition efficiency for SCVD and RCVD for different particle
sizes and the breakdown of contributions from each section of the disk to the total particle
deposition. Here, the deposition efficiency does not primarily depend on the particle size
but rotation effects add significant improvements to the particle deposition efficiencies. In
both cases, the top surface of the disk attracts a high portion of deposited particles, which is
anticipated because of direct interaction with the inflow particle stream and the strong upper
circulation zone.
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Fig. 7.7 Particle trajectories for default forces at ∆T = 200 K, (a) SCVD, 1 µm, (b) RCVD,
1 µm, (c) SCVD, 0.1 µm, (d) RCVD, 0.1 µm, (e) SCVD, 0.01 µm, (f) RCVD, 0.01 µm.
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Fig. 7.8 Probability of particles inside the CVD at ∆T = 200 K, (a) SCVD, (b) RCVD.

Fig. 7.9 Breakdown of deposition contribution from each surface of the disk under default
forces. (R)(S)CVD_D_ ∆T .

Even though the particle tracking did not include thermophoretic force, the deposition
efficiency depends on the temperature of the disk. Figure 7.10 is the variation of the deposition
efficiently with ∆T . Increasing the ∆T result in a decrease in the particle deposition efficiency.
The observation may be described by the buoyancy effects in the vicinity of the hot surface,
but no such strong buoyancy effect is captured in the current post-processing of the continuous
phase results.
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Fig. 7.10 Variation of deposition efficiencies with ∆T values for simulations with default
forces.

7.3.3 Diffusion of submicron particles

In this investigation, Brownian effects and carrier phase turbulence are primary sources of
diffusion for submicron particles. As described earlier, Ounis and Ahmadi (1990) have done
an extensive review in this area and they concluded that the Brownian effects are negligible
when compared to the carrier phase turbulent effects of the flow.

The several tests cases have been performed to ascertain the particle diffusion properties
of these two sources. Figure 7.11 shows the three particle trajectories originated from the
same point at the inlet (trajectories are shifted towered the left side for clarity), and these
three tracks are enabled with different diffusion settings such as (1) no diffusion, (2) only
Brownian diffusion, (3) only the turbulent diffusion. Once the simulation starts, it is clear that
the trajectory with the turbulent diffusion (trajectory (3)) deviates from other two trajectories,
but the trajectories (1) and (2) are visually identical.
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Fig. 7.11 Particle trajectories for particles initiate in the same position, dp= 1 µm, (1) No
diffusion, (2) Brownian diffusion only, (3) turbulent diffusion only; (a) SCVD, (b) RCVD.

Even though the Brownian diffusion does not show any deviation visually, the difference
between the position vectors of the Brownian particle (rpBrpBrpB) and non-Brownian particle(rprprp)(see
Fig. 7.12) evidence that these two particle trajectories are indeed non-identical. Further, the
RCVD case shows a higher degree of particle deviation compared to the SCVD case.

Fig. 7.12 Difference in particle position vectors in Brownian and non-Brownian particles.
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Figure 7.13 shows the difference in Mean Squared Displacement (MSD) of the two
particle trajectories ((1) and (2)) and the MSD is defined by

MSD = ⟨
(
rprprp(t)−rprprp(0)

)2⟩, (7.5)

where rprprp(t) is the position vector of the particle at time t = t and rprprp(0) is the initial reference
position of the particle at t = 0. The angle bracket indicates the averaging over the time
series. MSD is an indication of magnitudes of the drift. In this case, RCVD shows a higher
drift compared to the SCVD, and in both cases, the smaller particles obtain higher drift
magnitudes than the larger particles.

Fig. 7.13 Differences between MSD of Brownian motion and non-Brownian motion.

7.3.4 Effects of thermophoretic force on submicron particles under
positive ∆T

A number of simulations with the same geometry and boundary conditions, as the Sec-
tion 7.2.3, are performed, and the thermophoretic force is enabled to study the thermophoretic
effects under positive ∆T values. Here, two different scenarios have been considered to
conduct the simulations with thermophoretic effects. The first set of simulations consider
the pure Brownian effects and the second set of simulations consider both Brownian and
turbulent effects.

The simulations with pure Brownian condition help to understand the dynamics of
particles without the direct influence of carrier phase turbulent effects. This will help to
compare the current results with the outcomes of Chein and Su (2004)’s laminar axisymmetric
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case. However, the instantaneous velocity and temperature fields of this study are derived
from turbulent CFD simulations with different boundary conditions when compared to the
previous investigation. For the sake of identification, pure Brownian simulations are denoted
as fB and simulations with turbulent effects are denoted as fT .

Figures 7.14 (a),(b) & Figs. 7.15 (a),(b) show particle tracks for SCVD and RCVD
cases with different particle sizes. The particle trajectories for higher ∆T values are not
behaviourally different from particle trajectories for the ∆T = 200 K case. The simulations
with pure Brownian effects are more likely to follow the carrier fluid streamline and upward
force. It appears to be that the thermophoretic forces near the rotor may not be sufficient
to drive the particles to the upper circulation zone. However, superimposing the turbulent
perturbations add significant randomness to the particle motion and the resulting motion is
sufficient to drive the particles to the upper recirculation zones, which are less populated by
particles in the simulations with pure Brownian effects ( fB).

There is a particle free zone in the vicinity of the hot disk. This particle free zone is
notably evident in fB type simulations, and particles with diameters 1 µm, 0.1 µm cannot
penetrate through this particle free zone for both SCVD and RCVD simulations, which
result in zero particle deposition efficiencies DE%=0 for the relatively larger particles. Still,
some portion of smaller particles (0.01 µm) can penetrate through the free particle zone,
but particle deposition efficiencies are extremely low compared to their non-thermophoretic
counterparts as presented in Section 7.3.2. These observations agree with Chein and Su
(2004)’s outcomes and the non-zero deposition efficiencies for smaller particles can be
described by Brownian forces, which are more effective on smaller particles. By considering
the outcomes of the fB simulations, thermophoretic effect produces enough repulsive forces
to drive the particles from the hot disk completely, but relatively strong Brownian effects on
smaller particles allow a small portion of particles to deposit on the rotor.
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Fig. 7.14 particle trajectories under thermophoretic forces for SCVD with ∆T = 200 K, (a)
1 µm, fB, (b) 0.1 µm, fB, (c) 1 µm, fT , (d) 0.1 µm, fT .
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Fig. 7.15 Particle trajectories under thermophoretic effects for RCVD with ∆T = 200 K, (a)
1 µm, fB, (b) 0.1 µm, fB, (c) 1 µm, fT , (d) 0.1 µm, fT .

As shown in Figs. 7.14 (c),(d) & 7.15 (c),(d), adding perturbation velocity components to
the fB simulations (called fT simulations) creates a significant variability to particle tracks.
This visual evidence suggests that the particle tracks are significantly influenced by the
turbulent effects of the flow field. Despite the repulsive thermophoretic effects near the
hot surface, fT simulations show non-zero depositions efficiencies. Figure 7.16 shows the
respective deposition efficiencies for both SCVD and RCVD for different ∆T values and
particles sizes. In fT simulations, the particle deposition efficiencies are similar to their
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non-thermophoretic counterparts. An increase in ∆T values result in a reduction in deposition
efficiency, but the observations may be due to the combined effects of thermophoretic forces
and kinematic effects, as observed in Fig. 7.10.

Fig. 7.16 Variation of deposition efficiencies with ∆T values, for fT simulations.

Figure 7.17 shows the probability density distributions of the particles under positive
∆T values. Close observation of the probability density distributions for the fB simulations
shows that there is a thin layer of zero particle zone, which is often called as particle free zone
(Chein and Su, 2004) located near the hot disk as shown in Fig. 7.17 (c) & (d). Figure 7.18
illustrates the breakdown of contributions from each section of the disk to total particle
deposition under positive thermophoretic forces.

The above description reveals that the thermophoretic forces are significant only on pure
Brownian motion simulations, but the turbulent diffusion of the carrier phase can suppress
the thermophoretic forces. Therefore, the turbulent nature of carrier phase is an important
factor to control the particle deposition uniformity.
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Fig. 7.17 Probability density of particles inside the CVD at ∆T = 900 K, (a) SCVD, 1 µm, fT ,
(b) RCVD, 1 µm, fT , (c) SCVD, 1 µm, fB, (d) RCVD, 1 µm, fB.
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Fig. 7.18 Breakdown of deposition contribution from each surface of the disk under positive
thermophoretic force. (R)(S)CVD_D_∆T .

7.3.5 Effects of thermophoretic force on submicron particles under
negative ∆T

The repulsive nature of the thermophoretic force is attributed to the positive ∆T values.
However, imposing lower temperature on the disk surface than the inflow flow produces
a negative ∆T value, which reverses the thermophoretic force to be an attractive force.
In this case, the disk temperature is maintained at 300 K and the inflow temperature is
varied to achieve ∆T values of −200 K,−500 K and −900 K. However, the modified
temperature boundary conditions significantly alter the carrier phase flow field due to the
strong buoyancy effects inside the chamber, and the difference is more pronounced for the
cases of ∆T =−500 K and −900 K.

Figure 7.19 shows the predicted RANS velocity vector plots for ∆T =−900 K for both
SCVD and RCVD cases. When they are compared to Fig. 7.4, the buoyancy effects have
modified the upper and lower circulation zones for both SCVD and RCVD cases. The
SCVD has two upper circulation zones, in which flow rotates clockwise and anti-clockwise,
respectively. The lower circulation zones moved toward the central axis and their size is also
smaller compared to the previous cases. The RCVD cases do not show any strong circulation
zones, but upward movements of fluid are more apparent than in the SCVD modelled flow.
Because of buoyancy effects, the size of the radial outflow stream near the disk surface of the
RCVD appears smaller in the vector plot representation.
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Fig. 7.19 Velocity vector plot for ∆T =−900 K, (a) SCVD, (b) RCVD.

Figures 7.20 & 7.21 show the particle trajectories for SCVD and RCVD. They showed
that at higher ∆T values, particle spread is more significant due to buoyancy effects. From
a particle deposition perspective, buoyancy effects may act as an unfavourable effect, and
this is more apparent when it compares the SCVD deposition efficiencies at ∆T =−200 K
and ∆T =−500 K in Fig. 7.22. In these cases, ∆T =−500 K has slightly lower deposition
efficiency compared to ∆T =−200 K, as the buoyancy effects overpower the thermophoretic
attraction forces. At higher ∆T = −900 K values, thermophoretic force overpowers the
buoyancy effects to gain higher particle deposition efficiencies over its lower ∆T values. The
red symbols denote the corresponding DE% of 1 µm particles for SCVD cases that were
presented by Chein and Su (2004). These deposition efficiencies were obtained from their
axisymmetric LPT simulations and the results show a clear pattern of a decrease in DE%
as the Rein increases. Compared to the current prediction, the DE% reported by Chein and
Su (2004) is nearly six times higher than the DE% from the current study. However, the
current Rein ≈ 1550 is over ten times higher than the highest Rein condition of Chein and Su
(2004)’s investigation and this could be a reason for the quantitative disagreement between
the two results.
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Fig. 7.20 Particle trajectories under thermophoretic effects for SCVD, (a) ∆T = −200 K,
dp = 1µm, (b) ∆T =−200 K, dp = 0.1 µm, (c) ∆T =−900 K, dp = 1 µm, (d) ∆T =−900 K,
dp = 0.1 µm.

165



7.3 Results and discussion

Fig. 7.21 Particle trajectories under thermophoretic effects for RCVD, (a) ∆T = −200 K,
dp = 1 µm, (b) ∆T =−200 K, dp = 0.1µm, (c) ∆T =−900 K, dp = 1 µm, (d) ∆T =−900 K,
dp = 0.1 µm.
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Fig. 7.22 Variation of deposition efficiencies with ∆T values for fT simulations. (the black
symbols represent the current simulation results and the red symbols represent results of
Chein and Su (2004) for SCVD).

The RCVD models behave differently than the SCVD models, as they always tend to
increase the deposition efficiencies under a high-temperature difference. High thermophoretic
forces combined with decaying outward radial velocity component of the RCVDs always
overpower the buoyancy effects, and notable improvements can be observed in deposition
efficiencies.

According to Fig. 7.23, SCVDs attract significantly fewer particles at the bottom part of
the rotor, in which the recirculation zones are relatively weaker, and this trend is even more
noticeable toward the higher ∆T values. The particle depositions in RCVDs are more even
between top and bottom portions of the disk when compare to the similar SCVD cases.
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Fig. 7.23 Breakdown of deposition contribution from each element of the disk under negative
thermophoretic force, (R)(S)CVD_D_ ∆T .

Here, the turbulence of the carrier phase improves the particle deposition efficiency
significantly. In both SCVD and RCVD cases, turbulence in the carrier phase increases
particle deposition by 25%–150% compared to non-turbulent LPT simulations. Figure 7.24
shows the particle probability contours and mean velocity vectors of both turbulent and
non-turbulent LPT simulations for negative ∆T cases. The particles in the non-turbulent
simulation follow the carrier phase path more, whereas turbulent effects agitated the particles
into a less rectilinear motion, which creates more randomness in the particle tracks compared
to non-turbulent simulations.
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Fig. 7.24 Probability of particles inside the CVD at ∆T =−900 K, (a) SCVD, 1 µm, fT , (b)
RCVD, 1 µm, fT , (c) SCVD, 1 µm, fB, (d) RCVD, 1 µm, fB.

7.3.6 Effects of the injection location of the particles

The investigation is extended to ascertain the deposition efficiency with the initial particle
injection location. In Fig. 7.25, the dotted areas show the injection locations of the particles
and the central location represents approximately 8% of the total area of the inlet. The outer
location is defined as the area outside of the central area, which is close to the periphery of
the inlet. In both cases, 20,000 particles are injected through the respective locations, and the
particle deposition is observed during the total simulation time.
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Fig. 7.25 Particle injection locations at the inlet, (a) central location, (b) outer location.

Figure 7.26 indicates that the particle deposition is highly depended on the initial injection
location of the particles and the cases with the centre injections have higher deposition
efficiencies over the outer injection locations. However, this figure shows that the particle
deposition is uneven over the top and bottom surfaces of the disk.

Fig. 7.26 Breakdown of deposition contribution from each surface of the element,
(R)(S)CVD_D_∆ T.

By observation of Fig. 7.27, the centrally injected particles in SCVD and RCVD models
are more likely to fall on the top surface of the disk, whereas outward injected particles are
swept away with the radial outflow and show a considerable lack of deposition on the top
surface of the disk. The starting injection locations are a convenient and effective strategy
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to control the particle depositions but sometime it would be difficult to control the injection
locations of the contamination particles.

Fig. 7.27 Probability of particles inside the CVD at ∆T = 200 K, (a) SCVD, centre location,
(b) SCVD, outer location, (c) RCVD centre location, (d) RCVD outer location.

As shown in Fig. 7.4, a higher axial flow rate could result in strong outward flow toward
the periphery of the disk, which could constrain the majority of particle deposition to a
small stagnant region near the centre of the disk. Injecting the particles from the central
location shown in Fig. 7.25(a) can significantly help the particles to have direct contact
with the disk surface (see Fig. 7.27 (a)), whereas the particles injected though the outer
location shown in Fig. 7.25(b) may be mostly entrained with the radial outward flow (see
Fig. 7.27(b)). The injection location and the Rein of the carrier flow field have a significant
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influence on particle deposition efficiency. These reasons could partly explain the discrepancy
in deposition efficiency with the previous investigation of Chein and Su (2004). However,
more test cases under different flow conditions will be required to ascertain the exact reason
for this difference.

7.4 Summary and conclusion

This chapter mainly discussed the particle dynamics inside RCVD chambers, and for the
comparison, another identical configuration is considered without a rotating disk (SCVD).
Here, a very low particle volume fraction enabled a one-way coupling between the particle
phase and the carrier phase.

A series of test cases were modelled with the different temperature difference between the
rotor and the inlet, ∆T = 200 K, 500 K, 900 K, −200 K,−500 K,−900 K, for both RCVD
and SCVD configurations. Then, the resulting velocity fields and temperature fields for the
continuous carrier phase have been obtained using conventional Eulerian methods and the
standard k-ε method was used to model the carrier phase turbulence. In all the cases, the inlet
Reynolds number was Rein ≈ 1550. In general, the RANS velocity contours of the SCVD
are axisymmetric, whereas RCVD velocity contours are three-dimensional, which shows
greater mixing compared to the similar cases of SCVD.

The particles were selected in three different sizes of 1 µm, 0.1 µm, 0.01 µm, and in
each size, 20,000 particles were injected within the first second of the simulation. Then, their
behaviours were observed over the next 40 seconds.

Apart from the qualitative description of the particle path lines, a parameter, the deposition
efficiency (DE%) is introduced (see Eq. (7.4)) to give a quantitative comparison between
each case. The first stage does not consider the thermophoretic forces on particle phase
simulations. This solution reveals that the particle paths in the SCVD case are axisymmetric
compared to the corresponding simulations of the RCVD. Generally, RCVDs show higher
DE% compared to SCVDs, and in all the cases, DE% drops with an increase in positive ∆T
values.

The second stage considers the thermophoretic force in particle simulations. For all the
positive ∆T values, this also shows similar behaviour to the above description, but there is
a general drop in DE% because of the thermophoretic forces. In this case, turbulence in
carrier phase plays a significant role in boosting DE%, and without these turbulent effects,
there would be a zero DE%, which creates a particle free zone vicinity of the hot disk. The
simulations with negative ∆T values create opposite the effect what was produced with a
positive ∆T . In these cases, the thermophoretic force acts as an attractive force rather than
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a repulsive force. However, the negative ∆T significantly modifies the carrier phase flow
due to the strong buoyancy effect, which has adverse effects on DE% and this effect is more
significant on the SCVD cases.

Generally, these three-dimensional simulations have a lower DE% than the two-dimensional
simulations of Chein and Su (2004). The current simulations demonstrate that the rotating
motion of the disk is very significant on particle depositions and particles are more evenly
spread in RCVD cases compared to the similar SCVD cases. However, this check of unifor-
mity is documented based on the difference between the deposition over the top and bottom
surfaces of the disk. The uniformity of the coating over each surface is not documented. The
turbulent carrier phase is also a significant factor in these simulations. The outcomes of this
chapter can be used to promote or prevent particle depositions depending on the application
requirements.
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Chapter 8

Extended surface interactions on particle
deposition

8.1 Introduction

Particle dynamics and deposition under different forces were considered in the preceding
chapter, but an implicit assumption is made that the particles that touch the rotor are uncondi-
tionally deposited on the rotor. Under this assumption, the rotor is called as a perfect particle
sink. As described in Section 2.6.8, many investigations (Xu et al., 1993; Xu and Willeke,
1993; Fergus, 2010) have revealed that the particle deposition can be complicated by particle
bounce and resuspension, due to the complex particle-surface interactions at the surface.

Recent investigations in this area focus on the rebound and resuspension of nanoparticles
due to the advancements of production processes that involve nanoscale particles. Neverthe-
less, according to the author’s knowledge, currently, no investigation describes the effects
and behaviours of submicron particles in a rotator-stator cavity (e.g. RCVD chambers) due
to particle-surface interaction. Hence, this chapter considers an energy-based model that is
particularly suitable for studying the rebound of micron-sized particles on the hard surfaces
inside an RCVD chamber, which has a similar geometric configuration to one described in
Chapter 7.

8.2 Modelling particle-surface interactions

The particle rebound model described here is based on the models of Xu and Willeke (1993)
and Fergus (2010), but no plastic deformations and particle resuspension are considered in
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the current investigation. Further, an assumption is made that the all the impacts are perfectly
elastic.

If there are no chemical and electrical reaction between particle and surface, and the
surface tension is negligible. The Van der Waals forces contribute to a significant portion
of the surface adhesive energy between the particle and the surface (Tsai et al., 1990). A
quantitative expression of surface adhesive energy per unit area is proposed by Derjaguin
et al. (1994), and it is given as

∆γa =
AH

12πε2
d
, (8.1)

where
AH = Hamaker constant.
εd = Adhesion distance ≈ 0.4 nm.
The value of the Hamaker constant (AH) can be calculated by considering the respective
Hamaker constants of particle, surface and fluid (say A1,A2,A3) and this can be stated as

AH = (
√

(A1 −A3)(
√

A2 −A3). (8.2)

For a system with air as its working fluid, the Hamaker constant of the system (AH) is reduced
to the geometric mean of A1 and A2

(
i.e.

√
A1A2

)
, as A3 can be neglected due to its small

value (≈ 4×1020 J). A further assumption is made that the impacts of the particles do not
exceed the elastic stress limit of the material of the particle and the corresponding elastic
limiting velocity (VyVyVy) is taken as

|VyVyVy|=
( 2π

3Ky

)2( 2
5ρp

) 1
2
y

5
2
1 , (8.3)

where y1 and ρp are the elastic stress limit and the density of the particle. Ky is a mechanical
constant, which can be calculated using modulus of elasticity (YM,i) of the particle (i = 1)
and surface (i = 2) materials and the expression reads as

Ky =
4

3
[( 1

YM,1

)
+
( 1

YM,2

)] . (8.4)

According to Fergus (2010), the surface adhesive energy (Ea) is the sum of the surface
energy (Es) and the mechanical potential energy (Em):

Ea = Em +Es. (8.5)
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The definitions of Es and Em are

Es = π

(Gc|FsFsFs|
Ky

) 2
3
∆γa, (8.6)

Em = |FgFgFg|

(
|FsFsFs|

2
3 +2|FgFgFg||FsFsFs|−

1
3

)
(

2K
2
3
y G

1
3
c

) , (8.7)

|FsFsFs|= |FgFgFg|+3π∆γaGc +
√

(|FgFgFg|+3π∆γaGc)2 −|FgFgFg|2, (8.8)

where |FgFgFg| and |FsFsFs| are the gravitational force and the sum of the surface forces respectively.
Gc is the contact geometric constant, with the zero-plastic deformation, Gc = ap.

Figure 8.1 (a) & (b) show typical situations that might occur near the boundary of interest.
The impact kinetic energy should be adequate to overcome the adhesive energy and the rest
is released as rebound kinetic energy. If the inbound kinetic energy is below than adhesive
energy, then the particle tends to stick on the surface. However, in practice, the particle may
undergo a series of rebounds, as shown in Fig. 8.1(c), before it permanently sticks on the
surface. The conditions for stick or rebound can be derived by considering a simple energy
balance of the particle-surface system near the surface.

Fig. 8.1 A particle behaviour near a surface, (a) particle stick, (b) complete rebound of the
particle, (c) rebound and stick.

By considering the conservation of energy,

1
2

mp|ViViVi
2|= 1

2
mp|VrVrVr

2|+Ea, (8.9)
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where, ViViVi and VrVrVr are the relative impact and the relative rebound velocity with respect to the
rotor, respectively. According to the Eq. (8.9), the rebound velocity can be calculated as

|VrVrVr|=

√
|ViViVi2|−

2Ea

mp
. (8.10)

The critical velocity (|VcrVcrVcr|) is the impact velocity that is just enough to overcome the surface
adhesive energy Therefore an expression for |VcrVcrVcr| can be obtained by setting |VrVrVr| = 0 in
Eq. (8.10) that given by

|VcrVcrVcr|=

√
2Ea

mp
=

√
2(Es +Em)

mp
. (8.11)

This criterion of Eq. (8.10) combines the two interactions "Stick" and “Rebound” depending
on the values of |VcrVcrVcr| and |ViViVi| and the following conclusions can be made:

• |ViViVi|< |VcrVcrVcr| : particles tend to stick on the boundary where the particle velocity becomes
zero.

• |ViViVi| > |VcrVcrVcr| : particles rebound on the boundary and the collisions on the surface is
assumed to be perfectly elastic.

8.2.1 Operation conditions for the simulations

This section uses the same continues phase fields of Section 7.2.3 to solve the particle phase
equations. The particles are assumed to be spherical silicon particles with density (ρp ) 2330
kg/m3.

The particle-surface model that described in Eq. (8.11) implemented in the current LPT
framework of OpenFOAM. To confirm the validity of the implementation and the applicability
of this model on the RCVD applications, two test cases have been prepared under similar
conditions described in Section 7.3.2. In these cases, an uniform particle distribution, which
consists of 20,000 particles with different particle sizes ranging from dp = 0.001 µm–3.0 µm,
is used (see Fig. 8.2). At the end of these simulations, the deposited particle distributions on
the rotor surface have been obtained and they are compared with the corresponding particle
distributions that are obtained using the standard LPT simulations, which do not use the
particle-surface modelling feature. By comparing both types of simulation models, the net
reduction of deposition efficiency due to particle-surface interactions ∆DESI is defined as

∆DESI =
depositions with S-I effects - depositions without S-I effects

depositions without S-I effects
×100, (8.12)
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where the notation "S-I" denotes particle-surface interaction and this notation will often
appear in the upcoming figures and tables.

Fig. 8.2 Input uniform distribution at the start of the simulation.

Figure 8.3 (a) & (b) show the deposited particle distributions for SCVD and RCVD cases,
and their mean diameters. When the mean diameters of the SCVD and RCVD cases are
compared to the mean diameter of the input distribution, they are decreased by 9.01% and
15.60% for the respective cases of SCVD and RCVD. According to Section 7.3.2, the larger
particles in the chemical vapour deposition chamber (for both SCVD and RCVD cases)
tend to have lower DE% and this might result in lower mean diameters even without the
particle-surface interaction effects. Hence, the net reduction of mean diameter (∆dmean) is
calculated in a similar fashion to the net reduction of deposition efficiencies (∆DESI) as
shown in Eq. (8.2).

By using particle deposition distributions of standard LPT simulations (as shown in
Fig. 8.3 (c) & (d)), ∆dmean can be calculated. The mean particle diameters of SCVD and
RCVD cases are reduced due to particle-surface interaction effects and the SCVD and RCVD
cases report the values of ∆dmean= 7.5% and 6.6%, respectively. The particle distribution of
the SCVD case shows a lower standard deviation value when it compares to the input particle
distribution but this is slightly increased for the RCVD case. Further, the SCVD and RCVD
cases show values of ∆DESI= 17.6% and 30.3%, respectively. These observations suggest
that the particle-surface interaction could result in lower DE% for the larger particles.
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Fig. 8.3 Deposited particle distributions for the input uniform distribution of Fig. 8.2, (a)
SCVD with S-I, (b) RCVD with S-I, (c) SCVD without S-I, (d) RCVD without S-I.

The above observations can be qualitatively explained by considering the variation of
|VcrVcrVcr| with particle diameters that are shown in Fig. 8.4, which is constructed using Eq. (8.11).
The particle depositions mostly depend on the |VcrVcrVcr| and |ViViVi| values and the |VcrVcrVcr| is inversely
proportional to the square root of the mass of the particles. Under this condition, a larger
particle should have a sufficiently lower |ViViVi| value (i.e. |ViViVi| < |VcrVcrVcr|) for the deposition.
Further, for a very small particle, the particle-surface interaction could be quite insignificant,
as it might undergo an unconditional deposition due to large |VcrVcrVcr| value associated with it.
However, this only explains the qualitative agreement of the model in the current application,
and further investigations will be needed to obtain a quantitative agreement.

These arguments suggest that the particle size (or inertia) is a significant factor in
determining particle-surface interactions and it should be in a correct range to observe
effective particle depositions. Otherwise, particles may undergo unconditional rebound or
depositions. By considering these facts, particle diameters are chosen to be 0.7 µm, 1 µm,
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3 µm for the simulations. Figure 8.5 shows a typical deposition velocity distribution (this is
equivalent to |ViViVi|) of 1 µm particles, for both SCVD and RCVD cases.

Fig. 8.4 Variation of |VcrVcrVcr| with the particle sizes.

Fig. 8.5 Histogram of Vi for the particle diameter of 1 µm, (a) SCVD, (b) RCVD.

As in the simulations in Chapter 7, 20,000 particles are injected within the first second
of the simulation, and the entire simulation is conducted for 40 seconds. For fixed particle
sizes, uniform particle size distribution is used in the initial particle injection, and at a later
stage, the Rosin-Rammler particle size distribution is used to study the particle deposition
behaviour under various particle sizes.

180



8.3 Results and discussion

8.3 Results and discussion

As in Chapter 7, the results are grouped into two sections based on the nature of the
thermophoretic force upon the particles near the disk surface. Without any particle-surface
interaction model turned on, the impacting particles are deposited, and other particles are
eventually flushed out from the system. Regardless of the nature of the thermophoretic
force, the particle-surface modelling enables new interaction types for impacting particles.
As shown in Fig. 8.1, the impact can end up as a deposited particle on the surface, a
complete rebound (this particle can either deposit again after a long interval or flush out
from the system), a rebound-stick (rebound and stick take place within a short interval, by
which bounced off particles re-impinge in a curved trajectory). Figure 8.6 illustrates these
interaction types by the particle trajectories. Some particles are predicted to escape from the
outlet without having any interaction with the disk surface. The subsequent sections will
discuss the effects of particle-surface interactions concerning the nature of the thermophoretic
force on the particles.

8.3.1 Particle-surface interactions under positive ∆T

Figure 8.7 illustrates typical particles trajectories inside the CVD. Particles tend to move to
the recirculation zones shown in Figs. 7.3 & 7.4 of Chapter 7 by virtue of turbulent effects
of the continuous phase. Following the same trend as in Chapter 7, particle trajectories for
SCVD are two-dimensional, whereas the corresponding trajectories for RCVD are more
three-dimensional. The larger particle trajectory is more independent than that of the smaller
particles, which follow closely to the carrier phase fluid streamlines due to the comparatively
low Stokes numbers.
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Fig. 8.6 Different interaction types of particle-surface interaction models 1 µm particles.
(Blue): deposit, (green): complete rebound, (red): rebound-stick, (yellow): no interactions
(a) SCVD, ∆T = 200 K, (b) RCVD, ∆T = 200 K, (c) SCVD, ∆T = 900 K, (d) SCVD,
∆T = 900 K.
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Fig. 8.7 Particle trajectories for ∆T = 200 K. (a) SCVD, dp = 1 µm, (b) RCVD, dp = 1 µm,
(c) SCVD, dp = 3 µm, (d) RCVD, dp = 3 µm.

Figure 8.8 shows the variation of ViViVi with the simulation time for SCVD. The red dotted
line indicates the corresponding VcrVcrVcr value for the given particle size. The particles below this
line tend to deposit, while others bounce off. Particle-surface interactions are overwhelming
during initial injection period of the particles. After that, these interactions are scattered
throughout the entire simulation time. The small particles (1 µm) tend to be below the dotted
red line, but the larger particles are relatively more populated above the critical line, which
results in rebounds from the surface.
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Fig. 8.8 The variation of ViViVi with the simulation time for SCVD cases, (a) ∆T = 200 K,
dp = 1 µm, (b) ∆T = 200 K, dp = 3 µm, (c) ∆T = 900 K, dp = 1 µm, (d) ∆T = 900 K,
dp = 3 µm.

The corresponding impact velocity plots for RCVD can show in Fig. 8.9. The interactions
are widespread throughout the entire simulation time, though the most they registered as
rebound interactions.
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Fig. 8.9 The variation of ViViVi with the simulation time for RCVD cases, (a) ∆T = 200 K,
dp = 1 µm, (b) ∆T = 200 K, dp = 3 µm, (c) ∆T = 900 K, dp = 1 µm, (d) ∆T = 900 K,
dp = 3 µm.

Figure 8.10 indicates the variation of deposition efficiency with ∆T values for SCVD,
and the efficiency usually decreases, as ∆T increases. This deposition efficiency prediction
reconfirms that the smaller particles are less affected by effects of the particle-surface
interactions.

According to the Fig. 8.11, the effects of particle-surface interactions are more pro-
nounced in the RCVD case. The deposition efficiencies of RCVD are naturally improved
compared to the SCVD case, and the lowest efficiency is predicted for larger particles.
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Fig. 8.10 Variation of deposition efficiencies with positive ∆T values for SCVD

Fig. 8.11 Variation of deposition efficiencies with positive ∆T values for RCVD.

8.3.2 Particle-surface interactions under negative ∆T

As described in Chapter 7, the negative ∆T value attracts particles to the much colder disk
surface, but the presence in buoyancy effects has a considerable influence on the particle
deposition behaviour. Figure 8.12 shows a sample of the particle trajectories for the negative
∆T values. In the case of SCVD, the upward motion of particles is more apparent, whereas
the rotating motion of the RCVD weakens the buoyancy effects.
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Fig. 8.12 Particle trajectories for ∆T = −200 K, (a) SCVD, dp = 1 µm, (b) RCVD, dp =
1 µm, (c) SCVD, dp = 3 µm, (d) RCVD, dp = 3 µm.

Figure 8.13 shows the variation of ViViVi with the simulation time for the SCVD simulations,
at a ∆T =−200 K, the behaviour is similar to that with positive ∆T values in Fig. 8.8, but
many of these interactions occur ViViVi at below the critical velocity value. At the more negative
∆T = −900 K, particle-surface interactions are limited to approximately the first twelve
seconds of the simulation, which could be an indication of strong buoyancy effects.

187



8.3 Results and discussion

Fig. 8.13 The variation of ViViVi with the simulation time for SCVD cases, (a) ∆T =−200 K,
dp = 1 µm, (b) ∆T =−200 K, dp = 3 µm, (c) ∆T =−900 K, dp = 1 µm, (d) ∆T =−900 K,
dp = 3 µm.

Figure 8.14 shows the equivalent velocity distributions for RCVD. These diagrams do not
indicate any substantial changes in impact velocity due to buoyancy effects that are driven
by negative ∆T values compared to Fig. 8.9. However, the total number of particle-surface
interactions have been increased in the negative ∆T cases when compared to positive ∆T
cases of RCVD presented in Fig. 8.9. Hence, the attractive nature of thermophoretic forces
are more apparent in RCVD cases, but the majority of registered interactions occurred above
the critical velocity (VcrVcrVcr), which result in rebound of particles on the surface.
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Fig. 8.14 The variation of ViViVi with the simulation time for RCVD cases, (a) ∆T =−200 K,
dp = 1 µm, (b) ∆T =−200 K, dp = 3 µm, (c) ∆T =−900 K , dp = 1 µm, (d) ∆T =−900 K,
dp = 3 µm.

According to Fig. 8.15, the deposition efficiency of SCVDs at ∆T =−500 K is slightly
lower compared to the ∆T = −200 K due to the strong buoyancy effects, in which the
attractive thermophoretic forces are not enough to overcome these buoyancy forces. However,
at ∆T =−900 K, the thermophoretic forces are strong enough, so the deposition efficiency
is predicted to increase compared to the lower ∆T values. The largest particles are highly
affected by the particle-surface interactions, which result in approximately a 1% drop in
particle deposition efficiency.

189



8.3 Results and discussion

Fig. 8.15 Variation of deposition efficiencies with negative ∆T values for SCVD.

Figure 8.16 shows the corresponding deposition efficiency plots for RCVD cases, The
deposition efficiency increases with increasing ∆T values. However, when compared to the
SCVD counterparts, RCVDs are more affected by the particle-surface interaction, which is
evidenced by the high rebounds recorded in Fig. 8.14 (c) & (d). Like the SCVD cases, the
lowest particle deposition efficiencies is recorded with the largest particles. Apart from the
particle size, the particle deposition efficiency in RCVDs depends on ∆T values, and higher
∆T values reducing the deposition efficiency. The actual values reside between 4%–5%
compared to the 0.7 µm particles, 3 µm particles show a deposition efficiency drop for
∆T =−200 K of 4%–5% for ∆T =−500 K and of 13%–10% drop for ∆T =−900 K. Even
though the higher ∆T values give a higher penalty in terms of deposition efficiency, their
efficiencies are still higher than the deposition efficiencies of lower ∆T values, which is
preferable from a particle deposition perspective.
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Fig. 8.16 Variation of deposition efficiencies with negative ∆T values for RCVD.

8.3.3 Particle-surface interactions with particle size distributions

In this section, the Rosin-Rammler particle size distribution, which is a widely used particle
distribution in chemical engineering and pharmaceutical applications (Djamarani and Clark,
1997), has been used in the simulations, and the size distribution of deposited particles on
the rotor are observed. Figure 8.17 shows the input particle size distribution, which has a
mean value of 0.993 µm and a standard deviation of 0.323 µm. When analysing the particle
depositions on the rotor, the respective particle deposition distributions for the "top", "bottom"
and "side" surfaces of the rotor are considered. Further, radial dependency of the particle
deposition distributions are studied by dividing the rotor into three concentric radial bands
(say a1,a2 and a3 ) as shown in Fig. 8.18. These radial bands have equal surface areas and
they divide the entire rotor surface into three equal subsections (i.e. a1 = a2 = a3 = Adisk/3),
where Adisk is the surface area of the rotor.
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Fig. 8.17 Input Rosin-Rammler particle distribution at the start of the simulation.

Fig. 8.18 The three bands of the disk, (a) a1 central band, (b) a2 middle band, (c) a3 outer
band.

Figure 8.19 (a) & (b) show the deposition distributions for the SCVD and the RCVD cases
operate under ∆T = 200 K condition, and three separate particle deposition distributions are
derived to represent the top, bottom and side surfaces of the rotor. Figure 8.20 (a) shows
that the majority of these depositions occur on the top surface of the rotor, at which the
trend is common for both SCVD and RCVD cases but the RCVD case shows higher DE%
on the bottom surface than the similar SCVD case. This deposition pattern may be due to
the rotational motion of the disk and this attribute also appeared in Section 7.3.2, in which
the rotor was assumed to be a perfect sink for all the inbound particles. Therefore, this is
not a characteristic feature of particle-surface interactions. The SCVD and RCVD cases
show overall reductions of ∆DESI= 17.1% and 34.1%, respectively. The top surfaces show
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the highest ∆DESI for both SCVD and RCVD cases and the values are 21.1% and 33.8%,
respectively.

Fig. 8.19 The particle deposition histograms for positive thermophoretic forces ∆T = 200 K,
(a) particle distributions by the surface of the rotor for SCVD, (b) particle distributions by
the surface of the rotor surfaces of RCVD, (c) particle distributions at different radial bands
of SCVD, (d) particle distributions at different radial bands of RCVD.

Figure 8.19 (c) & (d) show the particle deposition distributions obtained for three radial
bands. According to Fig. 8.20 (b), the central bands (a1) of both SCVD and RCVD cases
attract the majority of the particles inside the chamber, followed by the outer band (a3). The
middle band shows the lowest DE% in these cases. The middle band a2 shows the highest
∆DESI = 25.3% for the SCVD case, and the outer band a3 shows the highest ∆DESI = 37.5%
for the RCVD case.
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Fig. 8.20 Breakdown of deposition contributions for ∆T = 200 K, (a) by the surfaces of the
disk, (b) by the radial bands of the disk.

Table 8.1 shows mean diameters for the different deposition distributions that are shown
in Fig. 8.19. In general, the side surface has the largest mean diameters for both SCVD
and RCVD cases, and the lowest values reported on the top surface for both SCVD and
RCVD cases. The top surface shows the highest ∆dmean for both SCVD and RCVD cases
and their values are ∆dmean = 2.5% and 2.8%, respectively. The side surface shows a net
increase in mean diameters (i.e. negative values for ∆dmean) by −3.9% for the SCVD and
−4.5% for the RCVD. In the current simulations, the highest net increase in mean diameters
reported on the bottom surface of the SCVD case, and the value is ∆dmean = −6.5%. By
comparing the mean diameter values in the radial bands, the central region of the disk (a1)
attracts heavier particles followed by outer region (a3). The SCVD case shows the overall
highest ∆dmean = 9.29% at the a2 region, and the a3 region reported the highest value of
∆dmean = 7.46% for the RCVD case.

Case Surfaces / µm Radial bands / µm

Top Bottom Side a1 a2 a3

SCVD S-I ON 0.963 1.017 1.027 0.496 0.205 0.28
SCVD S-I OFF 0.988 0.955 0.988 0.516 0.226 0.238
RCVD S-I ON 0.951 0.944 1.003 0.4 0.263 0.285
RCVD S-I OFF 0.979 0.97 0.959 0.392 0.264 0.308

Table 8.1 Mean particle diameters of surface and radial particle deposition distributions for
SCVD and RCVD cases of ∆T = 200 K.

Figure 8.21 (a) & (b) show the corresponding surface-particle distributions under the
negative ∆T value. These particle deposition distributions confirm that the negative ∆T cases
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only give minor characteristic changes in the deposition distributions. However, as expected,
the attractive thermophoretic forces result in a higher overall deposition efficiency compared
to the positive ∆T cases. The overall reductions reported as ∆DESI = 10.7% and 24.6% for
the respective SCVD and RCVD cases and these reductions are lower than the values reported
for positive ∆T . Figure 8.22 (a) shows that the top surface is the highest impacted surface of
the rotor due to the particle-surface interaction effects and the corresponding reductions for
the top surfaces of the SCVD and RCVD cases are ∆DESI = 13.5% and 29.1%, respectively.
These net reductions on the top surfaces are slightly lower when they compared to the positive
∆T cases.

Fig. 8.21 The particle deposition histograms for negative thermophoretic forces ∆T =
−200 K, (a) particle distributions by the surface of the rotor for SCVD, (b) particle distri-
butions by the surface of the rotor surfaces of RCVD, (c) particle distributions at different
radial bands of SCVD, (d) particle distributions at different radial bands of RCVD.
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Fig. 8.22 Breakdown of deposition contributions for ∆T =−200 K, (a) by the surfaces of
the disk, (b) by the radial bands of the disk.

Figure 8.22 (b) shows the percentages of DE% by the radial bands and it shows that
the a1 region has the highest DE% followed by the a3 region. Similar to positive ∆T cases,
the a2 region shows the lowest DE%. For the case of SCVD, the highest ∆DESI = 18.2%
reported at the a1 region and the a3 region reported the highest value of ∆DESI = 29.5% for
the RCVD case.

Table 8.2 shows the corresponding mean diameters for the different deposition distri-
butions for the cases of negative ∆T . Similar to the positive ∆T cases, the top surface
attracts heavier particles and the SCVD and RCVD cases reported the highest values of
∆dmean = 2.6% and 1.95%, respectively. Here, both bottom and side surfaces show a net
increase in mean diameters and ∆dmean =−2.5% is the highest increase, which is reported
on the bottom surface of the SCVD case. Similar to the positive ∆T case, heavy particles are
deposited at the a1 and a3 regions. The SCVD case shows the highest ∆dmean = 11.08% in
the a1, and the a3 region has the highest ∆dmean = 7.2% for the RCVD case.

Case Surfaces / µm Radial bands / µm
Top Bottom Side a1 a2 a3

SCVD S-I ON 0.965 0.985 1.026 0.393 0.197 0.390
SCVD S-I OFF 0.991 0.961 0.997 0.442 0.198 0.349
RCVD S-I ON 0.955 0.976 0.953 0.358 0.298 0.308
RCVD S-I OFF 0.974 0.969 0.941 0.349 0.290 0.332

Table 8.2 Mean particle diameters of surface and radial particle deposition distributions for
SCVD and RCVD cases of ∆T =−200 K.
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8.4 Summary and conclusions

This chapter considers the particle-surface interaction in SCVD and RCVD simulations. For
this chapter, silicon particles in three sizes have been chosen, dp = 0.7 µm,1 µm,3 µm. The
particle-surface interaction model is similar to the models described in the investigations of
Xu and Willeke (1993) and Fergus (2010), but the current model is a more simplified version
by assuming only right angle impacts and no resuspension of particles.

A series of numerical test cases have been prepared, similar to the previous chapter. The
initial result suggests that larger particles tend to have lower DE% than the smaller particles
under the same conditions. Further, this shows that the rotation of the disk substantially
increases the particle-surface interactions, due to the high relative motion between the particle
and the disk surface. The final section used a Rosin-Rammler particle distribution, which
introduces a cluster of particles with different particle diameters ranging from dp = 0.1 µm
to 2 µm. The particle deposition frequency plots (histograms) are constructed to observe the
particle deposition distributions. These frequency plots suggest that the thermophoretic and
rotational effects are prominent factors in determining DE% of these cases.

This chapter reveals that the particle-surface interactions are more significant for heavier
particles and this may decrease the effective deposition efficiencies. The RCVD cases showed
higher effects than the similar SCVD case. The results of Section 8.3.3 show that the top
surface was the most affected surface of the disk due to the particle-surface interaction effects,
and the central (middle) one-third of the disk was more attracted by the heavier particles.
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Chapter 9

Final remarks and future work

9.1 Conclusions

This study investigated mass, momentum and heat transfer properties of rotor-stator cavities
using CFD methods. The entire investigation was conducted using OpenFOAM, which is
a second-order accurate FVM solver. The rotor-stator cavities of G = 0.2 and Rm = 1.8 at
operations Reynolds number of Reω = 1×105 and 4×105 were used to achieve the results.

Chapter 4 investigated the momentum transport properties of the rotor-stator cavities. This
chapter concluded that the second-order FVM is accurate enough to conduct the engineering
flow simulations on rotor-stator cavities, despite the fact that the overwhelming number
of previous investigations adopted the higher-order methods. The mean velocity profiles
and turbulent intensity profiles were validated against previous numerical and experimental
results. The flow visualisations of rotor and stator boundary layers of Reω = 1×105 and
4× 105 confirmed that the stator boundary layer attains turbulent behaviour at a much
lower Reynolds number than the rotor boundary layer. At the higher Reynolds number
of Reω = 4× 105, 15 Type II spiral arms with a ε ≈ −18◦ inclination to the tangential
direction were observed. Close observation of the inflow disturbance levels and instantaneous
tangential velocity profile at the rotor boundary layer suggested that the possible turbulent
transition mechanism could be the mechanism (B) in Faller (1991)’s investigation, which
was also previously explained by Makino et al. (2015).

Then, the Busse and Sandham (2012)’s parametric model was used to represent surface
roughness on rotor-stator cavities. For simplicity roughness was applied on the rotor bound-
ary layer. Initially, a number of test cases in low Reynolds number Reω = 1× 105 were
considered for the range of normalised parametric model constants of h∗r = 0.0025–0.025
and α∗ = 0.1–1.0. The results showed that the peak values of the rotor mean velocity profiles
increase as the roughness effects increase The other boundary layer properties, such as dis-
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placement thickness, shape factors, were affected by the roughness effects. If the roughness
parameters are high enough (i.e. when the model constants higher than the α∗ = 0.4 and
h∗r = 0.005), these roughness effects on the rotor impose significant changes in time-averaged
velocity, displacement thickness, shape factors profiles at the smooth stator. The entrainment
coefficients of the rotor-stator cavities were increased due to the roughness on the rotor. These
observations showed that the roughness layers on the rotor boundary layer could initiate
non-localise effects in the cavity under the higher α∗, h∗r values. Further, by considering
these initial observations, it can conclude that h∗r is a dominant factor than α∗. Hence, the
controlling the thickness of the roughness layer (or the height of the discrete roughness
element) is import to achieve the outer layer similarity of the rough boundary layers.

Next, at the higher Reynolds number of Reω = 4×105, the rotor boundary was simulated
to investigate the effects of a rough rotor on turbulent properties of the rotor-stator cavities.
Here, two test cases low (h∗r = 0.00125) and high (h∗r = 0.00375) have been considered
and both of them have α∗ = 0.4. The peak values of both radial and tangential turbulence
intensities of the rotor boundary decrease due to damping effects of the roughness terms,
but the corresponding values at the stator layers are relatively unaffected due to the lower
roughness effect on these simulations. Hence, in these test cases, time-averaged velocity
profiles and turbulence intensity profiles suggest that the roughness effects are localised to
the rotor boundary layer.

However, the flow visualisation evidenced that the upper junction between the stator layer
and outer wall is more disturbed in rough wall cavities. The tangential velocity contours
at away from the roughness layer showed effects of roughness in both the rotor and stator
boundary layers. The iso-surface visualisation near the rotor boundary showed more enlarged
vortex structure on rough wall layers. These results suggest the rotor-stator disk cavities are
unstable even for small roughness effects and the outer wall is a way of rapid transporting
these roughness effects from the rotor to the stator. Further, the high Reω case resulted in iso-
surface visualisations near the rotor boundary with enlarged vortex structures on rough wall
layers. As mentioned before, the test cases considered here were confined to relatively low
h∗r to values and no significant changes have been observed in turbulent transition properties.

Chapter 6 focused on heat transfer of rotor-stator cavities filled with nanofluids. The
simulations were tested on rotor-stator cavities operating at Reω = 1×105, and nanofluid
mixtures with, Al2O3 nanoparticle volume fractions, φ = 0.02,0.04,0.2. For the simulations
of the nanofluids, two transport models were adopted. The single-phase model (SP) assumes
homogeneous volume fractions throughout the simulations, and the two-phase model (TP)
imposed the slip velocity between the nanoparticles and the carrier phase, in which the
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Brownian diffusion and thermophoresis effects are considered to be the cause of these slip
velocities.

Both models suggested that the nanofluids have a minimal effect on momentum fields, but
the instantaneous and mean temperature distributions show more significant changes in the
cases with higher nanoparticle volume fractions due to the higher thermal conductivities of
nanoparticles. The SP models predicted a marginal increase in mean temperature compared
to the same condition at TP simulations. This can be explained by the displacement of
nanoparticles at the hot stator boundary, at which the thermophoresis forces dominate over
the Brownian forces. Further, the local Nusselt number and the mean Nusselt number
distributions at the stator boundary have been obtained for all parameter and model cases
and these distributions compared with a power law model. The model was found to hold
at all volume fractions despite it arising from an experimental study of conventional fluid.
The mean Nusselt numbers show 6%–70% increase due to the different nanoparticle volume
fractions of φ = 0.02–0.2. For the highest nanoparticle volume fraction φ = 0.2, the
mean Nusselt number of SP simulation is 4% higher than the similar TP simulation but
the disparity is reduced as the nanoparticle volume fraction decreases. The results show
that the nanoparticle suspension on a conventional fluid increases the effective heat transfer
capabilities of the nanofluid mixture and the process does not impose a significant penalty
on momentum transport properties, which is the main motivation of using the nanoparticles
suspensions for the heat transfer applications over the microparticle suspensions.

Chapters 7 & 8 discussed the mass transfer aspects of rotor-stator flows. Here, instead of
a rotor-stator cavity, a rotating chemical vapour deposition chamber (RCVD) has been used,
which is an engineering application based on rotor-stator disks. A stationary disk chemical
vapour deposition chamber (SCVD) was also simulated for the comparison purposes. The
velocity fields of these two CVD obtained using FVM and the standard k-ε model, and
submicron particle phase with particle diameters, dp =0.01, 0.1, 1.0 µm simulated in a
Lagrangian framework.

In all the test cases, RCVD showed higher particle deposition efficiencies (DE%) than
the equivalent SCVD case, and some RCVD cases showed an over 8% increase in DE% over
a similar SCVD case. For the SCVD cases, top surface attracted over 70% of total particle
deposition but similar RCVD cases show more even particle distributions among the top and
bottom surfaces.

The thermophoretic forces impose a significant effect on the particle phase and the
positive thermophoretic forces, which acted as repulsive forces during the current cases,
almost cease the particle deposition on the rotor, if the carrier phase turbulence effects are
neglected. However, the carrier phase turbulence can subdue the positive thermophoretic
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forces and restored the particle deposition on the rotor, but still, these cases showed decreased
DE% when them compared to the cases without thermophoretic forces imposed. Further,
the initial particle injection location at the inlet of the cavity has a significant effect on the
DE%. If particles injections were concentrated in an inner central region (which was selected
as 8% of the total area of the inlet) of the inlet, the SCVD case showed over ten times
improvement of DE% compared to compared to the cases in which particle injections were
more concentrated in an outer region of the inlet. The corresponding gain is less for RCVD
but still, it showed over three times of an improvement of DE%.

The second part of these simulations considered the particle-surface interactions using
an energy-based model near the rotor surface. The validation of this computational model
was conducted using a uniform distribution that consisted of 20,000 Silicon particles with
different particle diameters ranging from dp = 0.001–3.0 µm. Initial observations showed
that the mean particle diameters of the deposition distributions are dropped by 7.5% and
6.6% for the SCVD and RCVD cases due to the particle-surface interaction effects.

Then, the Silicon particles of three different sizes, dp = 0.7 µm,1.0 µm,3 µm, were
used. As observed before, the particle-surface interaction was more significant with the
larger (heavier) particles, and it reduced the DE% of these particles. The thermophoretic and
rotational effects are the prominent factors in determining DE% of these cases.

After the fixed size particle simulations, a Rosin-Rammler particle distribution, which has
a mean diameter of 0.993 µm and 20,000 particles ranging from dp = 0.1–3 µm, was used
during initial particle injection. The respective deposition distributions on the rotor showed
that top surface attracted most particles and this surface reported the highest reductions
in particle deposition of the rotor due to the particle-surface interactions for both SCVD
and RCVD cases. By comparing the ∆DESI of the SCVD and RCVD cases, it can see that
RCVDs are more affected by particle-surface interactions, and they showed highest values
of ∆DESI = 34.1% and 29.1% for the cases of positive thermophoretic force and negative
thermophoretic force, respectively. The mean diameters of these distributions showed that
the bottom surface attracts bigger particles than the top surface. As observed in the previous
chapter, the central region of the disk (in this case, the central region located at the middle
of the disk and it occupies 33.3% of the disk surface) has the highest DE% and the mean
diameters of the particle distributions in this region relativity higher than the mid and outer
regions of the disk.

Chapters 7 & 8 provided useful information on micron and submicron particle dynamics
and their deposition behaviours under various flow and thermal conditions. In general,
the rotation motion of the disk has the highest impact on the particle deposition followed
by the carrier phase turbulence and the nature of the thermophoretic force. In practice,
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contamination on the thin films can be avoided by maintaining slow rotation speeds of
the disk and laminar status of the flow field. Under these conditions, a heated wafer can
produce a particle free zone near the wafer surface, which can guarantee zero contamination
depositions on the wafer. Further, particle-surface interaction modelling showed that the
inertia of the contamination particles has an impact on their deposition efficiencies and
the current simulation results showed that larger (or heavier) contamination particles are
susceptible to rebound on the surface. However, the significance of this effect is secondary
when it compared to the impacts of the disk rotation, turbulent and thermophoretic effects on
the DE%.

These numerical simulations were able to shed some light on the engineering rotor-stator
flows, which are relatively undocumented in previous investigations. However, the current
simulations can be further improved to get the better results, or it can be re-run under the
different configurations to get a different perspective on the result presented here. The
following section discusses the potential future work on the current investigation.

9.2 Future work

This investigation was able to achieve many of its intended objectives by studying mass,
momentum and heat transfer aspects of rotor-stator disk cavities. However, there is still room
for improvements in the approaches used in this investigation.

Here, the roughness modelling was done through the uncalibrated model constants of
Busse and Sandham (2012)’s parametric model. However, in future, an investigation can
conduct with model constants that correlates with real-world rough surfaces. This can be
extended to obtain roughness functions for rotor-stator cavities. The current investigation did
not consider the influence of roughness on turbulent transitions aspects and further simulation
data can be collected to study the properties of turbulent transition of rough rotor-stator
cavities.

The heat transfer capabilities of rotor-stator cavities filled with nanofluid superior when
it compares to a cavity filled with water. During the current investigations, the Reynolds
numbers are limited to Reω = 1×105 due to time limitations. In the future, this can extend to
cavities operate in higher Reynolds numbers, which could result in high levels of turbulence
in the flow field. A similar approach can be considered to cavities with different aspect ratios
(G) and curvatures (Rm). More investigations in this area can lead to a more refined Nusselt
number correlation model that is suitable for studying the heat transfer in rotor-stator cavities
due to nanofluids.
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9.2 Future work

The Lagrangian particle tracking of RCVD chamber showed that the rotation of the disk
highly influences the dynamics and depositions of the particles, and further, these simulations
can be investigated in higher rotation rates of the disk. In the current investigation, the
turbulence of the carrier phase was emulated by EIM method but the simulations can be
significantly improved by using a DNS or high fidelity LES turbulent methods, which
can provide instantaneous velocity fields of the carrier phase without relying much on the
modelling aspects of the EIM model. These recommendations are valid for the particle-
surface interactions simulations as well. Apart from that, the particle-surface modelling can
be enhanced by considering the particle impacts with the incident angles less than 90◦ to the
surface. Further, considering the particle resuspension into the flow field can result in more
realistic simulation models.
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